//===- PPC64.cpp ----------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "lld/Common/CommonLinkerContext.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; constexpr uint64_t ppc64TocOffset = 0x8000; constexpr uint64_t dynamicThreadPointerOffset = 0x8000; namespace { // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform // instructions that can be used as part of the initial exec TLS sequence. enum XFormOpcd { LBZX = 87, LHZX = 279, LWZX = 23, LDX = 21, STBX = 215, STHX = 407, STWX = 151, STDX = 149, LHAX = 343, LWAX = 341, LFSX = 535, LFDX = 599, STFSX = 663, STFDX = 727, ADD = 266, }; enum DFormOpcd { LBZ = 34, LBZU = 35, LHZ = 40, LHZU = 41, LHAU = 43, LWZ = 32, LWZU = 33, LFSU = 49, LFDU = 51, STB = 38, STBU = 39, STH = 44, STHU = 45, STW = 36, STWU = 37, STFSU = 53, STFDU = 55, LHA = 42, LFS = 48, LFD = 50, STFS = 52, STFD = 54, ADDI = 14 }; enum DSFormOpcd { LD = 58, LWA = 58, STD = 62 }; constexpr uint32_t NOP = 0x60000000; enum class PPCLegacyInsn : uint32_t { NOINSN = 0, // Loads. LBZ = 0x88000000, LHZ = 0xa0000000, LWZ = 0x80000000, LHA = 0xa8000000, LWA = 0xe8000002, LD = 0xe8000000, LFS = 0xC0000000, LXSSP = 0xe4000003, LFD = 0xc8000000, LXSD = 0xe4000002, LXV = 0xf4000001, LXVP = 0x18000000, // Stores. STB = 0x98000000, STH = 0xb0000000, STW = 0x90000000, STD = 0xf8000000, STFS = 0xd0000000, STXSSP = 0xf4000003, STFD = 0xd8000000, STXSD = 0xf4000002, STXV = 0xf4000005, STXVP = 0x18000001 }; enum class PPCPrefixedInsn : uint64_t { NOINSN = 0, PREFIX_MLS = 0x0610000000000000, PREFIX_8LS = 0x0410000000000000, // Loads. PLBZ = PREFIX_MLS, PLHZ = PREFIX_MLS, PLWZ = PREFIX_MLS, PLHA = PREFIX_MLS, PLWA = PREFIX_8LS | 0xa4000000, PLD = PREFIX_8LS | 0xe4000000, PLFS = PREFIX_MLS, PLXSSP = PREFIX_8LS | 0xac000000, PLFD = PREFIX_MLS, PLXSD = PREFIX_8LS | 0xa8000000, PLXV = PREFIX_8LS | 0xc8000000, PLXVP = PREFIX_8LS | 0xe8000000, // Stores. PSTB = PREFIX_MLS, PSTH = PREFIX_MLS, PSTW = PREFIX_MLS, PSTD = PREFIX_8LS | 0xf4000000, PSTFS = PREFIX_MLS, PSTXSSP = PREFIX_8LS | 0xbc000000, PSTFD = PREFIX_MLS, PSTXSD = PREFIX_8LS | 0xb8000000, PSTXV = PREFIX_8LS | 0xd8000000, PSTXVP = PREFIX_8LS | 0xf8000000 }; static bool checkPPCLegacyInsn(uint32_t encoding) { PPCLegacyInsn insn = static_cast(encoding); if (insn == PPCLegacyInsn::NOINSN) return false; #define PCREL_OPT(Legacy, PCRel, InsnMask) \ if (insn == PPCLegacyInsn::Legacy) \ return true; #include "PPCInsns.def" #undef PCREL_OPT return false; } // Masks to apply to legacy instructions when converting them to prefixed, // pc-relative versions. For the most part, the primary opcode is shared // between the legacy instruction and the suffix of its prefixed version. // However, there are some instances where that isn't the case (DS-Form and // DQ-form instructions). enum class LegacyToPrefixMask : uint64_t { NOMASK = 0x0, OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). ONLY_RST = 0x3e00000, // [RS]T (6-10). ST_STX28_TO5 = 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. }; class PPC64 final : public TargetInfo { public: PPC64(); int getTlsGdRelaxSkip(RelType type) const override; uint32_t calcEFlags() const override; RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; RelType getDynRel(RelType type) const override; int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; void writeIplt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; void relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const override; void writeGotHeader(uint8_t *buf) const override; bool needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const override; uint32_t getThunkSectionSpacing() const override; bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; RelExpr adjustGotPcExpr(RelType type, int64_t addend, const uint8_t *loc) const override; void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const; void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, uint8_t stOther) const override; private: void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; }; } // namespace uint64_t elf::getPPC64TocBase() { // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The // TOC starts where the first of these sections starts. We always create a // .got when we see a relocation that uses it, so for us the start is always // the .got. uint64_t tocVA = in.got->getVA(); // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. Note that the glibc startup // code (crt1.o) assumes that you can get from the TOC base to the // start of the .toc section with only a single (signed) 16-bit relocation. return tocVA + ppc64TocOffset; } unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) { // The offset is encoded into the 3 most significant bits of the st_other // field, with some special values described in section 3.4.1 of the ABI: // 0 --> Zero offset between the GEP and LEP, and the function does NOT use // the TOC pointer (r2). r2 will hold the same value on returning from // the function as it did on entering the function. // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a // caller-saved register for all callers. // 2-6 --> The binary logarithm of the offset eg: // 2 --> 2^2 = 4 bytes --> 1 instruction. // 6 --> 2^6 = 64 bytes --> 16 instructions. // 7 --> Reserved. uint8_t gepToLep = (stOther >> 5) & 7; if (gepToLep < 2) return 0; // The value encoded in the st_other bits is the // log-base-2(offset). if (gepToLep < 7) return 1 << gepToLep; error("reserved value of 7 in the 3 most-significant-bits of st_other"); return 0; } void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) { insn = config->isLE ? insn << 32 | insn >> 32 : insn; write64(loc, insn); } static bool addOptional(StringRef name, uint64_t value, std::vector &defined) { Symbol *sym = symtab.find(name); if (!sym || sym->isDefined()) return false; sym->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN, STT_FUNC, value, /*size=*/0, /*section=*/nullptr}); defined.push_back(cast(sym)); return true; } // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail // The labels are defined only if they exist in the symbol table. static void writeSequence(MutableArrayRef buf, const char *prefix, int from, uint32_t firstInsn, ArrayRef tail) { std::vector defined; char name[16]; int first; uint32_t *ptr = buf.data(); for (int r = from; r < 32; ++r) { format("%s%d", prefix, r).snprint(name, sizeof(name)); if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1) first = r - from; write32(ptr++, firstInsn + 0x200008 * (r - from)); } for (uint32_t insn : tail) write32(ptr++, insn); assert(ptr == &*buf.end()); if (defined.empty()) return; // The full section content has the extent of [begin, end). We drop unused // instructions and write [first,end). auto *sec = make( ctx.internalFile, SHF_ALLOC, SHT_PROGBITS, 4, ArrayRef(reinterpret_cast(buf.data() + first), 4 * (buf.size() - first)), ".text"); ctx.inputSections.push_back(sec); for (Defined *sym : defined) { sym->section = sec; sym->value -= 4 * first; } } // Implements some save and restore functions as described by ELF V2 ABI to be // compatible with GCC. With GCC -Os, when the number of call-saved registers // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and // expects the linker to define them. See // https://sourceware.org/pipermail/binutils/2002-February/017444.html and // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is // weird because libgcc.a would be the natural place. The linker generation // approach has the advantage that the linker can generate multiple copies to // avoid long branch thunks. However, we don't consider the advantage // significant enough to complicate our trunk implementation, so we take the // simple approach and synthesize .text sections providing the implementation. void elf::addPPC64SaveRestore() { static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19]; constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... // Tail: ld 0, 16(1); mtlr 0; blr writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70, {0xe8010010, mtlr_0, blr}); // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... // Tail: blr writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr}); // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... // Tail: std 0, 16(1); blr writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr}); // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... // Tail: blr writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr}); } // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. template static std::pair getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the // relocation index in most cases. // // In rare cases a TOC entry may store a constant that doesn't need an // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 // points to a relocation with larger r_offset. Do a linear probe then. // Constants are extremely uncommon in .toc and the extra number of array // accesses can be seen as a small constant. ArrayRef relas = tocSec->template relsOrRelas().relas; if (relas.empty()) return {}; uint64_t index = std::min(offset / 8, relas.size() - 1); for (;;) { if (relas[index].r_offset == offset) { Symbol &sym = tocSec->file->getRelocTargetSym(relas[index]); return {dyn_cast(&sym), getAddend(relas[index])}; } if (relas[index].r_offset < offset || index == 0) break; --index; } return {}; } // When accessing a symbol defined in another translation unit, compilers // reserve a .toc entry, allocate a local label and generate toc-indirect // instructions: // // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry // ld/lwa 3, 0(3) # load the value from the address // // .section .toc,"aw",@progbits // .LC0: .tc var[TC],var // // If var is defined, non-preemptable and addressable with a 32-bit signed // offset from the toc base, the address of var can be computed by adding an // offset to the toc base, saving a load. // // addis 3,2,var@toc@ha # this may be relaxed to a nop, // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc // ld/lwa 3, 0(3) # load the value from the address // // Returns true if the relaxation is performed. static bool tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) { assert(config->tocOptimize); if (rel.addend < 0) return false; // If the symbol is not the .toc section, this isn't a toc-indirection. Defined *defSym = dyn_cast(rel.sym); if (!defSym || !defSym->isSection() || defSym->section->name != ".toc") return false; Defined *d; int64_t addend; auto *tocISB = cast(defSym->section); std::tie(d, addend) = config->isLE ? getRelaTocSymAndAddend(tocISB, rel.addend) : getRelaTocSymAndAddend(tocISB, rel.addend); // Only non-preemptable defined symbols can be relaxed. if (!d || d->isPreemptible) return false; // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable // ifunc and changed its type to STT_FUNC. assert(!d->isGnuIFunc()); // Two instructions can materialize a 32-bit signed offset from the toc base. uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase(); if (!isInt<32>(tocRelative)) return false; // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). static_cast(*target).relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset); return true; } // Relocation masks following the #lo(value), #hi(value), #ha(value), // #higher(value), #highera(value), #highest(value), and #highesta(value) // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi // document. static uint16_t lo(uint64_t v) { return v; } static uint16_t hi(uint64_t v) { return v >> 16; } static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } static uint16_t higher(uint64_t v) { return v >> 32; } static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } static uint16_t highest(uint64_t v) { return v >> 48; } static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } // Extracts the 'PO' field of an instruction encoding. static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } static bool isDQFormInstruction(uint32_t encoding) { switch (getPrimaryOpCode(encoding)) { default: return false; case 6: // Power10 paired loads/stores (lxvp, stxvp). case 56: // The only instruction with a primary opcode of 56 is `lq`. return true; case 61: // There are both DS and DQ instruction forms with this primary opcode. // Namely `lxv` and `stxv` are the DQ-forms that use it. // The DS 'XO' bits being set to 01 is restricted to DQ form. return (encoding & 3) == 0x1; } } static bool isDSFormInstruction(PPCLegacyInsn insn) { switch (insn) { default: return false; case PPCLegacyInsn::LWA: case PPCLegacyInsn::LD: case PPCLegacyInsn::LXSD: case PPCLegacyInsn::LXSSP: case PPCLegacyInsn::STD: case PPCLegacyInsn::STXSD: case PPCLegacyInsn::STXSSP: return true; } } static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { uint32_t opc = encoding & 0xfc000000; // If the primary opcode is shared between multiple instructions, we