//===-- Materializer.cpp --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Expression/Materializer.h" #include "lldb/Core/DumpDataExtractor.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Core/ValueObjectVariable.h" #include "lldb/Expression/ExpressionVariable.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Symbol/Type.h" #include "lldb/Symbol/Variable.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/lldb-forward.h" #include #include using namespace lldb_private; // FIXME: these should be retrieved from the target // instead of being hard-coded. Currently we // assume that persistent vars are materialized // as references, and thus pick the size of a // 64-bit pointer. static constexpr uint32_t g_default_var_alignment = 8; static constexpr uint32_t g_default_var_byte_size = 8; uint32_t Materializer::AddStructMember(Entity &entity) { uint32_t size = entity.GetSize(); uint32_t alignment = entity.GetAlignment(); uint32_t ret; if (m_current_offset == 0) m_struct_alignment = alignment; if (m_current_offset % alignment) m_current_offset += (alignment - (m_current_offset % alignment)); ret = m_current_offset; m_current_offset += size; return ret; } class EntityPersistentVariable : public Materializer::Entity { public: EntityPersistentVariable(lldb::ExpressionVariableSP &persistent_variable_sp, Materializer::PersistentVariableDelegate *delegate) : Entity(), m_persistent_variable_sp(persistent_variable_sp), m_delegate(delegate) { // Hard-coding to maximum size of a pointer since persistent variables are // materialized by reference m_size = g_default_var_byte_size; m_alignment = g_default_var_alignment; } void MakeAllocation(IRMemoryMap &map, Status &err) { Log *log = GetLog(LLDBLog::Expressions); // Allocate a spare memory area to store the persistent variable's // contents. Status allocate_error; const bool zero_memory = false; lldb::addr_t mem = map.Malloc( m_persistent_variable_sp->GetByteSize().value_or(0), 8, lldb::ePermissionsReadable | lldb::ePermissionsWritable, IRMemoryMap::eAllocationPolicyMirror, zero_memory, allocate_error); if (!allocate_error.Success()) { err.SetErrorStringWithFormat( "couldn't allocate a memory area to store %s: %s", m_persistent_variable_sp->GetName().GetCString(), allocate_error.AsCString()); return; } LLDB_LOGF(log, "Allocated %s (0x%" PRIx64 ") successfully", m_persistent_variable_sp->GetName().GetCString(), mem); // Put the location of the spare memory into the live data of the // ValueObject. m_persistent_variable_sp->m_live_sp = ValueObjectConstResult::Create( map.GetBestExecutionContextScope(), m_persistent_variable_sp->GetCompilerType(), m_persistent_variable_sp->GetName(), mem, eAddressTypeLoad, map.GetAddressByteSize()); // Clear the flag if the variable will never be deallocated. if (m_persistent_variable_sp->m_flags & ExpressionVariable::EVKeepInTarget) { Status leak_error; map.Leak(mem, leak_error); m_persistent_variable_sp->m_flags &= ~ExpressionVariable::EVNeedsAllocation; } // Write the contents of the variable to the area. Status write_error; map.WriteMemory(mem, m_persistent_variable_sp->GetValueBytes(), m_persistent_variable_sp->GetByteSize().value_or(0), write_error); if (!write_error.Success()) { err.SetErrorStringWithFormat( "couldn't write %s to the target: %s", m_persistent_variable_sp->GetName().AsCString(), write_error.AsCString()); return; } } void DestroyAllocation(IRMemoryMap &map, Status &err) { Status deallocate_error; map.Free((lldb::addr_t)m_persistent_variable_sp->m_live_sp->GetValue() .GetScalar() .ULongLong(), deallocate_error); m_persistent_variable_sp->m_live_sp.reset(); if (!deallocate_error.Success()) { err.SetErrorStringWithFormat( "couldn't deallocate memory for %s: %s", m_persistent_variable_sp->GetName().GetCString(), deallocate_error.AsCString()); } } void Materialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntityPersistentVariable::Materialize [address = 0x%" PRIx64 ", m_name = %s, m_flags = 0x%hx]", (uint64_t)load_addr, m_persistent_variable_sp->GetName().AsCString(), m_persistent_variable_sp->m_flags); } if (m_persistent_variable_sp->m_flags & ExpressionVariable::EVNeedsAllocation) { MakeAllocation(map, err); m_persistent_variable_sp->m_flags |= ExpressionVariable::EVIsLLDBAllocated; if (!err.Success()) return; } if ((m_persistent_variable_sp->m_flags & ExpressionVariable::EVIsProgramReference && m_persistent_variable_sp->m_live_sp) || m_persistent_variable_sp->m_flags & ExpressionVariable::EVIsLLDBAllocated) { Status write_error; map.WriteScalarToMemory( load_addr, m_persistent_variable_sp->m_live_sp->GetValue().GetScalar(), map.GetAddressByteSize(), write_error); if (!write_error.Success()) { err.SetErrorStringWithFormat( "couldn't write the location of %s to memory: %s", m_persistent_variable_sp->GetName().AsCString(), write_error.AsCString()); } } else { err.SetErrorStringWithFormat( "no materialization happened for persistent variable %s", m_persistent_variable_sp->GetName().AsCString()); return; } } void Dematerialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, lldb::addr_t