//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Bitcode writer implementation. // //===----------------------------------------------------------------------===// #include "llvm/Bitcode/BitcodeWriter.h" #include "ValueEnumerator.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/Bitcode/BitcodeCommon.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/Bitstream/BitCodes.h" #include "llvm/Bitstream/BitstreamWriter.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRangeList.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalIFunc.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/UseListOrder.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/IRSymtab.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; static cl::opt IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), cl::desc("Number of metadatas above which we emit an index " "to enable lazy-loading")); static cl::opt FlushThreshold( "bitcode-flush-threshold", cl::Hidden, cl::init(512), cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); static cl::opt WriteRelBFToSummary( "write-relbf-to-summary", cl::Hidden, cl::init(false), cl::desc("Write relative block frequency to function summary ")); namespace llvm { extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; } extern bool WriteNewDbgInfoFormatToBitcode; extern llvm::cl::opt UseNewDbgInfoFormat; namespace { /// These are manifest constants used by the bitcode writer. They do not need to /// be kept in sync with the reader, but need to be consistent within this file. enum { // VALUE_SYMTAB_BLOCK abbrev id's. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, VST_ENTRY_7_ABBREV, VST_ENTRY_6_ABBREV, VST_BBENTRY_6_ABBREV, // CONSTANTS_BLOCK abbrev id's. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, CONSTANTS_INTEGER_ABBREV, CONSTANTS_CE_CAST_Abbrev, CONSTANTS_NULL_Abbrev, // FUNCTION_BLOCK abbrev id's. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, FUNCTION_INST_UNOP_ABBREV, FUNCTION_INST_UNOP_FLAGS_ABBREV, FUNCTION_INST_BINOP_ABBREV, FUNCTION_INST_BINOP_FLAGS_ABBREV, FUNCTION_INST_CAST_ABBREV, FUNCTION_INST_CAST_FLAGS_ABBREV, FUNCTION_INST_RET_VOID_ABBREV, FUNCTION_INST_RET_VAL_ABBREV, FUNCTION_INST_UNREACHABLE_ABBREV, FUNCTION_INST_GEP_ABBREV, FUNCTION_DEBUG_RECORD_VALUE_ABBREV, }; /// Abstract class to manage the bitcode writing, subclassed for each bitcode /// file type. class BitcodeWriterBase { protected: /// The stream created and owned by the client. BitstreamWriter &Stream; StringTableBuilder &StrtabBuilder; public: /// Constructs a BitcodeWriterBase object that writes to the provided /// \p Stream. BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) : Stream(Stream), StrtabBuilder(StrtabBuilder) {} protected: void writeModuleVersion(); }; void BitcodeWriterBase::writeModuleVersion() { // VERSION: [version#] Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef{2}); } /// Base class to manage the module bitcode writing, currently subclassed for /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. class ModuleBitcodeWriterBase : public BitcodeWriterBase { protected: /// The Module to write to bitcode. const Module &M; /// Enumerates ids for all values in the module. ValueEnumerator VE; /// Optional per-module index to write for ThinLTO. const ModuleSummaryIndex *Index; /// Map that holds the correspondence between GUIDs in the summary index, /// that came from indirect call profiles, and a value id generated by this /// class to use in the VST and summary block records. std::map GUIDToValueIdMap; /// Tracks the last value id recorded in the GUIDToValueMap. unsigned GlobalValueId; /// Saves the offset of the VSTOffset record that must eventually be /// backpatched with the offset of the actual VST. uint64_t VSTOffsetPlaceholder = 0; public: /// Constructs a ModuleBitcodeWriterBase object for the given Module, /// writing to the provided \p Buffer. ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, const ModuleSummaryIndex *Index) : BitcodeWriterBase(Stream, StrtabBuilder), M(M), VE(M, ShouldPreserveUseListOrder), Index(Index) { // Assign ValueIds to any callee values in the index that came from // indirect call profiles and were recorded as a GUID not a Value* // (which would have been assigned an ID by the ValueEnumerator). // The starting ValueId is just after the number of values in the // ValueEnumerator, so that they can be emitted in the VST. GlobalValueId = VE.getValues().size(); if (!Index) return; for (const auto &GUIDSummaryLists : *Index) // Examine all summaries for this GUID. for (auto &Summary : GUIDSummaryLists.second.SummaryList) if (auto FS = dyn_cast(Summary.get())) { // For each call in the function summary, see if the call // is to a GUID (which means it is for an indirect call, // otherwise we would have a Value for it). If so, synthesize // a value id. for (auto &CallEdge : FS->calls()) if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) assignValueId(CallEdge.first.getGUID()); // For each referenced variables in the function summary, see if the // variable is represented by a GUID (as opposed to a symbol to // declarations or definitions in the module). If so, synthesize a // value id. for (auto &RefEdge : FS->refs()) if (!RefEdge.haveGVs() || !RefEdge.getValue()) assignValueId(RefEdge.getGUID()); } } protected: void writePerModuleGlobalValueSummary(); private: void writePerModuleFunctionSummaryRecord( SmallVector &NameVals, GlobalValueSummary *Summary, unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); void writeModuleLevelReferences(const GlobalVariable &V, SmallVector &NameVals, unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev); void assignValueId(GlobalValue::GUID ValGUID) { GUIDToValueIdMap[ValGUID] = ++GlobalValueId; } unsigned getValueId(GlobalValue::GUID ValGUID) { const auto &VMI = GUIDToValueIdMap.find(ValGUID); // Expect that any GUID value had a value Id assigned by an // earlier call to assignValueId. assert(VMI != GUIDToValueIdMap.end() && "GUID does not have assigned value Id"); return VMI->second; } // Helper to get the valueId for the type of value recorded in VI. unsigned getValueId(ValueInfo VI) { if (!VI.haveGVs() || !VI.getValue()) return getValueId(VI.getGUID()); return VE.getValueID(VI.getValue()); } std::map &valueIds() { return GUIDToValueIdMap; } }; /// Class to manage the bitcode writing for a module. class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { /// True if a module hash record should be written. bool GenerateHash; /// If non-null, when GenerateHash is true, the resulting hash is written /// into ModHash. ModuleHash *ModHash; SHA1 Hasher; /// The start bit of the identification block. uint64_t BitcodeStartBit; public: /// Constructs a ModuleBitcodeWriter object for the given Module, /// writing to the provided \p Buffer. ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, const ModuleSummaryIndex *Index, bool GenerateHash, ModuleHash *ModHash = nullptr) : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, ShouldPreserveUseListOrder, Index), GenerateHash(GenerateHash), ModHash(ModHash), BitcodeStartBit(Stream.GetCurrentBitNo()) {} /// Emit the current module to the bitstream. void write(); private: uint64_t bitcodeStartBit() { return BitcodeStartBit; } size_t addToStrtab(StringRef Str); void writeAttributeGroupTable(); void writeAttributeTable(); void writeTypeTable(); void writeComdats(); void writeValueSymbolTableForwardDecl(); void writeModuleInfo(); void writeValueAsMetadata(const ValueAsMetadata *MD, SmallVectorImpl &Record); void writeMDTuple(const MDTuple *N, SmallVectorImpl &Record, unsigned Abbrev); unsigned createDILocationAbbrev(); void writeDILocation(const DILocation *N, SmallVectorImpl &Record, unsigned &Abbrev); unsigned createGenericDINodeAbbrev(); void writeGenericDINode(const GenericDINode *N, SmallVectorImpl &Record, unsigned &Abbrev); void writeDISubrange(const DISubrange *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIGenericSubrange(const DIGenericSubrange *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIEnumerator(const DIEnumerator *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIBasicType(const DIBasicType *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIStringType(const DIStringType *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIDerivedType(const DIDerivedType *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDICompositeType(const DICompositeType *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDISubroutineType(const DISubroutineType *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIFile(const DIFile *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDICompileUnit(const DICompileUnit *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDISubprogram(const DISubprogram *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDILexicalBlock(const DILexicalBlock *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDILexicalBlockFile(const DILexicalBlockFile *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDICommonBlock(const DICommonBlock *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDINamespace(const DINamespace *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIMacro(const DIMacro *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIArgList(const DIArgList *N, SmallVectorImpl &Record); void writeDIModule(const DIModule *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIAssignID(const DIAssignID *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDITemplateValueParameter(const DITemplateValueParameter *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIGlobalVariable(const DIGlobalVariable *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDILocalVariable(const DILocalVariable *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDILabel(const DILabel *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIExpression(const DIExpression *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIObjCProperty(const DIObjCProperty *N, SmallVectorImpl &Record, unsigned Abbrev); void writeDIImportedEntity(const DIImportedEntity *N, SmallVectorImpl &Record, unsigned Abbrev); unsigned createNamedMetadataAbbrev(); void writeNamedMetadata(SmallVectorImpl &Record); unsigned createMetadataStringsAbbrev(); void writeMetadataStrings(ArrayRef Strings, SmallVectorImpl &Record); void writeMetadataRecords(ArrayRef MDs, SmallVectorImpl &Record, std::vector *MDAbbrevs = nullptr, std::vector *IndexPos = nullptr); void writeModuleMetadata(); void writeFunctionMetadata(const Function &F); void writeFunctionMetadataAttachment(const Function &F); void pushGlobalMetadataAttachment(SmallVectorImpl &Record, const GlobalObject &GO); void writeModuleMetadataKinds(); void writeOperandBundleTags(); void writeSyncScopeNames(); void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); void writeModuleConstants(); bool pushValueAndType(const Value *V, unsigned InstID, SmallVectorImpl &Vals); void writeOperandBundles(const CallBase &CB, unsigned InstID); void pushValue(const Value *V, unsigned InstID, SmallVectorImpl &Vals); void pushValueSigned(const Value *V, unsigned InstID, SmallVectorImpl &Vals); void writeInstruction(const Instruction &I, unsigned InstID, SmallVectorImpl &Vals); void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); void writeGlobalValueSymbolTable( DenseMap &FunctionToBitcodeIndex); void writeUseList(UseListOrder &&Order); void writeUseListBlock(const Function *F); void writeFunction(const Function &F, DenseMap &FunctionToBitcodeIndex); void writeBlockInfo(); void writeModuleHash(StringRef View); unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } }; /// Class to manage the bitcode writing for a combined index. class IndexBitcodeWriter : public BitcodeWriterBase { /// The combined index to write to bitcode. const ModuleSummaryIndex &Index; /// When writing combined summaries, provides the set of global value /// summaries for which the value (function, function alias, etc) should be /// imported as a declaration. const GVSummaryPtrSet *DecSummaries = nullptr; /// When writing a subset of the index for distributed backends, client /// provides a map of modules to the corresponding GUIDs/summaries to write. const std::map *ModuleToSummariesForIndex; /// Map that holds the correspondence between the GUID used in the combined /// index and a value id generated by this class to use in references. std::map GUIDToValueIdMap; // The stack ids used by this index, which will be a subset of those in // the full index in the case of distributed indexes. std::vector StackIds; // Keep a map of the stack id indices used by records being written for this // index to the index of the corresponding stack id in the above StackIds // vector. Ensures we write each referenced stack id once. DenseMap StackIdIndicesToIndex; /// Tracks the last value id recorded in the GUIDToValueMap. unsigned GlobalValueId = 0; /// Tracks the assignment of module paths in the module path string table to /// an id assigned for use in summary references to the module path. DenseMap ModuleIdMap; public: /// Constructs a IndexBitcodeWriter object for the given combined index, /// writing to the provided \p Buffer. When writing a subset of the index /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. /// If provided, \p DecSummaries specifies the set of summaries for which /// the corresponding functions or aliased functions should be imported as a /// declaration (but not definition) for each module. IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, const ModuleSummaryIndex &Index, const GVSummaryPtrSet *DecSummaries = nullptr, const std::map *ModuleToSummariesForIndex = nullptr) : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), DecSummaries(DecSummaries), ModuleToSummariesForIndex(ModuleToSummariesForIndex) { // See if the StackIdIndex was already added to the StackId map and // vector. If not, record it. auto RecordStackIdReference = [&](unsigned StackIdIndex) { // If the StackIdIndex is not yet in the map, the below insert ensures // that it will point to the new StackIds vector entry we push to just // below. auto Inserted = StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); if (Inserted.second) StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); }; // Assign unique value ids to all summaries to be written, for use // in writing out the call graph edges. Save the mapping from GUID // to the new global value id to use when writing those edges, which // are currently saved in the index in terms of GUID. forEachSummary([&](GVInfo I, bool IsAliasee) { GUIDToValueIdMap[I.first] = ++GlobalValueId; if (IsAliasee) return; auto *FS = dyn_cast(I.second); if (!FS) return; // Record all stack id indices actually used in the summary entries being // written, so that we can compact them in the case of distributed ThinLTO // indexes. for (auto &CI : FS->callsites()) { // If the stack id list is empty, this callsite info was synthesized for // a missing tail call frame. Ensure that the callee's GUID gets a value // id. Normally we only generate these for defined summaries, which in // the case of distributed ThinLTO is only the functions already defined // in the module or that we want to import. We don't bother to include // all the callee symbols as they aren't normally needed in the backend. // However, for the synthesized callsite infos we do need the callee // GUID in the backend so that we can correlate the identified callee // with this callsite info (which for non-tail calls is done by the // ordering of the callsite infos and verified via stack ids). if (CI.StackIdIndices.empty()) { GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; continue; } for (auto Idx : CI.StackIdIndices) RecordStackIdReference(Idx); } for (auto &AI : FS->allocs()) for (auto &MIB : AI.MIBs) for (auto Idx : MIB.StackIdIndices) RecordStackIdReference(Idx); }); } /// The below iterator returns the GUID and associated summary. using GVInfo = std::pair; /// Calls the callback for each value GUID and summary to be written to /// bitcode. This hides the details of whether they are being pulled from the /// entire index or just those in a provided ModuleToSummariesForIndex map. template void forEachSummary(Functor Callback) { if (ModuleToSummariesForIndex) { for (auto &M : *ModuleToSummariesForIndex) for (auto &Summary : M.second) { Callback(Summary, false); // Ensure aliasee is handled, e.g. for assigning a valueId, // even if we are not importing the aliasee directly (the // imported alias will contain a copy of aliasee). if (auto *AS = dyn_cast(Summary.getSecond())) Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); } } else { for (auto &Summaries : Index) for (auto &Summary : Summaries.second.SummaryList) Callback({Summaries.first, Summary.get()}, false); } } /// Calls the callback for each entry in the modulePaths StringMap that /// should be written to the module path string table. This hides the details /// of whether they are being pulled from the entire index or just those in a /// provided ModuleToSummariesForIndex map. template void forEachModule(Functor Callback) { if (ModuleToSummariesForIndex) { for (const auto &M : *ModuleToSummariesForIndex) { const auto &MPI = Index.modulePaths().find(M.first); if (MPI == Index.modulePaths().end()) { // This should only happen if the bitcode file was empty, in which // case we shouldn't be importing (the ModuleToSummariesForIndex // would only include the module we are writing and index for). assert(ModuleToSummariesForIndex->size() == 1); continue; } Callback(*MPI); } } else { // Since StringMap iteration order isn't guaranteed, order by path string // first. // FIXME: Make this a vector of StringMapEntry instead to avoid the later // map lookup. std::vector ModulePaths; for (auto &[ModPath, _] : Index.modulePaths()) ModulePaths.push_back(ModPath); llvm::sort(ModulePaths.begin(), ModulePaths.end()); for (auto &ModPath : ModulePaths) Callback(*Index.modulePaths().find(ModPath)); } } /// Main entry point for writing a combined index to bitcode. void write(); private: void writeModStrings(); void writeCombinedGlobalValueSummary(); std::optional getValueId(GlobalValue::GUID ValGUID) { auto VMI = GUIDToValueIdMap.find(ValGUID); if (VMI == GUIDToValueIdMap.end()) return