// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___FORMAT_FORMATTER_FLOATING_POINT_H #define _LIBCPP___FORMAT_FORMATTER_FLOATING_POINT_H #include <__algorithm/copy_n.h> #include <__algorithm/find.h> #include <__algorithm/max.h> #include <__algorithm/min.h> #include <__algorithm/rotate.h> #include <__algorithm/transform.h> #include <__charconv/chars_format.h> #include <__charconv/to_chars_floating_point.h> #include <__charconv/to_chars_result.h> #include <__concepts/arithmetic.h> #include <__concepts/same_as.h> #include <__config> #include <__format/concepts.h> #include <__format/format_parse_context.h> #include <__format/formatter.h> #include <__format/formatter_integral.h> #include <__format/formatter_output.h> #include <__format/parser_std_format_spec.h> #include <__iterator/concepts.h> #include <__memory/allocator.h> #include <__system_error/errc.h> #include <__type_traits/conditional.h> #include <__utility/move.h> #include <__utility/unreachable.h> #include #include #ifndef _LIBCPP_HAS_NO_LOCALIZATION # include #endif #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD #if _LIBCPP_STD_VER >= 20 namespace __formatter { template _LIBCPP_HIDE_FROM_ABI char* __to_buffer(char* __first, char* __last, _Tp __value) { to_chars_result __r = std::to_chars(__first, __last, __value); _LIBCPP_ASSERT_INTERNAL(__r.ec == errc(0), "Internal buffer too small"); return __r.ptr; } template _LIBCPP_HIDE_FROM_ABI char* __to_buffer(char* __first, char* __last, _Tp __value, chars_format __fmt) { to_chars_result __r = std::to_chars(__first, __last, __value, __fmt); _LIBCPP_ASSERT_INTERNAL(__r.ec == errc(0), "Internal buffer too small"); return __r.ptr; } template _LIBCPP_HIDE_FROM_ABI char* __to_buffer(char* __first, char* __last, _Tp __value, chars_format __fmt, int __precision) { to_chars_result __r = std::to_chars(__first, __last, __value, __fmt, __precision); _LIBCPP_ASSERT_INTERNAL(__r.ec == errc(0), "Internal buffer too small"); return __r.ptr; } // https://en.cppreference.com/w/cpp/language/types#cite_note-1 // float min subnormal: +/-0x1p-149 max: +/- 3.402,823,4 10^38 // double min subnormal: +/-0x1p-1074 max +/- 1.797,693,134,862,315,7 10^308 // long double (x86) min subnormal: +/-0x1p-16446 max: +/- 1.189,731,495,357,231,765,021 10^4932 // // The maximum number of digits required for the integral part is based on the // maximum's value power of 10. Every power of 10 requires one additional // decimal digit. // The maximum number of digits required for the fractional part is based on // the minimal subnormal hexadecimal output's power of 10. Every division of a // fraction's binary 1 by 2, requires one additional decimal digit. // // The maximum size of a formatted value depends on the selected output format. // Ignoring the fact the format string can request a precision larger than the // values maximum required, these values are: // // sign 1 code unit // __max_integral // radix point 1 code unit // __max_fractional // exponent character 1 code unit // sign 1 code unit // __max_fractional_value // ----------------------------------- // total 4 code units extra required. // // TODO FMT Optimize the storage to avoid storing digits that are known to be zero. // https://www.exploringbinary.com/maximum-number-of-decimal-digits-in-binary-floating-point-numbers/ // TODO FMT Add long double specialization when to_chars has proper long double support. template struct __traits; template _LIBCPP_HIDE_FROM_ABI constexpr size_t __float_buffer_size(int __precision) { using _Traits = __traits<_Fp>; return 4 + _Traits::__max_integral + __precision + _Traits::__max_fractional_value; } template <> struct __traits { static constexpr int __max_integral = 38; static constexpr int __max_fractional = 149; static constexpr int __max_fractional_value = 3; static constexpr size_t __stack_buffer_size = 256; static constexpr int __hex_precision_digits = 3; }; template <> struct __traits { static constexpr int __max_integral = 308; static constexpr int __max_fractional = 1074; static constexpr int __max_fractional_value = 4; static constexpr size_t __stack_buffer_size = 1024; static constexpr int __hex_precision_digits = 4; }; /// Helper class to store the conversion buffer. /// /// Depending