//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the generic AliasAnalysis interface which is used as the // common interface used by all clients and implementations of alias analysis. // // This file also implements the default version of the AliasAnalysis interface // that is to be used when no other implementation is specified. This does some // simple tests that detect obvious cases: two different global pointers cannot // alias, a global cannot alias a malloc, two different mallocs cannot alias, // etc. // // This alias analysis implementation really isn't very good for anything, but // it is very fast, and makes a nice clean default implementation. Because it // handles lots of little corner cases, other, more complex, alias analysis // implementations may choose to rely on this pass to resolve these simple and // easy cases. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/ObjCARCAliasAnalysis.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include #include #include #include #define DEBUG_TYPE "aa" using namespace llvm; STATISTIC(NumNoAlias, "Number of NoAlias results"); STATISTIC(NumMayAlias, "Number of MayAlias results"); STATISTIC(NumMustAlias, "Number of MustAlias results"); namespace llvm { /// Allow disabling BasicAA from the AA results. This is particularly useful /// when testing to isolate a single AA implementation. cl::opt DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false)); } // namespace llvm #ifndef NDEBUG /// Print a trace of alias analysis queries and their results. static cl::opt EnableAATrace("aa-trace", cl::Hidden, cl::init(false)); #else static const bool EnableAATrace = false; #endif AAResults::AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {} AAResults::AAResults(AAResults &&Arg) : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {} AAResults::~AAResults() {} bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv) { // AAResults preserves the AAManager by default, due to the stateless nature // of AliasAnalysis. There is no need to check whether it has been preserved // explicitly. Check if any module dependency was invalidated and caused the // AAManager to be invalidated. Invalidate ourselves in that case. auto PAC = PA.getChecker(); if (!PAC.preservedWhenStateless()) return true; // Check if any of the function dependencies were invalidated, and invalidate // ourselves in that case. for (AnalysisKey *ID : AADeps) if (Inv.invalidate(ID, F, PA)) return true; // Everything we depend on is still fine, so are we. Nothing to invalidate. return false; } //===----------------------------------------------------------------------===// // Default chaining methods //===----------------------------------------------------------------------===// AliasResult AAResults::alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { SimpleAAQueryInfo AAQIP(*this); return alias(LocA, LocB, AAQIP, nullptr); } AliasResult AAResults::alias(const MemoryLocation &LocA, const MemoryLocation &LocB, AAQueryInfo &AAQI, const Instruction *CtxI) { AliasResult Result = AliasResult::MayAlias; if (EnableAATrace) { for (unsigned I = 0; I < AAQI.Depth; ++I) dbgs() << " "; dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", " << *LocB.Ptr << " @ " << LocB.Size << "\n"; } AAQI.Depth++; for (const auto &AA : AAs) { Result = AA->alias(LocA, LocB, AAQI, CtxI); if (Result != AliasResult::MayAlias) break; } AAQI.Depth--; if (EnableAATrace) { for (unsigned I = 0; I < AAQI.Depth; ++I) dbgs() << " "; dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", " << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n"; } if (AAQI.Depth == 0) { if (Result == AliasResult::NoAlias) ++NumNoAlias; else if (Result == AliasResult::MustAlias) ++NumMustAlias; else ++NumMayAlias; } return Result; } ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, bool IgnoreLocals) { SimpleAAQueryInfo AAQIP(*this); return getModRefInfoMask(Loc, AAQIP, IgnoreLocals); } ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI, bool IgnoreLocals) { ModRefInfo Result = ModRefInfo::ModRef; for (const auto &AA : AAs) { Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals); // Early-exit the moment we reach the bottom of the lattice. if (isNoModRef(Result)) return ModRefInfo::NoModRef; } return Result; } ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { ModRefInfo Result = ModRefInfo::ModRef; for (const auto &AA : AAs) { Result &= AA->getArgModRefInfo(Call, ArgIdx); // Early-exit