//===- SymbolTable.cpp ----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "SymbolTable.h" #include "ConcatOutputSection.h" #include "Config.h" #include "InputFiles.h" #include "InputSection.h" #include "Symbols.h" #include "SyntheticSections.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm/Demangle/Demangle.h" using namespace llvm; using namespace lld; using namespace lld::macho; Symbol *SymbolTable::find(CachedHashStringRef cachedName) { auto it = symMap.find(cachedName); if (it == symMap.end()) return nullptr; return symVector[it->second]; } std::pair SymbolTable::insert(StringRef name, const InputFile *file) { auto p = symMap.insert({CachedHashStringRef(name), (int)symVector.size()}); Symbol *sym; if (!p.second) { // Name already present in the symbol table. sym = symVector[p.first->second]; } else { // Name is a new symbol. sym = reinterpret_cast(make()); symVector.push_back(sym); } sym->isUsedInRegularObj |= !file || isa(file); return {sym, p.second}; } namespace { struct DuplicateSymbolDiag { // Pair containing source location and source file const std::pair src1; const std::pair src2; const Symbol *sym; DuplicateSymbolDiag(const std::pair src1, const std::pair src2, const Symbol *sym) : src1(src1), src2(src2), sym(sym) {} }; SmallVector dupSymDiags; } // namespace // Move symbols at \p fromOff in \p fromIsec into \p toIsec, unless that symbol // is \p skip. static void transplantSymbolsAtOffset(InputSection *fromIsec, InputSection *toIsec, Defined *skip, uint64_t fromOff, uint64_t toOff) { // Ensure the symbols will still be in address order after our insertions. auto insertIt = llvm::upper_bound(toIsec->symbols, toOff, [](uint64_t off, const Symbol *s) { return cast(s)->value < off; }); llvm::erase_if(fromIsec->symbols, [&](Symbol *s) { auto *d = cast(s); if (d->value != fromOff) return false; if (d != skip) { // This repeated insertion will be quadratic unless insertIt is the end // iterator. However, that is typically the case for files that have // .subsections_via_symbols set. insertIt = toIsec->symbols.insert(insertIt, d); d->originalIsec = toIsec; d->value = toOff; // We don't want to have more than one unwindEntry at a given address, so // drop the redundant ones. We We can safely drop the unwindEntries of // the symbols in fromIsec since we will be adding another unwindEntry as // we finish parsing toIsec's file. (We can assume that toIsec has its // own unwindEntry because of the ODR.) d->originalUnwindEntry = nullptr; } return true; }); } Defined *SymbolTable::addDefined(StringRef name, InputFile *file, InputSection *isec, uint64_t value, uint64_t size, bool isWeakDef, bool isPrivateExtern, bool isReferencedDynamically, bool noDeadStrip, bool isWeakDefCanBeHidden) { bool overridesWeakDef = false; auto [s, wasInserted] = insert(name, file); assert(!file || !isa(file) || !isec); if (!wasInserted) { if (auto *defined = dyn_cast(s)) { if (isWeakDef) { // See further comment in createDefined() in InputFiles.cpp if (defined->isWeakDef()) { defined->privateExtern &= isPrivateExtern; defined->weakDefCanBeHidden &= isWeakDefCanBeHidden; defined->referencedDynamically |= isReferencedDynamically; defined->noDeadStrip |= noDeadStrip; } if (auto concatIsec = dyn_cast_or_null(isec)) { concatIsec->wasCoalesced = true; // Any local symbols that alias the coalesced symbol should be moved // into the prevailing section. Note that we have sorted the symbols // in ObjFile::parseSymbols() such that extern weak symbols appear // last, so we don't need to worry about subsequent symbols being // added to an already-coalesced section. if (defined->isec()) transplantSymbolsAtOffset(concatIsec, defined->isec(), /*skip=*/nullptr, value, defined->value); } return defined; } if (defined->isWeakDef()) { if (auto concatIsec = dyn_cast_or_null(defined->isec())) { concatIsec->wasCoalesced = true; if (isec) transplantSymbolsAtOffset(concatIsec, isec, defined, defined->value, value); } } else { std::string srcLoc1 = defined->getSourceLocation(); std::string srcLoc2 = isec ? isec->getSourceLocation(value) : ""; std::string