on the maximum size required for a value, the buffer is allocated /// on the stack or the heap. template class _LIBCPP_TEMPLATE_VIS __float_buffer { using _Traits = __traits<_Fp>; public: // TODO FMT Improve this constructor to do a better estimate. // When using a scientific formatting with a precision of 6 a stack buffer // will always suffice. At the moment that isn't important since floats and // doubles use a stack buffer, unless the precision used in the format string // is large. // When supporting long doubles the __max_integral part becomes 4932 which // may be too much for some platforms. For these cases a better estimate is // required. explicit _LIBCPP_HIDE_FROM_ABI __float_buffer(int __precision) : __precision_(__precision != -1 ? __precision : _Traits::__max_fractional) { // When the precision is larger than _Traits::__max_fractional the digits in // the range (_Traits::__max_fractional, precision] will contain the value // zero. There's no need to request to_chars to write these zeros: // - When the value is large a temporary heap buffer needs to be allocated. // - When to_chars writes the values they need to be "copied" to the output: // - char: std::fill on the output iterator is faster than std::copy. // - wchar_t: same argument as char, but additional std::copy won't work. // The input is always a char buffer, so every char in the buffer needs // to be converted from a char to a wchar_t. if (__precision_ > _Traits::__max_fractional) { __num_trailing_zeros_ = __precision_ - _Traits::__max_fractional; __precision_ = _Traits::__max_fractional; } __size_ = __formatter::__float_buffer_size<_Fp>(__precision_); if (__size_ > _Traits::__stack_buffer_size) // The allocated buffer's contents don't need initialization. __begin_ = allocator{}.allocate(__size_); else __begin_ = __buffer_; } _LIBCPP_HIDE_FROM_ABI ~__float_buffer() { if (__size_ > _Traits::__stack_buffer_size) allocator{}.deallocate(__begin_, __size_); } _LIBCPP_HIDE_FROM_ABI __float_buffer(const __float_buffer&) = delete; _LIBCPP_HIDE_FROM_ABI __float_buffer& operator=(const __float_buffer&) = delete; _LIBCPP_HIDE_FROM_ABI char* begin() const { return __begin_; } _LIBCPP_HIDE_FROM_ABI char* end() const { return __begin_ + __size_; } _LIBCPP_HIDE_FROM_ABI int __precision() const { return __precision_; } _LIBCPP_HIDE_FROM_ABI int __num_trailing_zeros() const { return __num_trailing_zeros_; } _LIBCPP_HIDE_FROM_ABI void __remove_trailing_zeros() { __num_trailing_zeros_ = 0; } _LIBCPP_HIDE_FROM_ABI void __add_trailing_zeros(int __zeros) { __num_trailing_zeros_ += __zeros; } private: int __precision_; int __num_trailing_zeros_{0}; size_t __size_; char* __begin_; char __buffer_[_Traits::__stack_buffer_size]; }; struct __float_result { /// Points at the beginning of the integral part in the buffer. /// /// When there's no sign character this points at the start of the buffer. char* __integral; /// Points at the radix point, when not present it's the same as \ref __last. char* __radix_point; /// Points at the exponent character, when not present it's the same as \ref __last. char* __exponent; /// Points beyond the last written element in the buffer. char* __last; }; /// Finds the position of the exponent character 'e' at the end of the buffer. /// /// Assuming there is an exponent the input will terminate with /// eSdd and eSdddd (S = sign, d = digit) /// /// \returns a pointer to the exponent or __last when not found. constexpr inline _LIBCPP_HIDE_FROM_ABI char* __find_exponent(char* __first, char* __last) { ptrdiff_t __size = __last - __first; if (__size >= 4) { __first = __last - std::min(__size, ptrdiff_t(6)); for (; __first != __last - 3; ++__first) { if (*__first == 'e') return __first; } } return __last; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_default(const __float_buffer<_Fp>& __buffer, _Tp __value, char* __integral) { __float_result __result; __result.__integral = __integral; __result.__last = __formatter::__to_buffer(__integral, __buffer.end(), __value); __result.__exponent = __formatter::__find_exponent(__result.__integral, __result.__last); // Constrains: // - There's at least one decimal digit before the radix point. // - The radix point, when present, is placed before the exponent. __result.