the moment we reach the bottom of the lattice. if (isNoModRef(Result)) return ModRefInfo::NoModRef; } return Result; } ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2) { SimpleAAQueryInfo AAQIP(*this); return getModRefInfo(I, Call2, AAQIP); } ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2, AAQueryInfo &AAQI) { // We may have two calls. if (const auto *Call1 = dyn_cast(I)) { // Check if the two calls modify the same memory. return getModRefInfo(Call1, Call2, AAQI); } // If this is a fence, just return ModRef. if (I->isFenceLike()) return ModRefInfo::ModRef; // Otherwise, check if the call modifies or references the // location this memory access defines. The best we can say // is that if the call references what this instruction // defines, it must be clobbered by this location. const MemoryLocation DefLoc = MemoryLocation::get(I); ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); if (isModOrRefSet(MR)) return ModRefInfo::ModRef; return ModRefInfo::NoModRef; } ModRefInfo AAResults::getModRefInfo(const CallBase *Call, const MemoryLocation &Loc, AAQueryInfo &AAQI) { ModRefInfo Result = ModRefInfo::ModRef; for (const auto &AA : AAs) { Result &= AA->getModRefInfo(Call, Loc, AAQI); // Early-exit the moment we reach the bottom of the lattice. if (isNoModRef(Result)) return ModRefInfo::NoModRef; } // Try to refine the mod-ref info further using other API entry points to the // aggregate set of AA results. // We can completely ignore inaccessible memory here, because MemoryLocations // can only reference accessible memory. auto ME = getMemoryEffects(Call, AAQI) .getWithoutLoc(IRMemLocation::InaccessibleMem); if (ME.doesNotAccessMemory()) return ModRefInfo::NoModRef; ModRefInfo ArgMR = ME.getModRef(IRMemLocation::ArgMem); ModRefInfo OtherMR = ME.getWithoutLoc(IRMemLocation::ArgMem).getModRef(); if ((ArgMR | OtherMR) != OtherMR) { // Refine the modref info for argument memory. We only bother to do this // if ArgMR is not a subset of OtherMR, otherwise this won't have an impact // on the final result. ModRefInfo AllArgsMask = ModRefInfo::NoModRef; for (const auto &I : llvm::enumerate(Call->args())) { const Value *Arg = I.value(); if (!Arg->getType()->isPointerTy()) continue; unsigned ArgIdx = I.index(); MemoryLocation ArgLoc = MemoryLocation::getForArgument(Call, ArgIdx, TLI); AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI, Call); if (ArgAlias != AliasResult::NoAlias) AllArgsMask |= getArgModRefInfo(Call, ArgIdx); } ArgMR &= AllArgsMask; } Result &= ArgMR | OtherMR; // Apply the ModRef mask. This ensures that if Loc is a constant memory // location, we take into account the fact that the call definitely could not // modify the memory location. if (!isNoModRef(Result)) Result &= getModRefInfoMask(Loc); return Result; } ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, const CallBase *Call2, AAQueryInfo &AAQI) { ModRefInfo Result = ModRefInfo::ModRef; for (const auto &AA : AAs) { Result &= AA->getModRefInfo(Call1, Call2, AAQI); // Early-exit the moment we reach the bottom of the lattice. if (isNoModRef(Result)) return ModRefInfo::NoModRef; } // Try to refine the mod-ref info further using other API entry points to the // aggregate set of AA results. // If Call1 or Call2 are readnone, they don't interact. auto Call1B = getMemoryEffects(Call1, AAQI); if (Call1B.doesNotAccessMemory()) return ModRefInfo::NoModRef; auto Call2B = getMemoryEffects(Call2, AAQI); if (Call2B.doesNotAccessMemory()) return ModRefInfo::NoModRef; // If they both only read from memory, there is no dependence. if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory()) return ModRefInfo::NoModRef; // If Call1 only reads memory, the only dependence on Call2 can be // from Call1 reading memory written by Call2. if (Call1B.onlyReadsMemory()) Result &= ModRefInfo::Ref; else if (Call1B.onlyWritesMemory()) Result &= ModRefInfo::Mod; // If Call2 only access memory through arguments, accumulate the mod/ref // information from Call1's references to the memory referenced by // Call2's arguments. if (Call2B.onlyAccessesArgPointees()) { if (!Call2B.doesAccessArgPointees()) return ModRefInfo::NoModRef; ModRefInfo R = ModRefInfo::NoModRef; for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { const Value *Arg = *I; if (!Arg->getType()->isPointerTy()) continue; unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); auto Call2ArgLoc = MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the // dependence of Call1 on that location is the inverse: // - If Call2 modifies location, dependence exists if Call1 reads or // writes. // - If Call2 only reads location, dependence exists if Call1 writes. ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); ModRefInfo ArgMask = ModRefInfo::NoModRef; if (isModSet(ArgModRefC2)) ArgMask = ModRefInfo::ModRef; else if (isRefSet(ArgModRefC2)) ArgMask = ModRefInfo::Mod; // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use // above ArgMask to update dependence info. ArgMask &= getModRefInfo(Call1, Call2ArgLoc, AAQI); R = (R | ArgMask) & Result; if (R == Result) break; } return R; } // If Call1 only accesses memory through arguments, check if Call2 references // any of the memory referenced by Call1's arguments. If not, return NoModRef. if (Call1B.onlyAccessesArgPointees()) { if (!Call1B.doesAccessArgPointees()) return ModRefInfo::NoModRef; ModRefInfo R = ModRefInfo::NoModRef; for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { const Value *Arg = *I; if (!Arg->getType()->isPointerTy()) continue; unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); auto Call1ArgLoc = MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by // Call2. If Call1 might Ref, then we care only about a Mod by Call2. ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI); if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) R = (R | ArgModRefC1) & Result; if (R == Result) break; } return R; } return Result; } MemoryEffects AAResults::getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) { MemoryEffects Result = MemoryEffects::unknown(); for (const auto &AA : AAs) { Result &= AA->getMemoryEffects(Call, AAQI); // Early-exit the moment we reach the bottom of the lattice. if (Result.doesNotAccessMemory()) return Result; } return Result; } MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) { SimpleAAQueryInfo AAQI(*this); return getMemoryEffects(Call, AAQI); } MemoryEffects AAResults::getMemoryEffects(const Function *F) { MemoryEffects Result = MemoryEffects::unknown(); for (const auto &AA : AAs) { Result &= AA->getMemoryEffects(F); // Early-exit the moment we reach the bottom of the lattice. if (Result.doesNotAccessMemory()) return Result; } return Result; } raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { switch (AR) { case AliasResult::NoAlias: OS << "NoAlias"; break; case AliasResult::MustAlias: OS << "MustAlias"; break; case AliasResult::MayAlias: OS << "MayAlias"; break; case AliasResult::PartialAlias: OS << "PartialAlias"; if (AR.hasOffset()) OS << " (off " << AR.getOffset() << ")"; break; } return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, ModRefInfo MR) { switch (MR) { case ModRefInfo::NoModRef: OS << "NoModRef"; break; case ModRefInfo::Ref: OS << "Ref"; break; case ModRefInfo::Mod: OS << "Mod"; break; case ModRefInfo::ModRef: OS << "ModRef"; break; } return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, MemoryEffects ME) { for (IRMemLocation Loc : MemoryEffects::locations()) { switch (Loc) { case IRMemLocation::ArgMem: OS << "ArgMem: "; break; case IRMemLocation::InaccessibleMem: OS << "InaccessibleMem: "; break; case IRMemLocation::Other: OS << "Other: "; break; } OS << ME.getModRef(Loc) << ", "; } return OS; } //===----------------------------------------------------------------------===// // Helper method implementation //===----------------------------------------------------------------------===// ModRefInfo AAResults::getModRefInfo(const LoadInst *L, const MemoryLocation &Loc, AAQueryInfo &AAQI) { // Be conservative in the face of atomic. if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) return ModRefInfo::ModRef; // If the load address doesn't alias the given address, it doesn't read // or write the specified memory. if (Loc.Ptr) { AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI, L); if (AR == AliasResult::NoAlias) return ModRefInfo::NoModRef; } // Otherwise, a load just reads. return ModRefInfo::Ref; } ModRefInfo AAResults::getModRefInfo(const StoreInst *S, const MemoryLocation &Loc, AAQueryInfo &AAQI) { // Be conservative in the face of atomic. if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) return ModRefInfo::ModRef; if (Loc.Ptr) { AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI, S); // If the store address cannot alias the pointer in question, then the // specified memory cannot be