//===-- tsan_rtl.cpp ------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main file (entry points) for the TSan run-time. //===----------------------------------------------------------------------===// #include "tsan_rtl.h" #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_file.h" #include "sanitizer_common/sanitizer_interface_internal.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_symbolizer.h" #include "tsan_defs.h" #include "tsan_interface.h" #include "tsan_mman.h" #include "tsan_platform.h" #include "tsan_suppressions.h" #include "tsan_symbolize.h" #include "ubsan/ubsan_init.h" volatile int __tsan_resumed = 0; extern "C" void __tsan_resume() { __tsan_resumed = 1; } #if SANITIZER_APPLE SANITIZER_WEAK_DEFAULT_IMPL void __tsan_test_only_on_fork() {} #endif namespace __tsan { #if !SANITIZER_GO void (*on_initialize)(void); int (*on_finalize)(int); #endif #if !SANITIZER_GO && !SANITIZER_APPLE alignas(SANITIZER_CACHE_LINE_SIZE) THREADLOCAL __attribute__((tls_model( "initial-exec"))) char cur_thread_placeholder[sizeof(ThreadState)]; #endif alignas(SANITIZER_CACHE_LINE_SIZE) static char ctx_placeholder[sizeof(Context)]; Context *ctx; // Can be overriden by a front-end. #ifdef TSAN_EXTERNAL_HOOKS bool OnFinalize(bool failed); void OnInitialize(); #else SANITIZER_WEAK_CXX_DEFAULT_IMPL bool OnFinalize(bool failed) { # if !SANITIZER_GO if (on_finalize) return on_finalize(failed); # endif return failed; } SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnInitialize() { # if !SANITIZER_GO if (on_initialize) on_initialize(); # endif } #endif static TracePart* TracePartAlloc(ThreadState* thr) { TracePart* part = nullptr; { Lock lock(&ctx->slot_mtx); uptr max_parts = Trace::kMinParts + flags()->history_size; Trace* trace = &thr->tctx->trace; if (trace->parts_allocated == max_parts || ctx->trace_part_finished_excess) { part = ctx->trace_part_recycle.PopFront(); DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part); if (part && part->trace) { Trace* trace1 = part->trace; Lock trace_lock(&trace1->mtx); part->trace = nullptr; TracePart* part1 = trace1->parts.PopFront(); CHECK_EQ(part, part1); if (trace1->parts_allocated > trace1->parts.Size()) { ctx->trace_part_finished_excess += trace1->parts_allocated - trace1->parts.Size(); trace1->parts_allocated = trace1->parts.Size(); } } } if (trace->parts_allocated < max_parts) { trace->parts_allocated++; if (ctx->trace_part_finished_excess) ctx->trace_part_finished_excess--; } if (!part) ctx->trace_part_total_allocated++; else if (ctx->trace_part_recycle_finished) ctx->trace_part_recycle_finished--; } if (!part) part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart(); return part; } static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) { DCHECK(part->trace); part->trace = nullptr; ctx->trace_part_recycle.PushFront(part); } void TraceResetForTesting() { Lock lock(&ctx->slot_mtx); while (auto* part = ctx->trace_part_recycle.PopFront()) { if (auto trace = part->trace) CHECK_EQ(trace->parts.PopFront(), part); UnmapOrDie(part, sizeof(*part)); } ctx->trace_part_total_allocated = 0; ctx->trace_part_recycle_finished = 0; ctx->trace_part_finished_excess = 0; } static void DoResetImpl(uptr epoch) { ThreadRegistryLock lock0(&ctx->thread_registry); Lock lock1(&ctx->slot_mtx); CHECK_EQ(ctx->global_epoch, epoch); ctx->global_epoch++; CHECK(!ctx->resetting); ctx->resetting = true; for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) { ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked( static_cast(i)); // Potentially we could purge all ThreadStatusDead threads from the // registry. Since we reset all shadow, they can't race with anything // anymore. However, their tid's can still be stored in some aux places // (e.g. tid of thread that created something). auto trace = &tctx->trace; Lock lock(&trace->mtx); bool attached = tctx->thr && tctx->thr->slot; auto parts = &trace->parts; bool local = false; while (!parts->Empty()) { auto part = parts->Front(); local = local || part == trace->local_head; if (local) CHECK(!ctx->trace_part_recycle.Queued(part)); else