//===-- Symtab.cpp --------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include #include "lldb/Core/DataFileCache.h" #include "lldb/Core/Module.h" #include "lldb/Core/RichManglingContext.h" #include "lldb/Core/Section.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Symbol/Symtab.h" #include "lldb/Target/Language.h" #include "lldb/Utility/DataEncoder.h" #include "lldb/Utility/Endian.h" #include "lldb/Utility/RegularExpression.h" #include "lldb/Utility/Stream.h" #include "lldb/Utility/Timer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/DJB.h" using namespace lldb; using namespace lldb_private; Symtab::Symtab(ObjectFile *objfile) : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), m_name_to_symbol_indices(), m_mutex(), m_file_addr_to_index_computed(false), m_name_indexes_computed(false), m_loaded_from_cache(false), m_saved_to_cache(false) { m_name_to_symbol_indices.emplace(std::make_pair( lldb::eFunctionNameTypeNone, UniqueCStringMap())); m_name_to_symbol_indices.emplace(std::make_pair( lldb::eFunctionNameTypeBase, UniqueCStringMap())); m_name_to_symbol_indices.emplace(std::make_pair( lldb::eFunctionNameTypeMethod, UniqueCStringMap())); m_name_to_symbol_indices.emplace(std::make_pair( lldb::eFunctionNameTypeSelector, UniqueCStringMap())); } Symtab::~Symtab() = default; void Symtab::Reserve(size_t count) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. m_symbols.reserve(count); } Symbol *Symtab::Resize(size_t count) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. m_symbols.resize(count); return m_symbols.empty() ? nullptr : &m_symbols[0]; } uint32_t Symtab::AddSymbol(const Symbol &symbol) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. uint32_t symbol_idx = m_symbols.size(); auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); name_to_index.Clear(); m_file_addr_to_index.Clear(); m_symbols.push_back(symbol); m_file_addr_to_index_computed = false; m_name_indexes_computed = false; return symbol_idx; } size_t Symtab::GetNumSymbols() const { std::lock_guard guard(m_mutex); return m_symbols.size(); } void Symtab::SectionFileAddressesChanged() { m_file_addr_to_index.Clear(); m_file_addr_to_index_computed = false; } void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, Mangled::NamePreference name_preference) { std::lock_guard guard(m_mutex); // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); const FileSpec &file_spec = m_objfile->GetFileSpec(); const char *object_name = nullptr; if (m_objfile->GetModule()) object_name = m_objfile->GetModule()->GetObjectName().GetCString(); if (file_spec) s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, file_spec.GetPath().c_str(), object_name ? "(" : "", object_name ? object_name : "", object_name ? ")" : "", (uint64_t)m_symbols.size()); else s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); if (!m_symbols.empty()) { switch (sort_order) { case eSortOrderNone: { s->PutCString(":\n"); DumpSymbolHeader(s); const_iterator begin = m_symbols.begin(); const_iterator end = m_symbols.end(); for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { s->Indent(); pos->Dump(s, target, std::distance(begin, pos), name_preference); } } break; case eSortOrderByName: { // Although we maintain a lookup by exact name map, the table isn't // sorted by name. So we must make the ordered symbol list up ourselves. s->PutCString(" (sorted by name):\n"); DumpSymbolHeader(s); std::multimap name_map; for (const Symbol &symbol : m_symbols) name_map.emplace(symbol.GetName().GetStringRef(), &symbol); for (const auto &name_to_symbol : name_map) { const Symbol *symbol = name_to_symbol.second; s->Indent(); symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); } } break; case eSortOrderBySize: { s->PutCString(" (sorted by size):\n"); DumpSymbolHeader(s); std::multimap> size_map; for (const Symbol &symbol : m_symbols) size_map.emplace(symbol.GetByteSize(), &symbol); size_t idx = 0; for (const auto &size_to_symbol : size_map) { const Symbol *symbol = size_to_symbol.second; s->Indent(); symbol->Dump(s, target, idx++, name_preference); } } break; case eSortOrderByAddress: s->PutCString(" (sorted by address):\n"); DumpSymbolHeader(s); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const size_t num_entries = m_file_addr_to_index.GetSize(); for (size_t i = 0; i < num_entries; ++i) { s->Indent(); const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); } break; } } else { s->PutCString("\n"); } } void Symtab::Dump(Stream *s, Target *target, std::vector &indexes, Mangled::NamePreference name_preference) const { std::lock_guard guard(m_mutex); const size_t num_symbols = GetNumSymbols(); // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); s->IndentMore(); if (!indexes.empty()) { std::vector::const_iterator pos; std::vector::const_iterator end = indexes.end(); DumpSymbolHeader(s); for (pos = indexes.begin(); pos != end; ++pos) { size_t idx = *pos; if (idx < num_symbols) { s->Indent(); m_symbols[idx].Dump(s, target, idx, name_preference); } } } s->IndentLess(); } void Symtab::DumpSymbolHeader(Stream *s) { s->Indent(" Debug symbol\n"); s->Indent(" |Synthetic symbol\n"); s->Indent(" ||Externally Visible\n"); s->Indent(" |||\n"); s->Indent("Index UserID DSX Type File Address/Value Load " "Address Size Flags Name\n"); s->Indent("------- ------ --- --------------- ------------------ " "------------------ ------------------ ---------- " "----------------------------------\n"); } static int CompareSymbolID(const void *key, const void *p) { const user_id_t match_uid = *(const user_id_t *)key; const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); if (match_uid < symbol_uid) return -1; if (match_uid > symbol_uid) return 1; return 0; } Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { std::lock_guard guard(m_mutex); Symbol *symbol = (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), sizeof(m_symbols[0]), CompareSymbolID); return symbol; } Symbol *Symtab::SymbolAtIndex(size_t idx) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. if (idx < m_symbols.size()) return &m_symbols[idx]; return nullptr; } const Symbol *Symtab::SymbolAtIndex(size_t idx) const { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. if (idx < m_symbols.size()) return &m_symbols[idx]; return nullptr; } static bool lldb_skip_name(llvm::StringRef mangled, Mangled::ManglingScheme scheme) { switch (scheme) { case Mangled::eManglingSchemeItanium: { if (mangled.size() < 3 || !mangled.starts_with("_Z")) return true; // Avoid the following types of symbols in the index. switch (mangled[2]) { case 'G': // guard variables case 'T': // virtual tables, VTT structures, typeinfo structures + names case 'Z': // named local entities (if we eventually handle // eSymbolTypeData, we will want this back) return true; default: break; } // Include this name in the index. return false; } // No filters for this scheme yet. Include all names in indexing. case Mangled::eManglingSchemeMSVC: case Mangled::eManglingSchemeRustV0: case Mangled::eManglingSchemeD: case Mangled::eManglingSchemeSwift: return false; // Don't try and demangle things we can't categorize. case Mangled::eManglingSchemeNone: return true; } llvm_unreachable("unknown scheme!"); } void Symtab::InitNameIndexes() { // Protected function, no need to lock mutex... if (!m_name_indexes_computed) { m_name_indexes_computed = true; ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); LLDB_SCOPED_TIMER(); // Collect all loaded language plugins. std::vector languages; Language::ForEach([&languages](Language *l) { languages.push_back(l); return true; }); auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); auto &basename_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); auto &method_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); auto &selector_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); // Create the name index vector to be able to quickly search by name const size_t num_symbols = m_symbols.size(); name_to_index.Reserve(num_symbols); // The "const char *" in "class_contexts" and backlog::value_type::second // must come from a ConstString::GetCString() std::set class_contexts; std::vector> backlog; backlog.reserve(num_symbols / 2); // Instantiation of the demangler is expensive, so better use a single one // for all entries during batch processing. RichManglingContext rmc; for (uint32_t value = 0; value < num_symbols; ++value) { Symbol *symbol = &m_symbols[value]; // Don't let trampolines get into the lookup by name map If we ever need // the trampoline symbols to be searchable by name we can remove this and // then possibly add a new bool to any of the Symtab functions that // lookup symbols by name to indicate if they want trampolines. We also // don't want any synthetic symbols with auto generated names in the // name lookups. if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName()) continue; // If the symbol's name string matched a Mangled::ManglingScheme, it is // stored in the mangled field. Mangled &mangled = symbol->GetMangled(); if (ConstString name = mangled.GetMangledName()) { name_to_index.Append(name, value); if (symbol->ContainsLinkerAnnotations()) { // If the symbol has linker annotations, also add the version without // the annotations. ConstString stripped = ConstString( m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); name_to_index.Append(stripped, value); } const SymbolType type = symbol->GetType(); if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) { RegisterMangledNameEntry(value, class_contexts, backlog, rmc); continue; } } } // Symbol name strings that didn't match a Mangled::ManglingScheme, are // stored in the demangled field. if (ConstString name = mangled.GetDemangledName()) { name_to_index.Append(name, value); if (symbol->ContainsLinkerAnnotations()) { // If the symbol has linker annotations, also add the version without // the annotations. name = ConstString( m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); name_to_index.Append(name, value); } // If the demangled name turns out to be an ObjC name, and is a category // name, add the version without categories to the index too. for (Language *lang : languages) { for (auto variant : lang->GetMethodNameVariants(name)) { if (variant.GetType() & lldb::eFunctionNameTypeSelector) selector_to_index.Append(variant.GetName(), value); else if (variant.GetType() & lldb::eFunctionNameTypeFull) name_to_index.Append(variant.GetName(), value); else if (variant.GetType() & lldb::eFunctionNameTypeMethod) method_to_index.Append(variant.GetName(), value); else if (variant.GetType() & lldb::eFunctionNameTypeBase) basename_to_index.Append(variant.GetName(), value); } } } } for (const auto &record : backlog) { RegisterBacklogEntry(record.first, record.second, class_contexts); } name_to_index.Sort(); name_to_index.SizeToFit(); selector_to_index.Sort(); selector_to_index.SizeToFit(); basename_to_index.Sort(); basename_to_index.SizeToFit(); method_to_index.Sort(); method_to_index.SizeToFit(); } } void Symtab::RegisterMangledNameEntry( uint32_t value, std::set &class_contexts, std::vector> &backlog, RichManglingContext &rmc) { // Only register functions that have a base name. llvm::StringRef base_name = rmc.ParseFunctionBaseName(); if (base_name.empty()) return; // The base name will be our entry's name. NameToIndexMap::Entry entry(ConstString(base_name), value); llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName(); // Register functions with no context. if (decl_context.empty()) { // This has to be a basename auto &basename_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); basename_to_index.Append(entry); // If there is no context (no namespaces or class scopes that come before // the function name) then this also could be a fullname. auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); name_to_index.Append(entry); return; } // Make sure we have a pool-string pointer and see if we already know the // context name. const char *decl_context_ccstr = ConstString(decl_context).GetCString(); auto it = class_contexts.find(decl_context_ccstr); auto &method_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); // Register constructors and destructors. They are methods and create // declaration contexts. if (rmc.IsCtorOrDtor()) { method_to_index.Append(entry); if (it == class_contexts.end()) class_contexts.insert(it, decl_context_ccstr); return; } // Register regular methods with a known declaration context. if (it != class_contexts.end()) { method_to_index.Append(entry); return; } // Regular methods in unknown declaration contexts are put to the backlog. We // will revisit them once we processed all remaining symbols. backlog.push_back(std::make_pair(entry, decl_context_ccstr)); } void Symtab::RegisterBacklogEntry( const NameToIndexMap::Entry &entry, const char *decl_context, const std::set &class_contexts) { auto &method_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); auto it = class_contexts.find(decl_context); if (it != class_contexts.end()) { method_to_index.Append(entry); } else { // If we got here, we have something that had a context (was inside // a namespace or class) yet we don't know the entry method_to_index.Append(entry); auto &basename_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); basename_to_index.Append(entry); } } void Symtab::PreloadSymbols() { std::lock_guard guard(m_mutex); InitNameIndexes(); } void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, bool add_demangled, bool add_mangled, NameToIndexMap &name_to_index_map) const { LLDB_SCOPED_TIMER(); if (add_demangled || add_mangled) { std::lock_guard guard(m_mutex); // Create the name index vector to be able to quickly search by name const size_t num_indexes = indexes.size(); for (size_t i = 0; i < num_indexes; ++i) { uint32_t value = indexes[i]; assert(i < m_symbols.size()); const Symbol *symbol = &m_symbols[value]; const Mangled &mangled = symbol->GetMangled(); if (add_demangled) { if (ConstString name = mangled.GetDemangledName()) name_to_index_map.Append(name, value); } if (add_mangled) { if (ConstString name = mangled.GetMangledName()) name_to_index_map.Append(name, value); } } } } uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, std::vector &indexes, uint32_t start_idx, uint32_t end_index) const { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min(m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) indexes.push_back(i); } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( SymbolType symbol_type, uint32_t flags_value, std::vector &indexes, uint32_t start_idx, uint32_t end_index) const { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min(m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if ((symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) && m_symbols[i].GetFlags() == flags_value) indexes.push_back(i); } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes, uint32_t start_idx, uint32_t end_index) const { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min(m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) indexes.push_back(i); } } return indexes.size() - prev_size; } uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { if (!m_symbols.empty()) { const Symbol *first_symbol = &m_symbols[0]; if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) return symbol - first_symbol; } return UINT32_MAX; } struct SymbolSortInfo { const bool sort_by_load_addr; const Symbol *symbols; }; namespace { struct SymbolIndexComparator { const std::vector &symbols; std::vector &addr_cache; // Getting from the symbol to the Address to the File Address involves some // work. Since there are potentially many symbols here, and we're using this // for sorting so we're going to be computing the address many times, cache // that in addr_cache. The array passed in has to be the same size as the // symbols array passed into the member variable symbols, and should be // initialized with LLDB_INVALID_ADDRESS. // NOTE: You have to make addr_cache externally and pass it in because // std::stable_sort // makes copies of the comparator it is initially passed in, and you end up // spending huge amounts of time copying this array... SymbolIndexComparator(const std::vector &s, std::vector &a) : symbols(s), addr_cache(a) { assert(symbols.size() == addr_cache.size()); } bool operator()(uint32_t index_a, uint32_t index_b) { addr_t value_a = addr_cache[index_a]; if (value_a == LLDB_INVALID_ADDRESS) { value_a = symbols[index_a].GetAddressRef().GetFileAddress(); addr_cache[index_a] = value_a; } addr_t value_b = addr_cache[index_b]; if (value_b == LLDB_INVALID_ADDRESS) { value_b = symbols[index_b].GetAddressRef().GetFileAddress(); addr_cache[index_b] = value_b; } if (value_a == value_b) { // The if the values are equal, use the original symbol user ID lldb::user_id_t uid_a = symbols[index_a].GetID(); lldb::user_id_t uid_b = symbols[index_b].GetID(); if (uid_a < uid_b) return true; if (uid_a > uid_b) return false; return false; } else if (value_a < value_b) return true; return false; } }; } void Symtab::SortSymbolIndexesByValue(std::vector &indexes, bool remove_duplicates) const { std::lock_guard guard(m_mutex); LLDB_SCOPED_TIMER(); // No need to sort if we have zero or one items... if (indexes.size() <= 1) return; // Sort the indexes in place using std::stable_sort. // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly // for performance, not correctness. The indexes vector tends to be "close" // to sorted, which the stable sort handles better. std::vector addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); SymbolIndexComparator comparator(m_symbols, addr_cache); std::stable_sort(indexes.begin(), indexes.end(), comparator); // Remove any duplicates if requested if (remove_duplicates) { auto last = std::unique(indexes.begin(), indexes.end()); indexes.erase(last, indexes.end()); } } uint32_t Symtab::GetNameIndexes(ConstString symbol_name, std::vector &indexes) { auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); const uint32_t count = name_to_index.GetValues(symbol_name, indexes); if (count) return count; // Synthetic symbol names are not added to the name indexes, but they start // with a prefix and end with a the symbol UserID. This allows users to find // these symbols without having to add them to the name indexes. These // queries will not happen very often since the names don't mean anything, so // performance is not paramount in this case. llvm::StringRef name = symbol_name.GetStringRef(); // String the synthetic prefix if the name starts with