modified by the store. if (AR == AliasResult::NoAlias) return ModRefInfo::NoModRef; // Examine the ModRef mask. If Mod isn't present, then return NoModRef. // This ensures that if Loc is a constant memory location, we take into // account the fact that the store definitely could not modify the memory // location. if (!isModSet(getModRefInfoMask(Loc))) return ModRefInfo::NoModRef; } // Otherwise, a store just writes. return ModRefInfo::Mod; } ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc, AAQueryInfo &AAQI) { // All we know about a fence instruction is what we get from the ModRef // mask: if Loc is a constant memory location, the fence definitely could // not modify it. if (Loc.Ptr) return getModRefInfoMask(Loc); return ModRefInfo::ModRef; } ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc, AAQueryInfo &AAQI) { if (Loc.Ptr) { AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI, V); // If the va_arg address cannot alias the pointer in question, then the // specified memory cannot be accessed by the va_arg. if (AR == AliasResult::NoAlias) return ModRefInfo::NoModRef; // If the pointer is a pointer to invariant memory, then it could not have // been modified by this va_arg. return getModRefInfoMask(Loc, AAQI); } // Otherwise, a va_arg reads and writes. return ModRefInfo::ModRef; } ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, const MemoryLocation &Loc, AAQueryInfo &AAQI) { if (Loc.Ptr) { // If the pointer is a pointer to invariant memory, // then it could not have been modified by this catchpad. return getModRefInfoMask(Loc, AAQI); } // Otherwise, a catchpad reads and writes. return ModRefInfo::ModRef; } ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, const MemoryLocation &Loc, AAQueryInfo &AAQI) { if (Loc.Ptr) { // If the pointer is a pointer to invariant memory, // then it could not have been modified by this catchpad. return getModRefInfoMask(Loc, AAQI); } // Otherwise, a catchret reads and writes. return ModRefInfo::ModRef; } ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, const MemoryLocation &Loc, AAQueryInfo &AAQI) { // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. if (isStrongerThanMonotonic(CX->getSuccessOrdering())) return ModRefInfo::ModRef; if (Loc.Ptr) { AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI, CX); // If the cmpxchg address does not alias the location, it does not access // it. if (AR == AliasResult::NoAlias) return ModRefInfo::NoModRef; } return ModRefInfo::ModRef; } ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc, AAQueryInfo &AAQI) { // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. if (isStrongerThanMonotonic(RMW->getOrdering())) return ModRefInfo::ModRef; if (Loc.Ptr) { AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI, RMW); // If the atomicrmw address does not alias the location, it does not access // it. if (AR == AliasResult::NoAlias) return ModRefInfo::NoModRef; } return ModRefInfo::ModRef; } ModRefInfo AAResults::getModRefInfo(const Instruction *I, const std::optional &OptLoc, AAQueryInfo &AAQIP) { if (OptLoc == std::nullopt) { if (const auto *Call = dyn_cast(I)) return getMemoryEffects(Call, AAQIP).getModRef(); } const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation()); switch (I->getOpcode()) { case Instruction::VAArg: return getModRefInfo((const VAArgInst *)I, Loc, AAQIP); case Instruction::Load: return getModRefInfo((const LoadInst *)I, Loc, AAQIP); case Instruction::Store: return getModRefInfo((const StoreInst *)I, Loc, AAQIP); case Instruction::Fence: return getModRefInfo((const FenceInst *)I, Loc, AAQIP); case Instruction::AtomicCmpXchg: return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP); case Instruction::AtomicRMW: return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP); case Instruction::Call: case Instruction::CallBr: case Instruction::Invoke: return getModRefInfo((const CallBase *)I, Loc, AAQIP); case Instruction::CatchPad: return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP); case Instruction::CatchRet: return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP); default: assert(!I->mayReadOrWriteMemory() && "Unhandled memory access instruction!"); return ModRefInfo::NoModRef; } } /// Return information about whether a particular call site modifies /// or reads the specified memory location \p MemLoc before instruction \p I /// in a BasicBlock. /// FIXME: this is really just shoring-up a deficiency in