ctx->trace_part_recycle.Remove(part); if (attached && parts->Size() == 1) { // The thread is running and this is the last/current part. // Set the trace position to the end of the current part // to force the thread to call SwitchTracePart and re-attach // to a new slot and allocate a new trace part. // Note: the thread is concurrently modifying the position as well, // so this is only best-effort. The thread can only modify position // within this part, because switching parts is protected by // slot/trace mutexes that we hold here. atomic_store_relaxed( &tctx->thr->trace_pos, reinterpret_cast(&part->events[TracePart::kSize])); break; } parts->Remove(part); TracePartFree(part); } CHECK_LE(parts->Size(), 1); trace->local_head = parts->Front(); if (tctx->thr && !tctx->thr->slot) { atomic_store_relaxed(&tctx->thr->trace_pos, 0); tctx->thr->trace_prev_pc = 0; } if (trace->parts_allocated > trace->parts.Size()) { ctx->trace_part_finished_excess += trace->parts_allocated - trace->parts.Size(); trace->parts_allocated = trace->parts.Size(); } } while (ctx->slot_queue.PopFront()) { } for (auto& slot : ctx->slots) { slot.SetEpoch(kEpochZero); slot.journal.Reset(); slot.thr = nullptr; ctx->slot_queue.PushBack(&slot); } DPrintf("Resetting shadow...\n"); auto shadow_begin = ShadowBeg(); auto shadow_end = ShadowEnd(); #if SANITIZER_GO CHECK_NE(0, ctx->mapped_shadow_begin); shadow_begin = ctx->mapped_shadow_begin; shadow_end = ctx->mapped_shadow_end; VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n", shadow_begin, shadow_end); #endif #if SANITIZER_WINDOWS auto resetFailed = !ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin); #else auto resetFailed = !MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow"); # if !SANITIZER_GO DontDumpShadow(shadow_begin, shadow_end - shadow_begin); # endif #endif if (resetFailed) { Printf("failed to reset shadow memory\n"); Die(); } DPrintf("Resetting meta shadow...\n"); ctx->metamap.ResetClocks(); StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty); ctx->resetting = false; } // Clang does not understand locking all slots in the loop: // error: expecting mutex 'slot.mtx' to be held at start of each loop void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { for (auto& slot : ctx->slots) { slot.mtx.Lock(); if (UNLIKELY(epoch == 0)) epoch = ctx->global_epoch; if (UNLIKELY(epoch != ctx->global_epoch)) { // Epoch can't change once we've locked the first slot. CHECK_EQ(slot.sid, 0); slot.mtx.Unlock(); return; } } DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch); DoResetImpl(epoch); for (auto& slot : ctx->slots) slot.mtx.Unlock(); } void FlushShadowMemory() { DoReset(nullptr, 0); } static TidSlot* FindSlotAndLock(ThreadState* thr) SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { CHECK(!thr->slot); TidSlot* slot = nullptr; for (;;) { uptr epoch; { Lock lock(&ctx->slot_mtx); epoch = ctx->global_epoch; if (slot) { // This is an exhausted slot from the previous iteration. if (ctx->slot_queue.Queued(slot)) ctx->slot_queue.Remove(slot); thr->slot_locked = false; slot->mtx.Unlock(); } for (;;) { slot = ctx->slot_queue.PopFront(); if (!slot) break; if (slot->epoch() != kEpochLast) { ctx->slot_queue.PushBack(slot); break; } } } if (!slot) { DoReset(thr, epoch); continue; } slot->mtx.Lock(); CHECK(!thr->slot_locked); thr->slot_locked = true; if (slot->thr) { DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid, slot->thr->tid); slot->SetEpoch(slot->thr->fast_state.epoch()); slot->thr = nullptr; } if (slot->epoch() != kEpochLast) return slot; } } void SlotAttachAndLock(ThreadState* thr) { TidSlot* slot = FindSlotAndLock(thr); DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast(slot->sid)); CHECK(!slot->thr); CHECK(!thr->slot); slot->thr = thr; thr->slot = slot; Epoch epoch = EpochInc(slot->epoch()); CHECK(!EpochOverflow(epoch)); slot->SetEpoch(epoch); thr->fast_state.SetSid(slot->sid); thr->fast_state.SetEpoch(epoch); if (thr->slot_epoch != ctx->global_epoch) { thr->slot_epoch = ctx->global_epoch; thr->clock.Reset(); #if !SANITIZER_GO