//===-- x86AssemblyInspectionEngine.cpp -----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "x86AssemblyInspectionEngine.h" #include #include "llvm-c/Disassembler.h" #include "lldb/Core/Address.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/UnwindAssembly.h" using namespace lldb_private; using namespace lldb; x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch) : m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM), m_machine_sp_regnum(LLDB_INVALID_REGNUM), m_machine_fp_regnum(LLDB_INVALID_REGNUM), m_machine_alt_fp_regnum(LLDB_INVALID_REGNUM), m_lldb_ip_regnum(LLDB_INVALID_REGNUM), m_lldb_sp_regnum(LLDB_INVALID_REGNUM), m_lldb_fp_regnum(LLDB_INVALID_REGNUM), m_lldb_alt_fp_regnum(LLDB_INVALID_REGNUM), m_reg_map(), m_arch(arch), m_cpu(k_cpu_unspecified), m_wordsize(-1), m_register_map_initialized(false), m_disasm_context() { m_disasm_context = ::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr, /*TagType=*/1, nullptr, nullptr); } x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() { ::LLVMDisasmDispose(m_disasm_context); } void x86AssemblyInspectionEngine::Initialize(RegisterContextSP ®_ctx) { m_cpu = k_cpu_unspecified; m_wordsize = -1; m_register_map_initialized = false; const llvm::Triple::ArchType cpu = m_arch.GetMachine(); if (cpu == llvm::Triple::x86) m_cpu = k_i386; else if (cpu == llvm::Triple::x86_64) m_cpu = k_x86_64; if (m_cpu == k_cpu_unspecified) return; if (reg_ctx.get() == nullptr) return; if (m_cpu == k_i386) { m_machine_ip_regnum = k_machine_eip; m_machine_sp_regnum = k_machine_esp; m_machine_fp_regnum = k_machine_ebp; m_machine_alt_fp_regnum = k_machine_ebx; m_wordsize = 4; struct lldb_reg_info reginfo; reginfo.name = "eax"; m_reg_map[k_machine_eax] = reginfo; reginfo.name = "edx"; m_reg_map[k_machine_edx] = reginfo; reginfo.name = "esp"; m_reg_map[k_machine_esp] = reginfo; reginfo.name = "esi"; m_reg_map[k_machine_esi] = reginfo; reginfo.name = "eip"; m_reg_map[k_machine_eip] = reginfo; reginfo.name = "ecx"; m_reg_map[k_machine_ecx] = reginfo; reginfo.name = "ebx"; m_reg_map[k_machine_ebx] = reginfo; reginfo.name = "ebp"; m_reg_map[k_machine_ebp] = reginfo; reginfo.name = "edi"; m_reg_map[k_machine_edi] = reginfo; } else { m_machine_ip_regnum = k_machine_rip; m_machine_sp_regnum = k_machine_rsp; m_machine_fp_regnum = k_machine_rbp; m_machine_alt_fp_regnum = k_machine_rbx; m_wordsize = 8; struct lldb_reg_info reginfo; reginfo.name = "rax"; m_reg_map[k_machine_rax] = reginfo; reginfo.name = "rdx"; m_reg_map[k_machine_rdx] = reginfo; reginfo.name = "rsp"; m_reg_map[k_machine_rsp] = reginfo; reginfo.name = "rsi"; m_reg_map[k_machine_rsi] = reginfo; reginfo.name = "r8"; m_reg_map[k_machine_r8] = reginfo; reginfo.name = "r10"; m_reg_map[k_machine_r10] = reginfo; reginfo.name = "r12"; m_reg_map[k_machine_r12] = reginfo; reginfo.name = "r14"; m_reg_map[k_machine_r14] = reginfo; reginfo.name = "rip"; m_reg_map[k_machine_rip] = reginfo; reginfo.name = "rcx"; m_reg_map[k_machine_rcx] = reginfo; reginfo.name = "rbx"; m_reg_map[k_machine_rbx] = reginfo; reginfo.name = "rbp"; m_reg_map[k_machine_rbp] = reginfo; reginfo.name = "rdi"; m_reg_map[k_machine_rdi] = reginfo; reginfo.name = "r9"; m_reg_map[k_machine_r9] = reginfo; reginfo.name = "r11"; m_reg_map[k_machine_r11] = reginfo; reginfo.name = "r13"; m_reg_map[k_machine_r13] = reginfo; reginfo.name = "r15"; m_reg_map[k_machine_r15] = reginfo; } for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin(); it != m_reg_map.end(); ++it) { const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name); if (ri) it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB]; } uint32_t lldb_regno; if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno)) m_lldb_sp_regnum = lldb_regno; if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno)) m_lldb_fp_regnum = lldb_regno; if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno)) m_lldb_alt_fp_regnum = lldb_regno; if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno)) m_lldb_ip_regnum = lldb_regno; m_register_map_initialized = true; } void x86AssemblyInspectionEngine::Initialize( std::vector ®_info) { m_cpu = k_cpu_unspecified; m_wordsize = -1; m_register_map_initialized = false; const llvm::Triple::ArchType cpu = m_arch.GetMachine(); if (cpu == llvm::Triple::x86) m_cpu = k_i386; else if (cpu == llvm::Triple::x86_64) m_cpu = k_x86_64; if (m_cpu == k_cpu_unspecified) return; if (m_cpu == k_i386) { m_machine_ip_regnum = k_machine_eip; m_machine_sp_regnum = k_machine_esp; m_machine_fp_regnum = k_machine_ebp; m_machine_alt_fp_regnum = k_machine_ebx; m_wordsize = 4; struct lldb_reg_info reginfo; reginfo.name = "eax"; m_reg_map[k_machine_eax] = reginfo; reginfo.name = "edx"; m_reg_map[k_machine_edx] = reginfo; reginfo.name = "esp"; m_reg_map[k_machine_esp] = reginfo; reginfo.name = "esi"; m_reg_map[k_machine_esi] = reginfo; reginfo.name = "eip"; m_reg_map[k_machine_eip] = reginfo; reginfo.name = "ecx"; m_reg_map[k_machine_ecx] = reginfo; reginfo.name = "ebx"; m_reg_map[k_machine_ebx] = reginfo; reginfo.name = "ebp"; m_reg_map[k_machine_ebp] = reginfo; reginfo.name = "edi"; m_reg_map[k_machine_edi] = reginfo; } else { m_machine_ip_regnum = k_machine_rip; m_machine_sp_regnum = k_machine_rsp; m_machine_fp_regnum = k_machine_rbp; m_machine_alt_fp_regnum = k_machine_rbx; m_wordsize = 8; struct lldb_reg_info reginfo; reginfo.name = "rax"; m_reg_map[k_machine_rax] = reginfo; reginfo.name = "rdx"; m_reg_map[k_machine_rdx] = reginfo; reginfo.name = "rsp"; m_reg_map[k_machine_rsp] = reginfo; reginfo.name = "rsi"; m_reg_map[k_machine_rsi] = reginfo; reginfo.name = "r8"; m_reg_map[k_machine_r8] = reginfo; reginfo.name = "r10"; m_reg_map[k_machine_r10] = reginfo; reginfo.name = "r12"; m_reg_map[k_machine_r12] = reginfo; reginfo.name = "r14"; m_reg_map[k_machine_r14] = reginfo; reginfo.name = "rip"; m_reg_map[k_machine_rip] = reginfo; reginfo.name = "rcx"; m_reg_map[k_machine_rcx] = reginfo; reginfo.name = "rbx"; m_reg_map[k_machine_rbx] = reginfo; reginfo.name = "rbp"; m_reg_map[k_machine_rbp] = reginfo; reginfo.name = "rdi"; m_reg_map[k_machine_rdi] = reginfo; reginfo.name = "r9"; m_reg_map[k_machine_r9] = reginfo; reginfo.name = "r11"; m_reg_map[k_machine_r11] = reginfo; reginfo.name = "r13"; m_reg_map[k_machine_r13] = reginfo; reginfo.name = "r15"; m_reg_map[k_machine_r15] = reginfo; } for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin(); it != m_reg_map.end(); ++it) { for (size_t i = 0; i < reg_info.size(); ++i) { if (::strcmp(reg_info[i].name, it->second.name) == 0) { it->second.lldb_regnum = reg_info[i].lldb_regnum; break; } } } uint32_t lldb_regno; if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno)) m_lldb_sp_regnum = lldb_regno; if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno)) m_lldb_fp_regnum = lldb_regno; if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno)) m_lldb_alt_fp_regnum = lldb_regno; if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno)) m_lldb_ip_regnum = lldb_regno; m_register_map_initialized = true; } // This function expects an x86 native register number (i.e. the bits stripped // out of the actual instruction), not an lldb register number. // // FIXME: This is ABI dependent, it shouldn't be hardcoded here. bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) { if (m_cpu == k_i386) { switch (machine_regno) { case k_machine_ebx: case k_machine_ebp: // not actually a nonvolatile but often treated as such // by convention case k_machine_esi: case k_machine_edi: case k_machine_esp: return true; default: return false; } } if (m_cpu == k_x86_64) { switch (machine_regno) { case k_machine_rbx: case k_machine_rsp: case k_machine_rbp: // not actually a nonvolatile but often treated as such // by convention case k_machine_r12: case k_machine_r13: case k_machine_r14: case k_machine_r15: return true; default: return false; } } return false; } // Macro to detect if this is a REX mode prefix byte. #define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48) // The high bit which should be added to the source register number (the "R" // bit) #define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2) // The high bit which should be added to the destination register number (the // "B" bit) #define REX_W_DSTREG(opcode) ((opcode)&0x1) // pushq %rbp [0x55] bool x86AssemblyInspectionEngine::push_rbp_pattern_p() { uint8_t *p = m_cur_insn; return *p == 0x55; } // pushq $0 ; the first instruction in start() [0x6a 0x00] bool x86AssemblyInspectionEngine::push_0_pattern_p() { uint8_t *p = m_cur_insn; return *p == 0x6a && *(p + 1) == 0x0; } // pushq $0 // pushl $0 bool x86AssemblyInspectionEngine::push_imm_pattern_p() { uint8_t *p = m_cur_insn; return *p == 0x68 || *p == 0x6a; } // pushl imm8(%esp) // // e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq // 0x20(%rsp)' in an x86_64 program) // // 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with // three bits used to specify the opcode) // mod == b01, opcode == b110, R/M == b100 // "+disp8" // 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value bool x86AssemblyInspectionEngine::push_extended_pattern_p() { if (*m_cur_insn == 0xff) { // Get the 3 opcode bits from the ModR/M byte uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7; if (opcode == 6) { // I'm only looking for 0xff /6 here - I // don't really care what value is being pushed, just that we're pushing // a 32/64 bit value on to the stack is enough. return true; } } return false; } // instructions only valid in 32-bit mode: // 0x0e - push cs // 0x16 - push ss // 0x1e - push ds // 0x06 - push es bool x86AssemblyInspectionEngine::push_misc_reg_p() { uint8_t p = *m_cur_insn; if (m_wordsize == 4) { if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06) return true; } return false; } // pushq %rbx // pushl %ebx bool x86AssemblyInspectionEngine::push_reg_p(int ®no) { uint8_t *p = m_cur_insn; int regno_prefix_bit = 0; // If we have a rex prefix byte, check to see if a B bit is set if (m_wordsize == 8 && (*p & 0xfe) == 0x40) { regno_prefix_bit = (*p & 1) << 3; p++; } if (*p >= 0x50 && *p <= 0x57) { regno = (*p - 0x50) | regno_prefix_bit; return true; } return false; } // movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b // 0xec] or [0x89 0xe5] bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; if (*(p) == 0x8b && *(p + 1) == 0xec) return true; if (*(p) == 0x89 && *(p + 1) == 0xe5) return true; return false; } // movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3] // movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3] bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; if (*(p) == 0x8b && *(p + 1) == 0xdc) return true; if (*(p) == 0x89 && *(p + 1) == 0xe3) return true; return false; } // movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec] // movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec] bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; if (*(p) == 0x8b && *(p + 1) == 0xe5) return true; if (*(p) == 0x89 && *(p + 1) == 0xec) return true; return false; } // movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc] // movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc] bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; if (*(p) == 0x8b && *(p + 1) == 0xe3) return true; if (*(p) == 0x89 && *(p + 1) == 0xdc) return true; return false; } // subq $0x20, %rsp bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; // 8-bit immediate operand if (*p == 0x83 && *(p + 1) == 0xec) { amount = (int8_t) * (p + 2); return true; } // 32-bit immediate operand if (*p == 0x81 && *(p + 1) == 0xec) { amount = (int32_t)extract_4(p + 2); return true; } return false; } // addq $0x20, %rsp bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; // 8-bit immediate operand if (*p == 0x83 && *(p + 1) == 0xc4) { amount = (int8_t) * (p + 2); return true; } // 32-bit immediate operand if (*p == 0x81 && *(p + 1) == 0xc4) { amount = (int32_t)extract_4(p + 2); return true; } return false; } // lea esp, [esp - 0x28] // lea esp, [esp + 0x28] bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; // Check opcode if (*p != 0x8d) return false; // 8 bit displacement if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) { amount = (int8_t) * (p + 3); return true; } // 32 bit displacement if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) { amount = (int32_t)extract_4(p + 3); return true; } return false; } // lea -0x28(%ebp), %esp // (32-bit and 64-bit variants, 8-bit and 32-bit displacement) bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; // Check opcode if (*p != 0x8d) return false; ++p; // 8 bit displacement if (*p == 0x65) { amount = (int8_t)p[1]; return true; } // 32 bit displacement if (*p == 0xa5) { amount = (int32_t)extract_4(p + 1); return true; } return false; } // lea -0x28(%ebx), %esp // (32-bit and 64-bit variants, 8-bit and 32-bit displacement) bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount) { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; // Check opcode if (*p != 0x8d) return false; ++p; // 8 bit displacement if (*p == 0x63) { amount = (int8_t)p[1]; return true; } // 32 bit displacement if (*p == 0xa3) { amount = (int32_t)extract_4(p + 1); return true; } return false; } // and -0xfffffff0, %esp // (32-bit and 64-bit variants, 8-bit and 32-bit displacement) bool x86AssemblyInspectionEngine::and_rsp_pattern_p() { uint8_t *p = m_cur_insn; if (m_wordsize == 8 && *p == 0x48) p++; if (*p != 0x81 && *p != 0x83) return false; return *++p == 0xe4; } // popq %rbx // popl %ebx bool x86AssemblyInspectionEngine::pop_reg_p(int ®no) { uint8_t *p = m_cur_insn; int regno_prefix_bit = 0; // If we have a rex prefix byte, check to see if a B bit is set if (m_wordsize == 8 && (*p & 0xfe) == 0x40) { regno_prefix_bit = (*p & 1) << 3; p++; } if (*p >= 0x58 && *p <= 0x5f) { regno = (*p - 0x58) | regno_prefix_bit; return true; } return false; } // popq %rbp [0x5d] // popl %ebp [0x5d] bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() { uint8_t *p = m_cur_insn; return (*p == 0x5d); } // instructions valid only in 32-bit mode: // 0x1f - pop ds // 0x07 - pop es // 0x17 - pop ss bool x86AssemblyInspectionEngine::pop_misc_reg_p() { uint8_t p = *m_cur_insn; if (m_wordsize == 4) { if (p == 0x1f || p == 0x07 || p == 0x17) return true; } return false; } // leave [0xc9] bool x86AssemblyInspectionEngine::leave_pattern_p() { uint8_t *p = m_cur_insn; return (*p == 0xc9); } // call $0 [0xe8 0x0 0x0 0x0 0x0] bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() { uint8_t *p = m_cur_insn; return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) && (*(p + 3) == 0x0) && (*(p + 4) == 0x0); } // Look for an instruction sequence storing a nonvolatile register on to the // stack frame. // movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0] // movl %eax, -0xc(%ebp) [0x89 0x45 0xf4] // The offset value returned in rbp_offset will be positive -- but it must be // subtraced from the frame base register to get the actual location. The // positive value returned for the offset is a convention used elsewhere for // CFA offsets et al. bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p( int ®no, int &rbp_offset) { uint8_t *p = m_cur_insn; int src_reg_prefix_bit = 0; int target_reg_prefix_bit = 0; if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) { src_reg_prefix_bit = REX_W_SRCREG(*p) << 3; target_reg_prefix_bit = REX_W_DSTREG(*p) << 3; if (target_reg_prefix_bit == 1) { // rbp/ebp don't need a prefix bit - we know this isn't the reg we care // about. return false; } p++; } if (*p == 0x89) { /* Mask off the 3-5 bits which indicate the destination register if this is a ModR/M byte. */ int opcode_destreg_masked_out = *(p + 