alias analysis. /// BasicAA isn't willing to spend linear time determining whether an alloca /// was captured before or after this particular call, while we are. However, /// with a smarter AA in place, this test is just wasting compile time. ModRefInfo AAResults::callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT, AAQueryInfo &AAQI) { if (!DT) return ModRefInfo::ModRef; const Value *Object = getUnderlyingObject(MemLoc.Ptr); if (!isIdentifiedFunctionLocal(Object)) return ModRefInfo::ModRef; const auto *Call = dyn_cast(I); if (!Call || Call == Object) return ModRefInfo::ModRef; if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, /* StoreCaptures */ true, I, DT, /* include Object */ true)) return ModRefInfo::ModRef; unsigned ArgNo = 0; ModRefInfo R = ModRefInfo::NoModRef; // Set flag only if no May found and all operands processed. for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); CI != CE; ++CI, ++ArgNo) { // Only look at the no-capture or byval pointer arguments. If this // pointer were passed to arguments that were neither of these, then it // couldn't be no-capture. if (!(*CI)->getType()->isPointerTy() || (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() && !Call->isByValArgument(ArgNo))) continue; AliasResult AR = alias(MemoryLocation::getBeforeOrAfter(*CI), MemoryLocation::getBeforeOrAfter(Object), AAQI, Call); // If this is a no-capture pointer argument, see if we can tell that it // is impossible to alias the pointer we're checking. If not, we have to // assume that the call could touch the pointer, even though it doesn't // escape. if (AR == AliasResult::NoAlias) continue; if (Call->doesNotAccessMemory(ArgNo)) continue; if (Call->onlyReadsMemory(ArgNo)) { R = ModRefInfo::Ref; continue; } return ModRefInfo::ModRef; } return R; } /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the location Loc. /// bool AAResults::canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc) { return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); } /// canInstructionRangeModRef - Return true if it is possible for the /// execution of the specified instructions to mod\ref (according to the /// mode) the location Loc. The instructions to consider are all /// of the instructions in the range of [I1,I2] INCLUSIVE. /// I1 and I2 must be in the same basic block. bool AAResults::canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, const MemoryLocation &Loc, const ModRefInfo Mode) { assert(I1.getParent() == I2.getParent() && "Instructions not in same basic block!"); BasicBlock::const_iterator I = I1.getIterator(); BasicBlock::const_iterator E = I2.getIterator(); ++E; // Convert from inclusive to exclusive range. for (; I != E; ++I) // Check every instruction in range if (isModOrRefSet(getModRefInfo(&*I, Loc) & Mode)) return true; return false; } // Provide a definition for the root virtual destructor. AAResults::Concept::~Concept() = default; // Provide a definition for the static object used to identify passes. AnalysisKey AAManager::Key; ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); } ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) : ImmutablePass(ID), CB(std::move(CB)) { initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); } char ExternalAAWrapperPass::ID = 0; INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", false, true) ImmutablePass * llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { return new ExternalAAWrapperPass(std::move(Callback)); } AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); } char AAResultsWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", "Function Alias Analysis Results", false, true) INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", "Function Alias Analysis Results", false, true) /// Run the wrapper pass to rebuild an aggregation over known AA passes. /// /// This is the legacy pass manager's interface to the new-style AA results /// aggregation object. Because this is somewhat shoe-horned into the legacy /// pass manager, we hard code all the specific alias analyses available into /// it. While the particular set enabled is configured via commandline flags, /// adding a new alias analysis to LLVM will require adding support for it to /// this list. bool AAResultsWrapperPass::runOnFunction(Function &F) { // NB! This *must* be reset before adding new AA results to the new // AAResults object because in the legacy pass manager, each instance // of