frame_top, lldb::addr_t frame_bottom, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntityPersistentVariable::Dematerialize [address = 0x%" PRIx64 ", m_name = %s, m_flags = 0x%hx]", (uint64_t)process_address + m_offset, m_persistent_variable_sp->GetName().AsCString(), m_persistent_variable_sp->m_flags); } if (m_delegate) { m_delegate->DidDematerialize(m_persistent_variable_sp); } if ((m_persistent_variable_sp->m_flags & ExpressionVariable::EVIsLLDBAllocated) || (m_persistent_variable_sp->m_flags & ExpressionVariable::EVIsProgramReference)) { if (m_persistent_variable_sp->m_flags & ExpressionVariable::EVIsProgramReference && !m_persistent_variable_sp->m_live_sp) { // If the reference comes from the program, then the // ClangExpressionVariable's live variable data hasn't been set up yet. // Do this now. lldb::addr_t location; Status read_error; map.ReadPointerFromMemory(&location, load_addr, read_error); if (!read_error.Success()) { err.SetErrorStringWithFormat( "couldn't read the address of program-allocated variable %s: %s", m_persistent_variable_sp->GetName().GetCString(), read_error.AsCString()); return; } m_persistent_variable_sp->m_live_sp = ValueObjectConstResult::Create( map.GetBestExecutionContextScope(), m_persistent_variable_sp.get()->GetCompilerType(), m_persistent_variable_sp->GetName(), location, eAddressTypeLoad, m_persistent_variable_sp->GetByteSize().value_or(0)); if (frame_top != LLDB_INVALID_ADDRESS && frame_bottom != LLDB_INVALID_ADDRESS && location >= frame_bottom && location <= frame_top) { // If the variable is resident in the stack frame created by the // expression, then it cannot be relied upon to stay around. We // treat it as needing reallocation. m_persistent_variable_sp->m_flags |= ExpressionVariable::EVIsLLDBAllocated; m_persistent_variable_sp->m_flags |= ExpressionVariable::EVNeedsAllocation; m_persistent_variable_sp->m_flags |= ExpressionVariable::EVNeedsFreezeDry; m_persistent_variable_sp->m_flags &= ~ExpressionVariable::EVIsProgramReference; } } lldb::addr_t mem = m_persistent_variable_sp->m_live_sp->GetValue() .GetScalar() .ULongLong(); if (!m_persistent_variable_sp->m_live_sp) { err.SetErrorStringWithFormat( "couldn't find the memory area used to store %s", m_persistent_variable_sp->GetName().GetCString()); return; } if (m_persistent_variable_sp->m_live_sp->GetValue() .GetValueAddressType() != eAddressTypeLoad) { err.SetErrorStringWithFormat( "the address of the memory area for %s is in an incorrect format", m_persistent_variable_sp->GetName().GetCString()); return; } if (m_persistent_variable_sp->m_flags & ExpressionVariable::EVNeedsFreezeDry || m_persistent_variable_sp->m_flags & ExpressionVariable::EVKeepInTarget) { LLDB_LOGF(log, "Dematerializing %s from 0x%" PRIx64 " (size = %llu)", m_persistent_variable_sp->GetName().GetCString(), (uint64_t)mem, (unsigned long long)m_persistent_variable_sp->GetByteSize() .value_or(0)); // Read the contents of the spare memory area m_persistent_variable_sp->ValueUpdated(); Status read_error; map.ReadMemory(m_persistent_variable_sp->GetValueBytes(), mem, m_persistent_variable_sp->GetByteSize().value_or(0), read_error); if (!read_error.Success()) { err.SetErrorStringWithFormat( "couldn't read the contents of %s from memory: %s", m_persistent_variable_sp->GetName().GetCString(), read_error.AsCString()); return; } m_persistent_variable_sp->m_flags &= ~ExpressionVariable::EVNeedsFreezeDry; } } else { err.SetErrorStringWithFormat( "no dematerialization happened for persistent variable %s", m_persistent_variable_sp->GetName().AsCString()); return; } lldb::ProcessSP process_sp = map.GetBestExecutionContextScope()->CalculateProcess(); if (!process_sp || !process_sp->CanJIT()) { // Allocations are not persistent so persistent variables cannot stay // materialized. m_persistent_variable_sp->m_flags |= ExpressionVariable::EVNeedsAllocation; DestroyAllocation(map, err); if (!err.Success()) return; } else if (m_persistent_variable_sp->m_flags & ExpressionVariable::EVNeedsAllocation && !(m_persistent_variable_sp->m_flags & ExpressionVariable::EVKeepInTarget)) { DestroyAllocation(map, err); if (!err.Success()) return; } } void DumpToLog(IRMemoryMap &map, lldb::addr_t process_address, Log *log) override { StreamString dump_stream; Status err; const lldb::addr_t load_addr = process_address + m_offset; dump_stream.Printf("0x%" PRIx64 ": EntityPersistentVariable (%s)\n", load_addr, m_persistent_variable_sp->GetName().AsCString()); { dump_stream.Printf("Pointer:\n"); DataBufferHeap data(m_size, 0); map.ReadMemory(data.GetBytes(), load_addr, m_size, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, load_addr); dump_stream.PutChar('\n'); } } { dump_stream.Printf("Target:\n"); lldb::addr_t target_address; map.ReadPointerFromMemory(&target_address, load_addr, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DataBufferHeap data(m_persistent_variable_sp->GetByteSize().value_or(0), 