need to // fix it up to match the actual instruction we are after. if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || opc == 0xf8000000) && !isDQFormInstruction(encoding)) opc = encoding & 0xfc000003; else if (opc == 0xf4000000) opc = encoding & 0xfc000007; else if (opc == 0x18000000) opc = encoding & 0xfc00000f; // If the value is not one of the enumerators in PPCLegacyInsn, we want to // return PPCLegacyInsn::NOINSN. if (!checkPPCLegacyInsn(opc)) return PPCLegacyInsn::NOINSN; return static_cast(opc); } static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { switch (insn) { #define PCREL_OPT(Legacy, PCRel, InsnMask) \ case PPCLegacyInsn::Legacy: \ return PPCPrefixedInsn::PCRel #include "PPCInsns.def" #undef PCREL_OPT } return PPCPrefixedInsn::NOINSN; } static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { switch (insn) { #define PCREL_OPT(Legacy, PCRel, InsnMask) \ case PPCLegacyInsn::Legacy: \ return LegacyToPrefixMask::InsnMask #include "PPCInsns.def" #undef PCREL_OPT } return LegacyToPrefixMask::NOMASK; } static uint64_t getPCRelativeForm(uint32_t encoding) { PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn); if (pcrelInsn == PPCPrefixedInsn::NOINSN) return UINT64_C(-1); LegacyToPrefixMask origInsnMask = getInsnMask(origInsn); uint64_t pcrelEncoding = (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); // If the mask requires moving bit 28 to bit 5, do that now. if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) pcrelEncoding |= (encoding & 0x8) << 23; return pcrelEncoding; } static bool isInstructionUpdateForm(uint32_t encoding) { switch (getPrimaryOpCode(encoding)) { default: return false; case LBZU: case LHAU: case LHZU: case LWZU: case LFSU: case LFDU: case STBU: case STHU: case STWU: case STFSU: case STFDU: return true; // LWA has the same opcode as LD, and the DS bits is what differentiates // between LD/LDU/LWA case LD: case STD: return (encoding & 3) == 1; } } // Compute the total displacement between the prefixed instruction that gets // to the start of the data and the load/store instruction that has the offset // into the data structure. // For example: // paddi 3, 0, 1000, 1 // lwz 3, 20(3) // Should add up to 1020 for total displacement. static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { int64_t disp34 = llvm::SignExtend64( ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34); int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16); // For DS and DQ form instructions, we need to mask out the XO bits. if (isDQFormInstruction(accessInsn)) disp16 &= ~0xf; else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn))) disp16 &= ~0x3; return disp34 + disp16; } // There are a number of places when we either want to read or write an // instruction when handling a half16 relocation type. On big-endian the buffer // pointer is pointing into the middle of the word we want to extract, and on // little-endian it is pointing to the start of the word. These 2 helpers are to // simplify reading and writing in that context. static void writeFromHalf16(uint8_t *loc, uint32_t insn) { write32(config->isLE ? loc : loc - 2, insn); } static uint32_t readFromHalf16(const uint8_t *loc) { return read32(config->isLE ? loc : loc - 2); } static uint64_t readPrefixedInstruction(const uint8_t *loc) { uint64_t fullInstr = read64(loc); return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; } PPC64::PPC64() { copyRel = R_PPC64_COPY; gotRel = R_PPC64_GLOB_DAT; pltRel = R_PPC64_JMP_SLOT; relativeRel = R_PPC64_RELATIVE; iRelativeRel = R_PPC64_IRELATIVE; symbolicRel = R_PPC64_ADDR64; pltHeaderSize = 60; pltEntrySize = 4; ipltEntrySize = 16; // PPC64PltCallStub::size gotHeaderEntriesNum = 1; gotPltHeaderEntriesNum = 2; needsThunks = true; tlsModuleIndexRel = R_PPC64_DTPMOD64; tlsOffsetRel = R_PPC64_DTPREL64; tlsGotRel = R_PPC64_TPREL64; needsMoreStackNonSplit = false; // We need 64K pages (at least under glibc/Linux, the loader won't // set different permissions on a finer granularity than that). defaultMaxPageSize = 65536; // The PPC64 ELF ABI v1 spec, says: // // It is normally desirable to put segments with different characteristics // in separate 256 Mbyte portions of the address space, to give the // operating system full paging flexibility in the 64-bit address space. // // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers // use 0x10000000 as the starting address. defaultImageBase = 0x10000000; write32(trapInstr.data(), 0x7fe00008); } int PPC64::getTlsGdRelaxSkip(RelType type) const { // A __tls_get_addr call instruction is marked with 2 relocations: // // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation // R_PPC64_REL24: __tls_get_addr // // After the relaxation we no longer call __tls_get_addr and should skip both // relocations to not create a false dependence on __tls_get_addr being // defined. if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) return 2; return 1; } static uint32_t getEFlags(InputFile *file) { if (file->ekind == ELF64BEKind) return cast>(file)->getObj().getHeader().e_flags; return cast>(file)->getObj().getHeader().e_flags; } // This file implements v2 ABI. This function makes sure that all // object files have v2 or an unspecified version as an ABI version. uint32_t PPC64::calcEFlags() const { for (InputFile *f : ctx.objectFiles) { uint32_t flag = getEFlags(f); if (flag == 1) error(toString(f) + ": ABI version 1 is not supported"); else if (flag > 2) error(toString(f) + ": unrecognized e_flags: " + Twine(flag)); } return 2; } void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_PPC64_TOC16_HA: // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". relocate(loc, rel, val); break; case R_PPC64_TOC16_LO_DS: { // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or // "addi reg, 2, var@toc". uint32_t insn = readFromHalf16(loc); if (getPrimaryOpCode(insn) != LD) error("expected a 'ld' for got-indirect to toc-relative relaxing"); writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000); relocateNoSym(loc, R_PPC64_TOC16_LO, val); break; } case R_PPC64_GOT_PCREL34: { // Clear the first 8 bits of the prefix and the first 6 bits of the // instruction (the primary opcode). uint64_t insn = readPrefixedInstruction(loc); if ((insn & 0xfc000000) != 0xe4000000) error("expected a 'pld' for got-indirect to pc-relative relaxing"); insn &= ~0xff000000fc000000; // Replace the cleared bits with the values