these will refer to the *same* immutable analyses, registering and // unregistering themselves with them. We need to carefully tear down the // previous object first, in this case replacing it with an empty one, before // registering new results. AAR.reset( new AAResults(getAnalysis().getTLI(F))); // BasicAA is always available for function analyses. Also, we add it first // so that it can trump TBAA results when it proves MustAlias. // FIXME: TBAA should have an explicit mode to support this and then we // should reconsider the ordering here. if (!DisableBasicAA) AAR->addAAResult(getAnalysis().getResult()); // Populate the results with the currently available AAs. if (auto *WrapperPass = getAnalysisIfAvailable()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable()) AAR->addAAResult(WrapperPass->getResult()); // If available, run an external AA providing callback over the results as // well. if (auto *WrapperPass = getAnalysisIfAvailable()) if (WrapperPass->CB) WrapperPass->CB(*this, F, *AAR); // Analyses don't mutate the IR, so return false. return false; } void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); // We also need to mark all the alias analysis passes we will potentially // probe in runOnFunction as used here to ensure the legacy pass manager // preserves them. This hard coding of lists of alias analyses is specific to // the legacy pass manager. AU.addUsedIfAvailable(); AU.addUsedIfAvailable(); AU.addUsedIfAvailable(); AU.addUsedIfAvailable(); AU.addUsedIfAvailable(); } AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) { Result R(AM.getResult(F)); for (auto &Getter : ResultGetters) (*Getter)(F, AM, R); return R; } bool llvm::isNoAliasCall(const Value *V) { if (const auto *Call = dyn_cast(V)) return Call->hasRetAttr(Attribute::NoAlias); return false; } static bool isNoAliasOrByValArgument(const Value *V) { if (const Argument *A = dyn_cast(V)) return A->hasNoAliasAttr() || A->hasByValAttr(); return false; } bool llvm::isIdentifiedObject(const Value *V) { if (isa(V)) return true; if (isa(V) && !isa(V)) return true; if (isNoAliasCall(V)) return true; if (isNoAliasOrByValArgument(V)) return true; return false; } bool llvm::isIdentifiedFunctionLocal(const Value *V) { return isa(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V); } bool llvm::isEscapeSource(const Value *V) { if (auto *CB = dyn_cast(V)) return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB, true); // The load case works because isNonEscapingLocalObject considers all // stores to be escapes (it passes true for the StoreCaptures argument // to PointerMayBeCaptured). if (isa(V)) return true; // The inttoptr case works because isNonEscapingLocalObject considers all // means of converting or equating a pointer to an int (ptrtoint, ptr store // which could be followed by an integer load, ptr<->int compare) as // escaping, and objects located at well-known addresses via platform-specific // means cannot be considered non-escaping local objects. if (isa(V)) return true; // Same for inttoptr constant expressions. if (auto *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::IntToPtr) return true; return false; } bool llvm::isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind) { RequiresNoCaptureBeforeUnwind = false; // Alloca goes out of scope on unwind. if (isa(Object)) return true; // Byval goes out of scope on unwind. if (auto *A = dyn_cast(Object)) return A->hasByValAttr() || A->hasAttribute(Attribute::DeadOnUnwind); // A noalias return is not accessible from any other code. If the pointer // does not escape prior to the unwind, then the caller cannot access the // memory either. if (isNoAliasCall(Object)) { RequiresNoCaptureBeforeUnwind = true; return true; } return false; } // We don't consider globals as writable: While the physical memory is writable, // we may not have provenance to perform the write. bool llvm::isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly) { ExplicitlyDereferenceableOnly = false; // TODO: Alloca might not be writable after its lifetime ends. // See https://github.com/llvm/llvm-project/issues/51838. if (isa(Object)) return true; if (auto *A = dyn_cast(Object)) { if (A->hasAttribute(Attribute::Writable)) { ExplicitlyDereferenceableOnly = true; return true; } return A->hasByValAttr(); } // TODO: Noalias shouldn't imply writability, this should check for an // allocator function instead. return isNoAliasCall(Object); }