0); map.ReadMemory(data.GetBytes(), target_address, m_persistent_variable_sp->GetByteSize().value_or(0), err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, target_address); dump_stream.PutChar('\n'); } } } log->PutString(dump_stream.GetString()); } void Wipe(IRMemoryMap &map, lldb::addr_t process_address) override {} private: lldb::ExpressionVariableSP m_persistent_variable_sp; Materializer::PersistentVariableDelegate *m_delegate; }; uint32_t Materializer::AddPersistentVariable( lldb::ExpressionVariableSP &persistent_variable_sp, PersistentVariableDelegate *delegate, Status &err) { EntityVector::iterator iter = m_entities.insert(m_entities.end(), EntityUP()); *iter = std::make_unique(persistent_variable_sp, delegate); uint32_t ret = AddStructMember(**iter); (*iter)->SetOffset(ret); return ret; } /// Base class for materialization of Variables and ValueObjects. /// /// Subclasses specify how to obtain the Value which is to be /// materialized. class EntityVariableBase : public Materializer::Entity { public: virtual ~EntityVariableBase() = default; EntityVariableBase() { // Hard-coding to maximum size of a pointer since all variables are // materialized by reference m_size = g_default_var_byte_size; m_alignment = g_default_var_alignment; } void Materialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntityVariable::Materialize [address = 0x%" PRIx64 ", m_variable_sp = %s]", (uint64_t)load_addr, GetName().GetCString()); } ExecutionContextScope *scope = frame_sp.get(); if (!scope) scope = map.GetBestExecutionContextScope(); lldb::ValueObjectSP valobj_sp = SetupValueObject(scope); if (!valobj_sp) { err.SetErrorStringWithFormat( "couldn't get a value object for variable %s", GetName().AsCString()); return; } Status valobj_error = valobj_sp->GetError(); if (valobj_error.Fail()) { err.SetErrorStringWithFormat("couldn't get the value of variable %s: %s", GetName().AsCString(), valobj_error.AsCString()); return; } if (m_is_reference) { DataExtractor valobj_extractor; Status extract_error; valobj_sp->GetData(valobj_extractor, extract_error); if (!extract_error.Success()) { err.SetErrorStringWithFormat( "couldn't read contents of reference variable %s: %s", GetName().AsCString(), extract_error.AsCString()); return; } lldb::offset_t offset = 0; lldb::addr_t reference_addr = valobj_extractor.GetAddress(&offset); Status write_error; map.WritePointerToMemory(load_addr, reference_addr, write_error); if (!write_error.Success()) { err.SetErrorStringWithFormat("couldn't write the contents of reference " "variable %s to memory: %s", GetName().AsCString(), write_error.AsCString()); return; } } else { AddressType address_type = eAddressTypeInvalid; const bool scalar_is_load_address = false; lldb::addr_t addr_of_valobj = valobj_sp->GetAddressOf(scalar_is_load_address, &address_type); if (addr_of_valobj != LLDB_INVALID_ADDRESS) { Status write_error; map.WritePointerToMemory(load_addr, addr_of_valobj, write_error); if (!write_error.Success()) { err.SetErrorStringWithFormat( "couldn't write the address of variable %s to memory: %s", GetName().AsCString(), write_error.AsCString()); return; } } else { DataExtractor data; Status extract_error; valobj_sp->GetData(data, extract_error); if (!extract_error.Success()) { err.SetErrorStringWithFormat("couldn't get the value of %s: %s", GetName().AsCString(), extract_error.AsCString()); return; } if (m_temporary_allocation != LLDB_INVALID_ADDRESS) { err.SetErrorStringWithFormat( "trying to create a temporary region for %s but one exists", GetName().AsCString()); return; } if (data.GetByteSize() < GetByteSize(scope)) { if (data.GetByteSize() == 0 && !LocationExpressionIsValid()) { err.SetErrorStringWithFormat("the variable '%s' has no location, " "it may have been optimized out", GetName().AsCString()); } else { err.SetErrorStringWithFormat( "size of variable %s (%" PRIu64 ") is larger than the ValueObject's size (%" PRIu64 ")", GetName().AsCString(), GetByteSize(scope).value_or(0), data.GetByteSize()); } return; } std::optional opt_bit_align = GetTypeBitAlign(scope); if (!opt_bit_align) { err.SetErrorStringWithFormat("can't get the type alignment for %s", GetName().AsCString()); return; } size_t byte_align = (*opt_bit_align + 7) / 8; Status alloc_error; const bool zero_memory = false; m_temporary_allocation = map.Malloc( data.GetByteSize(), byte_align, lldb::ePermissionsReadable | lldb::ePermissionsWritable, IRMemoryMap::eAllocationPolicyMirror, zero_memory, alloc_error); m_temporary_allocation_size = data.GetByteSize(); m_original_data = std::make_shared(data.GetDataStart(), data.GetByteSize()); if (!alloc_error.Success()) { err.SetErrorStringWithFormat( "couldn't allocate a temporary region for %s: %s", GetName().AsCString(), alloc_error.AsCString()); return; } Status write_error; map.WriteMemory(m_temporary_allocation, data.GetDataStart(), data.GetByteSize(), write_error); if (!write_error.Success()) { err.SetErrorStringWithFormat( "couldn't write to the temporary region for %s: %s", GetName().AsCString(), write_error.AsCString()); return; } Status pointer_write_error; map.WritePointerToMemory(load_addr, m_temporary_allocation, pointer_write_error); if (!pointer_write_error.Success()) { err.SetErrorStringWithFormat( "couldn't write the address of the temporary region for %s: %s", GetName().AsCString(), pointer_write_error.AsCString()); } } } } void Dematerialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, lldb::addr_t frame_top, lldb::addr_t frame_bottom, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntityVariable::Dematerialize [address = 0x%" PRIx64 ", m_variable_sp = %s]", (uint64_t)load_addr, GetName().AsCString()); } if (m_temporary_allocation != LLDB_INVALID_ADDRESS) { ExecutionContextScope *scope = frame_sp.get(); if (!scope) scope = map.GetBestExecutionContextScope(); lldb::ValueObjectSP valobj_sp = SetupValueObject(scope); if (!valobj_sp) { err.SetErrorStringWithFormat( "couldn't get a value object for variable %s", GetName().AsCString()); return; } lldb_private::DataExtractor data; Status extract_error; map.GetMemoryData(data, m_temporary_allocation, valobj_sp->GetByteSize().value_or(0), extract_error); if (!extract_error.Success()) { err.SetErrorStringWithFormat("couldn't get the data for variable %s", GetName().AsCString()); return; } bool actually_write = true; if (m_original_data) { if ((data.GetByteSize() == m_original_data->GetByteSize()) && !memcmp(m_original_data->GetBytes(), data.GetDataStart(), data.GetByteSize())) { actually_write = false; } } Status set_error; if (actually_write) { valobj_sp->SetData(data, set_error); if (!set_error.Success()) { err.SetErrorStringWithFormat( "couldn't write the new contents of %s back into the variable", GetName().AsCString()); return; } } Status free_error; map.Free(m_temporary_allocation, free_error); if (!free_error.Success()) { err.SetErrorStringWithFormat( "couldn't free the temporary region for %s: %s", GetName().AsCString(), free_error.AsCString()); return; } m_original_data.reset(); m_temporary_allocation = LLDB_INVALID_ADDRESS; m_temporary_allocation_size = 0; } } void DumpToLog(IRMemoryMap &map, lldb::addr_t process_address, Log *log) override { StreamString dump_stream; const lldb::addr_t load_addr = process_address + m_offset; dump_stream.Printf("0x%" PRIx64 ": EntityVariable\n", load_addr); Status err; lldb::addr_t ptr = LLDB_INVALID_ADDRESS; { dump_stream.Printf("Pointer:\n"); DataBufferHeap data(m_size, 0); map.ReadMemory(data.GetBytes(), load_addr, m_size, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DataExtractor extractor(data.GetBytes(), data.GetByteSize(), map.GetByteOrder(), map.GetAddressByteSize()); DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, load_addr); lldb::offset_t offset = 0; ptr = extractor.GetAddress(&offset); dump_stream.PutChar('\n'); } } if (m_temporary_allocation == LLDB_INVALID_ADDRESS) { dump_stream.Printf("Points to process memory:\n"); } else { dump_stream.Printf("Temporary allocation:\n"); } if (ptr == LLDB_INVALID_ADDRESS) { dump_stream.Printf(" \n"); } else { DataBufferHeap data(m_temporary_allocation_size, 0); map.ReadMemory(data.GetBytes(), m_temporary_allocation, m_temporary_allocation_size, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, load_addr); dump_stream.PutChar('\n'); } } log->PutString(dump_stream.GetString()); } void Wipe(IRMemoryMap &map, lldb::addr_t process_address) override { if (m_temporary_allocation != LLDB_INVALID_ADDRESS) { Status free_error; map.Free(m_temporary_allocation, free_error); m_temporary_allocation = LLDB_INVALID_ADDRESS; m_temporary_allocation_size = 0; } } private: virtual ConstString GetName() const = 0; /// Creates and returns ValueObject tied to this variable /// and prepares Entity for materialization. /// /// Called each time the Materializer (de)materializes a /// variable. We re-create the ValueObject based on the /// current ExecutionContextScope since clients such as /// conditional breakpoints may materialize the same /// EntityVariable multiple times with different frames. /// /// Each subsequent use of the EntityVariableBase interface /// will query the newly created ValueObject until this /// function is called again. virtual lldb::ValueObjectSP SetupValueObject(ExecutionContextScope *scope) = 0; /// Returns size in bytes of the type associated with this variable /// /// \returns On success, returns byte size of the type associated /// with this variable. Returns std::nullopt otherwise. virtual std::optional GetByteSize(ExecutionContextScope *scope) const = 0; /// Returns 'true' if the location expression associated with this variable /// is valid. virtual bool LocationExpressionIsValid() const = 0; /// Returns alignment of the type associated with this variable in bits. /// /// \returns On success, returns alignment in bits for the type associated /// with this variable. Returns std::nullopt otherwise. virtual std::optional GetTypeBitAlign(ExecutionContextScope *scope) const = 0; protected: bool m_is_reference = false; lldb::addr_t m_temporary_allocation = LLDB_INVALID_ADDRESS; size_t m_temporary_allocation_size = 0; lldb::DataBufferSP m_original_data; }; /// Represents an Entity constructed from a