for PADDI (0x600000038000000); insn |= 0x600000038000000; writePrefixedInstruction(loc, insn); relocate(loc, rel, val); break; } case R_PPC64_PCREL_OPT: { // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can // be relaxed. The eligibility for the relaxation needs to be determined // on that relocation since this one does not relocate a symbol. uint64_t insn = readPrefixedInstruction(loc); uint32_t accessInsn = read32(loc + rel.addend); uint64_t pcRelInsn = getPCRelativeForm(accessInsn); // This error is not necessary for correctness but is emitted for now // to ensure we don't miss these opportunities in real code. It can be // removed at a later date. if (pcRelInsn == UINT64_C(-1)) { errorOrWarn( "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" + Twine::utohexstr(accessInsn)); break; } int64_t totalDisp = getTotalDisp(insn, accessInsn); if (!isInt<34>(totalDisp)) break; // Displacement doesn't fit. // Convert the PADDI to the prefixed version of accessInsn and convert // accessInsn to a nop. writePrefixedInstruction(loc, pcRelInsn | ((totalDisp & 0x3ffff0000) << 16) | (totalDisp & 0xffff)); write32(loc + rel.addend, NOP); // nop accessInsn. break; } default: llvm_unreachable("unexpected relocation type"); } } void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. // The general dynamic code sequence for a global `x` will look like: // Instruction Relocation Symbol // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x // R_PPC64_REL24 __tls_get_addr // nop None None // Relaxing to local exec entails converting: // addis r3, r2, x@got@tlsgd@ha into nop // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha // bl __tls_get_addr(x@tlsgd) into nop // nop into addi r3, r3, x@tprel@l switch (rel.type) { case R_PPC64_GOT_TLSGD16_HA: writeFromHalf16(loc, NOP); break; case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSGD16_LO: writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); break; case R_PPC64_GOT_TLSGD_PCREL34: // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to // paddi r3, r13, x@tprel, 0 writePrefixedInstruction(loc, 0x06000000386d0000); relocateNoSym(loc, R_PPC64_TPREL34, val); break; case R_PPC64_TLSGD: { // PC Relative Relaxation: // Relax from bl __tls_get_addr@notoc(x@tlsgd) to // nop // TOC Relaxation: // Relax from bl __tls_get_addr(x@tlsgd) // nop // to // nop // addi r3, r3, x@tprel@l const uintptr_t locAsInt = reinterpret_cast(loc); if (locAsInt % 4 == 0) { write32(loc, NOP); // nop write32(loc + 4, 0x38630000); // addi r3, r3 // Since we are relocating a half16 type relocation and Loc + 4 points to // the start of an instruction we need to advance the buffer by an extra // 2 bytes on BE. relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0), R_PPC64_TPREL16_LO, val); } else if (locAsInt % 4 == 1) { write32(loc - 1, NOP); } else { errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); } break; } default: llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); } } void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. // The local dynamic code sequence for a global `x` will look like: // Instruction Relocation Symbol // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x // R_PPC64_REL24 __tls_get_addr // nop None None // Relaxing to local exec entails converting: // addis r3, r2, x@got@tlsld@ha into nop // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 // bl __tls_get_addr(x@tlsgd) into nop // nop into addi r3, r3, 4096 switch (rel.type) { case R_PPC64_GOT_TLSLD16_HA: writeFromHalf16(loc, NOP); break; case R_PPC64_GOT_TLSLD16_LO: writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0 break; case R_PPC64_GOT_TLSLD_PCREL34: // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to // paddi r3, r13, 0x1000, 0 writePrefixedInstruction(loc, 0x06000000386d1000); break; case R_PPC64_TLSLD: { // PC Relative Relaxation: // Relax from bl __tls_get_addr@notoc(x@tlsld) // to // nop // TOC Relaxation: // Relax from bl __tls_get_addr(x@tlsld) // nop // to // nop // addi r3, r3, 4096 const uintptr_t locAsInt = reinterpret_cast(loc); if (locAsInt % 4 == 0) { write32(loc, NOP); write32(loc + 4, 0x38631000); // addi r3, r3, 4096 } else if (locAsInt % 4 == 1) { write32(loc - 1, NOP); } else { errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment"); } break; } case R_PPC64_DTPREL16: case R_PPC64_DTPREL16_HA: case R_PPC64_DTPREL16_HI: case R_PPC64_DTPREL16_DS: case R_PPC64_DTPREL16_LO: case R_PPC64_DTPREL16_LO_DS: case R_PPC64_DTPREL34: relocate(loc, rel, val); break; default: llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); } } // Map X-Form instructions to their DS-Form counterparts, if applicable. // The full encoding is returned here to distinguish between the different // DS-Form instructions. unsigned elf::getPPCDSFormOp(unsigned secondaryOp) { switch (secondaryOp) { case LWAX: return (LWA << 26) | 0x2; case LDX: return LD << 26; case STDX: return STD << 26; default: return 0; } } unsigned elf::getPPCDFormOp(unsigned secondaryOp) { switch (secondaryOp) { case LBZX: return LBZ << 26; case LHZX: return LHZ << 26; case LWZX: return LWZ << 26; case STBX: return STB << 26; case STHX: return STH << 26; case STWX: return STW << 26; case LHAX: return LHA << 26; case LFSX: return LFS << 26; case LFDX: return LFD << 26; case STFSX: return STFS << 26; case STFDX: return STFD << 26; case ADD: return ADDI << 26; default: return 0; } } void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { // The initial exec code sequence for a global `x` will look like: // Instruction Relocation Symbol // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x // add r9, r9, x@tls R_PPC64_TLS x // Relaxing to local exec entails converting: // addis r9, r2, x@got@tprel@ha into nop // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha // add r9, r9, x@tls into addi r9, r9, x@tprel@l // x@tls R_PPC64_TLS is a relocation which does not compute anything, // it is replaced with r13 (thread pointer). // The add instruction in the initial exec sequence has multiple variations // that need to be handled. If we are building an address it will use an add // instruction, if we are accessing memory it will use any of the X-form // indexed load or store instructions. unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0; switch (rel.type) { case R_PPC64_GOT_TPREL16_HA: write32(loc - offset, NOP); break; case R_PPC64_GOT_TPREL16_LO_DS: case