//===- Filesystem.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a few utility functions to handle files. // //===----------------------------------------------------------------------===// #include "lld/Common/Filesystem.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" #include "llvm/Support/TimeProfiler.h" #if LLVM_ON_UNIX #include #endif #include using namespace llvm; using namespace lld; // Removes a given file asynchronously. This is a performance hack, // so remove this when operating systems are improved. // // On Linux (and probably on other Unix-like systems), unlink(2) is a // noticeably slow system call. As of 2016, unlink takes 250 // milliseconds to remove a 1 GB file on ext4 filesystem on my machine. // // To create a new result file, we first remove existing file. So, if // you repeatedly link a 1 GB program in a regular compile-link-debug // cycle, every cycle wastes 250 milliseconds only to remove a file. // Since LLD can link a 1 GB binary in about 5 seconds, that waste // actually counts. // // This function spawns a background thread to remove the file. // The calling thread returns almost immediately. void lld::unlinkAsync(StringRef path) { if (!sys::fs::exists(path) || !sys::fs::is_regular_file(path)) return; // Removing a file is async on windows. #if defined(_WIN32) // On Windows co-operative programs can be expected to open LLD's // output in FILE_SHARE_DELETE mode. This allows us to delete the // file (by moving it to a temporary filename and then deleting // it) so that we can link another output file that overwrites // the existing file, even if the current file is in use. // // This is done on a best effort basis - we do not error if the // operation fails. The consequence is merely that the user // experiences an inconvenient work-flow. // // The code here allows LLD to work on all versions of Windows. // However, at Windows 10 1903 it seems that the behavior of // Windows has changed, so that we could simply delete the output // file. This code should be simplified once support for older // versions of Windows is dropped. // // Warning: It seems that the WINVER and _WIN32_WINNT preprocessor // defines affect the behavior of the Windows versions of the calls // we are using here. If this code stops working this is worth // bearing in mind. SmallString<128> tmpName; if (!sys::fs::createUniqueFile(path + "%%%%%%%%.tmp", tmpName)) { if (!sys::fs::rename(path, tmpName)) path = tmpName; else sys::fs::remove(tmpName); } sys::fs::remove(path); #else if (parallel::strategy.ThreadsRequested == 1) return; // We cannot just remove path from a different thread because we are now going // to create path as a new file. // Instead we open the file and unlink it on this thread. The unlink is fast // since the open fd guarantees that it is not removing the last reference. int fd; std::error_code ec = sys::fs::openFileForRead(path, fd); sys::fs::remove(path); if (ec) return; // close and therefore remove TempPath in background. std::mutex m; std::condition_variable cv; bool started = false; std::thread([&, fd] { { std::lock_guard l(m); started = true; cv.notify_all(); } ::close(fd); }).detach(); // GLIBC 2.26 and earlier have race condition that crashes an entire process // if the main thread calls exit(2) while other thread is starting up. std::unique_lock l(m); cv.wait(l, [&] { return started; }); #endif } // Simulate file creation to see if Path is writable. // // Determining whether a file is writable or not is amazingly hard, // and after all the only reliable way of doing that is to actually // create a file. But we don't want to do that in this function // because LLD shouldn't update any file if it will end in a failure. // We also don't want to reimplement heuristics to determine if a // file is writable. So we'll let FileOutputBuffer do the work. // // FileOutputBuffer doesn't touch a destination file until commit() // is called. We use that class without calling commit() to predict // if the given file is writable. std::error_code lld::tryCreateFile(StringRef path) { llvm::TimeTraceScope timeScope("Try create output file"); if (path.empty()) return std::error_code(); if (path == "-") return std::error_code(); return errorToErrorCode(FileOutputBuffer::create(path, 1).takeError()); } // Creates an empty file to and returns a raw_fd_ostream to write to it. std::unique_ptr lld::openFile(StringRef file) { std::error_code ec; auto ret = std::make_unique(file, ec, sys::fs::OpenFlags::OF_None); if (ec) { error("cannot open " + file + ": " + ec.message()); return nullptr; } return ret; } // The merged bitcode after LTO is large. Try opening a file stream that // supports reading, seeking and writing. Such a file allows BitcodeWriter to // flush buffered data to reduce memory consumption. If this fails, open a file // stream that supports only write. std::unique_ptr lld::openLTOOutputFile(StringRef file) { std::error_code ec; std::unique_ptr fs = std::make_unique(file, ec); if (!ec) return fs; return openFile(file); }