it. if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix())) return 0; // Not a synthetic symbol name // Extract the user ID from the symbol name unsigned long long uid = 0; if (getAsUnsignedInteger(name, /*Radix=*/10, uid)) return 0; // Failed to extract the user ID as an integer Symbol *symbol = FindSymbolByID(uid); if (symbol == nullptr) return 0; const uint32_t symbol_idx = GetIndexForSymbol(symbol); if (symbol_idx == UINT32_MAX) return 0; indexes.push_back(symbol_idx); return 1; } uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, std::vector &indexes) { std::lock_guard guard(m_mutex); if (symbol_name) { if (!m_name_indexes_computed) InitNameIndexes(); return GetNameIndexes(symbol_name, indexes); } return 0; } uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes) { std::lock_guard guard(m_mutex); LLDB_SCOPED_TIMER(); if (symbol_name) { const size_t old_size = indexes.size(); if (!m_name_indexes_computed) InitNameIndexes(); std::vector all_name_indexes; const size_t name_match_count = GetNameIndexes(symbol_name, all_name_indexes); for (size_t i = 0; i < name_match_count; ++i) { if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, symbol_visibility)) indexes.push_back(all_name_indexes[i]); } return indexes.size() - old_size; } return 0; } uint32_t Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, SymbolType symbol_type, std::vector &indexes) { std::lock_guard guard(m_mutex); if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { std::vector::iterator pos = indexes.begin(); while (pos != indexes.end()) { if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type) ++pos; else pos = indexes.erase(pos); } } return indexes.size(); } uint32_t Symtab::AppendSymbolIndexesWithNameAndType( ConstString symbol_name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes) { std::lock_guard guard(m_mutex); if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, symbol_visibility, indexes) > 0) { std::vector::iterator pos = indexes.begin(); while (pos != indexes.end()) { if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type) ++pos; else pos = indexes.erase(pos); } } return indexes.size(); } uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( const RegularExpression ®exp, SymbolType symbol_type, std::vector &indexes, Mangled::NamePreference name_preference) { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); uint32_t sym_end = m_symbols.size(); for (uint32_t i = 0; i < sym_end; i++) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { const char *name = m_symbols[i].GetMangled().GetName(name_preference).AsCString(); if (name) { if (regexp.Execute(name)) indexes.push_back(i); } } } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( const RegularExpression ®exp, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes, Mangled::NamePreference name_preference) { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); uint32_t sym_end = m_symbols.size(); for (uint32_t i = 0; i < sym_end; i++) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) continue; const char *name = m_symbols[i].GetMangled().GetName(name_preference).AsCString(); if (name) { if (regexp.Execute(name)) indexes.push_back(i); } } } return indexes.size() - prev_size; } Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, uint32_t &start_idx) { std::lock_guard guard(m_mutex); const size_t count = m_symbols.size(); for (size_t idx = start_idx; idx < count; ++idx) { if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type) { if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { start_idx = idx; return &m_symbols[idx]; } } } return nullptr; } void Symtab::FindAllSymbolsWithNameAndType(ConstString name, SymbolType symbol_type, std::vector &symbol_indexes) { std::lock_guard guard(m_mutex); // Initialize all of the lookup by name indexes before converting NAME to a // uniqued string NAME_STR below. if (!m_name_indexes_computed) InitNameIndexes(); if (name) { // The string table did have a string that matched, but we need to check // the symbols and match the symbol_type if any was given. AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); } } void Symtab::FindAllSymbolsWithNameAndType( ConstString name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &symbol_indexes) { std::lock_guard guard(m_mutex); LLDB_SCOPED_TIMER(); // Initialize all of the lookup by name indexes before converting NAME to a // uniqued string NAME_STR below. if (!m_name_indexes_computed) InitNameIndexes(); if (name) { // The string table did have a string that matched, but we need to check // the symbols and match the symbol_type if any was given. AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes); } } void