R_PPC64_GOT_TPREL16_DS: { uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13 relocateNoSym(loc, R_PPC64_TPREL16_HA, val); break; } case R_PPC64_GOT_TPREL_PCREL34: { const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000; // paddi RT(from pld), r13, symbol@tprel, 0 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT); relocateNoSym(loc, R_PPC64_TPREL34, val); break; } case R_PPC64_TLS: { const uintptr_t locAsInt = reinterpret_cast(loc); if (locAsInt % 4 == 0) { uint32_t primaryOp = getPrimaryOpCode(read32(loc)); if (primaryOp != 31) error("unrecognized instruction for IE to LE R_PPC64_TLS"); uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30 uint32_t dFormOp = getPPCDFormOp(secondaryOp); uint32_t finalReloc; if (dFormOp == 0) { // Expecting a DS-Form instruction. dFormOp = getPPCDSFormOp(secondaryOp); if (dFormOp == 0) error("unrecognized instruction for IE to LE R_PPC64_TLS"); finalReloc = R_PPC64_TPREL16_LO_DS; } else finalReloc = R_PPC64_TPREL16_LO; write32(loc, dFormOp | (read32(loc) & 0x03ff0000)); relocateNoSym(loc + offset, finalReloc, val); } else if (locAsInt % 4 == 1) { // If the offset is not 4 byte aligned then we have a PCRel type reloc. // This version of the relocation is offset by one byte from the // instruction it references. uint32_t tlsInstr = read32(loc - 1); uint32_t primaryOp = getPrimaryOpCode(tlsInstr); if (primaryOp != 31) errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 // The add is a special case and should be turned into a nop. The paddi // that comes before it will already have computed the address of the // symbol. if (secondaryOp == 266) { // Check if the add uses the same result register as the input register. uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 if (ra == rt) { write32(loc - 1, NOP); } else { // mr rt, ra write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); } } else { uint32_t dFormOp = getPPCDFormOp(secondaryOp); if (dFormOp == 0) { // Expecting a DS-Form instruction. dFormOp = getPPCDSFormOp(secondaryOp); if (dFormOp == 0) errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS"); } write32(loc - 1, (dFormOp | (tlsInstr & 0x03ff0000))); } } else { errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte " "offset from 4 byte aligned"); } break; } default: llvm_unreachable("unknown relocation for IE to LE"); break; } } RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { switch (type) { case R_PPC64_NONE: return R_NONE; case R_PPC64_ADDR16: case R_PPC64_ADDR16_DS: case R_PPC64_ADDR16_HA: case R_PPC64_ADDR16_HI: case R_PPC64_ADDR16_HIGH: case R_PPC64_ADDR16_HIGHER: case R_PPC64_ADDR16_HIGHERA: case R_PPC64_ADDR16_HIGHEST: case R_PPC64_ADDR16_HIGHESTA: case R_PPC64_ADDR16_LO: case R_PPC64_ADDR16_LO_DS: case R_PPC64_ADDR32: case R_PPC64_ADDR64: return R_ABS; case R_PPC64_GOT16: case R_PPC64_GOT16_DS: case R_PPC64_GOT16_HA: case R_PPC64_GOT16_HI: case R_PPC64_GOT16_LO: case R_PPC64_GOT16_LO_DS: return R_GOT_OFF; case R_PPC64_TOC16: case R_PPC64_TOC16_DS: case R_PPC64_TOC16_HI: case R_PPC64_TOC16_LO: return R_GOTREL; case R_PPC64_GOT_PCREL34: case R_PPC64_GOT_TPREL_PCREL34: case R_PPC64_PCREL_OPT: return R_GOT_PC; case R_PPC64_TOC16_HA: case R_PPC64_TOC16_LO_DS: return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL; case R_PPC64_TOC: return R_PPC64_TOCBASE; case R_PPC64_REL14: case R_PPC64_REL24: return R_PPC64_CALL_PLT; case R_PPC64_REL24_NOTOC: return R_PLT_PC; case R_PPC64_REL16_LO: case R_PPC64_REL16_HA: case R_PPC64_REL16_HI: case R_PPC64_REL32: case R_PPC64_REL64: case R_PPC64_PCREL34: return R_PC; case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSGD16_HA: case R_PPC64_GOT_TLSGD16_HI: case R_PPC64_GOT_TLSGD16_LO: return R_TLSGD_GOT; case R_PPC64_GOT_TLSGD_PCREL34: return R_TLSGD_PC; case R_PPC64_GOT_TLSLD16: case R_PPC64_GOT_TLSLD16_HA: case R_PPC64_GOT_TLSLD16_HI: case R_PPC64_GOT_TLSLD16_LO: return R_TLSLD_GOT; case R_PPC64_GOT_TLSLD_PCREL34: return R_TLSLD_PC; case R_PPC64_GOT_TPREL16_HA: case R_PPC64_GOT_TPREL16_LO_DS: case R_PPC64_GOT_TPREL16_DS: case R_PPC64_GOT_TPREL16_HI: return R_GOT_OFF; case R_PPC64_GOT_DTPREL16_HA: case R_PPC64_GOT_DTPREL16_LO_DS: case R_PPC64_GOT_DTPREL16_DS: case R_PPC64_GOT_DTPREL16_HI: return R_TLSLD_GOT_OFF; case R_PPC64_TPREL16: case R_PPC64_TPREL16_HA: case R_PPC64_TPREL16_LO: case R_PPC64_TPREL16_HI: case R_PPC64_TPREL16_DS: case R_PPC64_TPREL16_LO_DS: case R_PPC64_TPREL16_HIGHER: case R_PPC64_TPREL16_HIGHERA: case R_PPC64_TPREL16_HIGHEST: case R_PPC64_TPREL16_HIGHESTA: case R_PPC64_TPREL34: return R_TPREL; case R_PPC64_DTPREL16: case R_PPC64_DTPREL16_DS: case R_PPC64_DTPREL16_HA: case R_PPC64_DTPREL16_HI: case R_PPC64_DTPREL16_HIGHER: case R_PPC64_DTPREL16_HIGHERA: case R_PPC64_DTPREL16_HIGHEST: case R_PPC64_DTPREL16_HIGHESTA: case R_PPC64_DTPREL16_LO: case R_PPC64_DTPREL16_LO_DS: case R_PPC64_DTPREL64: case R_PPC64_DTPREL34: return R_DTPREL; case R_PPC64_TLSGD: return R_TLSDESC_CALL; case R_PPC64_TLSLD: return R_TLSLD_HINT; case R_PPC64_TLS: return R_TLSIE_HINT; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } RelType PPC64::getDynRel(RelType type) const { if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) return R_PPC64_ADDR64; return R_PPC64_NONE; } int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const { switch (type) { case R_PPC64_NONE: case R_PPC64_GLOB_DAT: case R_PPC64_JMP_SLOT: return 0; case R_PPC64_REL32: return SignExtend64<32>(read32(buf)); case R_PPC64_ADDR64: case R_PPC64_REL64: case R_PPC64_RELATIVE: case R_PPC64_IRELATIVE: case R_PPC64_DTPMOD64: case R_PPC64_DTPREL64: case R_PPC64_TPREL64: return read64(buf); default: internalLinkerError(getErrorLocation(buf), "cannot read addend for relocation " + toString(type)); return 0; } } void PPC64::writeGotHeader(uint8_t *buf) const { write64(buf, getPPC64TocBase()); } void PPC64::writePltHeader(uint8_t *buf) const { // The generic resolver stub goes first. write32(buf + 0, 0x7c0802a6); // mflr r0 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> write32(buf + 8, 0x7d6802a6); // mflr r11 write32(buf + 12, 0x7c0803a6); // mtlr r0 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12 write32(buf + 20, 0x380cffcc); // subi r0,r12,52 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2 write32(buf + 28, 0xe98b002c); // ld r12,44(r11) write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11 write32(buf + 36, 0xe98b0000); // ld r12,0(r11) write32(buf + 40, 