1) & (~0x38); /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101 and three bits between them, e.g. 01nnn101 We're looking for a destination of ebp-disp8 or ebp-disp32. */ int immsize; if (opcode_destreg_masked_out == 0x45) immsize = 2; else if (opcode_destreg_masked_out == 0x85) immsize = 4; else return false; int offset = 0; if (immsize == 2) offset = (int8_t) * (p + 2); if (immsize == 4) offset = (uint32_t)extract_4(p + 2); if (offset > 0) return false; regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit; rbp_offset = offset > 0 ? offset : -offset; return true; } return false; } // Returns true if this is a jmp instruction where we can't // know the destination address statically. // // ff e0 jmpq *%rax // ff e1 jmpq *%rcx // ff 60 28 jmpq *0x28(%rax) // ff 60 60 jmpq *0x60(%rax) bool x86AssemblyInspectionEngine::jmp_to_reg_p() { if (*m_cur_insn != 0xff) return false; // The second byte is a ModR/M /4 byte, strip off the registers uint8_t second_byte_sans_reg = *(m_cur_insn + 1) & ~7; // [reg] if (second_byte_sans_reg == 0x20) return true; // [reg]+disp8 if (second_byte_sans_reg == 0x60) return true; // [reg]+disp32 if (second_byte_sans_reg == 0xa0) return true; // reg if (second_byte_sans_reg == 0xe0) return true; return false; } // Detect branches to fixed pc-relative offsets. // Returns the offset from the address of the next instruction // that may be branch/jumped to. // // Cannot determine the offset of a JMP that jumps to the address in // a register ("jmpq *%rax") or offset from a register value // ("jmpq *0x28(%rax)"), this method will return false on those // instructions. // // These instructions all end in either a relative 8/16/32 bit value // depending on the instruction and the current execution mode of the // inferior process. Once we know the size of the opcode instruction, // we can use the total instruction length to determine the size of // the relative offset without having to compute it correctly. bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p ( const int instruction_length, int &offset) { int opcode_size = 0; uint8_t b1 = m_cur_insn[0]; switch (b1) { case 0x77: // JA/JNBE rel8 case 0x73: // JAE/JNB/JNC rel8 case 0x72: // JB/JC/JNAE rel8 case 0x76: // JBE/JNA rel8 case 0xe3: // JCXZ/JECXZ/JRCXZ rel8 case 0x74: // JE/JZ rel8 case 0x7f: // JG/JNLE rel8 case 0x7d: // JGE/JNL rel8 case 0x7c: // JL/JNGE rel8 case 0x7e: // JNG/JLE rel8 case 0x71: // JNO rel8 case 0x7b: // JNP/JPO rel8 case 0x79: // JNS rel8 case 0x75: // JNE/JNZ rel8 case 0x70: // JO rel8 case 0x7a: // JP/JPE rel8 case 0x78: // JS rel8 case 0xeb: // JMP rel8 case 0xe9: // JMP rel16/rel32 opcode_size = 1; break; default: break; } if (b1 == 0x0f && opcode_size == 0) { uint8_t b2 = m_cur_insn[1]; switch (b2) { case 0x87: // JA/JNBE rel16/rel32 case 0x86: // JBE/JNA rel16/rel32 case 0x84: // JE/JZ rel16/rel32 case 0x8f: // JG/JNLE rel16/rel32 case 0x8d: // JNL/JGE rel16/rel32 case 0x8e: // JLE rel16/rel32 case 0x82: // JB/JC/JNAE rel16/rel32 case 0x83: // JAE/JNB/JNC rel16/rel32 case 0x85: // JNE/JNZ rel16/rel32 case 0x8c: // JL/JNGE rel16/rel32 case 0x81: // JNO rel16/rel32 case 0x8b: // JNP/JPO rel16/rel32 case 0x89: // JNS rel16/rel32 case 0x80: // JO rel16/rel32 case 0x8a: // JP rel16/rel32 case 0x88: // JS rel16/rel32 opcode_size = 2; break; default: break; } } if (opcode_size == 0) return false; offset = 0; if (instruction_length - opcode_size == 1) { int8_t rel8 = (int8_t) *(m_cur_insn + opcode_size); offset = rel8; } else if (instruction_length - opcode_size == 2) { int16_t rel16 = extract_2_signed (m_cur_insn + opcode_size); offset = rel16; } else if (instruction_length - opcode_size == 4) { int32_t rel32 = extract_4_signed (m_cur_insn + opcode_size); offset = rel32; } else { return false; } return true; } // Returns true if this instruction is a intra-function branch or jump - // a branch/jump within the bounds of this same function. // Cannot predict where a jump through a register value ("jmpq *%rax") // will go, so it will return false on that instruction. bool x86AssemblyInspectionEngine::local_branch_p ( const addr_t current_func_text_offset, const AddressRange &func_range, const int instruction_length, addr_t &target_insn_offset) { int offset; if (pc_rel_branch_or_jump_p (instruction_length, offset) && offset != 0) { addr_t next_pc_value = current_func_text_offset + instruction_length; if (offset < 0 && addr_t(-offset) > current_func_text_offset) { // Branch target is before the start of this function return false; } if (offset + next_pc_value > func_range.GetByteSize()) { // Branch targets outside this function's bounds return false; } // This instruction branches to target_insn_offset (byte offset into the function) target_insn_offset = next_pc_value + offset; return true; } return false; } // Returns true if this instruction is a inter-function branch or jump - a // branch/jump to another function. // Cannot predict where a jump through a register value ("jmpq *%rax") // will go, so it will return false on that instruction. bool x86AssemblyInspectionEngine::non_local_branch_p ( const addr_t current_func_text_offset, const AddressRange &func_range, const int instruction_length) { int offset; addr_t