__radix_point = std::find(__result.__integral + 1, __result.__exponent, '.'); // When the radix point isn't found its position is the exponent instead of // __result.__last. if (__result.__radix_point == __result.__exponent) __result.__radix_point = __result.__last; // clang-format off _LIBCPP_ASSERT_INTERNAL((__result.__integral != __result.__last) && (__result.__radix_point == __result.__last || *__result.__radix_point == '.') && (__result.__exponent == __result.__last || *__result.__exponent == 'e'), "Post-condition failure."); // clang-format on return __result; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_hexadecimal_lower_case( const __float_buffer<_Fp>& __buffer, _Tp __value, int __precision, char* __integral) { __float_result __result; __result.__integral = __integral; if (__precision == -1) __result.__last = __formatter::__to_buffer(__integral, __buffer.end(), __value, chars_format::hex); else __result.__last = __formatter::__to_buffer(__integral, __buffer.end(), __value, chars_format::hex, __precision); // H = one or more hex-digits // S = sign // D = one or more decimal-digits // When the fractional part is zero and no precision the output is 0p+0 // else the output is 0.HpSD // So testing the second position can differentiate between these two cases. char* __first = __integral + 1; if (*__first == '.') { __result.__radix_point = __first; // One digit is the minimum // 0.hpSd // ^-- last // ^---- integral = end of search // ^-------- start of search // 0123456 // // Four digits is the maximum // 0.hpSdddd // ^-- last // ^---- integral = end of search // ^-------- start of search // 0123456789 static_assert(__traits<_Fp>::__hex_precision_digits <= 4, "Guard against possible underflow."); char* __last = __result.__last - 2; __first = __last - __traits<_Fp>::__hex_precision_digits; __result.__exponent = std::find(__first, __last, 'p'); } else { __result.__radix_point = __result.__last; __result.__exponent = __first; } // clang-format off _LIBCPP_ASSERT_INTERNAL((__result.__integral != __result.__last) && (__result.__radix_point == __result.__last || *__result.__radix_point == '.') && (__result.__exponent != __result.__last && *__result.__exponent == 'p'), "Post-condition failure."); // clang-format on return __result; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_hexadecimal_upper_case( const __float_buffer<_Fp>& __buffer, _Tp __value, int __precision, char* __integral) { __float_result __result = __formatter::__format_buffer_hexadecimal_lower_case(__buffer, __value, __precision, __integral); std::transform(__result.__integral, __result.__exponent, __result.__integral, __hex_to_upper); *__result.__exponent = 'P'; return __result; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_scientific_lower_case( const __float_buffer<_Fp>& __buffer, _Tp __value, int __precision, char* __integral) { __float_result __result; __result.__integral = __integral; __result.__last = __formatter::__to_buffer(__integral, __buffer.end(), __value, chars_format::scientific, __precision); char* __first = __integral + 1; _LIBCPP_ASSERT_INTERNAL(__first != __result.__last, "No exponent present"); if (*__first == '.') { __result.__radix_point = __first; __result.__exponent = __formatter::__find_exponent(__first + 1, __result.__last); } else { __result.__radix_point = __result.__last; __result.__exponent = __first; } // clang-format off _LIBCPP_ASSERT_INTERNAL((__result.__integral != __result.__last) && (__result.__radix_point == __result.__last || *__result.__radix_point == '.') && (__result.__exponent != __result.__last && *__result.__exponent == 'e'), "Post-condition failure."); // clang-format on return __result; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_scientific_upper_case( const __float_buffer<_Fp>& __buffer, _Tp __value, int __precision, char* __integral) { __float_result __result = __formatter::__format_buffer_scientific_lower_case(__buffer, __value, __precision, __integral); *__result.__exponent = 'E'; return __result; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_fixed(const __float_buffer<_Fp>& __buffer, _Tp __value, int __precision, char* __integral) { __float_result __result; __result.__integral = __integral; __result.