VariableSP. /// /// This class is used for materialization of variables for which /// the user has a VariableSP on hand. The ValueObject is then /// derived from the associated DWARF location expression when needed /// by the Materializer. class EntityVariable : public EntityVariableBase { public: EntityVariable(lldb::VariableSP &variable_sp) : m_variable_sp(variable_sp) { m_is_reference = m_variable_sp->GetType()->GetForwardCompilerType().IsReferenceType(); } ConstString GetName() const override { return m_variable_sp->GetName(); } lldb::ValueObjectSP SetupValueObject(ExecutionContextScope *scope) override { assert(m_variable_sp != nullptr); return ValueObjectVariable::Create(scope, m_variable_sp); } std::optional GetByteSize(ExecutionContextScope *scope) const override { return m_variable_sp->GetType()->GetByteSize(scope); } bool LocationExpressionIsValid() const override { return m_variable_sp->LocationExpressionList().IsValid(); } std::optional GetTypeBitAlign(ExecutionContextScope *scope) const override { return m_variable_sp->GetType()->GetLayoutCompilerType().GetTypeBitAlign( scope); } private: lldb::VariableSP m_variable_sp; ///< Variable that this entity is based on. }; /// Represents an Entity constructed from a VariableSP. /// /// This class is used for materialization of variables for /// which the user does not have a VariableSP available (e.g., /// when materializing ivars). class EntityValueObject : public EntityVariableBase { public: EntityValueObject(ConstString name, ValueObjectProviderTy provider) : m_name(name), m_valobj_provider(std::move(provider)) { assert(m_valobj_provider); } ConstString GetName() const override { return m_name; } lldb::ValueObjectSP SetupValueObject(ExecutionContextScope *scope) override { m_valobj_sp = m_valobj_provider(GetName(), scope->CalculateStackFrame().get()); if (m_valobj_sp) m_is_reference = m_valobj_sp->GetCompilerType().IsReferenceType(); return m_valobj_sp; } std::optional GetByteSize(ExecutionContextScope *scope) const override { if (m_valobj_sp) return m_valobj_sp->GetCompilerType().GetByteSize(scope); return {}; } bool LocationExpressionIsValid() const override { if (m_valobj_sp) return m_valobj_sp->GetError().Success(); return false; } std::optional GetTypeBitAlign(ExecutionContextScope *scope) const override { if (m_valobj_sp) return m_valobj_sp->GetCompilerType().GetTypeBitAlign(scope); return {}; } private: ConstString m_name; lldb::ValueObjectSP m_valobj_sp; ValueObjectProviderTy m_valobj_provider; }; uint32_t Materializer::AddVariable(lldb::VariableSP &variable_sp, Status &err) { EntityVector::iterator iter = m_entities.insert(m_entities.end(), EntityUP()); *iter = std::make_unique(variable_sp); uint32_t ret = AddStructMember(**iter); (*iter)->SetOffset(ret); return ret; } uint32_t Materializer::AddValueObject(ConstString name, ValueObjectProviderTy valobj_provider, Status &err) { assert(valobj_provider); EntityVector::iterator iter = m_entities.insert(m_entities.end(), EntityUP()); *iter = std::make_unique(name, std::move(valobj_provider)); uint32_t ret = AddStructMember(**iter); (*iter)->SetOffset(ret); return ret; } class EntityResultVariable : public Materializer::Entity { public: EntityResultVariable(const CompilerType &type, bool is_program_reference, bool keep_in_memory, Materializer::PersistentVariableDelegate *delegate) : Entity(), m_type(type), m_is_program_reference(is_program_reference), m_keep_in_memory(keep_in_memory), m_delegate(delegate) { // Hard-coding to maximum size of a pointer since all results are // materialized by reference m_size = g_default_var_byte_size; m_alignment = g_default_var_alignment; } void Materialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, Status &err) override { if (!m_is_program_reference) { if (m_temporary_allocation != LLDB_INVALID_ADDRESS) { err.SetErrorString("Trying to create a temporary region for the result " "but one exists"); return; } const lldb::addr_t load_addr = process_address + m_offset; ExecutionContextScope *exe_scope = frame_sp.get(); if (!exe_scope) exe_scope = map.GetBestExecutionContextScope(); std::optional byte_size = m_type.GetByteSize(exe_scope); if (!byte_size) { err.SetErrorStringWithFormat("can't get size of type \"%s\"", m_type.GetTypeName().AsCString()); return; } std::optional opt_bit_align = m_type.GetTypeBitAlign(exe_scope); if (!opt_bit_align) { err.SetErrorStringWithFormat("can't get the alignment of type \"%s\"", m_type.GetTypeName().AsCString()); return; } size_t byte_align = (*opt_bit_align + 7) / 8; Status alloc_error; const bool zero_memory = true; m_temporary_allocation = map.Malloc( *byte_size, byte_align, lldb::ePermissionsReadable | lldb::ePermissionsWritable, IRMemoryMap::eAllocationPolicyMirror, zero_memory, alloc_error); m_temporary_allocation_size = *byte_size; if (!alloc_error.Success()) { err.SetErrorStringWithFormat( "couldn't allocate a temporary region for the result: %s", alloc_error.AsCString()); return; } Status pointer_write_error; map.WritePointerToMemory(load_addr, m_temporary_allocation, pointer_write_error); if (!pointer_write_error.Success()) { err.SetErrorStringWithFormat("couldn't write the address of the " "temporary region for the result: %s", pointer_write_error.AsCString()); } } } void Dematerialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, lldb::addr_t frame_top, lldb::addr_t frame_bottom, Status &err) override { err.Clear(); ExecutionContextScope *exe_scope = frame_sp.get(); if (!exe_scope) exe_scope = map.GetBestExecutionContextScope(); if (!exe_scope) { err.SetErrorString("Couldn't dematerialize a result variable: invalid " "execution context scope"); return; } lldb::addr_t address; Status read_error; const lldb::addr_t load_addr = process_address + m_offset; map.ReadPointerFromMemory(&address, load_addr, read_error); if (!read_error.Success()) { err.SetErrorString("Couldn't dematerialize a result variable: couldn't " "read its address"); return; } lldb::TargetSP target_sp = exe_scope->CalculateTarget(); if (!target_sp) { err.SetErrorString("Couldn't dematerialize a result variable: no target"); return; } auto type_system_or_err = target_sp->GetScratchTypeSystemForLanguage(m_type.GetMinimumLanguage()); if (auto error = type_system_or_err.takeError()) { err.SetErrorStringWithFormat("Couldn't dematerialize a result variable: " "couldn't get the corresponding type " "system: %s", llvm::toString(std::move(error)).c_str()); return; } auto ts = *type_system_or_err; if (!ts) { err.SetErrorStringWithFormat("Couldn't dematerialize a result variable: " "couldn't corresponding type system is " "no longer live."); return; } PersistentExpressionState *persistent_state = ts->GetPersistentExpressionState(); if (!persistent_state) { err.SetErrorString("Couldn't dematerialize a result variable: " "corresponding type system doesn't handle persistent " "variables"); return; } ConstString name = m_delegate ? m_delegate->GetName() : persistent_state->GetNextPersistentVariableName(); lldb::ExpressionVariableSP ret = persistent_state->CreatePersistentVariable( exe_scope, name, m_type, map.GetByteOrder(), map.GetAddressByteSize()); if (!ret) { err.SetErrorStringWithFormat("couldn't dematerialize a result variable: " "failed to make persistent variable %s", name.AsCString()); return; } lldb::ProcessSP process_sp = map.GetBestExecutionContextScope()->CalculateProcess(); if (m_delegate) { m_delegate->DidDematerialize(ret); } bool can_persist = (m_is_program_reference && process_sp && process_sp->CanJIT() && !(address >= frame_bottom && address < frame_top)); if (can_persist && m_keep_in_memory) { ret->m_live_sp = ValueObjectConstResult::Create(exe_scope, m_type, name, address, eAddressTypeLoad, map.GetAddressByteSize()); } ret->ValueUpdated(); const size_t pvar_byte_size = ret->GetByteSize().value_or(0); uint8_t *pvar_data = ret->GetValueBytes(); map.ReadMemory(pvar_data, address, pvar_byte_size, read_error); if (!read_error.Success()) { err.SetErrorString( "Couldn't dematerialize a result variable: couldn't read its memory"); return; } if (!can_persist || !m_keep_in_memory) { ret->m_flags |= ExpressionVariable::EVNeedsAllocation; if (m_temporary_allocation != LLDB_INVALID_ADDRESS) { Status free_error; map.Free(m_temporary_allocation, free_error); } } else { ret->m_flags |= ExpressionVariable::EVIsLLDBAllocated; } m_temporary_allocation = LLDB_INVALID_ADDRESS; m_temporary_allocation_size = 0; } void DumpToLog(IRMemoryMap &map, lldb::addr_t process_address, Log *log) override { StreamString dump_stream; const lldb::addr_t load_addr = process_address + m_offset; dump_stream.Printf("0x%" PRIx64 ": EntityResultVariable\n", load_addr); Status err; lldb::addr_t ptr = LLDB_INVALID_ADDRESS; { dump_stream.Printf("Pointer:\n"); DataBufferHeap data(m_size, 0); map.ReadMemory(data.GetBytes(), load_addr, m_size, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DataExtractor extractor(data.GetBytes(), data.GetByteSize(), map.GetByteOrder(), map.GetAddressByteSize()); DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, load_addr); lldb::offset_t offset = 0; ptr = extractor.GetAddress(&offset); dump_stream.PutChar('\n'); } } if (m_temporary_allocation == LLDB_INVALID_ADDRESS) { dump_stream.Printf("Points to process memory:\n"); } else { dump_stream.Printf("Temporary allocation:\n"); } if (ptr == LLDB_INVALID_ADDRESS) { dump_stream.Printf(" \n"); } else { DataBufferHeap data(m_temporary_allocation_size, 0); map.ReadMemory(data.GetBytes(), m_temporary_allocation, m_temporary_allocation_size, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, load_addr); dump_stream.PutChar('\n'); } } log->PutString(dump_stream.GetString()); } void Wipe(IRMemoryMap &map, lldb::addr_t process_address) override { if (!m_keep_in_memory && m_temporary_allocation != LLDB_INVALID_ADDRESS) { Status free_error; map.Free(m_temporary_allocation, free_error); } m_temporary_allocation = LLDB_INVALID_ADDRESS; m_temporary_allocation_size = 0; } private: CompilerType m_type; bool m_is_program_reference; bool m_keep_in_memory; lldb::addr_t m_temporary_allocation = LLDB_INVALID_ADDRESS; size_t