srcFile1 = toString(defined->getFile()); std::string srcFile2 = toString(file); dupSymDiags.push_back({make_pair(srcLoc1, srcFile1), make_pair(srcLoc2, srcFile2), defined}); } } else if (auto *dysym = dyn_cast(s)) { overridesWeakDef = !isWeakDef && dysym->isWeakDef(); dysym->unreference(); } else if (auto *undef = dyn_cast(s)) { if (undef->wasBitcodeSymbol) { auto objFile = dyn_cast(file); if (!objFile) { // The file must be a native object file, as opposed to potentially // being another bitcode file. A situation arises when some symbols // are defined thru `module asm` and thus they are not present in the // bitcode's symbol table. Consider bitcode modules `A`, `B`, and `C`. // LTO compiles only `A` and `C`, since there's no explicit symbol // reference to `B` other than a symbol from `A` via `module asm`. // After LTO is finished, the missing symbol now appears in the // resulting object file for `A`, which prematurely resolves another // prevailing symbol with `B` that hasn't been compiled, instead of // the resulting object for `C`. Consequently, an incorrect // relocation is generated for the prevailing symbol. assert(isa(file) && "Bitcode file is expected."); std::string message = "The pending prevailing symbol(" + name.str() + ") in the bitcode file(" + toString(undef->getFile()) + ") is overridden by a non-native object (from bitcode): " + toString(file); error(message); } else if (!objFile->builtFromBitcode) { // Ideally, this should be an object file compiled from a bitcode // file. However, this might not hold true if a LC linker option is // used. In case LTO internalizes a prevailing hidden weak symbol, // there's a situation where an unresolved prevailing symbol might be // linked with the corresponding one from a native library, which is // loaded later after LTO. Although this could potentially result in // an ODR violation, we choose to permit this scenario as a warning. std::string message = "The pending prevailing symbol(" + name.str() + ") in the bitcode file(" + toString(undef->getFile()) + ") is overridden by a post-processed native " "object (from native archive): " + toString(file); warn(message); } else { // Preserve the original bitcode file name (instead of using the // object file name). file = undef->getFile(); } } } // Defined symbols take priority over other types of symbols, so in case // of a name conflict, we fall through to the replaceSymbol() call below. } // With -flat_namespace, all extern symbols in dylibs are interposable. // FIXME: Add support for `-interposable` (PR53680). bool interposable = config->namespaceKind == NamespaceKind::flat && config->outputType != MachO::MH_EXECUTE && !isPrivateExtern; Defined *defined = replaceSymbol( s, name, file, isec, value, size, isWeakDef, /*isExternal=*/true, isPrivateExtern, /*includeInSymtab=*/true, isReferencedDynamically, noDeadStrip, overridesWeakDef, isWeakDefCanBeHidden, interposable); return defined; } Defined *SymbolTable::aliasDefined(Defined *src, StringRef target, InputFile *newFile, bool makePrivateExtern) { bool isPrivateExtern = makePrivateExtern || src->privateExtern; return addDefined(target, newFile, src->isec(), src->value, src->size, src->isWeakDef(), isPrivateExtern, src->referencedDynamically, src->noDeadStrip, src->weakDefCanBeHidden); } Symbol *SymbolTable::addUndefined(StringRef name, InputFile *file, bool isWeakRef) { auto [s, wasInserted] = insert(name, file); RefState refState = isWeakRef ? RefState::Weak : RefState::Strong; if (wasInserted) replaceSymbol(s, name, file, refState, /*wasBitcodeSymbol=*/false); else if (auto *lazy = dyn_cast(s)) lazy->fetchArchiveMember(); else if (isa(s)) extract(*s->getFile(), s->getName()); else if (auto *dynsym = dyn_cast(s)) dynsym->reference(refState); else if (auto *undefined = dyn_cast(s)) undefined->refState = std::max(undefined->refState, refState); return s; } Symbol *SymbolTable::addCommon(StringRef name, InputFile *file, uint64_t size, uint32_t align, bool isPrivateExtern) { auto [s, wasInserted] = insert(name, file); if (!wasInserted) { if (auto *common = dyn_cast(s)) { if (size < common->size) return s; } else if (isa(s)) { return s; } // Common symbols take priority over all non-Defined symbols, so in case of // a name conflict, we fall through to the replaceSymbol() call below. } replaceSymbol(s, name, file, size, align, isPrivateExtern); return s; } Symbol *SymbolTable::addDylib(StringRef name, DylibFile *file, bool isWeakDef, bool isTlv) { auto [s, wasInserted] = insert(name, file); RefState refState = RefState::Unreferenced; if (!wasInserted) { if (auto *defined = dyn_cast(s)) { if (isWeakDef && !defined->isWeakDef()) defined->overridesWeakDef = true; } else if (auto *undefined = dyn_cast(s)) { refState = undefined->refState; } else if (auto *dysym = dyn_cast(s)) { refState = dysym->getRefState(); } } bool isDynamicLookup = file == nullptr; if (wasInserted || isa(s) || (isa(s) && ((!isWeakDef && s->isWeakDef()) || (!isDynamicLookup && cast(s)->isDynamicLookup())))) { if (auto *dynsym = dyn_cast(s)) dynsym->unreference(); replaceSymbol(s, file, name, isWeakDef, refState, isTlv); } return s; } Symbol *SymbolTable::addDynamicLookup(StringRef name) { return addDylib(name, /*file=*/nullptr, /*isWeakDef=*/false, /*isTlv=*/false); } Symbol *SymbolTable::addLazyArchive(StringRef name, ArchiveFile *file, const object::Archive::Symbol &sym) { auto [s, wasInserted] = insert(name, file); if (wasInserted) { replaceSymbol(s, file, sym); } else if (isa(s)) { file->fetch(sym); } else if (auto *dysym = dyn_cast(s)) { if (dysym->isWeakDef()) { if (dysym->getRefState() != RefState::Unreferenced) file->fetch(sym); else replaceSymbol(s, file, sym); } } return s; } Symbol *SymbolTable::addLazyObject(StringRef name, InputFile &file) { auto [s, wasInserted] = insert(name, &file); if (wasInserted) { replaceSymbol(s, file, name); } else if (isa(s)) { extract(file, name); } else if (auto *dysym = dyn_cast(s)) { if (dysym->isWeakDef()) { if (dysym->getRefState() != RefState::Unreferenced) extract(file, name); else replaceSymbol(s, file, name); } } return s; } Defined *SymbolTable::addSynthetic(StringRef name, InputSection *isec, uint64_t value, bool isPrivateExtern, bool includeInSymtab, bool referencedDynamically) { assert(!isec || !isec->getFile()); // See makeSyntheticInputSection(). Defined *s = addDefined(name, /*file=*/nullptr, isec, value, /*size=*/0, /*isWeakDef=*/false, isPrivateExtern, referencedDynamically, /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false); s->includeInSymtab = includeInSymtab; return s; } enum class Boundary { Start, End, }; static Defined *createBoundarySymbol(const Undefined &sym) { return symtab->addSynthetic( sym.getName(), /*isec=*/nullptr, /*value=*/-1, /*isPrivateExtern=*/true, /*includeInSymtab=*/false, /*referencedDynamically=*/false); } static void handleSectionBoundarySymbol(const Undefined &sym, StringRef segSect, Boundary which) { auto [segName, sectName] = segSect.split('$'); // Attach the symbol to any InputSection that will end up in the right // OutputSection -- it doesn't matter which one we pick. // Don't bother looking through inputSections for a matching // ConcatInputSection -- we need to create ConcatInputSection for // non-existing sections anyways, and that codepath works even if we should // already have a ConcatInputSection with the right name. OutputSection *osec = nullptr; // This looks for __TEXT,__cstring etc. for (SyntheticSection *ssec : syntheticSections) if (ssec->segname == segName && ssec->name == sectName) { osec = ssec->isec->parent; break; } if (!osec) { ConcatInputSection *isec = makeSyntheticInputSection(segName, sectName); // This runs after markLive() and is only called for Undefineds that are // live. Marking the isec live ensures an OutputSection is created that the // start/end symbol can refer to. assert(sym.isLive()); assert(isec->live); // This runs after gatherInputSections(), so need to explicitly set parent // and add to inputSections. osec = isec->parent = ConcatOutputSection::getOrCreateForInput(isec); inputSections.push_back(isec); } if (which == Boundary::Start) osec->sectionStartSymbols.push_back(createBoundarySymbol(sym)); else osec->sectionEndSymbols.push_back(createBoundarySymbol(sym)); } static void handleSegmentBoundarySymbol(const Undefined &sym, StringRef segName, Boundary which) { OutputSegment *seg = getOrCreateOutputSegment(segName); if (which == Boundary::Start) seg->segmentStartSymbols.push_back(createBoundarySymbol(sym)); else seg->segmentEndSymbols.push_back(createBoundarySymbol(sym)); } // Try to find a definition for an undefined symbol. // Returns true if a definition was found and no diagnostics are needed. static bool recoverFromUndefinedSymbol(const Undefined &sym) { // Handle start/end symbols. StringRef name = sym.getName(); if (name.consume_front("section$start$")) { handleSectionBoundarySymbol(sym, name, Boundary::Start); return true; } if (name.consume_front("section$end$")) { handleSectionBoundarySymbol(sym, name, Boundary::End); return true; } if (name.consume_front("segment$start$")) { handleSegmentBoundarySymbol(sym, name, Boundary::Start); return true; } if (name.consume_front("segment$end$")) { handleSegmentBoundarySymbol(sym, name, Boundary::End); return true; } // Leave dtrace symbols, since we will handle them when we do the relocation if (name.starts_with("___dtrace_")) return true; // Handle -U. if (config->explicitDynamicLookups.count(sym.getName())) { symtab->addDynamicLookup(sym.getName()); return true; } // Handle -undefined. if (config->undefinedSymbolTreatment == UndefinedSymbolTreatment::dynamic_lookup || config->undefinedSymbolTreatment == UndefinedSymbolTreatment::suppress) { symtab->addDynamicLookup(sym.getName()); return true; } // We do not return true here, as we still need to print diagnostics. if (config->undefinedSymbolTreatment == UndefinedSymbolTreatment::warning) symtab->addDynamicLookup(sym.getName()); return false; } namespace { struct UndefinedDiag { struct SectionAndOffset { const InputSection *isec; uint64_t offset; }; std::vector codeReferences; std::vector otherReferences; }; MapVector undefs; } // namespace void macho::reportPendingDuplicateSymbols() { for (const auto &duplicate : dupSymDiags) { if (!config->deadStripDuplicates || duplicate.sym->isLive()) { std::string message = "duplicate symbol: " + toString(*duplicate.sym) + "\n>>> defined in "; if (!duplicate.src1.first.empty()) message += duplicate.src1.first + "\n>>> "; message += duplicate.src1.second + "\n>>> defined in "; if (!duplicate.src2.first.empty()) message += duplicate.src2.first + "\n>>> "; error(message + duplicate.src2.second); } } } // Check whether the definition name def is a mangled function name that matches // the reference name ref. static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { llvm::ItaniumPartialDemangler d; std::string name = def.str(); if (d.partialDemangle(name.c_str())) return false; char *buf = d.getFunctionName(nullptr, nullptr); if (!buf) return false; bool ret = ref == buf; free(buf); return ret; } // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns // the suggested symbol, which is either in the symbol table, or in the same // file of sym. static const Symbol *getAlternativeSpelling(const Undefined &sym, std::string &preHint, std::string &postHint) { DenseMap map; if (sym.getFile() && sym.getFile()->kind() == InputFile::ObjKind) { // Build a map of local defined symbols. for (const Symbol *s : sym.getFile()->symbols) if (auto *defined = dyn_cast_or_null(s)) if (!defined->isExternal()) map.try_emplace(s->getName(), s); } auto suggest = [&](StringRef newName) -> const Symbol * { // If defined locally. if (const Symbol *s = map.lookup(newName)) return s; // If in the symbol table and not undefined. if (const Symbol *s = symtab->find(newName)) if (dyn_cast(s) == nullptr) return s; return nullptr; }; // This loop enumerates all strings of Levenshtein distance 1 as typo // correction candidates and suggests the one that exists as a non-undefined // symbol. StringRef name = sym.getName(); for (size_t i = 0, e = name.size(); i != e + 1; ++i) { // Insert a character before name[i]. std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); for (char c = '0'; c <= 'z'; ++c) { newName[i] = c; if (const Symbol *s = suggest(newName)) return s; } if (i == e) break; // Substitute name[i]. newName = std::string(name); for (char c = '0'; c <= 'z'; ++c) { newName[i] = c; if (const Symbol *s = suggest(newName)) return s; } // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is // common. if (i + 1 < e) { newName[i] = name[i + 1]; newName[i + 1] = name[i]; if (const Symbol *s = suggest(newName)) return s; } // Delete name[i]. newName = (name.substr(0, i) + name.substr(i + 1)).str(); if (const Symbol *s = suggest(newName)) return s; } // Case mismatch, e.g. Foo vs FOO. for (auto &it : map) if (name.equals_insensitive(it.first)) return it.second; for (Symbol *sym : symtab->getSymbols()) if (dyn_cast(sym) == nullptr && name.equals_insensitive(sym->getName())) return sym; // The reference may be a mangled name while the definition is not. Suggest a // missing extern "C". if (name.starts_with("__Z")) { std::string buf = name.str(); llvm::ItaniumPartialDemangler d; if (!d.partialDemangle(buf.c_str())) if (char *buf = d.getFunctionName(nullptr, nullptr)) { const Symbol *s = suggest((Twine("_") + buf).str()); free(buf); if (s) { preHint = ": extern \"C\" "; return s; } } } else { StringRef nameWithoutUnderscore = name; nameWithoutUnderscore.consume_front("_"); const Symbol *s = nullptr; for (auto &it : map) if (canSuggestExternCForCXX(nameWithoutUnderscore, it.first)) { s = it.second; break; } if (!s) for (Symbol *sym : symtab->getSymbols()) if (canSuggestExternCForCXX(nameWithoutUnderscore, sym->getName())) { s = sym; break; } if (s) { preHint = " to declare "; postHint = " as extern \"C\"?"; return s; } } return nullptr; } static void reportUndefinedSymbol(const Undefined &sym, const UndefinedDiag &locations, bool correctSpelling) { std::string message = "undefined symbol"; if (config->archMultiple) message += (" for arch " + getArchitectureName(config->arch())).str(); message += ": " + toString(sym); const size_t maxUndefinedReferences = 3; size_t i = 0; for (const std::string &loc : locations.otherReferences) { if (i >= maxUndefinedReferences) break; message += "\n>>> referenced by " + loc; ++i; } for (const UndefinedDiag::SectionAndOffset &loc : locations.codeReferences) { if (i >= maxUndefinedReferences) break; message += "\n>>> referenced by "; std::string src = loc.isec->getSourceLocation(loc.offset); if (!src.empty()) message += src + "\n>>> "; message += loc.isec->getLocation(loc.offset); ++i; } size_t totalReferences = locations.otherReferences.size() + locations.codeReferences.size(); if (totalReferences > i) message += ("\n>>> referenced " + Twine(totalReferences - i) + " more times") .str(); if (correctSpelling) { std::string preHint = ": ", postHint; if (const Symbol *corrected = getAlternativeSpelling(sym, preHint, postHint)) { message += "\n>>> did you mean" + preHint + toString(*corrected) + postHint; if (corrected->getFile()) message += "\n>>> defined in: " + toString(corrected->getFile()); } } if (config->undefinedSymbolTreatment == UndefinedSymbolTreatment::error) error(message); else if (config->undefinedSymbolTreatment == UndefinedSymbolTreatment::warning) warn(message); else assert(false && "diagnostics make sense for -undefined error|warning only"); } void macho::reportPendingUndefinedSymbols() { // Enable spell corrector for the first 2 diagnostics. for (const auto &[i, undef] : llvm::enumerate(undefs)) reportUndefinedSymbol(*undef.first, undef.second, i < 2); // This function is called multiple times during execution. Clear the printed // diagnostics to avoid printing the same things again the next time. undefs.clear(); } void macho::treatUndefinedSymbol(const Undefined &sym, StringRef source) { if (recoverFromUndefinedSymbol(sym)) return; undefs[&sym].otherReferences.push_back(source.str()); } void macho::treatUndefinedSymbol(const Undefined &sym, const InputSection *isec, uint64_t offset) { if (recoverFromUndefinedSymbol(sym)) return; undefs[&sym].codeReferences.push_back({isec, offset}); } std::unique_ptr macho::symtab;