__last = __formatter::__to_buffer(__integral, __buffer.end(), __value, chars_format::fixed, __precision); // When there's no precision there's no radix point. // Else the radix point is placed at __precision + 1 from the end. // By converting __precision to a bool the subtraction can be done // unconditionally. __result.__radix_point = __result.__last - (__precision + bool(__precision)); __result.__exponent = __result.__last; // clang-format off _LIBCPP_ASSERT_INTERNAL((__result.__integral != __result.__last) && (__result.__radix_point == __result.__last || *__result.__radix_point == '.') && (__result.__exponent == __result.__last), "Post-condition failure."); // clang-format on return __result; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_general_lower_case(__float_buffer<_Fp>& __buffer, _Tp __value, int __precision, char* __integral) { __buffer.__remove_trailing_zeros(); __float_result __result; __result.__integral = __integral; __result.__last = __formatter::__to_buffer(__integral, __buffer.end(), __value, chars_format::general, __precision); char* __first = __integral + 1; if (__first == __result.__last) { __result.__radix_point = __result.__last; __result.__exponent = __result.__last; } else { __result.__exponent = __formatter::__find_exponent(__first, __result.__last); if (__result.__exponent != __result.__last) // In scientific mode if there's a radix point it will always be after // the first digit. (This is the position __first points at). __result.__radix_point = *__first == '.' ? __first : __result.__last; else { // In fixed mode the algorithm truncates trailing spaces and possibly the // radix point. There's no good guess for the position of the radix point // therefore scan the output after the first digit. __result.__radix_point = std::find(__first, __result.__last, '.'); } } // clang-format off _LIBCPP_ASSERT_INTERNAL((__result.__integral != __result.__last) && (__result.__radix_point == __result.__last || *__result.__radix_point == '.') && (__result.__exponent == __result.__last || *__result.__exponent == 'e'), "Post-condition failure."); // clang-format on return __result; } template _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer_general_upper_case(__float_buffer<_Fp>& __buffer, _Tp __value, int __precision, char* __integral) { __float_result __result = __formatter::__format_buffer_general_lower_case(__buffer, __value, __precision, __integral); if (__result.__exponent != __result.__last) *__result.__exponent = 'E'; return __result; } /// Fills the buffer with the data based on the requested formatting. /// /// This function, when needed, turns the characters to upper case and /// determines the "interesting" locations which are returned to the caller. /// /// This means the caller never has to convert the contents of the buffer to /// upper case or search for radix points and the location of the exponent. /// This gives a bit of overhead. The original code didn't do that, but due /// to the number of possible additional work needed to turn this number to /// the proper output the code was littered with tests for upper cases and /// searches for radix points and exponents. /// - When a precision larger than the type's precision is selected /// additional zero characters need to be written before the exponent. /// - alternate form needs to add a radix point when not present. /// - localization needs to do grouping in the integral part. template // TODO FMT _Fp should just be _Tp when to_chars has proper long double support. _LIBCPP_HIDE_FROM_ABI __float_result __format_buffer( __float_buffer<_Fp>& __buffer, _Tp __value, bool __negative, bool __has_precision, __format_spec::__sign __sign, __format_spec::__type __type) { char* __first = __formatter::__insert_sign(__buffer.begin(), __negative, __sign); switch (__type) { case __format_spec::__type::__default: if (__has_precision) return __formatter::__format_buffer_general_lower_case(__buffer, __value, __buffer.__precision(), __first); else return __formatter::__format_buffer_default(__buffer, __value, __first); case __format_spec::__type::__hexfloat_lower_case: return __formatter::__format_buffer_hexadecimal_lower_case( __buffer, __value, __has_precision ? __buffer.