std::nullopt; return VMI->second; } std::map &valueIds() { return GUIDToValueIdMap; } }; } // end anonymous namespace static unsigned getEncodedCastOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unknown cast instruction!"); case Instruction::Trunc : return bitc::CAST_TRUNC; case Instruction::ZExt : return bitc::CAST_ZEXT; case Instruction::SExt : return bitc::CAST_SEXT; case Instruction::FPToUI : return bitc::CAST_FPTOUI; case Instruction::FPToSI : return bitc::CAST_FPTOSI; case Instruction::UIToFP : return bitc::CAST_UITOFP; case Instruction::SIToFP : return bitc::CAST_SITOFP; case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; case Instruction::FPExt : return bitc::CAST_FPEXT; case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; case Instruction::BitCast : return bitc::CAST_BITCAST; case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; } } static unsigned getEncodedUnaryOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unknown binary instruction!"); case Instruction::FNeg: return bitc::UNOP_FNEG; } } static unsigned getEncodedBinaryOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unknown binary instruction!"); case Instruction::Add: case Instruction::FAdd: return bitc::BINOP_ADD; case Instruction::Sub: case Instruction::FSub: return bitc::BINOP_SUB; case Instruction::Mul: case Instruction::FMul: return bitc::BINOP_MUL; case Instruction::UDiv: return bitc::BINOP_UDIV; case Instruction::FDiv: case Instruction::SDiv: return bitc::BINOP_SDIV; case Instruction::URem: return bitc::BINOP_UREM; case Instruction::FRem: case Instruction::SRem: return bitc::BINOP_SREM; case Instruction::Shl: return bitc::BINOP_SHL; case Instruction::LShr: return bitc::BINOP_LSHR; case Instruction::AShr: return bitc::BINOP_ASHR; case Instruction::And: return bitc::BINOP_AND; case Instruction::Or: return bitc::BINOP_OR; case Instruction::Xor: return bitc::BINOP_XOR; } } static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { switch (Op) { default: llvm_unreachable("Unknown RMW operation!"); case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; case AtomicRMWInst::Add: return bitc::RMW_ADD; case AtomicRMWInst::Sub: return bitc::RMW_SUB; case AtomicRMWInst::And: return bitc::RMW_AND; case AtomicRMWInst::Nand: return bitc::RMW_NAND; case AtomicRMWInst::Or: return bitc::RMW_OR; case AtomicRMWInst::Xor: return bitc::RMW_XOR; case AtomicRMWInst::Max: return bitc::RMW_MAX; case AtomicRMWInst::Min: return bitc::RMW_MIN; case AtomicRMWInst::UMax: return bitc::RMW_UMAX; case AtomicRMWInst::UMin: return bitc::RMW_UMIN; case AtomicRMWInst::FAdd: return bitc::RMW_FADD; case AtomicRMWInst::FSub: return bitc::RMW_FSUB; case AtomicRMWInst::FMax: return bitc::RMW_FMAX; case AtomicRMWInst::FMin: return bitc::RMW_FMIN; case AtomicRMWInst::UIncWrap: return bitc::RMW_UINC_WRAP; case AtomicRMWInst::UDecWrap: return bitc::RMW_UDEC_WRAP; } } static unsigned getEncodedOrdering(AtomicOrdering Ordering) { switch (Ordering) { case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; } llvm_unreachable("Invalid ordering"); } static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, StringRef Str, unsigned AbbrevToUse) { SmallVector Vals; // Code: [strchar x N] for (char C : Str) { if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) AbbrevToUse = 0; Vals.push_back(C); } // Emit the finished record. Stream.EmitRecord(Code, Vals, AbbrevToUse); } static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { switch (Kind) { case Attribute::Alignment: return bitc::ATTR_KIND_ALIGNMENT; case Attribute::AllocAlign: return bitc::ATTR_KIND_ALLOC_ALIGN; case Attribute::AllocSize: return bitc::ATTR_KIND_ALLOC_SIZE; case Attribute::AlwaysInline: return bitc::ATTR_KIND_ALWAYS_INLINE; case Attribute::Builtin: return bitc::ATTR_KIND_BUILTIN; case Attribute::ByVal: return bitc::ATTR_KIND_BY_VAL; case Attribute::Convergent: return bitc::ATTR_KIND_CONVERGENT; case Attribute::InAlloca: return bitc::ATTR_KIND_IN_ALLOCA; case Attribute::Cold: return bitc::ATTR_KIND_COLD; case Attribute::DisableSanitizerInstrumentation: return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; case Attribute::FnRetThunkExtern: return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; case Attribute::Hot: return bitc::ATTR_KIND_HOT; case Attribute::ElementType: return bitc::ATTR_KIND_ELEMENTTYPE; case Attribute::HybridPatchable: return bitc::ATTR_KIND_HYBRID_PATCHABLE; case Attribute::InlineHint: return bitc::ATTR_KIND_INLINE_HINT; case Attribute::InReg: return bitc::ATTR_KIND_IN_REG; case Attribute::JumpTable: return bitc::ATTR_KIND_JUMP_TABLE; case Attribute::MinSize: return bitc::ATTR_KIND_MIN_SIZE; case Attribute::AllocatedPointer: return bitc::ATTR_KIND_ALLOCATED_POINTER; case Attribute::AllocKind: return bitc::ATTR_KIND_ALLOC_KIND; case Attribute::Memory: return bitc::ATTR_KIND_MEMORY; case Attribute::NoFPClass: return bitc::ATTR_KIND_NOFPCLASS; case Attribute::Naked: return bitc::ATTR_KIND_NAKED; case Attribute::Nest: return bitc::ATTR_KIND_NEST; case Attribute::NoAlias: return bitc::ATTR_KIND_NO_ALIAS; case Attribute::NoBuiltin: return bitc::ATTR_KIND_NO_BUILTIN; case Attribute::NoCallback: return bitc::ATTR_KIND_NO_CALLBACK; case Attribute::NoCapture: return bitc::ATTR_KIND_NO_CAPTURE; case Attribute::NoDuplicate: return bitc::ATTR_KIND_NO_DUPLICATE; case Attribute::NoFree: return bitc::ATTR_KIND_NOFREE; case Attribute::NoImplicitFloat: return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; case Attribute::NoInline: return bitc::ATTR_KIND_NO_INLINE; case Attribute::NoRecurse: return bitc::ATTR_KIND_NO_RECURSE; case Attribute::NoMerge: return bitc::ATTR_KIND_NO_MERGE; case Attribute::NonLazyBind: return bitc::ATTR_KIND_NON_LAZY_BIND; case Attribute::NonNull: return bitc::ATTR_KIND_NON_NULL; case Attribute::Dereferenceable: return bitc::ATTR_KIND_DEREFERENCEABLE; case Attribute::DereferenceableOrNull: return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; case Attribute::NoRedZone: return bitc::ATTR_KIND_NO_RED_ZONE; case Attribute::NoReturn: return bitc::ATTR_KIND_NO_RETURN; case Attribute::NoSync: return bitc::ATTR_KIND_NOSYNC; case Attribute::NoCfCheck: return bitc::ATTR_KIND_NOCF_CHECK; case Attribute::NoProfile: return bitc::ATTR_KIND_NO_PROFILE; case Attribute::SkipProfile: return bitc::ATTR_KIND_SKIP_PROFILE; case Attribute::NoUnwind: return bitc::ATTR_KIND_NO_UNWIND; case Attribute::NoSanitizeBounds: return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; case Attribute::NoSanitizeCoverage: return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; case Attribute::NullPointerIsValid: return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; case Attribute::OptimizeForDebugging: return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; case Attribute::OptForFuzzing: return bitc::ATTR_KIND_OPT_FOR_FUZZING; case Attribute::OptimizeForSize: return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; case Attribute::OptimizeNone: return bitc::ATTR_KIND_OPTIMIZE_NONE; case Attribute::ReadNone: return bitc::ATTR_KIND_READ_NONE; case Attribute::ReadOnly: return bitc::ATTR_KIND_READ_ONLY; case Attribute::Returned: return bitc::ATTR_KIND_RETURNED; case Attribute::ReturnsTwice: return bitc::ATTR_KIND_RETURNS_TWICE; case Attribute::SExt: return bitc::ATTR_KIND_S_EXT; case Attribute::Speculatable: return bitc::ATTR_KIND_SPECULATABLE; case Attribute::StackAlignment: return bitc::ATTR_KIND_STACK_ALIGNMENT; case Attribute::StackProtect: return bitc::ATTR_KIND_STACK_PROTECT; case Attribute::StackProtectReq: return bitc::ATTR_KIND_STACK_PROTECT_REQ; case Attribute::StackProtectStrong: return bitc::ATTR_KIND_STACK_PROTECT_STRONG; case Attribute::SafeStack: return bitc::ATTR_KIND_SAFESTACK; case Attribute::ShadowCallStack: return bitc::ATTR_KIND_SHADOWCALLSTACK; case Attribute::StrictFP: return bitc::ATTR_KIND_STRICT_FP; case Attribute::StructRet: return bitc::ATTR_KIND_STRUCT_RET; case Attribute::SanitizeAddress: return bitc::ATTR_KIND_SANITIZE_ADDRESS; case Attribute::SanitizeHWAddress: return bitc::ATTR_KIND_SANITIZE_HWADDRESS; case Attribute::SanitizeThread: return bitc::ATTR_KIND_SANITIZE_THREAD; case Attribute::SanitizeMemory: return bitc::ATTR_KIND_SANITIZE_MEMORY; case Attribute::SanitizeNumericalStability: return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; case Attribute::SpeculativeLoadHardening: return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; case Attribute::SwiftError: return bitc::ATTR_KIND_SWIFT_ERROR; case Attribute::SwiftSelf: return bitc::ATTR_KIND_SWIFT_SELF; case Attribute::SwiftAsync: return bitc::ATTR_KIND_SWIFT_ASYNC; case Attribute::UWTable: return bitc::ATTR_KIND_UW_TABLE; case Attribute::VScaleRange: return bitc::ATTR_KIND_VSCALE_RANGE; case Attribute::WillReturn: return bitc::ATTR_KIND_WILLRETURN; case Attribute::WriteOnly: return bitc::ATTR_KIND_WRITEONLY; case Attribute::ZExt: return bitc::ATTR_KIND_Z_EXT; case Attribute::ImmArg: return bitc::ATTR_KIND_IMMARG; case Attribute::SanitizeMemTag: return bitc::ATTR_KIND_SANITIZE_MEMTAG; case Attribute::Preallocated: return bitc::ATTR_KIND_PREALLOCATED; case Attribute::NoUndef: return bitc::ATTR_KIND_NOUNDEF; case Attribute::ByRef: return bitc::ATTR_KIND_BYREF; case Attribute::MustProgress: return bitc::ATTR_KIND_MUSTPROGRESS; case Attribute::PresplitCoroutine: return bitc::ATTR_KIND_PRESPLIT_COROUTINE; case Attribute::Writable: return bitc::ATTR_KIND_WRITABLE; case Attribute::CoroDestroyOnlyWhenComplete: return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; case Attribute::DeadOnUnwind: return bitc::ATTR_KIND_DEAD_ON_UNWIND; case Attribute::Range: return bitc::ATTR_KIND_RANGE; case Attribute::Initializes: return bitc::ATTR_KIND_INITIALIZES; case Attribute::EndAttrKinds: llvm_unreachable("Can not encode end-attribute kinds marker."); case Attribute::None: llvm_unreachable("Can not encode none-attribute."); case Attribute::EmptyKey: case Attribute::TombstoneKey: llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); } llvm_unreachable("Trying to encode unknown attribute"); } static void emitSignedInt64(SmallVectorImpl &Vals, uint64_t V) { if ((int64_t)V >= 0) Vals.push_back(V << 1); else Vals.push_back((-V << 1) | 1); } static void emitWideAPInt(SmallVectorImpl &Vals, const APInt &A) { // We have an arbitrary precision integer value to write whose // bit width is > 64. However, in canonical unsigned integer // format it is likely that the high bits are going to be zero. // So, we only write the number of active words. unsigned NumWords = A.getActiveWords(); const uint64_t *RawData = A.getRawData(); for (unsigned i = 0; i < NumWords; i++) emitSignedInt64(Vals, RawData[i]); } static void emitConstantRange(SmallVectorImpl &Record, const ConstantRange &CR, bool EmitBitWidth) { unsigned BitWidth = CR.getBitWidth(); if (EmitBitWidth) Record.push_back(BitWidth); if (BitWidth > 64) { Record.push_back(CR.getLower().getActiveWords() | (uint64_t(CR.getUpper().getActiveWords()) << 32)); emitWideAPInt(Record, CR.getLower()); emitWideAPInt(Record, CR.getUpper()); } else { emitSignedInt64(Record, CR.getLower().getSExtValue()); emitSignedInt64(Record, CR.getUpper().getSExtValue()); } } void ModuleBitcodeWriter::writeAttributeGroupTable() { const std::vector &AttrGrps = VE.getAttributeGroups(); if (AttrGrps.empty()) return; Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); SmallVector Record; for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { unsigned AttrListIndex = Pair.first; AttributeSet AS = Pair.second; Record.push_back(VE.getAttributeGroupID(Pair)); Record.push_back(AttrListIndex); for (Attribute Attr : AS) { if (Attr.isEnumAttribute()) { Record.push_back(0); Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); } else if (Attr.isIntAttribute()) { Record.push_back(1); Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); Record.push_back(Attr.getValueAsInt()); } else if (Attr.isStringAttribute()) { StringRef Kind = Attr.getKindAsString(); StringRef Val = Attr.getValueAsString(); Record.push_back(Val.empty() ? 3 : 4); Record.append(Kind.begin(), Kind.end()); Record.push_back(0); if (!Val.empty()) { Record.append(Val.begin(), Val.end()); Record.push_back(0); } } else if (Attr.isTypeAttribute()) { Type *Ty = Attr.getValueAsType(); Record.push_back(Ty ? 6 : 5); Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); if (Ty) Record.push_back(VE.getTypeID(Attr.getValueAsType())); } else if (Attr.isConstantRangeAttribute()) { Record.push_back(7); Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); emitConstantRange(Record, Attr.getValueAsConstantRange(), /*EmitBitWidth=*/true); } else { assert(Attr.isConstantRangeListAttribute()); Record.push_back(8); Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); ArrayRef Val = Attr.getValueAsConstantRangeList(); Record.push_back(Val.size()); Record.push_back(Val[0].getBitWidth()); for (auto &CR : Val) emitConstantRange(Record, CR, /*EmitBitWidth=*/false); } } Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeAttributeTable() { const std::vector &Attrs = VE.getAttributeLists(); if (Attrs.empty()) return; Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); SmallVector Record; for (const AttributeList &AL : Attrs) { for (unsigned i : AL.indexes()) { AttributeSet AS = AL.getAttributes(i); if (AS.hasAttributes()) Record.push_back(VE.getAttributeGroupID({i, AS})); } Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); Record.clear(); } Stream.ExitBlock(); } /// WriteTypeTable - Write out the type table for a module. void ModuleBitcodeWriter::writeTypeTable() { const ValueEnumerator::TypeList &TypeList = VE.getTypes(); Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); SmallVector TypeVals; uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); // Abbrev for TYPE_CODE_OPAQUE_POINTER. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for TYPE_CODE_FUNCTION. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for TYPE_CODE_STRUCT_ANON. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for TYPE_CODE_STRUCT_NAME. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for TYPE_CODE_STRUCT_NAMED. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for TYPE_CODE_ARRAY. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Emit an entry count so the reader can reserve space. TypeVals.push_back(TypeList.size()); Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); TypeVals.clear(); // Loop over all of the types, emitting each in turn. for (Type *T : TypeList) { int AbbrevToUse = 0; unsigned Code = 0; switch (T->getTypeID()) { case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; case Type::IntegerTyID: // INTEGER: [width] Code = bitc::TYPE_CODE_INTEGER; TypeVals.push_back(cast(T)->getBitWidth()); break; case Type::PointerTyID: { PointerType *PTy = cast(T); unsigned AddressSpace = PTy->getAddressSpace(); // OPAQUE_POINTER: [address space] Code = bitc::TYPE_CODE_OPAQUE_POINTER; TypeVals.push_back(AddressSpace); if (AddressSpace == 0) AbbrevToUse = OpaquePtrAbbrev; break; } case Type::FunctionTyID: { FunctionType *FT = cast(T); // FUNCTION: [isvararg, retty, paramty x N] Code = bitc::TYPE_CODE_FUNCTION; TypeVals.push_back(FT->isVarArg()); TypeVals.push_back(VE.getTypeID(FT->getReturnType())); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); AbbrevToUse = FunctionAbbrev; break; } case Type::StructTyID: { StructType *ST = cast(T); // STRUCT: [ispacked, eltty x N] TypeVals.push_back(ST->isPacked()); // Output all of the element types. for (Type *ET : ST->elements()) TypeVals.push_back(VE.getTypeID(ET)); if (ST->isLiteral()) { Code = bitc::TYPE_CODE_STRUCT_ANON; AbbrevToUse = StructAnonAbbrev; } else { if (ST->isOpaque()) { Code = bitc::TYPE_CODE_OPAQUE; } else { Code = bitc::TYPE_CODE_STRUCT_NAMED; AbbrevToUse = StructNamedAbbrev; } // Emit the name if it is present. if (!ST->getName().empty()) writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), StructNameAbbrev); } break; } case Type::ArrayTyID: { ArrayType *AT = cast(T); // ARRAY: [numelts, eltty] Code = bitc::TYPE_CODE_ARRAY; TypeVals.push_back(AT->getNumElements()); TypeVals.push_back(VE.getTypeID(AT->getElementType())); AbbrevToUse = ArrayAbbrev; break; } case Type::FixedVectorTyID: case Type::ScalableVectorTyID: { VectorType *VT = cast(T); // VECTOR [numelts, eltty] or // [numelts, eltty, scalable] Code = bitc::TYPE_CODE_VECTOR; TypeVals.push_back(VT->getElementCount().getKnownMinValue()); TypeVals.push_back(VE.getTypeID(VT->getElementType())); if (isa(VT)) TypeVals.push_back(true); break; } case Type::TargetExtTyID: { TargetExtType *TET = cast(T); Code = bitc::TYPE_CODE_TARGET_TYPE; writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), StructNameAbbrev); TypeVals.push_back(TET->getNumTypeParameters()); for (Type *InnerTy : TET->type_params()) TypeVals.push_back(VE.getTypeID(InnerTy)); for (unsigned IntParam : TET->int_params()) TypeVals.push_back(IntParam); break; } case Type::TypedPointerTyID: llvm_unreachable("Typed pointers cannot be added to IR modules"); } // Emit the finished record. Stream.EmitRecord(Code, TypeVals, AbbrevToUse); TypeVals.clear(); } Stream.ExitBlock(); } static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { switch (Linkage) { case GlobalValue::ExternalLinkage: return 0; case GlobalValue::WeakAnyLinkage: return 16; case GlobalValue::AppendingLinkage: return 2; case GlobalValue::InternalLinkage: return 3; case GlobalValue::LinkOnceAnyLinkage: return 18; case GlobalValue::ExternalWeakLinkage: return 7; case GlobalValue::CommonLinkage: return 8; case GlobalValue::PrivateLinkage: return 9; case GlobalValue::WeakODRLinkage: return 17; case GlobalValue::LinkOnceODRLinkage: return 19; case GlobalValue::AvailableExternallyLinkage: return 12; } llvm_unreachable("Invalid linkage"); } static unsigned getEncodedLinkage(const GlobalValue &GV) { return getEncodedLinkage(GV.getLinkage()); } static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { uint64_t RawFlags = 0; RawFlags |= Flags.ReadNone; RawFlags |= (Flags.ReadOnly << 1); RawFlags |= (Flags.NoRecurse << 2); RawFlags |= (Flags.ReturnDoesNotAlias << 3); RawFlags |= (Flags.NoInline << 4); RawFlags |= (Flags.AlwaysInline << 5); RawFlags |= (Flags.NoUnwind << 6); RawFlags |= (Flags.MayThrow << 7); RawFlags |= (Flags.HasUnknownCall << 8); RawFlags |= (Flags.MustBeUnreachable << 9); return RawFlags; } // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags // in BitcodeReader.cpp. static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, bool ImportAsDecl = false) { uint64_t RawFlags = 0; RawFlags |= Flags.NotEligibleToImport; // bool RawFlags |= (Flags.Live << 1); RawFlags |= (Flags.DSOLocal << 2); RawFlags |= (Flags.CanAutoHide << 3); // Linkage don't need to be remapped at that time for the summary. Any future // change to the getEncodedLinkage() function will need to be taken into // account here as well. RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits RawFlags |= (Flags.Visibility << 8); // 2 bits unsigned ImportType = Flags.ImportType | ImportAsDecl; RawFlags |= (ImportType << 10); // 1 bit return RawFlags; } static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | (Flags.Constant << 2) | Flags.VCallVisibility << 3; return RawFlags; } static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { uint64_t RawFlags = 0; RawFlags |= CI.Hotness; // 3 bits RawFlags |= (CI.HasTailCall << 3); // 1 bit return RawFlags; } static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { uint64_t RawFlags = 0; RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit return RawFlags; } static unsigned getEncodedVisibility(const GlobalValue &GV) { switch (GV.getVisibility()) { case GlobalValue::DefaultVisibility: return 0; case GlobalValue::HiddenVisibility: return 1; case GlobalValue::ProtectedVisibility: return 2; } llvm_unreachable("Invalid visibility"); } static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { switch (GV.getDLLStorageClass()) { case GlobalValue::DefaultStorageClass: return 0; case GlobalValue::DLLImportStorageClass: return 1; case GlobalValue::DLLExportStorageClass: return 2; } llvm_unreachable("Invalid DLL storage class"); } static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { switch (GV.getThreadLocalMode()) { case GlobalVariable::NotThreadLocal: return 0; case GlobalVariable::GeneralDynamicTLSModel: return 1; case GlobalVariable::LocalDynamicTLSModel: return 2; case GlobalVariable::InitialExecTLSModel: return 3; case GlobalVariable::LocalExecTLSModel: return 4; } llvm_unreachable("Invalid TLS model"); } static unsigned getEncodedComdatSelectionKind(const Comdat &C) { switch (C.getSelectionKind()) { case Comdat::Any: return bitc::COMDAT_SELECTION_KIND_ANY; case Comdat::ExactMatch: return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; case Comdat::Largest: return bitc::COMDAT_SELECTION_KIND_LARGEST; case Comdat::NoDeduplicate: return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; case Comdat::SameSize: return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; } llvm_unreachable("Invalid selection kind"); } static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { switch (GV.getUnnamedAddr()) { case GlobalValue::UnnamedAddr::None: return 0; case GlobalValue::UnnamedAddr::Local: return 2; case GlobalValue::UnnamedAddr::Global: return 1; } llvm_unreachable("Invalid unnamed_addr"); } size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { if (GenerateHash) Hasher.update(Str); return StrtabBuilder.add(Str); } void ModuleBitcodeWriter::writeComdats() { SmallVector Vals; for (const Comdat *C : VE.getComdats()) { // COMDAT: [strtab offset, strtab size, selection_kind] Vals.push_back(addToStrtab(C->getName())); Vals.push_back(C->getName().size()); Vals.push_back(getEncodedComdatSelectionKind(*C)); Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); Vals.clear(); } } /// Write a record that will eventually hold the word offset of the /// module-level VST. For now the offset is 0, which will be backpatched /// after the real VST is written. Saves the bit offset to backpatch. void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { // Write a placeholder value in for the offset of the real VST, // which is written after the function blocks so that it can include // the offset of each function. The placeholder offset will be // updated when the real VST is written. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); // Blocks are 32-bit aligned, so we can use a 32-bit word offset to // hold the real VST offset. Must use fixed instead of VBR as we don't // know how many VBR chunks to reserve ahead of time. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Emit the placeholder uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); // Compute and save the bit offset to the placeholder, which will be // patched when the real VST is written. We can simply subtract the 32-bit // fixed size from the current bit number to get the location to backpatch. VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; } enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; /// Determine the encoding to use for the given string name and length. static StringEncoding getStringEncoding(StringRef Str) { bool isChar6 = true; for (char C : Str) { if (isChar6) isChar6 = BitCodeAbbrevOp::isChar6(C); if ((unsigned char)C & 128) // don't bother scanning the rest. return SE_Fixed8; } if (isChar6) return SE_Char6; return SE_Fixed7; } static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), "Sanitizer Metadata is too large for naive serialization."); static unsigned serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { return Meta.NoAddress | (Meta.NoHWAddress << 1) | (Meta.Memtag << 2) | (Meta.IsDynInit << 3); } /// Emit top-level description of module, including target triple, inline asm, /// descriptors for global variables, and function prototype info. /// Returns the bit offset to backpatch with the location of the real VST. void ModuleBitcodeWriter::writeModuleInfo() { // Emit various pieces of data attached to a module. if (!M.getTargetTriple().empty()) writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 0 /*TODO*/); const std::string &DL = M.getDataLayoutStr(); if (!DL.empty()) writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); if (!M.getModuleInlineAsm().empty()) writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 0 /*TODO*/); // Emit information about sections and GC, computing how many there are. Also // compute the maximum alignment value. std::map SectionMap; std::map GCMap; MaybeAlign MaxAlignment; unsigned MaxGlobalType = 0; const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { if (A) MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); }; for (const GlobalVariable &GV : M.globals()) { UpdateMaxAlignment(GV.getAlign()); MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); if (GV.hasSection()) { // Give section names unique ID's. unsigned &Entry = SectionMap[std::string(GV.getSection())]; if (!Entry) { writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 0 /*TODO*/); Entry = SectionMap.size(); } } } for (const Function &F : M) { UpdateMaxAlignment(F.getAlign()); if (F.hasSection()) { // Give section names unique ID's. unsigned &Entry = SectionMap[std::string(F.getSection())]; if (!Entry) { writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 0 /*TODO*/); Entry = SectionMap.size(); } } if (F.hasGC()) { // Same for GC names. unsigned &Entry = GCMap[F.getGC()]; if (!Entry) { writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/); Entry = GCMap.size(); } } } // Emit abbrev for globals, now that we know # sections and max alignment. unsigned SimpleGVarAbbrev = 0; if (!M.global_empty()) { // Add an abbrev for common globals with no visibility or thread localness. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(MaxGlobalType+1))); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 //| explicitType << 1 //| constant Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. if (!MaxAlignment) // Alignment. Abbv->Add(BitCodeAbbrevOp(0)); else { unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(MaxEncAlignment+1))); } if (SectionMap.empty()) // Section. Abbv->Add(BitCodeAbbrevOp(0)); else Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(SectionMap.size()+1))); // Don't bother emitting vis + thread local. SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); } SmallVector Vals; // Emit the module's source file name. { StringEncoding Bits = getStringEncoding(M.getSourceFileName()); BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); if (Bits == SE_Char6) AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); else if (Bits == SE_Fixed7) AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); // MODULE_CODE_SOURCE_FILENAME: [namechar x N] auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(AbbrevOpToUse); unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); for (const auto P : M.getSourceFileName()) Vals.push_back((unsigned char)P); // Emit the finished record. Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); Vals.clear(); } // Emit the global variable information. for (const GlobalVariable &GV : M.globals()) { unsigned AbbrevToUse = 0; // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, // linkage, alignment, section, visibility, threadlocal, // unnamed_addr, externally_initialized, dllstorageclass, // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] Vals.push_back(addToStrtab(GV.getName())); Vals.push_back(GV.getName().size()); Vals.push_back(VE.getTypeID(GV.getValueType())); Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); Vals.push_back(GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); Vals.push_back(getEncodedLinkage(GV)); Vals.push_back(getEncodedAlign(GV.getAlign())); Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] : 0); if (GV.isThreadLocal() || GV.getVisibility() != GlobalValue::DefaultVisibility || GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || GV.isExternallyInitialized() || GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { Vals.push_back(getEncodedVisibility(GV)); Vals.push_back(getEncodedThreadLocalMode(GV)); Vals.push_back(getEncodedUnnamedAddr(GV)); Vals.push_back(GV.isExternallyInitialized()); Vals.push_back(getEncodedDLLStorageClass(GV)); Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); Vals.push_back(VE.getAttributeListID(AL)); Vals.push_back(GV.isDSOLocal()); Vals.push_back(addToStrtab(GV.getPartition())); Vals.push_back(GV.getPartition().size()); Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( GV.getSanitizerMetadata()) : 0)); Vals.push_back(GV.getCodeModelRaw()); } else { AbbrevToUse = SimpleGVarAbbrev; } Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); Vals.clear(); } // Emit the function proto information. for (const Function &F : M) { // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, // linkage, paramattrs, alignment, section, visibility, gc, // unnamed_addr, prologuedata, dllstorageclass, comdat, // prefixdata, personalityfn, DSO_Local, addrspace] Vals.push_back(addToStrtab(F.getName())); Vals.push_back(F.getName().size()); Vals.push_back(VE.getTypeID(F.getFunctionType())); Vals.push_back(F.getCallingConv()); Vals.push_back(F.isDeclaration()); Vals.push_back(getEncodedLinkage(F)); Vals.push_back(VE.getAttributeListID(F.getAttributes())); Vals.push_back(getEncodedAlign(F.getAlign())); Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] : 0); Vals.push_back(getEncodedVisibility(F)); Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); Vals.push_back(getEncodedUnnamedAddr(F)); Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); Vals.push_back(getEncodedDLLStorageClass(F)); Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) : 0); Vals.push_back( F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); Vals.push_back(F.isDSOLocal()); Vals.push_back(F.getAddressSpace()); Vals.push_back(addToStrtab(F.getPartition())); Vals.push_back(F.getPartition().size()); unsigned AbbrevToUse = 0; Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); Vals.clear(); } // Emit the alias information. for (const GlobalAlias &A : M.aliases()) { // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, // visibility, dllstorageclass, threadlocal, unnamed_addr, // DSO_Local] Vals.push_back(addToStrtab(A.getName())); Vals.push_back(A.getName().size()); Vals.push_back(VE.getTypeID(A.getValueType())); Vals.push_back(A.getType()->getAddressSpace()); Vals.push_back(VE.getValueID(A.getAliasee())); Vals.push_back(getEncodedLinkage(A)); Vals.push_back(getEncodedVisibility(A)); Vals.push_back(getEncodedDLLStorageClass(A)); Vals.push_back(getEncodedThreadLocalMode(A)); Vals.push_back(getEncodedUnnamedAddr(A)); Vals.push_back(A.isDSOLocal()); Vals.push_back(addToStrtab(A.getPartition())); Vals.push_back(A.getPartition().size()); unsigned AbbrevToUse = 0; Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); Vals.clear(); } // Emit the ifunc information. for (const GlobalIFunc &I : M.ifuncs()) { // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver // val#, linkage, visibility, DSO_Local] Vals.push_back(addToStrtab(I.getName())); Vals.push_back(I.getName().size()); Vals.push_back(VE.getTypeID(I.getValueType())); Vals.push_back(I.getType()->getAddressSpace()); Vals.push_back(VE.getValueID(I.getResolver())); Vals.push_back(getEncodedLinkage(I)); Vals.push_back(getEncodedVisibility(I)); Vals.push_back(I.isDSOLocal()); Vals.push_back(addToStrtab(I.getPartition())); Vals.push_back(I.getPartition().size()); Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); Vals.clear(); } writeValueSymbolTableForwardDecl(); } static uint64_t getOptimizationFlags(const Value *V) { uint64_t Flags = 0; if (const auto *OBO = dyn_cast(V)) { if (OBO->hasNoSignedWrap()) Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; if (OBO->hasNoUnsignedWrap()) Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; } else if (const auto *PEO = dyn_cast(V)) { if (PEO->isExact()) Flags |= 1 << bitc::PEO_EXACT; } else if (const auto *PDI = dyn_cast(V)) { if (PDI->isDisjoint()) Flags |= 1 << bitc::PDI_DISJOINT; } else if (const auto *FPMO = dyn_cast(V)) { if (FPMO->hasAllowReassoc()) Flags |= bitc::AllowReassoc; if (FPMO->hasNoNaNs()) Flags |= bitc::NoNaNs; if (FPMO->hasNoInfs()) Flags |= bitc::NoInfs; if (FPMO->hasNoSignedZeros()) Flags |= bitc::NoSignedZeros; if (FPMO->hasAllowReciprocal()) Flags |= bitc::AllowReciprocal; if (FPMO->hasAllowContract()) Flags |= bitc::AllowContract; if (FPMO->hasApproxFunc()) Flags |= bitc::ApproxFunc; } else if (const auto *NNI = dyn_cast(V)) { if (NNI->hasNonNeg()) Flags |= 1 << bitc::PNNI_NON_NEG; } else if (const auto *TI = dyn_cast(V)) { if (TI->hasNoSignedWrap()) Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; if (TI->hasNoUnsignedWrap()) Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; } else if (const auto *GEP = dyn_cast(V)) { if (GEP->isInBounds()) Flags |= 1 << bitc::GEP_INBOUNDS; if (GEP->hasNoUnsignedSignedWrap()) Flags |= 1 << bitc::GEP_NUSW; if (GEP->hasNoUnsignedWrap()) Flags |= 1 << bitc::GEP_NUW; } return Flags; } void ModuleBitcodeWriter::writeValueAsMetadata( const ValueAsMetadata *MD, SmallVectorImpl &Record) { // Mimic an MDNode with a value as one operand. Value *V = MD->getValue(); Record.push_back(VE.getTypeID(V->getType())); Record.push_back(VE.getValueID(V)); Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); Record.clear(); } void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, SmallVectorImpl &Record, unsigned Abbrev) { for (const MDOperand &MDO : N->operands()) { Metadata *MD = MDO; assert(!(MD && isa(MD)) && "Unexpected function-local metadata"); Record.push_back(VE.getMetadataOrNullID(MD)); } Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE : bitc::METADATA_NODE, Record, Abbrev); Record.clear(); } unsigned ModuleBitcodeWriter::createDILocationAbbrev() { // Assume the column is usually under 128, and always output the inlined-at // location (it's never more expensive than building an array size 1). auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); return Stream.EmitAbbrev(std::move(Abbv)); } void ModuleBitcodeWriter::writeDILocation(const DILocation *N, SmallVectorImpl &Record, unsigned &Abbrev) { if (!Abbrev) Abbrev = createDILocationAbbrev(); Record.push_back(N->isDistinct()); Record.push_back(N->getLine()); Record.push_back(N->getColumn()); Record.push_back(VE.getMetadataID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); Record.push_back(N->isImplicitCode()); Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); Record.clear(); } unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { // Assume the column is usually under 128, and always output the inlined-at // location (it's never more expensive than building an array size 1). auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); return Stream.EmitAbbrev(std::move(Abbv)); } void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, SmallVectorImpl &Record, unsigned &Abbrev) { if (!Abbrev) Abbrev = createGenericDINodeAbbrev(); Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(0); // Per-tag version field; unused for now. for (auto &I : N->operands()) Record.push_back(VE.getMetadataOrNullID(I)); Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, SmallVectorImpl &Record, unsigned Abbrev) { const uint64_t Version = 2 << 1; Record.push_back((uint64_t)N->isDistinct() | Version); Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIGenericSubrange( const DIGenericSubrange *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back((uint64_t)N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, SmallVectorImpl &Record, unsigned Abbrev) { const uint64_t IsBigInt = 1 << 2; Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); Record.push_back(N->getValue().getBitWidth()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); emitWideAPInt(Record, N->getValue()); Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(N->getSizeInBits()); Record.push_back(N->getAlignInBits()); Record.push_back(N->getEncoding()); Record.push_back(N->getFlags()); Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); Record.push_back(N->getSizeInBits()); Record.push_back(N->getAlignInBits()); Record.push_back(N->getEncoding()); Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); Record.push_back(N->getSizeInBits()); Record.push_back(N->getAlignInBits()); Record.push_back(N->getOffsetInBits()); Record.push_back(N->getFlags()); Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means // that there is no DWARF address space associated with