0xe96b0008); // ld r11,8(r11) write32(buf + 44, 0x7d8903a6); // mtctr r12 write32(buf + 48, 0x4e800420); // bctr // The 'bcl' instruction will set the link register to the address of the // following instruction ('mflr r11'). Here we store the offset from that // instruction to the first entry in the GotPlt section. int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8); write64(buf + 52, gotPltOffset); } void PPC64::writePlt(uint8_t *buf, const Symbol &sym, uint64_t /*pltEntryAddr*/) const { int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize; // bl __glink_PLTresolve write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc)); } void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, uint64_t /*pltEntryAddr*/) const { writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase()); } static std::pair toAddr16Rel(RelType type, uint64_t val) { // Relocations relative to the toc-base need to be adjusted by the Toc offset. uint64_t tocBiasedVal = val - ppc64TocOffset; // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; switch (type) { // TOC biased relocation. case R_PPC64_GOT16: case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSLD16: case R_PPC64_TOC16: return {R_PPC64_ADDR16, tocBiasedVal}; case R_PPC64_GOT16_DS: case R_PPC64_TOC16_DS: case R_PPC64_GOT_TPREL16_DS: case R_PPC64_GOT_DTPREL16_DS: return {R_PPC64_ADDR16_DS, tocBiasedVal}; case R_PPC64_GOT16_HA: case R_PPC64_GOT_TLSGD16_HA: case R_PPC64_GOT_TLSLD16_HA: case R_PPC64_GOT_TPREL16_HA: case R_PPC64_GOT_DTPREL16_HA: case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, tocBiasedVal}; case R_PPC64_GOT16_HI: case R_PPC64_GOT_TLSGD16_HI: case R_PPC64_GOT_TLSLD16_HI: case R_PPC64_GOT_TPREL16_HI: case R_PPC64_GOT_DTPREL16_HI: case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, tocBiasedVal}; case R_PPC64_GOT16_LO: case R_PPC64_GOT_TLSGD16_LO: case R_PPC64_GOT_TLSLD16_LO: case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, tocBiasedVal}; case R_PPC64_GOT16_LO_DS: case R_PPC64_TOC16_LO_DS: case R_PPC64_GOT_TPREL16_LO_DS: case R_PPC64_GOT_DTPREL16_LO_DS: return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; // Dynamic Thread pointer biased relocation types. case R_PPC64_DTPREL16: return {R_PPC64_ADDR16, dtpBiasedVal}; case R_PPC64_DTPREL16_DS: return {R_PPC64_ADDR16_DS, dtpBiasedVal}; case R_PPC64_DTPREL16_HA: return {R_PPC64_ADDR16_HA, dtpBiasedVal}; case R_PPC64_DTPREL16_HI: return {R_PPC64_ADDR16_HI, dtpBiasedVal}; case R_PPC64_DTPREL16_HIGHER: return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; case R_PPC64_DTPREL16_HIGHERA: return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; case R_PPC64_DTPREL16_HIGHEST: return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; case R_PPC64_DTPREL16_HIGHESTA: return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; case R_PPC64_DTPREL16_LO: return {R_PPC64_ADDR16_LO, dtpBiasedVal}; case R_PPC64_DTPREL16_LO_DS: return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; case R_PPC64_DTPREL64: return {R_PPC64_ADDR64, dtpBiasedVal}; default: return {type, val}; } } static bool isTocOptType(RelType type) { switch (type) { case R_PPC64_GOT16_HA: case R_PPC64_GOT16_LO_DS: case R_PPC64_TOC16_HA: case R_PPC64_TOC16_LO_DS: case R_PPC64_TOC16_LO: return true; default: return false; } } void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { RelType type = rel.type; bool shouldTocOptimize = isTocOptType(type); // For dynamic thread pointer relative, toc-relative, and got-indirect // relocations, proceed in terms of the corresponding ADDR16 relocation type. std::tie(type, val) = toAddr16Rel(type, val); switch (type) { case R_PPC64_ADDR14: { checkAlignment(loc, val, 4, rel); // Preserve the AA/LK bits in the branch instruction uint8_t aalk = loc[3]; write16(loc + 2, (aalk & 3) | (val & 0xfffc)); break; } case R_PPC64_ADDR16: checkIntUInt(loc, val, 16, rel); write16(loc, val); break; case R_PPC64_ADDR32: checkIntUInt(loc, val, 32, rel); write32(loc, val); break; case R_PPC64_ADDR16_DS: case R_PPC64_TPREL16_DS: { checkInt(loc, val, 16, rel); // DQ-form instructions use bits 28-31 as part of the instruction encoding // DS-form instructions only use bits 30-31. uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3; checkAlignment(loc, lo(val), mask + 1, rel); write16(loc, (read16(loc) & mask) | lo(val)); } break; case R_PPC64_ADDR16_HA: case R_PPC64_REL16_HA: case R_PPC64_TPREL16_HA: if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) writeFromHalf16(loc, NOP); else { checkInt(loc, val + 0x8000, 32, rel); write16(loc, ha(val)); } break; case R_PPC64_ADDR16_HI: case R_PPC64_REL16_HI: case R_PPC64_TPREL16_HI: checkInt(loc, val, 32, rel); write16(loc, hi(val)); break; case R_PPC64_ADDR16_HIGH: write16(loc, hi(val)); break; case R_PPC64_ADDR16_HIGHER: case R_PPC64_TPREL16_HIGHER: write16(loc, higher(val)); break; case R_PPC64_ADDR16_HIGHERA: case R_PPC64_TPREL16_HIGHERA: write16(loc, highera(val)); break; case R_PPC64_ADDR16_HIGHEST: case R_PPC64_TPREL16_HIGHEST: write16(loc, highest(val)); break; case R_PPC64_ADDR16_HIGHESTA: case R_PPC64_TPREL16_HIGHESTA: write16(loc, highesta(val)); break; case R_PPC64_ADDR16_LO: case R_PPC64_REL16_LO: case R_PPC64_TPREL16_LO: // When the high-adjusted part of a toc relocation evaluates to 0, it is // changed into a nop. The lo part then needs to be updated to use the // toc-pointer register r2, as the base register. if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { uint32_t insn = readFromHalf16(loc); if (isInstructionUpdateForm(insn)) error(getErrorLocation(loc) + "can't toc-optimize an update instruction: 0x" + utohexstr(insn)); writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val)); } else { write16(loc, lo(val)); } break; case R_PPC64_ADDR16_LO_DS: case R_PPC64_TPREL16_LO_DS: { // DQ-form instructions use bits 28-31 as part of the instruction encoding // DS-form instructions only use bits 30-31. uint32_t insn = readFromHalf16(loc); uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3; checkAlignment(loc, lo(val), mask + 1, rel); if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) { // When the high-adjusted part of a toc relocation evaluates to 0, it is // changed into a nop. The lo part then needs to be updated to use the toc // pointer register r2, as the base register. if (isInstructionUpdateForm(insn)) error(getErrorLocation(loc) + "Can't toc-optimize an update instruction: 