__precision() : -1, __first); case __format_spec::__type::__hexfloat_upper_case: return __formatter::__format_buffer_hexadecimal_upper_case( __buffer, __value, __has_precision ? __buffer.__precision() : -1, __first); case __format_spec::__type::__scientific_lower_case: return __formatter::__format_buffer_scientific_lower_case(__buffer, __value, __buffer.__precision(), __first); case __format_spec::__type::__scientific_upper_case: return __formatter::__format_buffer_scientific_upper_case(__buffer, __value, __buffer.__precision(), __first); case __format_spec::__type::__fixed_lower_case: case __format_spec::__type::__fixed_upper_case: return __formatter::__format_buffer_fixed(__buffer, __value, __buffer.__precision(), __first); case __format_spec::__type::__general_lower_case: return __formatter::__format_buffer_general_lower_case(__buffer, __value, __buffer.__precision(), __first); case __format_spec::__type::__general_upper_case: return __formatter::__format_buffer_general_upper_case(__buffer, __value, __buffer.__precision(), __first); default: _LIBCPP_ASSERT_INTERNAL(false, "The parser should have validated the type"); __libcpp_unreachable(); } } # ifndef _LIBCPP_HAS_NO_LOCALIZATION template _LIBCPP_HIDE_FROM_ABI _OutIt __format_locale_specific_form( _OutIt __out_it, const __float_buffer<_Fp>& __buffer, const __float_result& __result, std::locale __loc, __format_spec::__parsed_specifications<_CharT> __specs) { const auto& __np = std::use_facet>(__loc); string __grouping = __np.grouping(); char* __first = __result.__integral; // When no radix point or exponent are present __last will be __result.__last. char* __last = std::min(__result.__radix_point, __result.__exponent); ptrdiff_t __digits = __last - __first; if (!__grouping.empty()) { if (__digits <= __grouping[0]) __grouping.clear(); else __grouping = __formatter::__determine_grouping(__digits, __grouping); } ptrdiff_t __size = __result.__last - __buffer.begin() + // Formatted string __buffer.__num_trailing_zeros() + // Not yet rendered zeros __grouping.size() - // Grouping contains one !__grouping.empty(); // additional character __formatter::__padding_size_result __padding = {0, 0}; bool __zero_padding = __specs.__alignment_ == __format_spec::__alignment::__zero_padding; if (__size < __specs.__width_) { if (__zero_padding) { __specs.__alignment_ = __format_spec::__alignment::__right; __specs.__fill_.__data[0] = _CharT('0'); } __padding = __formatter::__padding_size(__size, __specs.__width_, __specs.__alignment_); } // sign and (zero padding or alignment) if (__zero_padding && __first != __buffer.begin()) *__out_it++ = *__buffer.begin(); __out_it = __formatter::__fill(std::move(__out_it), __padding.__before_, __specs.__fill_); if (!__zero_padding && __first != __buffer.begin()) *__out_it++ = *__buffer.begin(); // integral part if (__grouping.empty()) { __out_it = __formatter::__copy(__first, __digits, std::move(__out_it)); } else { auto __r = __grouping.rbegin(); auto __e = __grouping.rend() - 1; _CharT __sep = __np.thousands_sep(); // The output is divided in small groups of numbers to write: // - A group before the first separator. // - A separator and a group, repeated for the number of separators. // - A group after the last separator. // This loop achieves that process by testing the termination condition // midway in the loop. while (true) { __out_it = __formatter::__copy(__first, *__r, std::move(__out_it)); __first += *__r; if (__r == __e) break; ++__r; *__out_it++ = __sep; } } // fractional part if (__result.__radix_point != __result.__last) { *__out_it++ = __np.decimal_point(); __out_it = __formatter::__copy(__result.__radix_point + 1, __result.__exponent, std::move(__out_it)); __out_it = __formatter::__fill(std::move(__out_it), __buffer.__num_trailing_zeros(), _CharT('0')); } // exponent if (__result.__exponent != __result.__last) __out_it = __formatter::__copy(__result.__exponent, __result.__last, std::move(__out_it)); // alignment return __formatter::__fill(std::move(__out_it), __padding.__after_, __specs.__fill_); } # endif // _LIBCPP_HAS_NO_LOCALIZATION template _LIBCPP_HIDE_FROM_ABI _OutIt __format_floating_point_non_finite( _OutIt __out_it, __format_spec::__parsed_specifications<_CharT> __specs, bool __negative, bool __isnan) { char __buffer[4]; char* __last = __formatter::__insert_sign(__buffer, __negative, __specs.