target_insn_offset; if (pc_rel_branch_or_jump_p (instruction_length, offset)) { return !local_branch_p(current_func_text_offset,func_range,instruction_length,target_insn_offset); } return false; } // ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16] bool x86AssemblyInspectionEngine::ret_pattern_p() { uint8_t *p = m_cur_insn; return *p == 0xc3 || *p == 0xc2 || *p == 0xca || *p == 0xcb; } uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b) { uint16_t v = 0; for (int i = 1; i >= 0; i--) v = (v << 8) | b[i]; return v; } int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b) { int16_t v = 0; for (int i = 1; i >= 0; i--) v = (v << 8) | b[i]; return v; } uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) { uint32_t v = 0; for (int i = 3; i >= 0; i--) v = (v << 8) | b[i]; return v; } int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b) { int32_t v = 0; for (int i = 3; i >= 0; i--) v = (v << 8) | b[i]; return v; } bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p, int &length, uint32_t buffer_remaining_bytes) { uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize()); llvm::SmallVector opcode_data; opcode_data.resize(max_op_byte_size); char out_string[512]; const size_t inst_size = ::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0, out_string, sizeof(out_string)); length = inst_size; return true; } bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno( int machine_regno, uint32_t &lldb_regno) { MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno); if (it != m_reg_map.end()) { lldb_regno = it->second.lldb_regnum; return true; } return false; } bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly( uint8_t *data, size_t size, AddressRange &func_range, UnwindPlan &unwind_plan) { unwind_plan.Clear(); if (data == nullptr || size == 0) return false; if (!m_register_map_initialized) return false; if (m_disasm_context == nullptr) return false; addr_t current_func_text_offset = 0; int current_sp_bytes_offset_from_fa = 0; bool is_aligned = false; UnwindPlan::Row::RegisterLocation initial_regloc; UnwindPlan::RowSP row(new UnwindPlan::Row); unwind_plan.SetPlanValidAddressRange(func_range); unwind_plan.SetRegisterKind(eRegisterKindLLDB); // At the start of the function, find the CFA by adding wordsize to the SP // register row->SetOffset(current_func_text_offset); row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize); // caller's stack pointer value before the call insn is the CFA address initial_regloc.SetIsCFAPlusOffset(0); row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc); // saved instruction pointer can be found at CFA - wordsize. current_sp_bytes_offset_from_fa = m_wordsize; initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa); row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc); unwind_plan.AppendRow(row); // Allocate a new Row, populate it with the existing Row contents. UnwindPlan::Row *newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); // Track which registers have been saved so far in the prologue. If we see // another push of that register, it's not part of the prologue. The register // numbers used here are the machine register #'s (i386_register_numbers, // x86_64_register_numbers). std::vector saved_registers(32, false); // Once the prologue has completed we'll save a copy of the unwind // instructions If there is an epilogue in the middle of the function, after // that epilogue we'll reinstate the unwind setup -- we assume that some code // path jumps over the mid-function epilogue UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI int prologue_completed_sp_bytes_offset_from_cfa = 0; // The sp value before the // epilogue started executed bool prologue_completed_is_aligned = false; std::vector prologue_completed_saved_registers; while (current_func_text_offset < size) { int stack_offset, insn_len; int machine_regno; // register numbers masked directly out of instructions uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB // numbering scheme bool in_epilogue = false; // we're in the middle of an epilogue sequence bool row_updated = false; // The UnwindPlan::Row 'row' has been updated m_cur_insn = data + current_func_text_offset; if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset) || insn_len == 0 || insn_len > kMaxInstructionByteSize) { // An unrecognized/junk instruction break; } auto &cfa_value = row->GetCFAValue(); auto &afa_value = row->GetAFAValue(); auto fa_value_ptr = is_aligned ? &afa_value : &cfa_value; if (mov_rsp_rbp_pattern_p()) { if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetIsRegisterPlusOffset( m_lldb_fp_regnum, fa_value_ptr->GetOffset()); row_updated = true; } } else if (mov_rsp_rbx_pattern_p()) { if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetIsRegisterPlusOffset( m_lldb_alt_fp_regnum, fa_value_ptr->GetOffset()); row_updated = true; } } else if (and_rsp_pattern_p()) { current_sp_bytes_offset_from_fa = 0; afa_value.SetIsRegisterPlusOffset( m_lldb_sp_regnum, current_sp_bytes_offset_from_fa); fa_value_ptr = &afa_value; is_aligned = true; row_updated = true; } else if (mov_rbp_rsp_pattern_p()) { if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) { is_aligned = false; fa_value_ptr = &cfa_value; afa_value.SetUnspecified(); row_updated = true; } if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset(); } else if (mov_rbx_rsp_pattern_p()) { if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) { is_aligned = false; fa_value_ptr = &cfa_value; afa_value.SetUnspecified(); row_updated = true; } if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset(); } // This is the start() function (or a pthread equivalent), it starts with a // pushl $0x0 which puts the saved pc value of 0 on the stack. In this // case we want to pretend we didn't see a stack movement at all -- // normally the saved pc value is already on the stack by the time the // function starts executing. else if (push_0_pattern_p()) { } else if (push_reg_p(machine_regno)) { current_sp_bytes_offset_from_fa += m_wordsize; // the PUSH instruction has moved the stack pointer - if the FA is set // in terms of the stack pointer, we need to add a new row of // instructions. if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa); row_updated = true; } // record where non-volatile (callee-saved, spilled) registers are saved // on the stack if (nonvolatile_reg_p(machine_regno) && machine_regno_to_lldb_regno(machine_regno, lldb_regno) && !saved_registers[machine_regno]) { UnwindPlan::Row::RegisterLocation regloc; if (is_aligned) regloc.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa); else regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa); row->SetRegisterInfo(lldb_regno, regloc); saved_registers[machine_regno] = true; row_updated = true; } } else if (pop_reg_p(machine_regno)) { current_sp_bytes_offset_from_fa -= m_wordsize; if (nonvolatile_reg_p(machine_regno) && machine_regno_to_lldb_regno(machine_regno, lldb_regno) && saved_registers[machine_regno]) { saved_registers[machine_regno] = false; row->RemoveRegisterInfo(lldb_regno); if (lldb_regno == fa_value_ptr->GetRegisterNumber()) { fa_value_ptr->SetIsRegisterPlusOffset( m_lldb_sp_regnum, fa_value_ptr->GetOffset()); } in_epilogue = true; row_updated = true; } // the POP instruction has moved the stack pointer - if the FA is set in // terms of the stack pointer, we need to add a new row of instructions. if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetIsRegisterPlusOffset( m_lldb_sp_regnum, current_sp_bytes_offset_from_fa); row_updated = true; } } else if (pop_misc_reg_p()) { current_sp_bytes_offset_from_fa -= m_wordsize; if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetIsRegisterPlusOffset( m_lldb_sp_regnum, current_sp_bytes_offset_from_fa); row_updated = true; } } // The LEAVE instruction moves the value from rbp into rsp and pops a value // off the stack into rbp (restoring the caller's rbp value). It is the // opposite of ENTER, or 'push rbp, mov rsp rbp'. else if (leave_pattern_p()) { if (saved_registers[m_machine_fp_regnum]) { saved_registers[m_machine_fp_regnum] = false; row->RemoveRegisterInfo(m_lldb_fp_regnum); row_updated = true; } if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) { is_aligned = false; fa_value_ptr = &cfa_value; afa_value.SetUnspecified(); row_updated = true; } if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) { fa_value_ptr->SetIsRegisterPlusOffset( m_lldb_sp_regnum, fa_value_ptr->GetOffset()); current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset(); } current_sp_bytes_offset_from_fa -= m_wordsize; if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetIsRegisterPlusOffset( m_lldb_sp_regnum, current_sp_bytes_offset_from_fa); row_updated = true; } in_epilogue = true; } else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) && nonvolatile_reg_p(machine_regno) && machine_regno_to_lldb_regno(machine_regno, lldb_regno) && !saved_registers[machine_regno]) { saved_registers[machine_regno] = true; UnwindPlan::Row::RegisterLocation regloc; // stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we // want to express this as the offset from the FA. If the frame base is // rbp (like the above instruction), the FA offset for rbp is probably // 16. So we want to say that the value is stored at the FA address - // 96. if (is_aligned) regloc.SetAtAFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset())); else regloc.SetAtCFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset())); row->SetRegisterInfo(lldb_regno, regloc); row_updated = true; } else if (sub_rsp_pattern_p(stack_offset)) { current_sp_bytes_offset_from_fa += stack_offset; if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa); row_updated = true; } } else if (add_rsp_pattern_p(stack_offset)) { current_sp_bytes_offset_from_fa -= stack_offset; if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa); row_updated = true; } in_epilogue = true; } else if (push_extended_pattern_p() || push_imm_pattern_p() || push_misc_reg_p()) { current_sp_bytes_offset_from_fa += m_wordsize; if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa); row_updated = true; } } else if (lea_rsp_pattern_p(stack_offset)) { current_sp_bytes_offset_from_fa -= stack_offset; if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa); row_updated = true; } if (stack_offset > 0) in_epilogue = true; } else if (lea_rbp_rsp_pattern_p(stack_offset)) { if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) { is_aligned = false; fa_value_ptr = &cfa_value; afa_value.SetUnspecified(); row_updated = true; } if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) { current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset; } } else if (lea_rbx_rsp_pattern_p(stack_offset)) { if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) { is_aligned = false; fa_value_ptr = &cfa_value; afa_value.SetUnspecified(); row_updated = true; } if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) { current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset; } } else if (prologue_completed_row.get() && (ret_pattern_p() || non_local_branch_p (current_func_text_offset, func_range, insn_len) || jmp_to_reg_p())) { // Check if the current instruction is the end of an epilogue sequence, // and if so, re-instate the prologue-completed unwind state. // The current instruction is a branch/jump outside this function, // a ret, or a jump through a register value which we cannot // determine the effcts of. Verify that the stack frame state // has been unwound to the same as it was at function entry to avoid // mis-identifying a JMP instruction as an epilogue. UnwindPlan::Row::RegisterLocation sp, pc; if (row->GetRegisterInfo(m_lldb_sp_regnum, sp) && row->GetRegisterInfo(m_lldb_ip_regnum, pc)) { // Any ret instruction variant is definitely indicative of an // epilogue; for other insn patterns verify that we're back to // the original unwind state. if (ret_pattern_p() || (sp.IsCFAPlusOffset() && sp.GetOffset() == 0 && pc.IsAtCFAPlusOffset() && pc.GetOffset() == -m_wordsize)) { // Reinstate the saved prologue setup for any instructions that come // after the epilogue UnwindPlan::Row *newrow = new UnwindPlan::Row; *newrow = *prologue_completed_row.get(); row.reset(newrow); current_sp_bytes_offset_from_fa = prologue_completed_sp_bytes_offset_from_cfa; is_aligned = prologue_completed_is_aligned; saved_registers.clear(); saved_registers.resize(prologue_completed_saved_registers.size(), false); for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) { saved_registers[i] = prologue_completed_saved_registers[i]; } in_epilogue = true; row_updated = true; } } } // call next instruction // call 0 // => pop %ebx // This is used in i386 programs to get the PIC base address for finding // global data else if (call_next_insn_pattern_p()) { current_sp_bytes_offset_from_fa += m_wordsize; if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) { fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa); row_updated = true; } } if (row_updated) { if (current_func_text_offset + insn_len < size) { row->SetOffset(current_func_text_offset + insn_len); unwind_plan.AppendRow(row); // Allocate a new Row, populate it with the existing Row contents. newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); } } if (!in_epilogue && row_updated) { // If we're not in an epilogue sequence, save the updated Row UnwindPlan::Row *newrow = new UnwindPlan::Row; *newrow = *row.get(); prologue_completed_row.reset(newrow); prologue_completed_saved_registers.clear(); prologue_completed_saved_registers.resize(saved_registers.size(), false); for (size_t i = 0; i < saved_registers.size(); ++i) { prologue_completed_saved_registers[i] = saved_registers[i]; } } // We may change the sp value without adding a new Row necessarily -- keep // track of it either way. if (!in_epilogue) { prologue_completed_sp_bytes_offset_from_cfa = current_sp_bytes_offset_from_fa; prologue_completed_is_aligned = is_aligned; } m_cur_insn = m_cur_insn + insn_len; current_func_text_offset += insn_len; } unwind_plan.SetSourceName("assembly insn profiling"); unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes); unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); return true; } bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite( uint8_t *data, size_t size, AddressRange &func_range, UnwindPlan &unwind_plan, RegisterContextSP ®_ctx) { Address addr_start = func_range.GetBaseAddress(); if (!addr_start.IsValid()) return false; // We either need a live RegisterContext, or we need the UnwindPlan to // already be in the lldb register numbering scheme. if (reg_ctx.get() == nullptr && unwind_plan.GetRegisterKind() != eRegisterKindLLDB) return false; // Is original unwind_plan valid? // unwind_plan should have at least one row which is ABI-default (CFA // register is sp), and another row in mid-function. if (unwind_plan.GetRowCount() < 2) return false; UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0); if (first_row->GetOffset() != 0) return false; uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber(); if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) { cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber( unwind_plan.GetRegisterKind(), first_row->GetCFAValue().GetRegisterNumber()); } if (cfa_reg != m_lldb_sp_regnum || first_row->GetCFAValue().GetOffset() != m_wordsize) return false; UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1); size_t offset = 0; int row_id = 1; bool unwind_plan_updated = false; UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row)); // After a mid-function epilogue we will need to re-insert the original // unwind rules so unwinds work