m_temporary_allocation_size = 0; Materializer::PersistentVariableDelegate *m_delegate; }; uint32_t Materializer::AddResultVariable(const CompilerType &type, bool is_program_reference, bool keep_in_memory, PersistentVariableDelegate *delegate, Status &err) { EntityVector::iterator iter = m_entities.insert(m_entities.end(), EntityUP()); *iter = std::make_unique(type, is_program_reference, keep_in_memory, delegate); uint32_t ret = AddStructMember(**iter); (*iter)->SetOffset(ret); return ret; } class EntitySymbol : public Materializer::Entity { public: EntitySymbol(const Symbol &symbol) : Entity(), m_symbol(symbol) { // Hard-coding to maximum size of a symbol m_size = g_default_var_byte_size; m_alignment = g_default_var_alignment; } void Materialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntitySymbol::Materialize [address = 0x%" PRIx64 ", m_symbol = %s]", (uint64_t)load_addr, m_symbol.GetName().AsCString()); } const Address sym_address = m_symbol.GetAddress(); ExecutionContextScope *exe_scope = frame_sp.get(); if (!exe_scope) exe_scope = map.GetBestExecutionContextScope(); lldb::TargetSP target_sp; if (exe_scope) target_sp = map.GetBestExecutionContextScope()->CalculateTarget(); if (!target_sp) { err.SetErrorStringWithFormat( "couldn't resolve symbol %s because there is no target", m_symbol.GetName().AsCString()); return; } lldb::addr_t resolved_address = sym_address.GetLoadAddress(target_sp.get()); if (resolved_address == LLDB_INVALID_ADDRESS) resolved_address = sym_address.GetFileAddress(); Status pointer_write_error; map.WritePointerToMemory(load_addr, resolved_address, pointer_write_error); if (!pointer_write_error.Success()) { err.SetErrorStringWithFormat( "couldn't write the address of symbol %s: %s", m_symbol.GetName().AsCString(), pointer_write_error.AsCString()); return; } } void Dematerialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, lldb::addr_t frame_top, lldb::addr_t frame_bottom, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntitySymbol::Dematerialize [address = 0x%" PRIx64 ", m_symbol = %s]", (uint64_t)load_addr, m_symbol.GetName().AsCString()); } // no work needs to be done } void DumpToLog(IRMemoryMap &map, lldb::addr_t process_address, Log *log) override { StreamString dump_stream; Status err; const lldb::addr_t load_addr = process_address + m_offset; dump_stream.Printf("0x%" PRIx64 ": EntitySymbol (%s)\n", load_addr, m_symbol.GetName().AsCString()); { dump_stream.Printf("Pointer:\n"); DataBufferHeap data(m_size, 0); map.ReadMemory(data.GetBytes(), load_addr, m_size, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, load_addr); dump_stream.PutChar('\n'); } } log->PutString(dump_stream.GetString()); } void Wipe(IRMemoryMap &map, lldb::addr_t process_address) override {} private: Symbol m_symbol; }; uint32_t Materializer::AddSymbol(const Symbol &symbol_sp, Status &err) { EntityVector::iterator iter = m_entities.insert(m_entities.end(), EntityUP()); *iter = std::make_unique(symbol_sp); uint32_t ret = AddStructMember(**iter); (*iter)->SetOffset(ret); return ret; } class EntityRegister : public Materializer::Entity { public: EntityRegister(const RegisterInfo ®ister_info) : Entity(), m_register_info(register_info) { // Hard-coding alignment conservatively m_size = m_register_info.byte_size; m_alignment = m_register_info.byte_size; } void Materialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntityRegister::Materialize [address = 0x%" PRIx64 ", m_register_info = %s]", (uint64_t)load_addr, m_register_info.name); } RegisterValue reg_value; if (!frame_sp.get()) { err.SetErrorStringWithFormat( "couldn't materialize register %s without a stack frame", m_register_info.name); return; } lldb::RegisterContextSP reg_context_sp = frame_sp->GetRegisterContext(); if (!reg_context_sp->ReadRegister(&m_register_info, reg_value)) { err.SetErrorStringWithFormat("couldn't read the value of register %s", m_register_info.name); return; } DataExtractor register_data; if (!reg_value.GetData(register_data)) { err.SetErrorStringWithFormat("couldn't get the data for register %s", m_register_info.name); return; } if (register_data.GetByteSize() != m_register_info.byte_size) { err.SetErrorStringWithFormat( "data for register %s had size %llu but we expected %llu", m_register_info.name, (unsigned long long)register_data.GetByteSize(), (unsigned long long)m_register_info.byte_size); return; } m_register_contents = std::make_shared( register_data.GetDataStart(), register_data.GetByteSize()); Status write_error; map.WriteMemory(load_addr, register_data.GetDataStart(), register_data.GetByteSize(), write_error); if (!write_error.Success()) { err.SetErrorStringWithFormat( "couldn't write the contents of register %s: %s", m_register_info.name, write_error.AsCString()); return; } } void Dematerialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, lldb::addr_t frame_top, lldb::addr_t frame_bottom, Status &err) override { Log *log = GetLog(LLDBLog::Expressions); const lldb::addr_t load_addr = process_address + m_offset; if (log) { LLDB_LOGF(log, "EntityRegister::Dematerialize [address = 0x%" PRIx64 ", m_register_info = %s]", (uint64_t)load_addr, m_register_info.name); } Status extract_error; DataExtractor register_data; if (!frame_sp.get()) { err.SetErrorStringWithFormat( "couldn't dematerialize register %s without a stack frame", m_register_info.name); return; } lldb::RegisterContextSP reg_context_sp = frame_sp->GetRegisterContext(); map.GetMemoryData(register_data, load_addr, m_register_info.byte_size, extract_error); if (!extract_error.Success()) { err.SetErrorStringWithFormat("couldn't get the data for register %s: %s", m_register_info.name, extract_error.AsCString()); return; } if (!memcmp(register_data.GetDataStart(), m_register_contents->GetBytes(), register_data.GetByteSize())) { // No write required, and in particular we avoid errors if the register // wasn't writable m_register_contents.reset(); return; } m_register_contents.reset(); RegisterValue register_value(register_data.GetData(), register_data.GetByteOrder()); if (!reg_context_sp->WriteRegister(&m_register_info, register_value)) { err.SetErrorStringWithFormat("couldn't write the value of register %s", m_register_info.name); return; } } void DumpToLog(IRMemoryMap &map, lldb::addr_t process_address, Log *log) override { StreamString dump_stream; Status err; const lldb::addr_t load_addr = process_address + m_offset; dump_stream.Printf("0x%" PRIx64 ": EntityRegister (%s)\n", load_addr, m_register_info.name); { dump_stream.Printf("Value:\n"); DataBufferHeap data(m_size, 0); map.ReadMemory(data.GetBytes(), load_addr, m_size, err); if (!err.Success()) { dump_stream.Printf(" \n"); } else { DumpHexBytes(&dump_stream, data.GetBytes(), data.GetByteSize(), 16, load_addr); dump_stream.PutChar('\n'); } } log->PutString(dump_stream.GetString()); } void Wipe(IRMemoryMap &map, lldb::addr_t process_address) override {} private: RegisterInfo m_register_info; lldb::DataBufferSP m_register_contents; }; uint32_t Materializer::AddRegister(const RegisterInfo ®ister_info, Status &err) { EntityVector::iterator iter = m_entities.insert(m_entities.end(), EntityUP()); *iter = std::make_unique(register_info); uint32_t ret = AddStructMember(**iter); (*iter)->SetOffset(ret); return ret; } Materializer::~Materializer() { DematerializerSP dematerializer_sp = m_dematerializer_wp.lock(); if (dematerializer_sp) dematerializer_sp->Wipe(); } Materializer::DematerializerSP Materializer::Materialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map, lldb::addr_t process_address, Status &error) { ExecutionContextScope *exe_scope = frame_sp.get(); if (!exe_scope) exe_scope = map.GetBestExecutionContextScope(); DematerializerSP dematerializer_sp = m_dematerializer_wp.lock(); if (dematerializer_sp) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't materialize: already materialized"); } DematerializerSP ret( new Dematerializer(*this, frame_sp, map, process_address)); if (!exe_scope) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't materialize: target doesn't exist"); } for (EntityUP &entity_up : m_entities) { entity_up->Materialize(frame_sp, map, process_address, error); if (!error.Success()) return DematerializerSP(); } if (Log *log = GetLog(LLDBLog::Expressions)) { LLDB_LOGF( log, "Materializer::Materialize (frame_sp = %p, process_address = 0x%" PRIx64 ") materialized:", static_cast(frame_sp.get()), process_address); for (EntityUP &entity_up : m_entities) entity_up->DumpToLog(map, process_address, log); } m_dematerializer_wp = ret; return ret; } void Materializer::Dematerializer::Dematerialize(Status &error, lldb::addr_t frame_bottom, lldb::addr_t frame_top) { lldb::StackFrameSP frame_sp; lldb::ThreadSP thread_sp = m_thread_wp.lock(); if (thread_sp) frame_sp = thread_sp->GetFrameWithStackID(m_stack_id); ExecutionContextScope *exe_scope = frame_sp.get(); if (!exe_scope) exe_scope = m_map->GetBestExecutionContextScope(); if (!IsValid()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't dematerialize: invalid dematerializer"); } if (!exe_scope) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't dematerialize: target is gone"); } else { if (Log *log = GetLog(LLDBLog::Expressions)) { LLDB_LOGF(log, "Materializer::Dematerialize (frame_sp = %p, process_address " "= 0x%" PRIx64 ") about to dematerialize:", static_cast(frame_sp.get()), m_process_address); for (EntityUP &entity_up : m_materializer->m_entities) entity_up->DumpToLog(*m_map, m_process_address, log); } for (EntityUP &entity_up : m_materializer->m_entities) { entity_up->Dematerialize(frame_sp, *m_map, m_process_address, frame_top, frame_bottom, error); if (!error.Success()) break; } } Wipe(); } void Materializer::Dematerializer::Wipe() { if (!IsValid()) return; for (EntityUP &entity_up : m_materializer->m_entities) { entity_up->Wipe(*m_map, m_process_address); } m_materializer = nullptr; m_map = nullptr; m_process_address = LLDB_INVALID_ADDRESS; } Materializer::PersistentVariableDelegate::PersistentVariableDelegate() = default; Materializer::PersistentVariableDelegate::~PersistentVariableDelegate() = default;