Symtab::FindAllSymbolsMatchingRexExAndType( const RegularExpression ®ex, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &symbol_indexes, Mangled::NamePreference name_preference) { std::lock_guard guard(m_mutex); AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes, name_preference); } Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility) { std::lock_guard guard(m_mutex); LLDB_SCOPED_TIMER(); if (!m_name_indexes_computed) InitNameIndexes(); if (name) { std::vector matching_indexes; // The string table did have a string that matched, but we need to check // the symbols and match the symbol_type if any was given. if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, symbol_visibility, matching_indexes)) { std::vector::const_iterator pos, end = matching_indexes.end(); for (pos = matching_indexes.begin(); pos != end; ++pos) { Symbol *symbol = SymbolAtIndex(*pos); if (symbol->Compare(name, symbol_type)) return symbol; } } } return nullptr; } typedef struct { const Symtab *symtab; const addr_t file_addr; Symbol *match_symbol; const uint32_t *match_index_ptr; addr_t match_offset; } SymbolSearchInfo; // Add all the section file start address & size to the RangeVector, recusively // adding any children sections. static void AddSectionsToRangeMap(SectionList *sectlist, RangeVector §ion_ranges) { const int num_sections = sectlist->GetNumSections(0); for (int i = 0; i < num_sections; i++) { SectionSP sect_sp = sectlist->GetSectionAtIndex(i); if (sect_sp) { SectionList &child_sectlist = sect_sp->GetChildren(); // If this section has children, add the children to the RangeVector. // Else add this section to the RangeVector. if (child_sectlist.GetNumSections(0) > 0) { AddSectionsToRangeMap(&child_sectlist, section_ranges); } else { size_t size = sect_sp->GetByteSize(); if (size > 0) { addr_t base_addr = sect_sp->GetFileAddress(); RangeVector::Entry entry; entry.SetRangeBase(base_addr); entry.SetByteSize(size); section_ranges.Append(entry); } } } } } void Symtab::InitAddressIndexes() { // Protected function, no need to lock mutex... if (!m_file_addr_to_index_computed && !m_symbols.empty()) { m_file_addr_to_index_computed = true; FileRangeToIndexMap::Entry entry; const_iterator begin = m_symbols.begin(); const_iterator end = m_symbols.end(); for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { if (pos->ValueIsAddress()) { entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); entry.SetByteSize(pos->GetByteSize()); entry.data = std::distance(begin, pos); m_file_addr_to_index.Append(entry); } } const size_t num_entries = m_file_addr_to_index.GetSize(); if (num_entries > 0) { m_file_addr_to_index.Sort(); // Create a RangeVector with the start & size of all the sections for // this objfile. We'll need to check this for any FileRangeToIndexMap // entries with an uninitialized size, which could potentially be a large // number so reconstituting the weak pointer is busywork when it is // invariant information. SectionList *sectlist = m_objfile->GetSectionList(); RangeVector section_ranges; if (sectlist) { AddSectionsToRangeMap(sectlist, section_ranges); section_ranges.Sort(); } // Iterate through the FileRangeToIndexMap and fill in the size for any // entries that didn't already have a size from the Symbol (e.g. if we // have a plain linker symbol with an address only, instead of debug info // where we get an address and a size and a type, etc.) for (size_t i = 0; i < num_entries; i++) { FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.GetMutableEntryAtIndex(i); if (entry->GetByteSize() == 0) { addr_t curr_base_addr = entry->GetRangeBase(); const RangeVector::Entry *containing_section = section_ranges.FindEntryThatContains(curr_base_addr); // Use the end of the section as the default max size of the symbol addr_t sym_size = 0; if (containing_section) { sym_size = containing_section->GetByteSize() - (entry->GetRangeBase() - containing_section->GetRangeBase()); } for (size_t j = i; j < num_entries; j++) { FileRangeToIndexMap::Entry *next_entry = m_file_addr_to_index.GetMutableEntryAtIndex(j); addr_t next_base_addr = next_entry->GetRangeBase(); if (next_base_addr > curr_base_addr) { addr_t size_to_next_symbol = next_base_addr - curr_base_addr; // Take the difference between this symbol and the next one as // its size, if it is less than the size of the section. if (sym_size == 0 || size_to_next_symbol < sym_size) { sym_size = size_to_next_symbol; } break; } } if (sym_size > 0) { entry->SetByteSize(sym_size); Symbol &symbol = m_symbols[entry->data]; symbol.SetByteSize(sym_size); symbol.SetSizeIsSynthesized(true); } } } // Sort