for the remainder of the function. These // aren't common with clang/gcc on x86 but it is possible. bool reinstate_unwind_state = false; while (offset < size) { m_cur_insn = data + offset; int insn_len; if (!instruction_length(m_cur_insn, insn_len, size - offset) || insn_len == 0 || insn_len > kMaxInstructionByteSize) { // An unrecognized/junk instruction. break; } // Advance offsets. offset += insn_len; // offset is pointing beyond the bounds of the function; stop looping. if (offset >= size) continue; if (reinstate_unwind_state) { UnwindPlan::RowSP new_row(new UnwindPlan::Row()); *new_row = *original_last_row; new_row->SetOffset(offset); unwind_plan.AppendRow(new_row); row = std::make_shared(); *row = *new_row; reinstate_unwind_state = false; unwind_plan_updated = true; continue; } // If we already have one row for this instruction, we can continue. while (row_id < unwind_plan.GetRowCount() && unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) { row_id++; } UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1); if (original_row->GetOffset() == offset) { *row = *original_row; continue; } if (row_id == 0) { // If we are here, compiler didn't generate CFI for prologue. This won't // happen to GCC or clang. In this case, bail out directly. return false; } // Inspect the instruction to check if we need a new row for it. cfa_reg = row->GetCFAValue().GetRegisterNumber(); if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) { cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber( unwind_plan.GetRegisterKind(), row->GetCFAValue().GetRegisterNumber()); } if (cfa_reg == m_lldb_sp_regnum) { // CFA register is sp. // call next instruction // call 0 // => pop %ebx if (call_next_insn_pattern_p()) { row->SetOffset(offset); row->GetCFAValue().IncOffset(m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } // push/pop register int regno; if (push_reg_p(regno)) { row->SetOffset(offset); row->GetCFAValue().IncOffset(m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } if (pop_reg_p(regno)) { // Technically, this might be a nonvolatile register recover in // epilogue. We should reset RegisterInfo for the register. But in // practice, previous rule for the register is still valid... So we // ignore this case. row->SetOffset(offset); row->GetCFAValue().IncOffset(-m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } if (pop_misc_reg_p()) { row->SetOffset(offset); row->GetCFAValue().IncOffset(-m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } // push imm if (push_imm_pattern_p()) { row->SetOffset(offset); row->GetCFAValue().IncOffset(m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } // push extended if (push_extended_pattern_p() || push_misc_reg_p()) { row->SetOffset(offset); row->GetCFAValue().IncOffset(m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } // add/sub %rsp/%esp int amount; if (add_rsp_pattern_p(amount)) { row->SetOffset(offset); row->GetCFAValue().IncOffset(-amount); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } if (sub_rsp_pattern_p(amount)) { row->SetOffset(offset); row->GetCFAValue().IncOffset(amount); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } // lea %rsp, [%rsp + $offset] if (lea_rsp_pattern_p(amount)) { row->SetOffset(offset); row->GetCFAValue().IncOffset(-amount); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; continue; } if (ret_pattern_p()) { reinstate_unwind_state = true; continue; } } else if (cfa_reg == m_lldb_fp_regnum) { // CFA register is fp. // The only case we care about is epilogue: // [0x5d] pop %rbp/%ebp // => [0xc3] ret if (pop_rbp_pattern_p() || leave_pattern_p()) { m_cur_insn++; if (ret_pattern_p()) { row->SetOffset(offset); row->GetCFAValue().SetIsRegisterPlusOffset( first_row->GetCFAValue().GetRegisterNumber(), m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow(new_row); unwind_plan_updated = true; reinstate_unwind_state = true; continue; } } } else { // CFA register is not sp or fp. // This must be hand-written assembly. // Just trust eh_frame and assume we have finished. break; } } unwind_plan.SetPlanValidAddressRange(func_range); if (unwind_plan_updated) { std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString()); unwind_plan_source += " plus augmentation from assembly parsing"; unwind_plan.SetSourceName(unwind_plan_source.c_str()); unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes); } return true; } bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction( uint8_t *data, size_t size, size_t &offset) { offset = 0; if (!m_register_map_initialized) return false; if (m_disasm_context == nullptr) return false; while (offset < size) { int regno; int insn_len; int scratch; m_cur_insn = data + offset; if (!instruction_length(m_cur_insn, insn_len, size - offset) || insn_len > kMaxInstructionByteSize || insn_len == 0) { // An error parsing the instruction, i.e. probably data/garbage - stop // scanning break; } if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() || sub_rsp_pattern_p(scratch) || push_reg_p(regno) || mov_reg_to_local_stack_frame_p(regno, scratch) || (lea_rsp_pattern_p(scratch) && offset == 0)) { offset += insn_len; continue; } // // Unknown non-prologue instruction - stop scanning break; } return true; }