0x" + Twine::utohexstr(insn)); insn &= 0xffe00000 | mask; writeFromHalf16(loc, insn | 0x00020000 | lo(val)); } else { write16(loc, (read16(loc) & mask) | lo(val)); } } break; case R_PPC64_TPREL16: checkInt(loc, val, 16, rel); write16(loc, val); break; case R_PPC64_REL32: checkInt(loc, val, 32, rel); write32(loc, val); break; case R_PPC64_ADDR64: case R_PPC64_REL64: case R_PPC64_TOC: write64(loc, val); break; case R_PPC64_REL14: { uint32_t mask = 0x0000FFFC; checkInt(loc, val, 16, rel); checkAlignment(loc, val, 4, rel); write32(loc, (read32(loc) & ~mask) | (val & mask)); break; } case R_PPC64_REL24: case R_PPC64_REL24_NOTOC: { uint32_t mask = 0x03FFFFFC; checkInt(loc, val, 26, rel); checkAlignment(loc, val, 4, rel); write32(loc, (read32(loc) & ~mask) | (val & mask)); break; } case R_PPC64_DTPREL64: write64(loc, val - dynamicThreadPointerOffset); break; case R_PPC64_DTPREL34: // The Dynamic Thread Vector actually points 0x8000 bytes past the start // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first // need to subtract that value then fallthrough to the general case. val -= dynamicThreadPointerOffset; [[fallthrough]]; case R_PPC64_PCREL34: case R_PPC64_GOT_PCREL34: case R_PPC64_GOT_TLSGD_PCREL34: case R_PPC64_GOT_TLSLD_PCREL34: case R_PPC64_GOT_TPREL_PCREL34: case R_PPC64_TPREL34: { const uint64_t si0Mask = 0x00000003ffff0000; const uint64_t si1Mask = 0x000000000000ffff; const uint64_t fullMask = 0x0003ffff0000ffff; checkInt(loc, val, 34, rel); uint64_t instr = readPrefixedInstruction(loc) & ~fullMask; writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) | (val & si1Mask)); break; } // If we encounter a PCREL_OPT relocation that we won't optimize. case R_PPC64_PCREL_OPT: break; default: llvm_unreachable("unknown relocation"); } } bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const { if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && type != R_PPC64_REL24_NOTOC) return false; // If a function is in the Plt it needs to be called with a call-stub. if (s.isInPlt()) return true; // This check looks at the st_other bits of the callee with relocation // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee // clobbers the TOC and we need an R2 save stub. if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) return true; if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) return true; // An undefined weak symbol not in a PLT does not need a thunk. If it is // hidden, its binding has been converted to local, so we just check // isUndefined() here. A undefined non-weak symbol has been errored. if (s.isUndefined()) return false; // If the offset exceeds the range of the branch type then it will need // a range-extending thunk. // See the comment in getRelocTargetVA() about R_PPC64_CALL. return !inBranchRange(type, branchAddr, s.getVA(a) + getPPC64GlobalEntryToLocalEntryOffset(s.stOther)); } uint32_t PPC64::getThunkSectionSpacing() const { // See comment in Arch/ARM.cpp for a more detailed explanation of // getThunkSectionSpacing(). For PPC64 we pick the constant here based on // R_PPC64_REL24, which is used by unconditional branch instructions. // 0x2000000 = (1 << 24-1) * 4 return 0x2000000; } bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { int64_t offset = dst - src; if (type == R_PPC64_REL14) return isInt<16>(offset); if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) return isInt<26>(offset); llvm_unreachable("unsupported relocation type used in branch"); } RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) return R_RELAX_TLS_GD_TO_IE_GOT_OFF; if (expr == R_RELAX_TLS_LD_TO_LE) return R_RELAX_TLS_LD_TO_LE_ABS; return expr; } RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, const uint8_t *loc) const { if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && config->pcRelOptimize) { // It only makes sense to optimize pld since paddi means that the address // of the object in the GOT is required rather than the object itself. if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000) return R_PPC64_RELAX_GOT_PC; } return R_GOT_PC; } // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. // The general dynamic code sequence for a global `x` uses 4 instructions. // Instruction Relocation Symbol // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x // R_PPC64_REL24 __tls_get_addr // nop None None // // Relaxing to initial-exec entails: // 1) Convert the addis/addi pair that builds the address of the tls_index // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. // 2) Convert the call to __tls_get_addr to a nop. // 3) Convert the nop following the call to an add of the loaded offset to the // thread pointer. // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is // used as the relaxation hint for both steps 2 and 3. void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_PPC64_GOT_TLSGD16_HA: // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to // addis rT, r2, sym@got@tprel@ha. relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val); return; case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSGD16_LO: { // Relax from addi r3, rA, sym@got@tlsgd@l to // ld r3, sym@got@tprel@l(rA) uint32_t ra = (readFromHalf16(loc) & (0x1f << 16)); writeFromHalf16(loc, 0xe8600000 | ra); relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val); return; } case R_PPC64_GOT_TLSGD_PCREL34: { // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to // pld r3, sym@got@tprel@pcrel writePrefixedInstruction(loc, 0x04100000e4600000); relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val); return; } case R_PPC64_TLSGD: { // PC Relative Relaxation: // Relax from bl __tls_get_addr@notoc(x@tlsgd) to // nop // TOC Relaxation: // Relax from bl __tls_get_addr(x@tlsgd) // nop // to // nop // add r3, r3, r13 const uintptr_t locAsInt = reinterpret_cast(loc); if (locAsInt % 4 == 0) { write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 } else if (locAsInt % 4 == 1) { // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 write32(loc - 1, 0x7c636a14); } else { errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment"); } return; } default: llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); } } void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { uint64_t secAddr = sec.getOutputSection()->addr; if (auto *s = dyn_cast(&sec)) secAddr += s->outSecOff; else if (auto *ehIn = dyn_cast(&sec)) secAddr += ehIn->getParent()->outSecOff; uint64_t