thr->last_sleep_stack_id = kInvalidStackID; thr->last_sleep_clock.Reset(); #endif } thr->clock.Set(slot->sid, epoch); slot->journal.PushBack({thr->tid, epoch}); } static void SlotDetachImpl(ThreadState* thr, bool exiting) { TidSlot* slot = thr->slot; thr->slot = nullptr; if (thr != slot->thr) { slot = nullptr; // we don't own the slot anymore if (thr->slot_epoch != ctx->global_epoch) { TracePart* part = nullptr; auto* trace = &thr->tctx->trace; { Lock l(&trace->mtx); auto* parts = &trace->parts; // The trace can be completely empty in an unlikely event // the thread is preempted right after it acquired the slot // in ThreadStart and did not trace any events yet. CHECK_LE(parts->Size(), 1); part = parts->PopFront(); thr->tctx->trace.local_head = nullptr; atomic_store_relaxed(&thr->trace_pos, 0); thr->trace_prev_pc = 0; } if (part) { Lock l(&ctx->slot_mtx); TracePartFree(part); } } return; } CHECK(exiting || thr->fast_state.epoch() == kEpochLast); slot->SetEpoch(thr->fast_state.epoch()); slot->thr = nullptr; } void SlotDetach(ThreadState* thr) { Lock lock(&thr->slot->mtx); SlotDetachImpl(thr, true); } void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { DCHECK(!thr->slot_locked); #if SANITIZER_DEBUG // Check these mutexes are not locked. // We can call DoReset from SlotAttachAndLock, which will lock // these mutexes, but it happens only every once in a while. { ThreadRegistryLock lock(&ctx->thread_registry); } { Lock lock(&ctx->slot_mtx); } #endif TidSlot* slot = thr->slot; slot->mtx.Lock(); thr->slot_locked = true; if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast)) return; SlotDetachImpl(thr, false); thr->slot_locked = false; slot->mtx.Unlock(); SlotAttachAndLock(thr); } void SlotUnlock(ThreadState* thr) { DCHECK(thr->slot_locked); thr->slot_locked = false; thr->slot->mtx.Unlock(); } Context::Context() : initialized(), report_mtx(MutexTypeReport), nreported(), thread_registry([](Tid tid) -> ThreadContextBase* { return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid); }), racy_mtx(MutexTypeRacy), racy_stacks(), fired_suppressions_mtx(MutexTypeFired), slot_mtx(MutexTypeSlots), resetting() { fired_suppressions.reserve(8); for (uptr i = 0; i < ARRAY_SIZE(slots); i++) { TidSlot* slot = &slots[i]; slot->sid = static_cast(i); slot_queue.PushBack(slot); } global_epoch = 1; } TidSlot::TidSlot() : mtx(MutexTypeSlot) {} // The objects are allocated in TLS, so one may rely on zero-initialization. ThreadState::ThreadState(Tid tid) // Do not touch these, rely on zero initialization, // they may be accessed before the ctor. // ignore_reads_and_writes() // ignore_interceptors() : tid(tid) { CHECK_EQ(reinterpret_cast(this) % SANITIZER_CACHE_LINE_SIZE, 0); #if !SANITIZER_GO // C/C++ uses fixed size shadow stack. const int kInitStackSize = kShadowStackSize; shadow_stack = static_cast( MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack")); SetShadowRegionHugePageMode(reinterpret_cast(shadow_stack), kInitStackSize * sizeof(uptr)); #else // Go uses malloc-allocated shadow stack with dynamic size. const int kInitStackSize = 8; shadow_stack = static_cast(Alloc(kInitStackSize * sizeof(uptr))); #endif shadow_stack_pos = shadow_stack; shadow_stack_end = shadow_stack + kInitStackSize; } #if !SANITIZER_GO void MemoryProfiler(u64 uptime) { if (ctx->memprof_fd == kInvalidFd) return; InternalMmapVector buf(4096); WriteMemoryProfile(buf.data(), buf.size(), uptime); WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data())); } static bool InitializeMemoryProfiler() { ctx->memprof_fd = kInvalidFd; const char *fname = flags()->profile_memory; if (!fname || !fname[0]) return false; if (internal_strcmp(fname, "stdout") == 0) { ctx->memprof_fd = 1; } else if (internal_strcmp(fname, "stderr") == 0) { ctx->memprof_fd = 2; } else { InternalScopedString filename; filename.AppendF("%s.