__std_.__sign_); // to_chars can return inf, infinity, nan, and nan(n-char-sequence). // The format library requires inf and nan. // All in one expression to avoid dangling references. bool __upper_case = __specs.__std_.__type_ == __format_spec::__type::__hexfloat_upper_case || __specs.__std_.__type_ == __format_spec::__type::__scientific_upper_case || __specs.__std_.__type_ == __format_spec::__type::__fixed_upper_case || __specs.__std_.__type_ == __format_spec::__type::__general_upper_case; __last = std::copy_n(&("infnanINFNAN"[6 * __upper_case + 3 * __isnan]), 3, __last); // [format.string.std]/13 // A zero (0) character preceding the width field pads the field with // leading zeros (following any indication of sign or base) to the field // width, except when applied to an infinity or NaN. if (__specs.__alignment_ == __format_spec::__alignment::__zero_padding) __specs.__alignment_ = __format_spec::__alignment::__right; return __formatter::__write(__buffer, __last, std::move(__out_it), __specs); } /// Writes additional zero's for the precision before the exponent. /// This is used when the precision requested in the format string is larger /// than the maximum precision of the floating-point type. These precision /// digits are always 0. /// /// \param __exponent The location of the exponent character. /// \param __num_trailing_zeros The number of 0's to write before the exponent /// character. template _LIBCPP_HIDE_FROM_ABI auto __write_using_trailing_zeros( const _CharT* __first, const _CharT* __last, output_iterator auto __out_it, __format_spec::__parsed_specifications<_ParserCharT> __specs, size_t __size, const _CharT* __exponent, size_t __num_trailing_zeros) -> decltype(__out_it) { _LIBCPP_ASSERT_INTERNAL(__first <= __last, "Not a valid range"); _LIBCPP_ASSERT_INTERNAL(__num_trailing_zeros > 0, "The overload not writing trailing zeros should have been used"); __padding_size_result __padding = __formatter::__padding_size(__size + __num_trailing_zeros, __specs.__width_, __specs.__alignment_); __out_it = __formatter::__fill(std::move(__out_it), __padding.__before_, __specs.__fill_); __out_it = __formatter::__copy(__first, __exponent, std::move(__out_it)); __out_it = __formatter::__fill(std::move(__out_it), __num_trailing_zeros, _CharT('0')); __out_it = __formatter::__copy(__exponent, __last, std::move(__out_it)); return __formatter::__fill(std::move(__out_it), __padding.__after_, __specs.__fill_); } template _LIBCPP_HIDE_FROM_ABI typename _FormatContext::iterator __format_floating_point(_Tp __value, _FormatContext& __ctx, __format_spec::__parsed_specifications<_CharT> __specs) { bool __negative = std::signbit(__value); if (!std::isfinite(__value)) [[unlikely]] return __formatter::__format_floating_point_non_finite(__ctx.out(), __specs, __negative, std::isnan(__value)); // Depending on the std-format-spec string the sign and the value // might not be outputted together: // - zero-padding may insert additional '0' characters. // Therefore the value is processed as a non negative value. // The function @ref __insert_sign will insert a '-' when the value was // negative. if (__negative) __value = -__value; // TODO FMT _Fp should just be _Tp when to_chars has proper long double support. using _Fp = conditional_t, double, _Tp>; // Force the type of the precision to avoid -1 to become an unsigned value. __float_buffer<_Fp> __buffer(__specs.__precision_); __float_result __result = __formatter::__format_buffer( __buffer, __value, __negative, (__specs.__has_precision()), __specs.__std_.__sign_, __specs.__std_.__type_); if (__specs.__std_.__alternate_form_) { if (__result.__radix_point == __result.__last) { *__result.__last++ = '.'; // When there is an exponent the point needs to be moved before the // exponent. When there's no exponent the rotate does nothing. Since // rotate tests whether the operation is a nop, call it unconditionally. std::rotate(__result.__exponent, __result.__last - 1, __result.__last); __result.__radix_point = __result.__exponent; // The radix point is always placed before the exponent. // - No exponent needs to point to the new last. // - An exponent needs to move one position to the right. // So it's safe to increment the value unconditionally. ++__result.