DIDerivedType. if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) Record.push_back(*DWARFAddressSpace + 1); else Record.push_back(0); Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); if (auto PtrAuthData = N->getPtrAuthData()) Record.push_back(PtrAuthData->RawData); else Record.push_back(0); Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDICompositeType( const DICompositeType *N, SmallVectorImpl &Record, unsigned Abbrev) { const unsigned IsNotUsedInOldTypeRef = 0x2; Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); Record.push_back(N->getSizeInBits()); Record.push_back(N->getAlignInBits()); Record.push_back(N->getOffsetInBits()); Record.push_back(N->getFlags()); Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); Record.push_back(N->getRuntimeLang()); Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDISubroutineType( const DISubroutineType *N, SmallVectorImpl &Record, unsigned Abbrev) { const unsigned HasNoOldTypeRefs = 0x2; Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); Record.push_back(N->getFlags()); Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); Record.push_back(N->getCC()); Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIFile(const DIFile *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); if (N->getRawChecksum()) { Record.push_back(N->getRawChecksum()->Kind); Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); } else { // Maintain backwards compatibility with the old internal representation of // CSK_None in ChecksumKind by writing nulls here when Checksum is None. Record.push_back(0); Record.push_back(VE.getMetadataOrNullID(nullptr)); } auto Source = N->getRawSource(); if (Source) Record.push_back(VE.getMetadataOrNullID(Source)); Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, SmallVectorImpl &Record, unsigned Abbrev) { assert(N->isDistinct() && "Expected distinct compile units"); Record.push_back(/* IsDistinct */ true); Record.push_back(N->getSourceLanguage()); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); Record.push_back(N->isOptimized()); Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); Record.push_back(N->getRuntimeVersion()); Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); Record.push_back(N->getEmissionKind()); Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); Record.push_back(/* subprograms */ 0); Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); Record.push_back(N->getDWOId()); Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); Record.push_back(N->getSplitDebugInlining()); Record.push_back(N->getDebugInfoForProfiling()); Record.push_back((unsigned)N->getNameTableKind()); Record.push_back(N->getRangesBaseAddress()); Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, SmallVectorImpl &Record, unsigned Abbrev) { const uint64_t HasUnitFlag = 1 << 1; const uint64_t HasSPFlagsFlag = 1 << 2; Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->getScopeLine()); Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); Record.push_back(N->getSPFlags()); Record.push_back(N->getVirtualIndex()); Record.push_back(N->getFlags()); Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); Record.push_back(N->getThisAdjustment()); Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(N->getColumn()); Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDILexicalBlockFile( const DILexicalBlockFile *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getDiscriminator()); Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getDecl())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLineNo()); Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getMacinfoType()); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getMacinfoType()); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, SmallVectorImpl &Record) { Record.reserve(N->getArgs().size()); for (ValueAsMetadata *MD : N->getArgs()) Record.push_back(VE.getMetadataID(MD)); Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); Record.clear(); } void ModuleBitcodeWriter::writeDIModule(const DIModule *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); for (auto &I : N->operands()) Record.push_back(VE.getMetadataOrNullID(I)); Record.push_back(N->getLineNo()); Record.push_back(N->getIsDecl()); Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, SmallVectorImpl &Record, unsigned Abbrev) { // There are no arguments for this metadata type. Record.push_back(N->isDistinct()); Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDITemplateTypeParameter( const DITemplateTypeParameter *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->isDefault()); Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDITemplateValueParameter( const DITemplateValueParameter *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->isDefault()); Record.push_back(VE.getMetadataOrNullID(N->getValue())); Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIGlobalVariable( const DIGlobalVariable *N, SmallVectorImpl &Record, unsigned Abbrev) { const uint64_t Version = 2 << 1; Record.push_back((uint64_t)N->isDistinct() | Version); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->isLocalToUnit()); Record.push_back(N->isDefinition()); Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); Record.push_back(N->getAlignInBits()); Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDILocalVariable( const DILocalVariable *N, SmallVectorImpl &Record, unsigned Abbrev) { // In order to support all possible bitcode formats in BitcodeReader we need // to distinguish the following cases: // 1) Record has no artificial tag (Record[1]), // has no obsolete inlinedAt field (Record[9]). // In this case Record size will be 8, HasAlignment flag is false. // 2) Record has artificial tag (Record[1]), // has no obsolete inlignedAt field (Record[9]). // In this case Record size will be 9, HasAlignment flag is false. // 3) Record has both artificial tag (Record[1]) and // obsolete inlignedAt field (Record[9]). // In this case Record size will be 10, HasAlignment flag is false. // 4) Record has neither artificial tag, nor inlignedAt field, but // HasAlignment flag is true and Record[8] contains alignment value. const uint64_t HasAlignmentFlag = 1 << 1; Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->getArg()); Record.push_back(N->getFlags()); Record.push_back(N->getAlignInBits()); Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDILabel( const DILabel *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back((uint64_t)N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.reserve(N->getElements().size() + 1); const uint64_t Version = 3 << 1; Record.push_back((uint64_t)N->isDistinct() | Version); Record.append(N->elements_begin(), N->elements_end()); Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIGlobalVariableExpression( const DIGlobalVariableExpression *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getVariable())); Record.push_back(VE.getMetadataOrNullID(N->getExpression())); Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); Record.push_back(N->getAttributes()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIImportedEntity( const DIImportedEntity *N, SmallVectorImpl &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getEntity())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); Record.clear(); } unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); return Stream.EmitAbbrev(std::move(Abbv)); } void ModuleBitcodeWriter::writeNamedMetadata( SmallVectorImpl &Record) { if (M.named_metadata_empty()) return; unsigned Abbrev = createNamedMetadataAbbrev(); for (const NamedMDNode &NMD : M.named_metadata()) { // Write name. StringRef Str = NMD.getName(); Record.append(Str.bytes_begin(), Str.bytes_end()); Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); Record.clear(); // Write named metadata operands. for (const MDNode *N : NMD.operands()) Record.push_back(VE.getMetadataID(N)); Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); Record.clear(); } } unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); return Stream.EmitAbbrev(std::move(Abbv)); } /// Write out a record for MDString. /// /// All the metadata strings in a metadata block are emitted in a single /// record. The sizes and strings themselves are shoved into a blob. void ModuleBitcodeWriter::writeMetadataStrings( ArrayRef Strings, SmallVectorImpl &Record) { if (Strings.empty()) return; // Start the record with the number of strings. Record.push_back(bitc::METADATA_STRINGS); Record.push_back(Strings.size()); // Emit the sizes of the strings in the blob. SmallString<256> Blob; { BitstreamWriter W(Blob); for (const Metadata *MD : Strings) W.EmitVBR(cast(MD)->getLength(), 6); W.FlushToWord(); } // Add the offset to the strings to the record. Record.push_back(Blob.size()); // Add the strings to the blob. for (const Metadata *MD : Strings) Blob.append(cast(MD)->getString()); // Emit the final record. Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); Record.clear(); } // Generates an enum to use as an index in the Abbrev array of Metadata record. enum MetadataAbbrev : unsigned { #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, #include "llvm/IR/Metadata.def" LastPlusOne }; void ModuleBitcodeWriter::writeMetadataRecords( ArrayRef MDs, SmallVectorImpl &Record, std::vector *MDAbbrevs, std::vector *IndexPos) { if (MDs.empty()) return; // Initialize MDNode abbreviations. #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; #include "llvm/IR/Metadata.def" for (const Metadata *MD : MDs) { if (IndexPos) IndexPos->push_back(Stream.GetCurrentBitNo()); if (const MDNode *N = dyn_cast(MD)) { assert(N->isResolved() && "Expected forward references to be resolved"); switch (N->getMetadataID()) { default: llvm_unreachable("Invalid MDNode subclass"); #define HANDLE_MDNODE_LEAF(CLASS) \ case Metadata::CLASS##Kind: \ if (MDAbbrevs) \ write##CLASS(cast(N), Record, \ (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ else \ write##CLASS(cast(N), Record, CLASS##Abbrev); \ continue; #include "llvm/IR/Metadata.def" } } if (auto *AL = dyn_cast(MD)) { writeDIArgList(AL, Record); continue; } writeValueAsMetadata(cast(MD), Record); } } void ModuleBitcodeWriter::writeModuleMetadata() { if (!VE.hasMDs() && M.named_metadata_empty()) return; Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); SmallVector Record; // Emit all abbrevs upfront, so that the reader can jump in the middle of the // block and load any metadata. std::vector MDAbbrevs; MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = createGenericDINodeAbbrev(); auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Emit MDStrings together upfront. writeMetadataStrings(VE.getMDStrings(), Record); // We only emit an index for the metadata record if we have more than a given // (naive) threshold of metadatas, otherwise it is not worth it. if (VE.getNonMDStrings().size() > IndexThreshold) { // Write a placeholder value in for the offset of the metadata index, // which is written after the records, so that it can include // the offset of each entry. The placeholder offset will be // updated after all records are emitted. uint64_t Vals[] = {0, 0}; Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); } // Compute and save the bit offset to the current position, which will be // patched when we emit the index later. We can simply subtract the 64-bit // fixed size from the current bit number to get the location to backpatch. uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); // This index will contain the bitpos for each individual record. std::vector IndexPos; IndexPos.reserve(VE.getNonMDStrings().size()); // Write all the records writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); if (VE.getNonMDStrings().size() > IndexThreshold) { // Now that we have emitted all the records we will emit the index. But // first // backpatch the forward reference so that the reader can skip the records // efficiently. Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); // Delta encode the index. uint64_t PreviousValue = IndexOffsetRecordBitPos; for (auto &Elt : IndexPos) { auto EltDelta = Elt - PreviousValue; PreviousValue = Elt; Elt = EltDelta; } // Emit the index record. Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); IndexPos.clear(); } // Write the named metadata now. writeNamedMetadata(Record); auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { SmallVector Record; Record.push_back(VE.getValueID(&GO)); pushGlobalMetadataAttachment(Record, GO); Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); }; for (const Function &F : M) if (F.isDeclaration() && F.hasMetadata()) AddDeclAttachedMetadata(F); // FIXME: Only store metadata for declarations here, and move data for global // variable definitions to a separate block (PR28134). for (const GlobalVariable &GV : M.globals()) if (GV.hasMetadata()) AddDeclAttachedMetadata(GV); Stream.ExitBlock(); } void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { if (!VE.hasMDs()) return; Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); SmallVector Record; writeMetadataStrings(VE.getMDStrings(), Record); writeMetadataRecords(VE.getNonMDStrings(), Record); Stream.ExitBlock(); } void ModuleBitcodeWriter::pushGlobalMetadataAttachment( SmallVectorImpl &Record, const GlobalObject &GO) { // [n x [id, mdnode]] SmallVector, 4> MDs; GO.getAllMetadata(MDs); for (const auto &I : MDs) { Record.push_back(I.first); Record.push_back(VE.getMetadataID(I.second)); } } void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); SmallVector Record; if (F.hasMetadata()) { pushGlobalMetadataAttachment(Record, F); Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); Record.clear(); } // Write metadata attachments // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] SmallVector, 4> MDs; for (const BasicBlock &BB : F) for (const Instruction &I : BB) { MDs.clear(); I.getAllMetadataOtherThanDebugLoc(MDs); // If no metadata, ignore instruction. if (MDs.empty()) continue; Record.push_back(VE.getInstructionID(&I)); for (unsigned i = 0, e = MDs.size(); i != e; ++i) { Record.push_back(MDs[i].first); Record.push_back(VE.getMetadataID(MDs[i].second)); } Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeModuleMetadataKinds() { SmallVector Record; // Write metadata kinds // METADATA_KIND - [n x [id, name]] SmallVector Names; M.getMDKindNames(Names); if (Names.empty()) return; Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { Record.push_back(MDKindID); StringRef KName = Names[MDKindID]; Record.append(KName.begin(), KName.end()); Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeOperandBundleTags() { // Write metadata kinds // // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG // // OPERAND_BUNDLE_TAG - [strchr x N] SmallVector Tags; M.getOperandBundleTags(Tags); if (Tags.empty()) return; Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); SmallVector Record; for (auto Tag : Tags) { Record.append(Tag.begin(), Tag.end()); Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeSyncScopeNames() { SmallVector SSNs; M.getContext().getSyncScopeNames(SSNs); if (SSNs.empty()) return; Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); SmallVector Record; for (auto SSN : SSNs) { Record.append(SSN.begin(), SSN.end()); Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal) { if (FirstVal == LastVal) return; Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); unsigned AggregateAbbrev = 0; unsigned String8Abbrev = 0; unsigned CString7Abbrev = 0; unsigned CString6Abbrev = 0; // If this is a constant pool for the module, emit module-specific abbrevs. if (isGlobal) { // Abbrev for CST_CODE_AGGREGATE. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for CST_CODE_STRING. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for CST_CODE_CSTRING. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for CST_CODE_CSTRING. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); } SmallVector Record; const ValueEnumerator::ValueList &Vals = VE.getValues(); Type *LastTy = nullptr; for (unsigned i = FirstVal; i != LastVal; ++i) { const Value *V = Vals[i].first; // If we need to switch types, do so now. if (V->getType() != LastTy) { LastTy = V->getType(); Record.push_back(VE.getTypeID(LastTy)); Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, CONSTANTS_SETTYPE_ABBREV); Record.clear(); } if (const InlineAsm *IA = dyn_cast(V)) { Record.push_back(VE.getTypeID(IA->getFunctionType())); Record.push_back( unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); // Add the asm string. const std::string &AsmStr = IA->getAsmString(); Record.push_back(AsmStr.size()); Record.append(AsmStr.begin(), AsmStr.end()); // Add the constraint string. const std::string &ConstraintStr = IA->getConstraintString(); Record.push_back(ConstraintStr.size()); Record.append(ConstraintStr.begin(), ConstraintStr.end()); Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); Record.clear(); continue; } const Constant *C = cast(V); unsigned Code = -1U; unsigned AbbrevToUse = 0; if (C->isNullValue()) { Code = bitc::CST_CODE_NULL; } else if (isa(C)) { Code = bitc::CST_CODE_POISON; } else if (isa(C)) { Code = bitc::CST_CODE_UNDEF; } else if (const ConstantInt *IV = dyn_cast(C)) { if (IV->getBitWidth() <= 64) { uint64_t V = IV->getSExtValue(); emitSignedInt64(Record, V); Code = bitc::CST_CODE_INTEGER; AbbrevToUse = CONSTANTS_INTEGER_ABBREV; } else { // Wide integers, > 64 bits in size. emitWideAPInt(Record, IV->getValue()); Code = bitc::CST_CODE_WIDE_INTEGER; } } else if (const ConstantFP *CFP = dyn_cast(C)) { Code = bitc::CST_CODE_FLOAT; Type *Ty = CFP->getType()->getScalarType(); if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); } else if (Ty->isX86_FP80Ty()) { // api needed to prevent premature destruction // bits are not in the same order as a normal i80 APInt, compensate. APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Record.push_back((p[1] << 48) | (p[0] >> 16)); Record.push_back(p[0] & 0xffffLL); } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Record.push_back(p[0]); Record.push_back(p[1]); } else { assert(0 && "Unknown FP type!"); } } else if (isa(C) && cast(C)->isString()) { const ConstantDataSequential *Str = cast(C); // Emit constant strings specially. unsigned NumElts = Str->getNumElements(); // If this is a null-terminated string, use the denser CSTRING encoding. if (Str->isCString()) { Code = bitc::CST_CODE_CSTRING; --NumElts; // Don't encode the null, which isn't allowed by char6. } else { Code = bitc::CST_CODE_STRING; AbbrevToUse = String8Abbrev; } bool isCStr7 = Code == bitc::CST_CODE_CSTRING; bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; for (unsigned i = 0; i != NumElts; ++i) { unsigned char V = Str->getElementAsInteger(i); Record.push_back(V); isCStr7 &= (V & 128) == 0; if (isCStrChar6) isCStrChar6 = BitCodeAbbrevOp::isChar6(V); } if (isCStrChar6) AbbrevToUse = CString6Abbrev; else if (isCStr7) AbbrevToUse = CString7Abbrev; } else if (const ConstantDataSequential *CDS = dyn_cast(C)) { Code = bitc::CST_CODE_DATA; Type *EltTy = CDS->getElementType(); if (isa(EltTy)) { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) Record.push_back(CDS->getElementAsInteger(i)); } else { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) Record.push_back( CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); } } else if (isa(C)) { Code = bitc::CST_CODE_AGGREGATE; for (const Value *Op : C->operands()) Record.push_back(VE.getValueID(Op)); AbbrevToUse = AggregateAbbrev; } else if (const ConstantExpr *CE = dyn_cast(C)) { switch (CE->getOpcode()) { default: if (Instruction::isCast(CE->getOpcode())) { Code = bitc::CST_CODE_CE_CAST; Record.push_back(getEncodedCastOpcode(CE->getOpcode())); Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; } else { assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); Code = bitc::CST_CODE_CE_BINOP; Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); uint64_t Flags = getOptimizationFlags(CE); if (Flags != 0) Record.push_back(Flags); } break; case Instruction::FNeg: { assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); Code = bitc::CST_CODE_CE_UNOP; Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); Record.push_back(VE.getValueID(C->getOperand(0))); uint64_t Flags = getOptimizationFlags(CE); if (Flags != 0) Record.push_back(Flags); break; } case Instruction::GetElementPtr: { Code = bitc::CST_CODE_CE_GEP; const auto *GO = cast(C); Record.push_back(VE.getTypeID(GO->getSourceElementType())); Record.push_back(getOptimizationFlags(GO)); if (std::optional Range = GO->getInRange()) { Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); } for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); Record.push_back(VE.getValueID(C->getOperand(i))); } break; } case Instruction::ExtractElement: Code = bitc::CST_CODE_CE_EXTRACTELT; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); Record.push_back(VE.getValueID(C->getOperand(1))); break; case Instruction::InsertElement: Code = bitc::CST_CODE_CE_INSERTELT; Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); Record.push_back(VE.getValueID(C->getOperand(2))); break; case Instruction::ShuffleVector: // If the return type and argument types are the same, this is a // standard shufflevector instruction. If the types are different, // then the shuffle is widening or truncating the input vectors, and // the argument type must also be encoded. if (C->getType() == C->getOperand(0)->getType()) { Code = bitc::CST_CODE_CE_SHUFFLEVEC; } else { Code = bitc::CST_CODE_CE_SHUFVEC_EX; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); } Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); break; } } else if (const BlockAddress *BA = dyn_cast(C)) { Code = bitc::CST_CODE_BLOCKADDRESS; Record.push_back(VE.getTypeID(BA->getFunction()->getType())); Record.push_back(VE.getValueID(BA->getFunction())); Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); } else if (const auto *Equiv = dyn_cast(C)) { Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); Record.push_back(VE.getValueID(Equiv->getGlobalValue())); } else if (const auto *NC = dyn_cast(C)) { Code = bitc::CST_CODE_NO_CFI_VALUE; Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); Record.push_back(VE.getValueID(NC->getGlobalValue())); } else if (const auto *CPA = dyn_cast(C)) { Code = bitc::CST_CODE_PTRAUTH; Record.push_back(VE.getValueID(CPA->getPointer())); Record.push_back(VE.getValueID(CPA->getKey())); Record.push_back(VE.getValueID(CPA->getDiscriminator())); Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); } else { #ifndef NDEBUG C->dump(); #endif llvm_unreachable("Unknown constant!"); } Stream.EmitRecord(Code, Record, AbbrevToUse); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeModuleConstants() { const ValueEnumerator::ValueList &Vals = VE.getValues(); // Find the first constant to emit, which is the first non-globalvalue value. // We know globalvalues have been emitted by WriteModuleInfo. for (unsigned i = 0, e = Vals.size(); i != e; ++i) { if (!isa(Vals[i].first)) { writeConstants(i, Vals.size(), true); return; } } } /// pushValueAndType - The file has to encode both the value and type id for /// many values, because we need to know what type to create for forward /// references. However, most operands are not forward references, so this type /// field is not needed. /// /// This function adds V's value ID to Vals. If the value ID is higher than the /// instruction ID, then it is a forward reference, and it also includes the /// type ID. The value ID that is written is encoded relative to the InstID. bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, SmallVectorImpl &Vals) { unsigned ValID = VE.getValueID(V); // Make encoding relative to the InstID. Vals.push_back(InstID - ValID); if (ValID >= InstID) { Vals.push_back(VE.getTypeID(V->getType())); return true; } return false; } void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, unsigned InstID) { SmallVector Record; LLVMContext &C = CS.getContext(); for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { const auto &Bundle = CS.getOperandBundleAt(i); Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); for (auto &Input : Bundle.Inputs) pushValueAndType(Input, InstID, Record); Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); Record.clear(); } } /// pushValue - Like pushValueAndType, but where the type of the value is /// omitted (perhaps it was already encoded in an earlier operand). void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, SmallVectorImpl &Vals) { unsigned ValID = VE.getValueID(V); Vals.push_back(InstID - ValID); } void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, SmallVectorImpl &Vals) { unsigned ValID = VE.getValueID(V); int64_t diff = ((int32_t)InstID - (int32_t)ValID); emitSignedInt64(Vals, diff); } /// WriteInstruction - Emit an instruction to the specified stream. void ModuleBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, SmallVectorImpl &Vals) { unsigned Code = 0; unsigned AbbrevToUse = 0; VE.setInstructionID(&I); switch (I.getOpcode()) { default: if (Instruction::isCast(I.getOpcode())) { Code = bitc::FUNC_CODE_INST_CAST; if (!pushValueAndType(I.getOperand(0), InstID, Vals)) AbbrevToUse = FUNCTION_INST_CAST_ABBREV; Vals.push_back(VE.getTypeID(I.getType())); Vals.push_back(getEncodedCastOpcode(I.getOpcode())); uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) { if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; Vals.push_back(Flags); } } else { assert(isa(I) && "Unknown instruction!"); Code = bitc::FUNC_CODE_INST_BINOP; if (!pushValueAndType(I.getOperand(0), InstID, Vals)) AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; pushValue(I.getOperand(1), InstID, Vals); Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) { if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; Vals.push_back(Flags); } } break; case Instruction::FNeg: { Code = bitc::FUNC_CODE_INST_UNOP; if (!pushValueAndType(I.getOperand(0), InstID, Vals)) AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) { if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; Vals.push_back(Flags); } break; } case Instruction::GetElementPtr: { Code = bitc::FUNC_CODE_INST_GEP; AbbrevToUse = FUNCTION_INST_GEP_ABBREV; auto &GEPInst = cast(I); Vals.push_back(getOptimizationFlags(&I)); Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) pushValueAndType(I.getOperand(i), InstID, Vals); break; } case Instruction::ExtractValue: { Code = bitc::FUNC_CODE_INST_EXTRACTVAL; pushValueAndType(I.getOperand(0), InstID, Vals); const ExtractValueInst *EVI = cast(&I); Vals.append(EVI->idx_begin(), EVI->idx_end()); break; } case Instruction::InsertValue: { Code = bitc::FUNC_CODE_INST_INSERTVAL; pushValueAndType(I.getOperand(0), InstID, Vals); pushValueAndType(I.getOperand(1), InstID, Vals); const InsertValueInst *IVI = cast(&I); Vals.append(IVI->idx_begin(), IVI->idx_end()); break; } case Instruction::Select: { Code = bitc::FUNC_CODE_INST_VSELECT; pushValueAndType(I.getOperand(1), InstID, Vals); pushValue(I.getOperand(2), InstID, Vals); pushValueAndType(I.getOperand(0), InstID, Vals); uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) Vals.push_back(Flags); break; } case Instruction::ExtractElement: Code = bitc::FUNC_CODE_INST_EXTRACTELT; pushValueAndType(I.getOperand(0), InstID, Vals); pushValueAndType(I.getOperand(1), InstID, Vals); break; case Instruction::InsertElement: Code = bitc::FUNC_CODE_INST_INSERTELT; pushValueAndType(I.getOperand(0), InstID, Vals); pushValue(I.getOperand(1), InstID, Vals); pushValueAndType(I.getOperand(2), InstID, Vals); break; case Instruction::ShuffleVector: Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; pushValueAndType(I.getOperand(0), InstID, Vals); pushValue(I.getOperand(1), InstID, Vals); pushValue(cast(I).getShuffleMaskForBitcode(), InstID, Vals); break; case Instruction::ICmp: case Instruction::FCmp: { // compare returning Int1Ty or vector of Int1Ty Code = bitc::FUNC_CODE_INST_CMP2; pushValueAndType(I.getOperand(0), InstID, Vals); pushValue(I.getOperand(1), InstID, Vals); Vals.push_back(cast(I).getPredicate()); uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) Vals.push_back(Flags); break; } case Instruction::Ret: { Code = bitc::FUNC_CODE_INST_RET; unsigned NumOperands = I.getNumOperands(); if (NumOperands == 0) AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; else if (NumOperands == 1) { if (!pushValueAndType(I.getOperand(0), InstID, Vals)) AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; } else { for (unsigned i = 0, e = NumOperands; i != e; ++i) pushValueAndType(I.getOperand(i), InstID, Vals); } } break; case Instruction::Br: { Code = bitc::FUNC_CODE_INST_BR; const BranchInst &II = cast(I); Vals.push_back(VE.getValueID(II.getSuccessor(0))); if (II.isConditional()) { Vals.push_back(VE.getValueID(II.getSuccessor(1))); pushValue(II.getCondition(), InstID, Vals); } } break; case Instruction::Switch: { Code = bitc::FUNC_CODE_INST_SWITCH; const SwitchInst &SI = cast(I); Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); pushValue(SI.getCondition(), InstID, Vals); Vals.push_back(VE.getValueID(SI.getDefaultDest())); for (auto Case : SI.cases()) { Vals.push_back(VE.getValueID(Case.getCaseValue())); Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); } } break; case Instruction::IndirectBr: Code = bitc::FUNC_CODE_INST_INDIRECTBR; Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // Encode the address operand as relative, but not the basic blocks. pushValue(I.getOperand(0), InstID, Vals); for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) Vals.push_back(VE.getValueID(I.getOperand(i))); break; case Instruction::Invoke: { const InvokeInst *II = cast(&I); const Value *Callee = II->getCalledOperand(); FunctionType *FTy = II->getFunctionType(); if (II->hasOperandBundles()) writeOperandBundles(*II, InstID); Code = bitc::FUNC_CODE_INST_INVOKE; Vals.push_back(VE.getAttributeListID(II->getAttributes())); Vals.push_back(II->getCallingConv() | 1 << 13); Vals.push_back(VE.getValueID(II->getNormalDest())); Vals.push_back(VE.getValueID(II->getUnwindDest())); Vals.push_back(VE.getTypeID(FTy)); pushValueAndType(Callee, InstID, Vals); // Emit value #'s for the fixed parameters. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) pushValue(I.getOperand(i), InstID, Vals); // fixed param. // Emit type/value pairs for varargs params. if (FTy->isVarArg()) { for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) pushValueAndType(I.getOperand(i), InstID, Vals); // vararg } break; } case Instruction::Resume: Code = bitc::FUNC_CODE_INST_RESUME; pushValueAndType(I.getOperand(0), InstID, Vals); break; case Instruction::CleanupRet: { Code = bitc::FUNC_CODE_INST_CLEANUPRET; const auto &CRI = cast(I); pushValue(CRI.getCleanupPad(), InstID, Vals); if (CRI.hasUnwindDest()) Vals.push_back(VE.getValueID(CRI.getUnwindDest())); break; } case Instruction::CatchRet: { Code = bitc::FUNC_CODE_INST_CATCHRET; const auto &CRI = cast(I); pushValue(CRI.getCatchPad(), InstID, Vals); Vals.push_back(VE.getValueID(CRI.getSuccessor())); break; } case Instruction::CleanupPad: case Instruction::CatchPad: { const auto &FuncletPad = cast(I); Code = isa(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD : bitc::FUNC_CODE_INST_CLEANUPPAD; pushValue(FuncletPad.getParentPad(), InstID, Vals); unsigned NumArgOperands = FuncletPad.arg_size(); Vals.push_back(NumArgOperands); for (unsigned Op = 0; Op != NumArgOperands; ++Op) pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); break; } case Instruction::CatchSwitch: { Code = bitc::FUNC_CODE_INST_CATCHSWITCH; const auto &CatchSwitch = cast(I); pushValue(CatchSwitch.getParentPad(), InstID, Vals); unsigned NumHandlers = CatchSwitch.getNumHandlers(); Vals.push_back(NumHandlers); for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) Vals.push_back(VE.getValueID(CatchPadBB)); if (CatchSwitch.hasUnwindDest()) Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); break; } case Instruction::CallBr: { const CallBrInst *CBI = cast(&I); const Value *Callee = CBI->getCalledOperand(); FunctionType *FTy = CBI->getFunctionType(); if (CBI->hasOperandBundles()) writeOperandBundles(*CBI, InstID); Code = bitc::FUNC_CODE_INST_CALLBR; Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 1 << bitc::CALL_EXPLICIT_TYPE); Vals.push_back(VE.getValueID(CBI->getDefaultDest())); Vals.push_back(CBI->getNumIndirectDests()); for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); Vals.push_back(VE.getTypeID(FTy)); pushValueAndType(Callee, InstID, Vals); // Emit value #'s for the fixed parameters. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) pushValue(I.getOperand(i), InstID, Vals); // fixed param. // Emit type/value pairs for varargs params. if (FTy->isVarArg()) { for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) pushValueAndType(I.getOperand(i), InstID, Vals); // vararg } break; } case Instruction::Unreachable: Code = bitc::FUNC_CODE_INST_UNREACHABLE; AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; break; case Instruction::PHI: { const PHINode &PN = cast(I); Code = bitc::FUNC_CODE_INST_PHI; // With the newer instruction encoding, forward references could give // negative valued IDs. This is most common for PHIs, so we use // signed VBRs. SmallVector Vals64; Vals64.push_back(VE.getTypeID(PN.getType())); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); } uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) Vals64.push_back(Flags); // Emit a Vals64 vector and exit. Stream.EmitRecord(Code, Vals64, AbbrevToUse); Vals64.clear(); return; } case Instruction::LandingPad: { const LandingPadInst &LP = cast(I); Code = bitc::FUNC_CODE_INST_LANDINGPAD; Vals.push_back(VE.getTypeID(LP.getType())); Vals.push_back(LP.isCleanup()); Vals.push_back(LP.getNumClauses()); for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { if (LP.isCatch(I)) Vals.push_back(LandingPadInst::Catch); else Vals.push_back(LandingPadInst::Filter); pushValueAndType(LP.getClause(I), InstID, Vals); } break; } case Instruction::Alloca: { Code = bitc::FUNC_CODE_INST_ALLOCA; const AllocaInst &AI = cast(I); Vals.push_back(VE.getTypeID(AI.getAllocatedType())); Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); Vals.push_back(VE.getValueID(I.getOperand(0))); // size. using APV = AllocaPackedValues; unsigned Record = 0; unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); Bitfield::set( Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); Bitfield::set(Record, EncodedAlign >> APV::AlignLower::Bits); Bitfield::set(Record, AI.isUsedWithInAlloca()); Bitfield::set(Record, true); Bitfield::set(Record, AI.isSwiftError()); Vals.push_back(Record); unsigned AS = AI.getAddressSpace(); if (AS != M.getDataLayout().getAllocaAddrSpace()) Vals.push_back(AS); break; } case Instruction::Load: if (cast(I).isAtomic()) { Code = bitc::FUNC_CODE_INST_LOADATOMIC; pushValueAndType(I.getOperand(0), InstID, Vals); } else { Code = bitc::FUNC_CODE_INST_LOAD; if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; } Vals.push_back(VE.getTypeID(I.getType())); Vals.push_back(getEncodedAlign(cast(I).getAlign())); Vals.push_back(cast(I).isVolatile()); if (cast(I).isAtomic()) { Vals.push_back(getEncodedOrdering(cast(I).getOrdering())); Vals.push_back(getEncodedSyncScopeID(cast(I).getSyncScopeID())); } break; case Instruction::Store: if (cast(I).isAtomic()) Code = bitc::FUNC_CODE_INST_STOREATOMIC; else Code = bitc::FUNC_CODE_INST_STORE; pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val Vals.push_back(getEncodedAlign(cast(I).getAlign())); Vals.push_back(cast(I).isVolatile()); if (cast(I).isAtomic()) { Vals.push_back(getEncodedOrdering(cast(I).getOrdering())); Vals.push_back( getEncodedSyncScopeID(cast(I).getSyncScopeID())); } break; case Instruction::AtomicCmpXchg: Code = bitc::FUNC_CODE_INST_CMPXCHG; pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. pushValue(I.getOperand(2), InstID, Vals); // newval. Vals.push_back(cast(I).isVolatile()); Vals.push_back( getEncodedOrdering(cast(I).getSuccessOrdering())); Vals.push_back( getEncodedSyncScopeID(cast(I).getSyncScopeID())); Vals.push_back( getEncodedOrdering(cast(I).getFailureOrdering())); Vals.push_back(cast(I).isWeak()); Vals.push_back(getEncodedAlign(cast(I).getAlign())); break; case Instruction::AtomicRMW: Code = bitc::FUNC_CODE_INST_ATOMICRMW; pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val Vals.push_back( getEncodedRMWOperation(cast(I).getOperation())); Vals.push_back(cast(I).isVolatile()); Vals.push_back(getEncodedOrdering(cast(I).getOrdering())); Vals.push_back( getEncodedSyncScopeID(cast(I).getSyncScopeID())); Vals.push_back(getEncodedAlign(cast(I).getAlign())); break; case Instruction::Fence: Code = bitc::FUNC_CODE_INST_FENCE; Vals.push_back(getEncodedOrdering(cast(I).getOrdering())); Vals.push_back(getEncodedSyncScopeID(cast(I).getSyncScopeID())); break; case Instruction::Call: { const CallInst &CI = cast(I); FunctionType *FTy = CI.getFunctionType(); if (CI.hasOperandBundles()) writeOperandBundles(CI, InstID); Code = bitc::FUNC_CODE_INST_CALL; Vals.push_back(VE.getAttributeListID(CI.getAttributes())); unsigned Flags = getOptimizationFlags(&I); Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | unsigned(CI.isTailCall()) << bitc::CALL_TAIL | unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 1 << bitc::CALL_EXPLICIT_TYPE | unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | unsigned(Flags != 0) << bitc::CALL_FMF); if (Flags != 0) Vals.push_back(Flags); Vals.push_back(VE.getTypeID(FTy)); pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee // Emit value #'s for the fixed parameters. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { // Check for labels (can happen with asm labels). if (FTy->getParamType(i)->isLabelTy()) Vals.push_back(VE.getValueID(CI.getArgOperand(i))); else pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. } // Emit type/value pairs for varargs params. if (FTy->isVarArg()) { for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs } break; } case Instruction::VAArg: Code = bitc::FUNC_CODE_INST_VAARG; Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty pushValue(I.getOperand(0), InstID, Vals); // valist. Vals.push_back(VE.getTypeID(I.getType())); // restype. break; case Instruction::Freeze: Code = bitc::FUNC_CODE_INST_FREEZE; pushValueAndType(I.getOperand(0), InstID, Vals); break; } Stream.EmitRecord(Code, Vals, AbbrevToUse); Vals.clear(); } /// Write a GlobalValue VST to the module. The purpose of this data structure is /// to allow clients to efficiently find the function body. void ModuleBitcodeWriter::writeGlobalValueSymbolTable( DenseMap &FunctionToBitcodeIndex) { // Get the offset of the VST we are writing, and backpatch it into // the VST forward declaration record. uint64_t VSTOffset = Stream.GetCurrentBitNo(); // The BitcodeStartBit was the stream offset of the identification block. VSTOffset -= bitcodeStartBit(); assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); // Note that we add 1 here because the offset is relative to one word // before the start of the identification block, which was historically // always the start of the regular bitcode header. Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); for (const Function &F : M) { uint64_t Record[2]; if (F.isDeclaration()) continue; Record[0] = VE.getValueID(&F); // Save the word offset of the function (from the start of the // actual bitcode written to the stream). uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); // Note that we add 1 here because the offset is relative to one word // before the start of the identification block, which was historically // always the start of the regular bitcode header. Record[1] = BitcodeIndex / 32 + 1; Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); } Stream.ExitBlock(); } /// Emit names for arguments, instructions and basic blocks in a function. void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( const ValueSymbolTable &VST) { if (VST.empty()) return; Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); // FIXME: Set up the abbrev, we know how many values there are! // FIXME: We know if the type names can use 7-bit ascii. SmallVector NameVals; for (const ValueName &Name : VST) { // Figure out the encoding to use for the name. StringEncoding Bits = getStringEncoding(Name.getKey()); unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; NameVals.push_back(VE.getValueID(Name.getValue())); // VST_CODE_ENTRY: [valueid, namechar x N] // VST_CODE_BBENTRY: [bbid, namechar x N] unsigned Code; if (isa(Name.getValue())) { Code = bitc::VST_CODE_BBENTRY; if (Bits == SE_Char6) AbbrevToUse = VST_BBENTRY_6_ABBREV; } else { Code = bitc::VST_CODE_ENTRY; if (Bits == SE_Char6) AbbrevToUse = VST_ENTRY_6_ABBREV; else if (Bits == SE_Fixed7) AbbrevToUse = VST_ENTRY_7_ABBREV; } for (const auto P : Name.getKey()) NameVals.push_back((unsigned char)P); // Emit the finished record. Stream.EmitRecord(Code, NameVals, AbbrevToUse); NameVals.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); unsigned Code; if (isa(Order.V)) Code = bitc::USELIST_CODE_BB; else Code = bitc::USELIST_CODE_DEFAULT; SmallVector Record(Order.Shuffle.begin(), Order.Shuffle.end()); Record.push_back(VE.getValueID(Order.V)); Stream.EmitRecord(Code, Record); } void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { assert(VE.shouldPreserveUseListOrder() && "Expected to be preserving use-list order"); auto hasMore = [&]() { return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; }; if (!hasMore()) // Nothing to do. return; Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); while (hasMore()) { writeUseList(std::move(VE.UseListOrders.back())); VE.UseListOrders.pop_back(); } Stream.ExitBlock(); } /// Emit a function body to the module stream. void ModuleBitcodeWriter::writeFunction( const Function &F, DenseMap &FunctionToBitcodeIndex) { // Save the bitcode index of the start of this function block for recording // in the VST. FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); VE.incorporateFunction(F); SmallVector Vals; // Emit the number of basic blocks, so the reader can create them ahead of // time. Vals.push_back(VE.getBasicBlocks().size()); Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); Vals.clear(); // If there are function-local constants, emit them now. unsigned CstStart, CstEnd; VE.getFunctionConstantRange(CstStart, CstEnd); writeConstants(CstStart, CstEnd, false); // If there is function-local metadata, emit it now. writeFunctionMetadata(F); // Keep a running idea of what the instruction ID is. unsigned InstID = CstEnd; bool NeedsMetadataAttachment = F.hasMetadata(); DILocation *LastDL = nullptr; SmallSetVector BlockAddressUsers; // Finally, emit all the instructions, in order. for (const BasicBlock &BB : F) { for (const Instruction &I : BB) { writeInstruction(I, InstID, Vals); if (!I.getType()->isVoidTy()) ++InstID; // If the instruction has metadata, write a metadata attachment later. NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); // If the instruction has a debug location, emit it. if (DILocation *DL = I.getDebugLoc()) { if (DL == LastDL) { // Just repeat the same debug loc as last time. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); } else { Vals.push_back(DL->getLine()); Vals.push_back(DL->getColumn()); Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); Vals.push_back(DL->isImplicitCode()); Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); Vals.clear(); LastDL = DL; } } // If the instruction has DbgRecords attached to it, emit them. Note that // they come after the instruction so that it's easy to attach them again // when reading the bitcode, even though conceptually the debug locations // start "before" the instruction. if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { /// Try to push the value only (unwrapped), otherwise push the /// metadata wrapped value. Returns true if the value was pushed /// without the ValueAsMetadata wrapper. auto PushValueOrMetadata = [&Vals, InstID, this](Metadata *RawLocation) { assert(RawLocation && "RawLocation unexpectedly null in DbgVariableRecord"); if (ValueAsMetadata *VAM = dyn_cast(RawLocation)) { SmallVector ValAndType; // If the value is a fwd-ref the type is also pushed. We don't // want the type, so fwd-refs are kept wrapped (pushValueAndType // returns false if the value is pushed without type). if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { Vals.push_back(ValAndType[0]); return true; } } // The metadata is a DIArgList, or ValueAsMetadata wrapping a // fwd-ref. Push the metadata ID. Vals.push_back(VE.getMetadataID(RawLocation)); return false; }; // Write out non-instruction debug information attached to this // instruction. Write it after the instruction so that it's easy to // re-attach to the instruction reading the records in. for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { if (DbgLabelRecord *DLR = dyn_cast(&DR)) { Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); Vals.push_back(VE.getMetadataID(DLR->getLabel())); Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); Vals.clear(); continue; } // First 3 fields are common to all kinds: // DILocation, DILocalVariable, DIExpression // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) // ..., LocationMetadata // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) // ..., Value // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) // ..., LocationMetadata // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata DbgVariableRecord &DVR = cast(DR); Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); Vals.push_back(VE.getMetadataID(DVR.getVariable())); Vals.push_back(VE.getMetadataID(DVR.getExpression())); if (DVR.isDbgValue()) { if (PushValueOrMetadata(DVR.getRawLocation())) Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, FUNCTION_DEBUG_RECORD_VALUE_ABBREV); else Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); } else if (DVR.isDbgDeclare()) { Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); } else { assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); Vals.push_back(VE.getMetadataID(DVR.getAssignID())); Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); } Vals.clear(); } } } if (BlockAddress *BA = BlockAddress::lookup(&BB)) { SmallVector Worklist{BA}; SmallPtrSet Visited{BA}; while (!Worklist.empty()) { Value *V = Worklist.pop_back_val(); for (User *U : V->users()) { if (auto *I = dyn_cast(U)) { Function *P = I->getFunction(); if (P != &F) BlockAddressUsers.insert(P); } else if (isa(U) && !isa(U) && Visited.insert(U).second) Worklist.push_back(U); } } } } if (!BlockAddressUsers.empty()) { Vals.resize(BlockAddressUsers.size()); for (auto I : llvm::enumerate(BlockAddressUsers)) Vals[I.index()] = VE.getValueID(I.value()); Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); Vals.clear(); } // Emit names for all the instructions etc. if (auto *Symtab = F.getValueSymbolTable()) writeFunctionLevelValueSymbolTable(*Symtab); if (NeedsMetadataAttachment) writeFunctionMetadataAttachment(F); if (VE.shouldPreserveUseListOrder()) writeUseListBlock(&F); VE.purgeFunction(); Stream.ExitBlock(); } // Emit blockinfo, which defines the standard abbreviations etc. void ModuleBitcodeWriter::writeBlockInfo() { // We only want to emit block info records for blocks that have multiple // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. // Other blocks can define their abbrevs inline. Stream.EnterBlockInfoBlock(); { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_8_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 7-bit fixed width VST_CODE_ENTRY strings. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_7_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 6-bit char6 VST_CODE_ENTRY strings. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_6_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 6-bit char6 VST_CODE_BBENTRY strings. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_BBENTRY_6_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // SETTYPE abbrev for CONSTANTS_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, VE.computeBitsRequiredForTypeIndices())); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_SETTYPE_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INTEGER abbrev for CONSTANTS_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_INTEGER_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // CE_CAST abbrev for CONSTANTS_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid VE.computeBitsRequiredForTypeIndices())); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_CE_CAST_Abbrev) llvm_unreachable("Unexpected abbrev ordering!"); } { // NULL abbrev for CONSTANTS_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_NULL_Abbrev) llvm_unreachable("Unexpected abbrev ordering!"); } // FIXME: This should only use space for first class types! { // INST_LOAD abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty VE.computeBitsRequiredForTypeIndices())); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_LOAD_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_UNOP abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_UNOP_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_UNOP_FLAGS_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_BINOP abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_BINOP_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_CAST abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty VE.computeBitsRequiredForTypeIndices())); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_CAST_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty VE.computeBitsRequiredForTypeIndices())); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_CAST_FLAGS_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_RET abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_RET_VOID_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_RET abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_RET_VAL_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty Log2_32_Ceil(VE.getTypes().size() + 1))); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_GEP_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_DEBUG_RECORD_VALUE_ABBREV) llvm_unreachable("Unexpected abbrev ordering! 1"); } Stream.ExitBlock(); } /// Write the module path strings, currently only used when generating /// a combined index file. void IndexBitcodeWriter::writeModStrings() { Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); // TODO: See which abbrev sizes we actually need to emit // 8-bit fixed-width MST_ENTRY strings. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); // 7-bit fixed width MST_ENTRY strings. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); // 6-bit char6 MST_ENTRY strings. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); SmallVector Vals; forEachModule([&](const StringMapEntry &MPSE) { StringRef Key = MPSE.getKey(); const auto &Hash = MPSE.getValue(); StringEncoding Bits = getStringEncoding(Key); unsigned AbbrevToUse = Abbrev8Bit; if (Bits == SE_Char6) AbbrevToUse = Abbrev6Bit; else if (Bits == SE_Fixed7) AbbrevToUse = Abbrev7Bit; auto ModuleId = ModuleIdMap.size(); ModuleIdMap[Key] = ModuleId; Vals.push_back(ModuleId); Vals.append(Key.begin(), Key.end()); // Emit the finished record. Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); // Emit an optional hash for the module now if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { Vals.assign(Hash.begin(), Hash.end()); // Emit the hash record. Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); } Vals.clear(); }); Stream.ExitBlock(); } /// Write the function type metadata related records that need to appear before /// a function summary entry (whether per-module or combined). template static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, FunctionSummary *FS, Fn GetValueID) { if (!FS->type_tests().empty()) Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); SmallVector Record; auto WriteVFuncIdVec = [&](uint64_t Ty, ArrayRef VFs) { if (VFs.empty()) return; Record.clear(); for (auto &VF : VFs) { Record.push_back(VF.GUID); Record.push_back(VF.Offset); } Stream.EmitRecord(Ty, Record); }; WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, FS->type_test_assume_vcalls()); WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, FS->type_checked_load_vcalls()); auto WriteConstVCallVec = [&](uint64_t Ty, ArrayRef VCs) { for (auto &VC : VCs) { Record.clear(); Record.push_back(VC.VFunc.GUID); Record.push_back(VC.VFunc.Offset); llvm::append_range(Record, VC.Args); Stream.EmitRecord(Ty, Record); } }; WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, FS->type_test_assume_const_vcalls()); WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, FS->type_checked_load_const_vcalls()); auto WriteRange = [&](ConstantRange Range) { Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); assert(Range.getLower().getNumWords() == 1); assert(Range.getUpper().getNumWords() == 1); emitSignedInt64(Record, *Range.getLower().getRawData()); emitSignedInt64(Record, *Range.getUpper().getRawData()); }; if (!FS->paramAccesses().empty()) { Record.clear(); for (auto &Arg : FS->paramAccesses()) { size_t UndoSize = Record.size(); Record.push_back(Arg.ParamNo); WriteRange(Arg.Use); Record.push_back(Arg.Calls.size()); for (auto &Call : Arg.Calls) { Record.push_back(Call.ParamNo); std::optional ValueID = GetValueID(Call.Callee); if (!ValueID) { // If ValueID is unknown we can't drop just this call, we must drop // entire parameter. Record.resize(UndoSize); break; } Record.push_back(*ValueID); WriteRange(Call.Offsets); } } if (!Record.empty()) Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); } } /// Collect type IDs from type tests used by function. static void getReferencedTypeIds(FunctionSummary *FS, std::set &ReferencedTypeIds) { if (!FS->type_tests().empty()) for (auto &TT : FS->type_tests()) ReferencedTypeIds.insert(TT); auto GetReferencedTypesFromVFuncIdVec = [&](ArrayRef VFs) { for (auto &VF : VFs) ReferencedTypeIds.insert(VF.GUID); }; GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); auto GetReferencedTypesFromConstVCallVec = [&](ArrayRef VCs) { for (auto &VC : VCs) ReferencedTypeIds.insert(VC.VFunc.GUID); }; GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); } static void writeWholeProgramDevirtResolutionByArg( SmallVector &NameVals, const std::vector &args, const WholeProgramDevirtResolution::ByArg &ByArg) { NameVals.push_back(args.size()); llvm::append_range(NameVals, args); NameVals.push_back(ByArg.TheKind); NameVals.push_back(ByArg.Info); NameVals.push_back(ByArg.Byte); NameVals.push_back(ByArg.Bit); } static void writeWholeProgramDevirtResolution( SmallVector &NameVals, StringTableBuilder &StrtabBuilder, uint64_t Id, const WholeProgramDevirtResolution &Wpd) { NameVals.push_back(Id); NameVals.push_back(Wpd.TheKind); NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); NameVals.push_back(Wpd.SingleImplName.size()); NameVals.push_back(Wpd.ResByArg.size()); for (auto &A : Wpd.ResByArg) writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); } static void writeTypeIdSummaryRecord(SmallVector &NameVals, StringTableBuilder &StrtabBuilder, const std::string &Id, const TypeIdSummary &Summary) { NameVals.push_back(StrtabBuilder.add(Id)); NameVals.push_back(Id.size()); NameVals.push_back(Summary.TTRes.TheKind); NameVals.push_back(Summary.TTRes.SizeM1BitWidth); NameVals.push_back(Summary.TTRes.AlignLog2); NameVals.push_back(Summary.TTRes.SizeM1); NameVals.push_back(Summary.TTRes.BitMask); NameVals.push_back(Summary.TTRes.InlineBits); for (auto &W : Summary.WPDRes) writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, W.second); } static void writeTypeIdCompatibleVtableSummaryRecord( SmallVector &NameVals, StringTableBuilder &StrtabBuilder, const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, ValueEnumerator &VE) { NameVals.push_back(StrtabBuilder.add(Id)); NameVals.push_back(Id.size()); for (auto &P : Summary) { NameVals.push_back(P.AddressPointOffset); NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); } } static void writeFunctionHeapProfileRecords( BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, unsigned AllocAbbrev, bool PerModule, std::function GetValueID, std::function GetStackIndex) { SmallVector Record; for (auto &CI : FS->callsites()) { Record.clear(); // Per module callsite clones should always have a single entry of // value 0. assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); Record.push_back(GetValueID(CI.Callee)); if (!PerModule) { Record.push_back(CI.StackIdIndices.size()); Record.push_back(CI.Clones.size()); } for (auto Id : CI.StackIdIndices) Record.push_back(GetStackIndex(Id)); if (!PerModule) { for (auto V : CI.Clones) Record.push_back(V); } Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO : bitc::FS_COMBINED_CALLSITE_INFO, Record, CallsiteAbbrev); } for (auto &AI : FS->allocs()) { Record.clear(); // Per module alloc versions should always have a single entry of // value 0. assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); Record.push_back(AI.MIBs.size()); if (!PerModule) Record.push_back(AI.Versions.size()); for (auto &MIB : AI.MIBs) { Record.push_back((uint8_t)MIB.AllocType); Record.push_back(MIB.StackIdIndices.size()); for (auto Id : MIB.StackIdIndices) Record.push_back(GetStackIndex(Id)); } if (!PerModule) { for (auto V : AI.Versions) Record.push_back(V); } assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); if (!AI.TotalSizes.empty()) { for (auto Size : AI.TotalSizes) Record.push_back(Size); } Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO : bitc::FS_COMBINED_ALLOC_INFO, Record, AllocAbbrev); } } // Helper to emit a single function summary record. void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( SmallVector &NameVals, GlobalValueSummary *Summary, unsigned ValueID, unsigned FSCallsRelBFAbbrev, unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { NameVals.push_back(ValueID); FunctionSummary *FS = cast(Summary); writeFunctionTypeMetadataRecords( Stream, FS, [&](const ValueInfo &VI) -> std::optional { return {VE.getValueID(VI.getValue())}; }); writeFunctionHeapProfileRecords( Stream, FS, CallsiteAbbrev, AllocAbbrev, /*PerModule*/ true, /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, /*GetStackIndex*/ [&](unsigned I) { return I; }); auto SpecialRefCnts = FS->specialRefCounts(); NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); NameVals.push_back(FS->instCount()); NameVals.push_back(getEncodedFFlags(FS->fflags())); NameVals.push_back(FS->refs().size()); NameVals.push_back(SpecialRefCnts.first); // rorefcnt NameVals.push_back(SpecialRefCnts.second); // worefcnt for (auto &RI : FS->refs()) NameVals.push_back(getValueId(RI)); const bool UseRelBFRecord = WriteRelBFToSummary && !F.hasProfileData() && ForceSummaryEdgesCold == FunctionSummary::FSHT_None; for (auto &ECI : FS->calls()) { NameVals.push_back(getValueId(ECI.first)); if (UseRelBFRecord) NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); else NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); } unsigned FSAbbrev = (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); unsigned Code = (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); // Emit the finished record. Stream.EmitRecord(Code, NameVals, FSAbbrev); NameVals.clear(); } // Collect the global value references in the given variable's initializer, // and emit them in a summary record. void ModuleBitcodeWriterBase::writeModuleLevelReferences( const GlobalVariable &V, SmallVector &NameVals, unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { auto VI = Index->getValueInfo(V.getGUID()); if (!VI || VI.getSummaryList().empty()) { // Only declarations should not have a summary (a declaration might however // have a summary if the def was in module level asm). assert(V.isDeclaration()); return; } auto *Summary = VI.getSummaryList()[0].get(); NameVals.push_back(VE.getValueID(&V)); GlobalVarSummary *VS = cast(Summary); NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); NameVals.push_back(getEncodedGVarFlags(VS->varflags())); auto VTableFuncs = VS->vTableFuncs(); if (!VTableFuncs.empty()) NameVals.push_back(VS->refs().size()); unsigned SizeBeforeRefs = NameVals.size(); for (auto &RI : VS->refs()) NameVals.push_back(VE.getValueID(RI.getValue())); // Sort the refs for determinism output, the vector returned by FS->refs() has // been initialized from a DenseSet. llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); if (VTableFuncs.empty()) Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, FSModRefsAbbrev); else { // VTableFuncs pairs should already be sorted by offset. for (auto &P : VTableFuncs) { NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); NameVals.push_back(P.VTableOffset); } Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, FSModVTableRefsAbbrev); } NameVals.clear(); } /// Emit the per-module summary section alongside the rest of /// the module's bitcode. void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { // By default we compile with ThinLTO if the module has a summary, but the // client can request full LTO with a module flag. bool IsThinLTO = true; if (auto *MD = mdconst::extract_or_null(M.getModuleFlag("ThinLTO"))) IsThinLTO = MD->getZExtValue(); Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4); Stream.EmitRecord( bitc::FS_VERSION, ArrayRef{ModuleSummaryIndex::BitcodeSummaryVersion}); // Write the index flags. uint64_t Flags = 0; // Bits 1-3 are set only in the combined index, skip them. if (Index->enableSplitLTOUnit()) Flags |= 0x8; if (Index->hasUnifiedLTO()) Flags |= 0x200; Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef{Flags}); if (Index->begin() == Index->end()) { Stream.ExitBlock(); return; } for (const auto &GVI : valueIds()) { Stream.EmitRecord(bitc::FS_VALUE_GUID, ArrayRef{GVI.second, GVI.first}); } if (!Index->stackIds().empty()) { auto StackIdAbbv = std::make_shared(); StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); // numids x stackid StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); } // Abbrev for FS_PERMODULE_PROFILE. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt // numrefs x valueid, n x (valueid, hotness+tailcall flags) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for FS_PERMODULE_RELBF. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs // numrefs x valueid, n x (valueid , offset) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for FS_ALIAS. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for FS_TYPE_ID_METADATA Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length // n x (valueid , offset) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid // n x stackidindex Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib // n x (alloc type, numstackids, numstackids x stackidindex) // optional: nummib x total size Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); SmallVector NameVals; // Iterate over the list of functions instead of the Index to // ensure the ordering is stable. for (const Function &F : M) { // Summary emission does not support anonymous functions, they have to // renamed using the anonymous function renaming pass. if (!F.hasName()) report_fatal_error("Unexpected anonymous function when writing summary"); ValueInfo VI = Index->getValueInfo(F.getGUID()); if (!VI || VI.getSummaryList().empty()) { // Only declarations should not have a summary (a declaration might // however have a summary if the def was in module level asm). assert(F.isDeclaration()); continue; } auto *Summary = VI.getSummaryList()[0].get(); writePerModuleFunctionSummaryRecord( NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); } // Capture references from GlobalVariable initializers, which are outside // of a function scope. for (const GlobalVariable &G : M.globals()) writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, FSModVTableRefsAbbrev); for (const GlobalAlias &A : M.aliases()) { auto *Aliasee = A.getAliaseeObject(); // Skip ifunc and nameless functions which don't have an entry in the // summary. if (!Aliasee->hasName() || isa(Aliasee)) continue; auto AliasId = VE.getValueID(&A); auto AliaseeId = VE.getValueID(Aliasee); NameVals.push_back(AliasId); auto *Summary = Index->getGlobalValueSummary(A); AliasSummary *AS = cast(Summary); NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); NameVals.push_back(AliaseeId); Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); NameVals.clear(); } for (auto &S : Index->typeIdCompatibleVtableMap()) { writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, S.second, VE); Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, TypeIdCompatibleVtableAbbrev); NameVals.clear(); } if (Index->getBlockCount()) Stream.EmitRecord(bitc::FS_BLOCK_COUNT, ArrayRef{Index->getBlockCount()}); Stream.ExitBlock(); } /// Emit the combined summary section into the combined index file. void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); Stream.EmitRecord( bitc::FS_VERSION, ArrayRef{ModuleSummaryIndex::BitcodeSummaryVersion}); // Write the index flags. Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef{Index.getFlags()}); for (const auto &GVI : valueIds()) { Stream.EmitRecord(bitc::FS_VALUE_GUID, ArrayRef{GVI.second, GVI.first}); } // Write the stack ids used by this index, which will be a subset of those in // the full index in the case of distributed indexes. if (!StackIds.empty()) { auto StackIdAbbv = std::make_shared(); StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); // numids x stackid StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); } // Abbrev for FS_COMBINED_PROFILE. auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt // numrefs x valueid, n x (valueid, hotness+tailcall flags) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); // Abbrev for FS_COMBINED_ALIAS. Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver // numstackindices x stackidindex, numver x version Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver // nummib x (alloc type, numstackids, numstackids x stackidindex), // numver x version // optional: nummib x total size Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { if (DecSummaries == nullptr) return false; return DecSummaries->count(GVS); }; // The aliases are emitted as a post-pass, and will point to the value // id of the aliasee. Save them in a vector for post-processing. SmallVector Aliases; // Save the value id for each summary for alias emission. DenseMap SummaryToValueIdMap; SmallVector NameVals; // Set that will be populated during call to writeFunctionTypeMetadataRecords // with the type ids referenced by this index file. std::set ReferencedTypeIds; // For local linkage, we also emit the original name separately // immediately after the record. auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { // We don't need to emit the original name if we are writing the index for // distributed backends (in which case ModuleToSummariesForIndex is // non-null). The original name is only needed during the thin link, since // for SamplePGO the indirect call targets for local functions have // have the original name annotated in profile. // Continue to emit it when writing out the entire combined index, which is // used in testing the thin link via llvm-lto. if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) return; NameVals.push_back(S.getOriginalName()); Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); NameVals.clear(); }; std::set DefOrUseGUIDs; forEachSummary([&](GVInfo I, bool IsAliasee) { GlobalValueSummary *S = I.second; assert(S); DefOrUseGUIDs.insert(I.first); for (const ValueInfo &VI : S->refs()) DefOrUseGUIDs.insert(VI.getGUID()); auto ValueId = getValueId(I.first); assert(ValueId); SummaryToValueIdMap[S] = *ValueId; // If this is invoked for an aliasee, we want to record the above // mapping, but then not emit a summary entry (if the aliasee is // to be imported, we will invoke this separately with IsAliasee=false). if (IsAliasee) return; if (auto *AS = dyn_cast(S)) { // Will process aliases as a post-pass because the reader wants all // global to be loaded first. Aliases.push_back(AS); return; } if (auto *VS = dyn_cast(S)) { NameVals.push_back(*ValueId); assert(ModuleIdMap.count(VS->modulePath())); NameVals.push_back(ModuleIdMap[VS->modulePath()]); NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); NameVals.push_back(getEncodedGVarFlags(VS->varflags())); for (auto &RI : VS->refs()) { auto RefValueId = getValueId(RI.getGUID()); if (!RefValueId) continue; NameVals.push_back(*RefValueId); } // Emit the finished record. Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, FSModRefsAbbrev); NameVals.clear(); MaybeEmitOriginalName(*S); return; } auto GetValueId = [&](const ValueInfo &VI) -> std::optional { if (!VI) return std::nullopt; return getValueId(VI.getGUID()); }; auto *FS = cast(S); writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); getReferencedTypeIds(FS, ReferencedTypeIds); writeFunctionHeapProfileRecords( Stream, FS, CallsiteAbbrev, AllocAbbrev, /*PerModule*/ false, /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { std::optional ValueID = GetValueId(VI); // This can happen in shared index files for distributed ThinLTO if // the callee function summary is not included. Record 0 which we // will have to deal with conservatively when doing any kind of // validation in the ThinLTO backends. if (!ValueID) return 0; return *ValueID; }, /*GetStackIndex*/ [&](unsigned I) { // Get the corresponding index into the list of StackIds actually // being written for this combined index (which may be a subset in // the case of distributed indexes). assert(StackIdIndicesToIndex.contains(I)); return StackIdIndicesToIndex[I]; }); NameVals.push_back(*ValueId); assert(ModuleIdMap.count(FS->modulePath())); NameVals.push_back(ModuleIdMap[FS->modulePath()]); NameVals.push_back( getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); NameVals.push_back(FS->instCount()); NameVals.push_back(getEncodedFFlags(FS->fflags())); NameVals.push_back(FS->entryCount()); // Fill in below NameVals.push_back(0); // numrefs NameVals.push_back(0); // rorefcnt NameVals.push_back(0); // worefcnt unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; for (auto &RI : FS->refs()) { auto RefValueId = getValueId(RI.getGUID()); if (!RefValueId) continue; NameVals.push_back(*RefValueId); if (RI.isReadOnly()) RORefCnt++; else if (RI.isWriteOnly()) WORefCnt++; Count++; } NameVals[6] = Count; NameVals[7] = RORefCnt; NameVals[8] = WORefCnt; for (auto &EI : FS->calls()) { // If this GUID doesn't have a value id, it doesn't have a function // summary and we don't need to record any calls to it. std::optional CallValueId = GetValueId(EI.first); if (!CallValueId) continue; NameVals.push_back(*CallValueId); NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); } // Emit the finished record. Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, FSCallsProfileAbbrev); NameVals.clear(); MaybeEmitOriginalName(*S); }); for (auto *AS : Aliases) { auto AliasValueId = SummaryToValueIdMap[AS]; assert(AliasValueId); NameVals.push_back(AliasValueId); assert(ModuleIdMap.count(AS->modulePath())); NameVals.push_back(ModuleIdMap[AS->modulePath()]); NameVals.push_back( getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; assert(AliaseeValueId); NameVals.push_back(AliaseeValueId); // Emit the finished record. Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); NameVals.clear(); MaybeEmitOriginalName(*AS); if (auto *FS = dyn_cast(&AS->getAliasee())) getReferencedTypeIds(FS, ReferencedTypeIds); } if (!Index.cfiFunctionDefs().empty()) { for (auto &S : Index.cfiFunctionDefs()) { if (DefOrUseGUIDs.count( GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { NameVals.push_back(StrtabBuilder.add(S)); NameVals.push_back(S.size()); } } if (!NameVals.empty()) { Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); NameVals.clear(); } } if (!Index.cfiFunctionDecls().empty()) { for (auto &S : Index.cfiFunctionDecls()) { if (DefOrUseGUIDs.count( GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { NameVals.push_back(StrtabBuilder.add(S)); NameVals.push_back(S.size()); } } if (!NameVals.empty()) { Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); NameVals.clear(); } } // Walk the GUIDs that were referenced, and write the // corresponding type id records. for (auto &T : ReferencedTypeIds) { auto TidIter = Index.typeIds().equal_range(T); for (auto It = TidIter.first; It != TidIter.second; ++It) { writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, It->second.second); Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); NameVals.clear(); } } if (Index.getBlockCount()) Stream.EmitRecord(bitc::FS_BLOCK_COUNT, ArrayRef{Index.getBlockCount()}); Stream.ExitBlock(); } /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the /// current llvm version, and a record for the epoch number. static void writeIdentificationBlock(BitstreamWriter &Stream) { Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); // Write the "user readable" string identifying the bitcode producer auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, "LLVM" LLVM_VERSION_STRING, StringAbbrev); // Write the epoch version Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); constexpr std::array Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); Stream.ExitBlock(); } void ModuleBitcodeWriter::writeModuleHash(StringRef View) { // Emit the module's hash. // MODULE_CODE_HASH: [5*i32] if (GenerateHash) { uint32_t Vals[5]; Hasher.update(ArrayRef( reinterpret_cast(View.data()), View.size())); std::array Hash = Hasher.result(); for (int Pos = 0; Pos < 20; Pos += 4) { Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); } // Emit the finished record. Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); if (ModHash) // Save the written hash value. llvm::copy(Vals, std::begin(*ModHash)); } } void ModuleBitcodeWriter::write() { writeIdentificationBlock(Stream); Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); // We will want to write the module hash at this point. Block any flushing so // we can have access to the whole underlying data later. Stream.markAndBlockFlushing(); writeModuleVersion(); // Emit blockinfo, which defines the standard abbreviations etc. writeBlockInfo(); // Emit information describing all of the types in the module. writeTypeTable(); // Emit information about attribute groups. writeAttributeGroupTable(); // Emit information about parameter attributes. writeAttributeTable(); writeComdats(); // Emit top-level description of module, including target triple, inline asm, // descriptors for global variables, and function prototype info. writeModuleInfo(); // Emit constants. writeModuleConstants(); // Emit metadata kind names. writeModuleMetadataKinds(); // Emit metadata. writeModuleMetadata(); // Emit module-level use-lists. if (VE.shouldPreserveUseListOrder()) writeUseListBlock(nullptr); writeOperandBundleTags(); writeSyncScopeNames(); // Emit function bodies. DenseMap FunctionToBitcodeIndex; for (const Function &F : M) if (!F.isDeclaration()) writeFunction(F, FunctionToBitcodeIndex); // Need to write after the above call to WriteFunction which populates // the summary information in the index. if (Index) writePerModuleGlobalValueSummary(); writeGlobalValueSymbolTable(FunctionToBitcodeIndex); writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); Stream.ExitBlock(); } static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl &Buffer, uint32_t &Position) { support::endian::write32le(&Buffer[Position], Value); Position += 4; } /// If generating a bc file on darwin, we have to emit a /// header and trailer to make it compatible with the system archiver. To do /// this we emit the following header, and then emit a trailer that pads the /// file out to be a multiple of 16 bytes. /// /// struct bc_header { /// uint32_t Magic; // 0x0B17C0DE /// uint32_t Version; // Version, currently always 0. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. /// uint32_t BitcodeSize; // Size of traditional bitcode file. /// uint32_t CPUType; // CPU specifier. /// ... potentially more later ... /// }; static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl &Buffer, const Triple &TT) { unsigned CPUType = ~0U; // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic // number from /usr/include/mach/machine.h. It is ok to reproduce the // specific constants here because they are implicitly part of the Darwin ABI. enum { DARWIN_CPU_ARCH_ABI64 = 0x01000000, DARWIN_CPU_TYPE_X86 = 7, DARWIN_CPU_TYPE_ARM = 12, DARWIN_CPU_TYPE_POWERPC = 18 }; Triple::ArchType Arch = TT.getArch(); if (Arch == Triple::x86_64) CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; else if (Arch == Triple::x86) CPUType = DARWIN_CPU_TYPE_X86; else if (Arch == Triple::ppc) CPUType = DARWIN_CPU_TYPE_POWERPC; else if (Arch == Triple::ppc64) CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; else if (Arch == Triple::arm || Arch == Triple::thumb) CPUType = DARWIN_CPU_TYPE_ARM; // Traditional Bitcode starts after header. assert(Buffer.size() >= BWH_HeaderSize && "Expected header size to be reserved"); unsigned BCOffset = BWH_HeaderSize; unsigned BCSize = Buffer.size() - BWH_HeaderSize; // Write the magic and version. unsigned Position = 0; writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); writeInt32ToBuffer(0, Buffer, Position); // Version. writeInt32ToBuffer(BCOffset, Buffer, Position); writeInt32ToBuffer(BCSize, Buffer, Position); writeInt32ToBuffer(CPUType, Buffer, Position); // If the file is not a multiple of 16 bytes, insert dummy padding. while (Buffer.size() & 15) Buffer.push_back(0); } /// Helper to write the header common to all bitcode files. static void writeBitcodeHeader(BitstreamWriter &Stream) { // Emit the file header. Stream.Emit((unsigned)'B', 8); Stream.Emit((unsigned)'C', 8); Stream.Emit(0x0, 4); Stream.Emit(0xC, 4); Stream.Emit(0xE, 4); Stream.Emit(0xD, 4); } BitcodeWriter::BitcodeWriter(SmallVectorImpl &Buffer) : Stream(new BitstreamWriter(Buffer)) { writeBitcodeHeader(*Stream); } BitcodeWriter::BitcodeWriter(raw_ostream &FS) : Stream(new BitstreamWriter(FS, FlushThreshold)) { writeBitcodeHeader(*Stream); } BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { Stream->EnterSubblock(Block, 3); auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(Record)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef{Record}, Blob); Stream->ExitBlock(); } void BitcodeWriter::writeSymtab() { assert(!WroteStrtab && !WroteSymtab); // If any module has module-level inline asm, we will require a registered asm // parser for the target so that we can create an accurate symbol table for // the module. for (Module *M : Mods) { if (M->getModuleInlineAsm().empty()) continue; std::string Err; const Triple TT(M->getTargetTriple()); const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); if (!T || !T->hasMCAsmParser()) return; } WroteSymtab = true; SmallVector Symtab; // The irsymtab::build function may be unable to create a symbol table if the // module is malformed (e.g. it contains an invalid alias). Writing a symbol // table is not required for correctness, but we still want to be able to // write malformed modules to bitcode files, so swallow the error. if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { consumeError(std::move(E)); return; } writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, {Symtab.data(), Symtab.size()}); } void BitcodeWriter::writeStrtab() { assert(!WroteStrtab); std::vector Strtab; StrtabBuilder.finalizeInOrder(); Strtab.resize(StrtabBuilder.getSize()); StrtabBuilder.write((uint8_t *)Strtab.data()); writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, {Strtab.data(), Strtab.size()}); WroteStrtab = true; } void BitcodeWriter::copyStrtab(StringRef Strtab) { writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); WroteStrtab = true; } void BitcodeWriter::writeModule(const Module &M, bool ShouldPreserveUseListOrder, const ModuleSummaryIndex *Index, bool GenerateHash, ModuleHash *ModHash) { assert(!WroteStrtab); // The Mods vector is used by irsymtab::build, which requires non-const // Modules in case it needs to materialize metadata. But the bitcode writer // requires that the module is materialized, so we can cast to non-const here, // after checking that it is in fact materialized. assert(M.isMaterialized()); Mods.push_back(const_cast(&M)); ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash, ModHash); ModuleWriter.write(); } void BitcodeWriter::writeIndex( const ModuleSummaryIndex *Index, const std::map *ModuleToSummariesForIndex, const GVSummaryPtrSet *DecSummaries) { IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, ModuleToSummariesForIndex); IndexWriter.write(); } /// Write the specified module to the specified output stream. void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, bool ShouldPreserveUseListOrder, const ModuleSummaryIndex *Index, bool GenerateHash, ModuleHash *ModHash) { auto Write = [&](BitcodeWriter &Writer) { Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, ModHash); Writer.writeSymtab(); Writer.writeStrtab(); }; Triple TT(M.getTargetTriple()); if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { // If this is darwin or another generic macho target, reserve space for the // header. Note that the header is computed *after* the output is known, so // we currently explicitly use a buffer, write to it, and then subsequently // flush to Out. SmallVector Buffer; Buffer.reserve(256 * 1024); Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); BitcodeWriter Writer(Buffer); Write(Writer); emitDarwinBCHeaderAndTrailer(Buffer, TT); Out.write(Buffer.data(), Buffer.size()); } else { BitcodeWriter Writer(Out); Write(Writer); } } void IndexBitcodeWriter::write() { Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); writeModuleVersion(); // Write the module paths in the combined index. writeModStrings(); // Write the summary combined index records. writeCombinedGlobalValueSummary(); Stream.ExitBlock(); } // Write the specified module summary index to the given raw output stream, // where it will be written in a new bitcode block. This is used when // writing the combined index file for ThinLTO. When writing a subset of the // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. void llvm::writeIndexToFile( const ModuleSummaryIndex &Index, raw_ostream &Out, const std::map *ModuleToSummariesForIndex, const GVSummaryPtrSet *DecSummaries) { SmallVector Buffer; Buffer.reserve(256 * 1024); BitcodeWriter Writer(Buffer); Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); Writer.writeStrtab(); Out.write((char *)&Buffer.front(), Buffer.size()); } namespace { /// Class to manage the bitcode writing for a thin link bitcode file. class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { /// ModHash is for use in ThinLTO incremental build, generated while writing /// the module bitcode file. const ModuleHash *ModHash; public: ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream, const ModuleSummaryIndex &Index, const ModuleHash &ModHash) : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, /*ShouldPreserveUseListOrder=*/false, &Index), ModHash(&ModHash) {} void write(); private: void writeSimplifiedModuleInfo(); }; } // end anonymous namespace // This function writes a simpilified module info for thin link bitcode file. // It only contains the source file name along with the name(the offset and // size in strtab) and linkage for global values. For the global value info // entry, in order to keep linkage at offset 5, there are three zeros used // as padding. void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { SmallVector Vals; // Emit the module's source file name. { StringEncoding Bits = getStringEncoding(M.getSourceFileName()); BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); if (Bits == SE_Char6) AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); else if (Bits == SE_Fixed7) AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); // MODULE_CODE_SOURCE_FILENAME: [namechar x N] auto Abbv = std::make_shared(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(AbbrevOpToUse); unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); for (const auto P : M.getSourceFileName()) Vals.push_back((unsigned char)P); Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); Vals.clear(); } // Emit the global variable information. for (const GlobalVariable &GV : M.globals()) { // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] Vals.push_back(StrtabBuilder.add(GV.getName())); Vals.push_back(GV.getName().size()); Vals.push_back(0); Vals.push_back(0); Vals.push_back(0); Vals.push_back(getEncodedLinkage(GV)); Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); Vals.clear(); } // Emit the function proto information. for (const Function &F : M) { // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] Vals.push_back(StrtabBuilder.add(F.getName())); Vals.push_back(F.getName().size()); Vals.push_back(0); Vals.push_back(0); Vals.push_back(0); Vals.push_back(getEncodedLinkage(F)); Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); Vals.clear(); } // Emit the alias information. for (const GlobalAlias &A : M.aliases()) { // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] Vals.push_back(StrtabBuilder.add(A.getName())); Vals.push_back(A.getName().size()); Vals.push_back(0); Vals.push_back(0); Vals.push_back(0); Vals.push_back(getEncodedLinkage(A)); Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); Vals.clear(); } // Emit the ifunc information. for (const GlobalIFunc &I : M.ifuncs()) { // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] Vals.push_back(StrtabBuilder.add(I.getName())); Vals.push_back(I.getName().size()); Vals.push_back(0); Vals.push_back(0); Vals.push_back(0); Vals.push_back(getEncodedLinkage(I)); Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); Vals.clear(); } } void ThinLinkBitcodeWriter::write() { Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); writeModuleVersion(); writeSimplifiedModuleInfo(); writePerModuleGlobalValueSummary(); // Write module hash. Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef(*ModHash)); Stream.ExitBlock(); } void BitcodeWriter::writeThinLinkBitcode(const Module &M, const ModuleSummaryIndex &Index, const ModuleHash &ModHash) { assert(!WroteStrtab); // The Mods vector is used by irsymtab::build, which requires non-const // Modules in case it needs to materialize metadata. But the bitcode writer // requires that the module is materialized, so we can cast to non-const here, // after checking that it is in fact materialized. assert(M.isMaterialized()); Mods.push_back(const_cast(&M)); ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, ModHash); ThinLinkWriter.write(); } // Write the specified thin link bitcode file to the given raw output stream, // where it will be written in a new bitcode block. This is used when // writing the per-module index file for ThinLTO. void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, const ModuleSummaryIndex &Index, const ModuleHash &ModHash) { SmallVector Buffer; Buffer.reserve(256 * 1024); BitcodeWriter Writer(Buffer); Writer.writeThinLinkBitcode(M, Index, ModHash); Writer.writeSymtab(); Writer.writeStrtab(); Out.write((char *)&Buffer.front(), Buffer.size()); } static const char *getSectionNameForBitcode(const Triple &T) { switch (T.getObjectFormat()) { case Triple::MachO: return "__LLVM,__bitcode"; case Triple::COFF: case Triple::ELF: case Triple::Wasm: case Triple::UnknownObjectFormat: return ".llvmbc"; case Triple::GOFF: llvm_unreachable("GOFF is not yet implemented"); break; case Triple::SPIRV: if (T.getVendor() == Triple::AMD) return ".llvmbc"; llvm_unreachable("SPIRV is not yet implemented"); break; case Triple::XCOFF: llvm_unreachable("XCOFF is not yet implemented"); break; case Triple::DXContainer: llvm_unreachable("DXContainer is not yet implemented"); break; } llvm_unreachable("Unimplemented ObjectFormatType"); } static const char *getSectionNameForCommandline(const Triple &T) { switch (T.getObjectFormat()) { case Triple::MachO: return "__LLVM,__cmdline"; case Triple::COFF: case Triple::ELF: case Triple::Wasm: case Triple::UnknownObjectFormat: return ".llvmcmd"; case Triple::GOFF: llvm_unreachable("GOFF is not yet implemented"); break; case Triple::SPIRV: if (T.getVendor() == Triple::AMD) return ".llvmcmd"; llvm_unreachable("SPIRV is not yet implemented"); break; case Triple::XCOFF: llvm_unreachable("XCOFF is not yet implemented"); break; case Triple::DXContainer: llvm_unreachable("DXC is not yet implemented"); break; } llvm_unreachable("Unimplemented ObjectFormatType"); } void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, bool EmbedBitcode, bool EmbedCmdline, const std::vector &CmdArgs) { // Save llvm.compiler.used and remove it. SmallVector UsedArray; SmallVector UsedGlobals; Type *UsedElementType = PointerType::getUnqual(M.getContext()); GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); for (auto *GV : UsedGlobals) { if (GV->getName() != "llvm.embedded.module" && GV->getName() != "llvm.cmdline") UsedArray.push_back( ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); } if (Used) Used->eraseFromParent(); // Embed the bitcode for the llvm module. std::string Data; ArrayRef ModuleData; Triple T(M.getTargetTriple()); if (EmbedBitcode) { if (Buf.getBufferSize() == 0 || !isBitcode((const unsigned char *)Buf.getBufferStart(), (const unsigned char *)Buf.getBufferEnd())) { // If the input is LLVM Assembly, bitcode is produced by serializing // the module. Use-lists order need to be preserved in this case. llvm::raw_string_ostream OS(Data); llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); ModuleData = ArrayRef((const uint8_t *)OS.str().data(), OS.str().size()); } else // If the input is LLVM bitcode, write the input byte stream directly. ModuleData = ArrayRef((const uint8_t *)Buf.getBufferStart(), Buf.getBufferSize()); } llvm::Constant *ModuleConstant = llvm::ConstantDataArray::get(M.getContext(), ModuleData); llvm::GlobalVariable *GV = new llvm::GlobalVariable( M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, ModuleConstant); GV->setSection(getSectionNameForBitcode(T)); // Set alignment to 1 to prevent padding between two contributions from input // sections after linking. GV->setAlignment(Align(1)); UsedArray.push_back( ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.embedded.module", true)) { assert(Old->hasZeroLiveUses() && "llvm.embedded.module can only be used once in llvm.compiler.used"); GV->takeName(Old); Old->eraseFromParent(); } else { GV->setName("llvm.embedded.module"); } // Skip if only bitcode needs to be embedded. if (EmbedCmdline) { // Embed command-line options. ArrayRef CmdData(const_cast(CmdArgs.data()), CmdArgs.size()); llvm::Constant *CmdConstant = llvm::ConstantDataArray::get(M.getContext(), CmdData); GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, CmdConstant); GV->setSection(getSectionNameForCommandline(T)); GV->setAlignment(Align(1)); UsedArray.push_back( ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { assert(Old->hasZeroLiveUses() && "llvm.cmdline can only be used once in llvm.compiler.used"); GV->takeName(Old); Old->eraseFromParent(); } else { GV->setName("llvm.cmdline"); } } if (UsedArray.empty()) return; // Recreate llvm.compiler.used. ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); auto *NewUsed = new GlobalVariable( M, ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); NewUsed->setSection("llvm.metadata"); }