%d", fname, (int)internal_getpid()); ctx->memprof_fd = OpenFile(filename.data(), WrOnly); if (ctx->memprof_fd == kInvalidFd) { Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", filename.data()); return false; } } MemoryProfiler(0); return true; } static void *BackgroundThread(void *arg) { // This is a non-initialized non-user thread, nothing to see here. // We don't use ScopedIgnoreInterceptors, because we want ignores to be // enabled even when the thread function exits (e.g. during pthread thread // shutdown code). cur_thread_init()->ignore_interceptors++; const u64 kMs2Ns = 1000 * 1000; const u64 start = NanoTime(); u64 last_flush = start; uptr last_rss = 0; while (!atomic_load_relaxed(&ctx->stop_background_thread)) { SleepForMillis(100); u64 now = NanoTime(); // Flush memory if requested. if (flags()->flush_memory_ms > 0) { if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { VReport(1, "ThreadSanitizer: periodic memory flush\n"); FlushShadowMemory(); now = last_flush = NanoTime(); } } if (flags()->memory_limit_mb > 0) { uptr rss = GetRSS(); uptr limit = uptr(flags()->memory_limit_mb) << 20; VReport(1, "ThreadSanitizer: memory flush check" " RSS=%llu LAST=%llu LIMIT=%llu\n", (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); if (2 * rss > limit + last_rss) { VReport(1, "ThreadSanitizer: flushing memory due to RSS\n"); FlushShadowMemory(); rss = GetRSS(); now = NanoTime(); VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss >> 20); } last_rss = rss; } MemoryProfiler(now - start); // Flush symbolizer cache if requested. if (flags()->flush_symbolizer_ms > 0) { u64 last = atomic_load(&ctx->last_symbolize_time_ns, memory_order_relaxed); if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { Lock l(&ctx->report_mtx); ScopedErrorReportLock l2; SymbolizeFlush(); atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); } } } return nullptr; } static void StartBackgroundThread() { ctx->background_thread = internal_start_thread(&BackgroundThread, 0); } #ifndef __mips__ static void StopBackgroundThread() { atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); internal_join_thread(ctx->background_thread); ctx->background_thread = 0; } #endif #endif void DontNeedShadowFor(uptr addr, uptr size) { ReleaseMemoryPagesToOS(reinterpret_cast(MemToShadow(addr)), reinterpret_cast(MemToShadow(addr + size))); } #if !SANITIZER_GO // We call UnmapShadow before the actual munmap, at that point we don't yet // know if the provided address/size are sane. We can't call UnmapShadow // after the actual munmap becuase at that point the memory range can // already be reused for something else, so we can't rely on the munmap // return value to understand is the values are sane. // While calling munmap with insane values (non-canonical address, negative // size, etc) is an error, the kernel won't crash. We must also try to not // crash as the failure mode is very confusing (paging fault inside of the // runtime on some derived shadow address). static bool IsValidMmapRange(uptr addr, uptr size) { if (size == 0) return true; if (static_cast(size) < 0) return false; if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) return false; // Check that if the start of the region belongs to one of app ranges, // end of the region belongs to the same region. const uptr ranges[][2] = { {LoAppMemBeg(), LoAppMemEnd()}, {MidAppMemBeg(), MidAppMemEnd()}, {HiAppMemBeg(), HiAppMemEnd()}, }; for (auto range : ranges) { if (addr >= range[0] && addr < range[1]) return addr + size <= range[1]; } return false; } void UnmapShadow(ThreadState *thr, uptr addr, uptr size) { if (size == 0 || !IsValidMmapRange(addr, size)) return; DontNeedShadowFor(addr, size); ScopedGlobalProcessor sgp; SlotLocker locker(thr, true); ctx->metamap.ResetRange(thr->proc(), addr, size, true); } #endif void MapShadow(uptr addr, uptr size) { // Ensure thead registry lock held, so as to synchronize // with DoReset, which also access the mapped_shadow_* ctxt fields. ThreadRegistryLock lock0(&ctx->thread_registry); static bool data_mapped = false; #if !SANITIZER_GO // Global data is not 64K aligned, but there are no adjacent mappings, // so we can get away with unaligned mapping. // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment const uptr kPageSize = GetPageSizeCached(); uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) Die(); #else uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10)); uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10)); VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n", addr, addr + size, shadow_begin, shadow_end); if (!data_mapped) { // First call maps data+bss. if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) Die(); } else { VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n", ctx->mapped_shadow_begin, ctx->mapped_shadow_end); // Second and subsequent calls map heap. if (shadow_end <= ctx->mapped_shadow_end) return; if (!ctx->mapped_shadow_begin || ctx->mapped_shadow_begin > shadow_begin) ctx->mapped_shadow_begin = shadow_begin; if (shadow_begin < ctx->mapped_shadow_end) shadow_begin = ctx->mapped_shadow_end; VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n", shadow_begin, shadow_end); if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) Die(); ctx->mapped_shadow_end = shadow_end; } #endif // Meta shadow is 2:1, so tread carefully. static uptr mapped_meta_end = 0; uptr meta_begin = (uptr)MemToMeta(addr); uptr meta_end = (uptr)MemToMeta(addr + size); meta_begin = RoundDownTo(meta_begin, 64 << 10); meta_end = RoundUpTo(meta_end, 64 << 10); if (!data_mapped) { // First call maps data+bss. data_mapped = true; if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) Die(); } else { // Mapping continuous heap. // Windows wants 64K alignment. meta_begin = RoundDownTo(meta_begin, 64 << 10); meta_end = RoundUpTo(meta_end, 64 << 10); CHECK_GT(meta_end, mapped_meta_end); if (meta_begin < mapped_meta_end) meta_begin = mapped_meta_end; if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) Die(); mapped_meta_end = meta_end; } VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr, addr + size, meta_begin, meta_end); } #if !SANITIZER_GO static void OnStackUnwind(const SignalContext &sig, const void *, BufferedStackTrace *stack) { stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, common_flags()->fast_unwind_on_fatal); } static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); } #endif void CheckUnwind() { // There is high probability that interceptors will check-fail as well, // on the other hand there is no sense in processing interceptors // since we are going to die soon. ScopedIgnoreInterceptors ignore; #if !SANITIZER_GO ThreadState* thr = cur_thread(); thr->nomalloc = false; thr->ignore_sync++; thr->ignore_reads_and_writes++; atomic_store_relaxed(&thr->in_signal_handler, 0); #endif PrintCurrentStackSlow(StackTrace::GetCurrentPc()); } bool is_initialized; void Initialize(ThreadState *thr) { // Thread safe because done before all threads exist. if (is_initialized) return; is_initialized = true; // We are not ready to handle interceptors yet. ScopedIgnoreInterceptors ignore; SanitizerToolName = "ThreadSanitizer"; // Install tool-specific callbacks in sanitizer_common. SetCheckUnwindCallback(CheckUnwind); ctx = new(ctx_placeholder) Context; const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"; const char *options = GetEnv(env_name); CacheBinaryName(); CheckASLR(); InitializeFlags(&ctx->flags, options, env_name); AvoidCVE_2016_2143(); __sanitizer::InitializePlatformEarly(); __tsan::InitializePlatformEarly(); #if !SANITIZER_GO InitializeAllocator(); ReplaceSystemMalloc(); #endif if (common_flags()->detect_deadlocks) ctx->dd = DDetector::Create(flags()); Processor *proc = ProcCreate(); ProcWire(proc, thr); InitializeInterceptors(); InitializePlatform(); InitializeDynamicAnnotations(); #if !SANITIZER_GO InitializeShadowMemory(); InitializeAllocatorLate(); InstallDeadlySignalHandlers(TsanOnDeadlySignal); #endif // Setup correct file descriptor for error reports. __sanitizer_set_report_path(common_flags()->log_path); InitializeSuppressions(); #if !SANITIZER_GO InitializeLibIgnore(); Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); #endif VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n", (int)internal_getpid()); // Initialize thread 0. Tid tid = ThreadCreate(nullptr, 0, 0, true); CHECK_EQ(tid, kMainTid); ThreadStart(thr, tid, GetTid(), ThreadType::Regular); #if TSAN_CONTAINS_UBSAN __ubsan::InitAsPlugin(); #endif #if !SANITIZER_GO Symbolizer::LateInitialize(); if (InitializeMemoryProfiler() || flags()->force_background_thread) MaybeSpawnBackgroundThread(); #endif ctx->initialized = true; if (flags()->stop_on_start) { Printf("ThreadSanitizer is suspended at startup (pid %d)." " Call __tsan_resume().