again in case the range size changes the ordering m_file_addr_to_index.Sort(); } } } void Symtab::Finalize() { std::lock_guard guard(m_mutex); // Calculate the size of symbols inside InitAddressIndexes. InitAddressIndexes(); // Shrink to fit the symbols so we don't waste memory m_symbols.shrink_to_fit(); SaveToCache(); } Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { std::lock_guard guard(m_mutex); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.FindEntryStartsAt(file_addr); if (entry) { Symbol *symbol = SymbolAtIndex(entry->data); if (symbol->GetFileAddress() == file_addr) return symbol; } return nullptr; } Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { std::lock_guard guard(m_mutex); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.FindEntryThatContains(file_addr); if (entry) { Symbol *symbol = SymbolAtIndex(entry->data); if (symbol->ContainsFileAddress(file_addr)) return symbol; } return nullptr; } void Symtab::ForEachSymbolContainingFileAddress( addr_t file_addr, std::function const &callback) { std::lock_guard guard(m_mutex); if (!m_file_addr_to_index_computed) InitAddressIndexes(); std::vector all_addr_indexes; // Get all symbols with file_addr const size_t addr_match_count = m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, all_addr_indexes); for (size_t i = 0; i < addr_match_count; ++i) { Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); if (symbol->ContainsFileAddress(file_addr)) { if (!callback(symbol)) break; } } } void Symtab::SymbolIndicesToSymbolContextList( std::vector &symbol_indexes, SymbolContextList &sc_list) { // No need to protect this call using m_mutex all other method calls are // already thread safe. const bool merge_symbol_into_function = true; size_t num_indices = symbol_indexes.size(); if (num_indices > 0) { SymbolContext sc; sc.module_sp = m_objfile->GetModule(); for (size_t i = 0; i < num_indices; i++) { sc.symbol = SymbolAtIndex(symbol_indexes[i]); if (sc.symbol) sc_list.AppendIfUnique(sc, merge_symbol_into_function); } } } void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, SymbolContextList &sc_list) { std::vector symbol_indexes; // eFunctionNameTypeAuto should be pre-resolved by a call to // Module::LookupInfo::LookupInfo() assert((name_type_mask & eFunctionNameTypeAuto) == 0); if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { std::vector temp_symbol_indexes; FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); if (temp_symbol_indexes_size > 0) { std::lock_guard guard(m_mutex); for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { SymbolContext sym_ctx; sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); if (sym_ctx.symbol) { switch (sym_ctx.symbol->GetType()) { case eSymbolTypeCode: case eSymbolTypeResolver: case eSymbolTypeReExported: case eSymbolTypeAbsolute: symbol_indexes.push_back(temp_symbol_indexes[i]); break; default: break; } } } } } if (!m_name_indexes_computed) InitNameIndexes(); for (lldb::FunctionNameType type : {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, lldb::eFunctionNameTypeSelector}) { if (name_type_mask & type) { auto map = GetNameToSymbolIndexMap(type); const UniqueCStringMap::Entry *match; for (match = map.FindFirstValueForName(name); match != nullptr; match = map.FindNextValueForName(match)) { symbol_indexes.push_back(match->value); } } } if (!symbol_indexes.empty()) { llvm::sort(symbol_indexes); symbol_indexes.erase( std::unique(symbol_indexes.begin(), symbol_indexes.end()), symbol_indexes.end()); SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); } } const Symbol *Symtab::GetParent(Symbol *child_symbol) const { uint32_t child_idx = GetIndexForSymbol(child_symbol); if (child_idx != UINT32_MAX && child_idx > 0) { for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { const Symbol *symbol = SymbolAtIndex(idx); const uint32_t sibling_idx = symbol->GetSiblingIndex(); if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) return symbol; } } return nullptr; } std::string Symtab::GetCacheKey() { std::string key; llvm::raw_string_ostream strm(key); // Symbol table can come from different object files for the same module. A // module can have one object file as the main executable and might have // another object file in a separate symbol file. strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-" << llvm::format_hex(m_objfile->GetCacheHash(), 10); return strm.str(); } void Symtab::SaveToCache() { DataFileCache *cache = Module::GetIndexCache(); if (!cache) return; // Caching is not enabled. InitNameIndexes(); // Init the name indexes so we can cache them as well. const auto byte_order = endian::InlHostByteOrder(); DataEncoder