lastPPCRelaxedRelocOff = -1; for (const Relocation &rel : sec.relocs()) { uint8_t *loc = buf + rel.offset; const uint64_t val = sec.getRelocTargetVA(sec.file, rel.type, rel.addend, secAddr + rel.offset, *rel.sym, rel.expr); switch (rel.expr) { case R_PPC64_RELAX_GOT_PC: { // The R_PPC64_PCREL_OPT relocation must appear immediately after // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. // We can only relax R_PPC64_PCREL_OPT if we have also relaxed // the associated R_PPC64_GOT_PCREL34 since only the latter has an // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 // and only relax the other if the saved offset matches. if (rel.type == R_PPC64_GOT_PCREL34) lastPPCRelaxedRelocOff = rel.offset; if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff) break; relaxGot(loc, rel, val); break; } case R_PPC64_RELAX_TOC: // rel.sym refers to the STT_SECTION symbol associated to the .toc input // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC // entry, there may be R_PPC64_TOC16_HA not paired with // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation // opportunities but is safe. if (ppc64noTocRelax.count({rel.sym, rel.addend}) || !tryRelaxPPC64TocIndirection(rel, loc)) relocate(loc, rel, val); break; case R_PPC64_CALL: // If this is a call to __tls_get_addr, it may be part of a TLS // sequence that has been relaxed and turned into a nop. In this // case, we don't want to handle it as a call. if (read32(loc) == 0x60000000) // nop break; // Patch a nop (0x60000000) to a ld. if (rel.sym->needsTocRestore()) { // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for // recursive calls even if the function is preemptible. This is not // wrong in the common case where the function is not preempted at // runtime. Just ignore. if ((rel.offset + 8 > sec.content().size() || read32(loc + 4) != 0x60000000) && rel.sym->file != sec.file) { // Use substr(6) to remove the "__plt_" prefix. errorOrWarn(getErrorLocation(loc) + "call to " + lld::toString(*rel.sym).substr(6) + " lacks nop, can't restore toc"); break; } write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1) } relocate(loc, rel, val); break; case R_RELAX_TLS_GD_TO_IE: case R_RELAX_TLS_GD_TO_IE_GOT_OFF: relaxTlsGdToIe(loc, rel, val); break; case R_RELAX_TLS_GD_TO_LE: relaxTlsGdToLe(loc, rel, val); break; case R_RELAX_TLS_LD_TO_LE_ABS: relaxTlsLdToLe(loc, rel, val); break; case R_RELAX_TLS_IE_TO_LE: relaxTlsIeToLe(loc, rel, val); break; default: relocate(loc, rel, val); break; } } } // The prologue for a split-stack function is expected to look roughly // like this: // .Lglobal_entry_point: // # TOC pointer initialization. // ... // .Llocal_entry_point: // # load the __private_ss member of the threads tcbhead. // ld r0,-0x7000-64(r13) // # subtract the functions stack size from the stack pointer. // addis r12, r1, ha(-stack-frame size) // addi r12, r12, l(-stack-frame size) // # compare needed to actual and branch to allocate_more_stack if more // # space is needed, otherwise fallthrough to 'normal' function body. // cmpld cr7,r12,r0 // blt- cr7, .Lallocate_more_stack // // -) The allocate_more_stack block might be placed after the split-stack // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` // instead. // -) If either the addis or addi is not needed due to the stack size being // smaller then 32K or a multiple of 64K they will be replaced with a nop, // but there will always be 2 instructions the linker can overwrite for the // adjusted stack size. // // The linkers job here is to increase the stack size used in the addis/addi // pair by split-stack-size-adjust. // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, uint8_t stOther) const { // If the caller has a global entry point adjust the buffer past it. The start // of the split-stack prologue will be at the local entry point. loc += getPPC64GlobalEntryToLocalEntryOffset(stOther); // At the very least we expect to see a load of some split-stack data from the // tcb, and 2 instructions that calculate the ending stack address this // function will require. If there is not enough room for at least 3 // instructions it can't be a split-stack prologue. if (loc + 12 >= end) return false; // First instruction must be `ld r0, -0x7000-64(r13)` if (read32(loc) != 0xe80d8fc0) return false; int16_t hiImm = 0; int16_t loImm = 0; // First instruction can be either an addis if the frame size is larger then // 32K, or an addi if the size is less then 32K. int32_t firstInstr = read32(loc + 4); if (getPrimaryOpCode(firstInstr) == 15) { hiImm = firstInstr & 0xFFFF; } else if (getPrimaryOpCode(firstInstr) == 14) { loImm = firstInstr & 0xFFFF; } else { return false; } // Second instruction is either an addi or a nop. If the first instruction was // an addi then LoImm is set and the second instruction must be a nop. uint32_t secondInstr = read32(loc + 8); if (!loImm && getPrimaryOpCode(secondInstr) == 14) { loImm = secondInstr & 0xFFFF; } else if (secondInstr != NOP) { return false; } // The register operands of the first instruction should be the stack-pointer // (r1) as the input (RA) and r12 as the output (RT). If the second // instruction is not a nop, then it should use r12 as both input and output. auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, uint8_t expectedRA) { return ((instr & 0x3E00000) >> 21 == expectedRT) && ((instr & 0x1F0000) >> 16 == expectedRA); }; if (!checkRegOperands(firstInstr, 12, 1)) return false; if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) return false; int32_t stackFrameSize = (hiImm * 65536) + loImm; // Check that the adjusted size doesn't overflow what we can represent with 2 // instructions. if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) { error(getErrorLocation(loc) + "split-stack prologue adjustment overflows"); return false; } int32_t adjustedStackFrameSize = stackFrameSize - config->splitStackAdjustSize; loImm = adjustedStackFrameSize & 0xFFFF; hiImm = (adjustedStackFrameSize + 0x8000) >> 16; if (hiImm) { write32(loc + 4, 0x3D810000 | (uint16_t)hiImm); // If the low immediate is zero the second instruction will be a nop. secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; write32(loc + 8, secondInstr); } else { // addi r12, r1, imm write32(loc + 4, (0x39810000) | (uint16_t)loImm); write32(loc + 8, NOP); } return true; } TargetInfo *elf::getPPC64TargetInfo() { static PPC64 target; return ⌖ }