__exponent; } // [format.string.std]/6 // In addition, for g and G conversions, trailing zeros are not removed // from the result. // // If the type option for a floating-point type is none it may use the // general formatting, but it's not a g or G conversion. So in that case // the formatting should not append trailing zeros. bool __is_general = __specs.__std_.__type_ == __format_spec::__type::__general_lower_case || __specs.__std_.__type_ == __format_spec::__type::__general_upper_case; if (__is_general) { // https://en.cppreference.com/w/c/io/fprintf // Let P equal the precision if nonzero, 6 if the precision is not // specified, or 1 if the precision is 0. Then, if a conversion with // style E would have an exponent of X: int __p = std::max(1, (__specs.__has_precision() ? __specs.__precision_ : 6)); if (__result.__exponent == __result.__last) // if P > X >= -4, the conversion is with style f or F and precision P - 1 - X. // By including the radix point it calculates P - (1 + X) __p -= __result.__radix_point - __result.__integral; else // otherwise, the conversion is with style e or E and precision P - 1. --__p; ptrdiff_t __precision = (__result.__exponent - __result.__radix_point) - 1; if (__precision < __p) __buffer.__add_trailing_zeros(__p - __precision); } } # ifndef _LIBCPP_HAS_NO_LOCALIZATION if (__specs.__std_.__locale_specific_form_) return __formatter::__format_locale_specific_form(__ctx.out(), __buffer, __result, __ctx.locale(), __specs); # endif ptrdiff_t __size = __result.__last - __buffer.begin(); int __num_trailing_zeros = __buffer.__num_trailing_zeros(); if (__size + __num_trailing_zeros >= __specs.__width_) { if (__num_trailing_zeros && __result.__exponent != __result.__last) // Insert trailing zeros before exponent character. return __formatter::__copy( __result.__exponent, __result.__last, __formatter::__fill(__formatter::__copy(__buffer.begin(), __result.__exponent, __ctx.out()), __num_trailing_zeros, _CharT('0'))); return __formatter::__fill( __formatter::__copy(__buffer.begin(), __result.__last, __ctx.out()), __num_trailing_zeros, _CharT('0')); } auto __out_it = __ctx.out(); char* __first = __buffer.begin(); if (__specs.__alignment_ == __format_spec::__alignment ::__zero_padding) { // When there is a sign output it before the padding. Note the __size // doesn't need any adjustment, regardless whether the sign is written // here or in __formatter::__write. if (__first != __result.__integral) *__out_it++ = *__first++; // After the sign is written, zero padding is the same a right alignment // with '0'. __specs.__alignment_ = __format_spec::__alignment::__right; __specs.__fill_.__data[0] = _CharT('0'); } if (__num_trailing_zeros) return __formatter::__write_using_trailing_zeros( __first, __result.__last, std::move(__out_it), __specs, __size, __result.__exponent, __num_trailing_zeros); return __formatter::__write(__first, __result.__last, std::move(__out_it), __specs, __size); } } // namespace __formatter template <__fmt_char_type _CharT> struct _LIBCPP_TEMPLATE_VIS __formatter_floating_point { public: template _LIBCPP_HIDE_FROM_ABI constexpr typename _ParseContext::iterator parse(_ParseContext& __ctx) { typename _ParseContext::iterator __result = __parser_.__parse(__ctx, __format_spec::__fields_floating_point); __format_spec::__process_parsed_floating_point(__parser_, "a floating-point"); return __result; } template _LIBCPP_HIDE_FROM_ABI typename _FormatContext::iterator format(_Tp __value, _FormatContext& __ctx) const { return __formatter::__format_floating_point(__value, __ctx, __parser_.__get_parsed_std_specifications(__ctx)); } __format_spec::__parser<_CharT> __parser_; }; template <__fmt_char_type _CharT> struct _LIBCPP_TEMPLATE_VIS formatter : public __formatter_floating_point<_CharT> {}; template <__fmt_char_type _CharT> struct _LIBCPP_TEMPLATE_VIS formatter : public __formatter_floating_point<_CharT> {}; template <__fmt_char_type _CharT> struct _LIBCPP_TEMPLATE_VIS formatter : public __formatter_floating_point<_CharT> {}; #endif //_LIBCPP_STD_VER >= 20 _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP___FORMAT_FORMATTER_FLOATING_POINT_H