file(byte_order, /*addr_size=*/8); // Encode will return false if the symbol table's object file doesn't have // anything to make a signature from. if (Encode(file)) if (cache->SetCachedData(GetCacheKey(), file.GetData())) SetWasSavedToCache(); } constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP"); static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab, const UniqueCStringMap &cstr_map) { encoder.AppendData(kIdentifierCStrMap); encoder.AppendU32(cstr_map.GetSize()); for (const auto &entry: cstr_map) { // Make sure there are no empty strings. assert((bool)entry.cstring); encoder.AppendU32(strtab.Add(entry.cstring)); encoder.AppendU32(entry.value); } } bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr, const StringTableReader &strtab, UniqueCStringMap &cstr_map) { llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); if (identifier != kIdentifierCStrMap) return false; const uint32_t count = data.GetU32(offset_ptr); cstr_map.Reserve(count); for (uint32_t i=0; i cstr_maps[num_cstr_maps] bool Symtab::Encode(DataEncoder &encoder) const { // Name indexes must be computed before calling this function. assert(m_name_indexes_computed); // Encode the object file's signature CacheSignature signature(m_objfile); if (!signature.Encode(encoder)) return false; ConstStringTable strtab; // Encoder the symbol table into a separate encoder first. This allows us // gather all of the strings we willl need in "strtab" as we will need to // write the string table out before the symbol table. DataEncoder symtab_encoder(encoder.GetByteOrder(), encoder.GetAddressByteSize()); symtab_encoder.AppendData(kIdentifierSymbolTable); // Encode the symtab data version. symtab_encoder.AppendU32(CURRENT_CACHE_VERSION); // Encode the number of symbols. symtab_encoder.AppendU32(m_symbols.size()); // Encode the symbol data for all symbols. for (const auto &symbol: m_symbols) symbol.Encode(symtab_encoder, strtab); // Emit a byte for how many C string maps we emit. We will fix this up after // we emit the C string maps since we skip emitting C string maps if they are // empty. size_t num_cmaps_offset = symtab_encoder.GetByteSize(); uint8_t num_cmaps = 0; symtab_encoder.AppendU8(0); for (const auto &pair: m_name_to_symbol_indices) { if (pair.second.IsEmpty()) continue; ++num_cmaps; symtab_encoder.AppendU8(pair.first); EncodeCStrMap(symtab_encoder, strtab, pair.second); } if (num_cmaps > 0) symtab_encoder.PutU8(num_cmaps_offset, num_cmaps); // Now that all strings have been gathered, we will emit the string table. strtab.Encode(encoder); // Followed by the symbol table data. encoder.AppendData(symtab_encoder.GetData()); return true; } bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr, bool &signature_mismatch) { signature_mismatch = false; CacheSignature signature; StringTableReader strtab; { // Scope for "elapsed" object below so it can measure the time parse. ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime()); if (!signature.Decode(data, offset_ptr)) return false; if (CacheSignature(m_objfile) != signature) { signature_mismatch = true; return false; } // We now decode the string table for all strings in the data cache file. if (!strtab.Decode(data, offset_ptr)) return false; // And now we can decode the symbol table with string table we just decoded. llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); if (identifier != kIdentifierSymbolTable) return false; const uint32_t version = data.GetU32(offset_ptr); if (version != CURRENT_CACHE_VERSION) return false; const uint32_t num_symbols = data.GetU32(offset_ptr); if (num_symbols == 0) return true; m_symbols.resize(num_symbols); SectionList *sections = m_objfile->GetModule()->GetSectionList(); for (uint32_t i=0; iGetModule()->GetSymtabIndexTime()); const uint8_t num_cstr_maps = data.GetU8(offset_ptr); for (uint8_t i=0; i &cstr_map = GetNameToSymbolIndexMap((lldb::FunctionNameType)type); if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map)) return false; } m_name_indexes_computed = true; } return true; } bool Symtab::LoadFromCache() { DataFileCache *cache = Module::GetIndexCache(); if (!cache) return false; std::unique_ptr mem_buffer_up = cache->GetCachedData(GetCacheKey()); if (!mem_buffer_up) return false; DataExtractor data(mem_buffer_up->getBufferStart(), mem_buffer_up->getBufferSize(), m_objfile->GetByteOrder(), m_objfile->GetAddressByteSize()); bool signature_mismatch = false; lldb::offset_t offset = 0; const bool result = Decode(data, &offset, signature_mismatch); if (signature_mismatch) cache->RemoveCacheFile(GetCacheKey()); if (result) SetWasLoadedFromCache(); return result; }