\n", (int)internal_getpid()); while (__tsan_resumed == 0) {} } OnInitialize(); } void MaybeSpawnBackgroundThread() { // On MIPS, TSan initialization is run before // __pthread_initialize_minimal_internal() is finished, so we can not spawn // new threads. #if !SANITIZER_GO && !defined(__mips__) static atomic_uint32_t bg_thread = {}; if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { StartBackgroundThread(); SetSandboxingCallback(StopBackgroundThread); } #endif } int Finalize(ThreadState *thr) { bool failed = false; #if !SANITIZER_GO if (common_flags()->print_module_map == 1) DumpProcessMap(); #endif if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) internal_usleep(u64(flags()->atexit_sleep_ms) * 1000); { // Wait for pending reports. ScopedErrorReportLock lock; } #if !SANITIZER_GO if (Verbosity()) AllocatorPrintStats(); #endif ThreadFinalize(thr); if (ctx->nreported) { failed = true; #if !SANITIZER_GO Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); #else Printf("Found %d data race(s)\n", ctx->nreported); #endif } if (common_flags()->print_suppressions) PrintMatchedSuppressions(); failed = OnFinalize(failed); return failed ? common_flags()->exitcode : 0; } #if !SANITIZER_GO void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { GlobalProcessorLock(); // Detaching from the slot makes OnUserFree skip writing to the shadow. // The slot will be locked so any attempts to use it will deadlock anyway. SlotDetach(thr); for (auto& slot : ctx->slots) slot.mtx.Lock(); ctx->thread_registry.Lock(); ctx->slot_mtx.Lock(); ScopedErrorReportLock::Lock(); AllocatorLockBeforeFork(); // Suppress all reports in the pthread_atfork callbacks. // Reports will deadlock on the report_mtx. // We could ignore sync operations as well, // but so far it's unclear if it will do more good or harm. // Unnecessarily ignoring things can lead to false positives later. thr->suppress_reports++; // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and // we'll assert in CheckNoLocks() unless we ignore interceptors. // On OS X libSystem_atfork_prepare/parent/child callbacks are called // after/before our callbacks and they call free. thr->ignore_interceptors++; // Disables memory write in OnUserAlloc/Free. thr->ignore_reads_and_writes++; # if SANITIZER_APPLE __tsan_test_only_on_fork(); # endif } static void ForkAfter(ThreadState* thr, bool child) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { thr->suppress_reports--; // Enabled in ForkBefore. thr->ignore_interceptors--; thr->ignore_reads_and_writes--; AllocatorUnlockAfterFork(child); ScopedErrorReportLock::Unlock(); ctx->slot_mtx.Unlock(); ctx->thread_registry.Unlock(); for (auto& slot : ctx->slots) slot.mtx.Unlock(); SlotAttachAndLock(thr); SlotUnlock(thr); GlobalProcessorUnlock(); } void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr, false); } void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) { ForkAfter(thr, true); u32 nthread = ctx->thread_registry.OnFork(thr->tid); VPrintf(1, "ThreadSanitizer: forked new process with pid %d," " parent had %d threads\n", (int)internal_getpid(), (int)nthread); if (nthread == 1) { if (start_thread) StartBackgroundThread(); } else { // We've just forked a multi-threaded process. We cannot reasonably function // after that (some mutexes may be locked before fork). So just enable // ignores for everything in the hope that we will exec soon. ctx->after_multithreaded_fork = true; thr->ignore_interceptors++; thr->suppress_reports++; ThreadIgnoreBegin(thr, pc); ThreadIgnoreSyncBegin(thr, pc); } } #endif #if SANITIZER_GO NOINLINE void GrowShadowStack(ThreadState *thr) { const int sz = thr->shadow_stack_end - thr->shadow_stack; const int newsz = 2 * sz; auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr)); internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); Free(thr->shadow_stack); thr->shadow_stack = newstack; thr->shadow_stack_pos = newstack + sz; thr->shadow_stack_end = newstack + newsz; } #endif StackID CurrentStackId(ThreadState *thr, uptr pc) { #if !SANITIZER_GO if (!thr->is_inited) // May happen during bootstrap. return kInvalidStackID; #endif if (pc != 0) { #if !SANITIZER_GO DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); #else if (thr->shadow_stack_pos == thr->shadow_stack_end) GrowShadowStack(thr); #endif thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } StackID id = StackDepotPut( StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); if (pc != 0) thr->shadow_stack_pos--; return id; } static bool TraceSkipGap(ThreadState* thr) { Trace *trace = &thr->tctx->trace; Event *pos = reinterpret_cast(atomic_load_relaxed(&thr->trace_pos)); DCHECK_EQ(reinterpret_cast(pos + 1) & TracePart::kAlignment, 0); auto *part = trace->parts.Back(); DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid, trace, trace->parts.Front(), part, pos); if (!part) return false; // We can get here when we still have space in the current trace part. // The fast-path check in TraceAcquire has false positives in the middle of // the part. Check if we are indeed at the end of the current part or not, // and fill any gaps with NopEvent's. Event* end = &part->events[TracePart::kSize]; DCHECK_GE(pos, &part->events[0]); DCHECK_LE(pos, end); if (pos + 1 < end) { if ((reinterpret_cast(pos) & TracePart::kAlignment) == TracePart::kAlignment) *pos++ = NopEvent; *pos++ = NopEvent; DCHECK_LE(pos + 2, end); atomic_store_relaxed(&thr->trace_pos, reinterpret_cast(pos)); return true; } // We are indeed at the end. for (; pos < end; pos++) *pos = NopEvent; return false; } NOINLINE void TraceSwitchPart(ThreadState* thr) { if (TraceSkipGap(thr)) return; #if !SANITIZER_GO if (ctx->after_multithreaded_fork) { // We just need to survive till exec. TracePart* part = thr->tctx->trace.parts.Back(); if (part) { atomic_store_relaxed(&thr->trace_pos, reinterpret_cast(&part->events[0])); return; } } #endif TraceSwitchPartImpl(thr); } void TraceSwitchPartImpl(ThreadState* thr) { SlotLocker locker(thr, true); Trace* trace = &thr->tctx->trace; TracePart* part = TracePartAlloc(thr); part->trace = trace; thr->trace_prev_pc = 0; TracePart* recycle = nullptr; // Keep roughly half of parts local to the thread // (not queued into the recycle queue). uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2; { Lock lock(&trace->mtx); if (trace->parts.Empty()) trace->local_head = part; if (trace->parts.Size() >= local_parts) { recycle = trace->local_head; trace->local_head = trace->parts.Next(recycle); } trace->parts.PushBack(part); atomic_store_relaxed(&thr->trace_pos, reinterpret_cast(&part->events[0])); } // Make this part self-sufficient by restoring the current stack // and mutex set in the beginning of the trace. TraceTime(thr); { // Pathologically large stacks may not fit into the part. // In these cases we log only fixed number of top frames. const uptr kMaxFrames = 1000; // Check that kMaxFrames won't consume the whole part. static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big"); uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames); for (; pos < thr->shadow_stack_pos; pos++) { if (TryTraceFunc(thr, *pos)) continue; CHECK(TraceSkipGap(thr)); CHECK(TryTraceFunc(thr, *pos)); } } for (uptr i = 0; i < thr->mset.Size(); i++) { MutexSet::Desc d = thr->mset.Get(i); for (uptr i = 0; i < d.count; i++) TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0, d.addr, d.stack_id); } // Callers of TraceSwitchPart expect that TraceAcquire will always succeed // after the call. It's possible that TryTraceFunc/TraceMutexLock above // filled the trace part exactly up to the TracePart::kAlignment gap // and the next TraceAcquire won't succeed. Skip the gap to avoid that. EventFunc *ev; if (!TraceAcquire(thr, &ev)) { CHECK(TraceSkipGap(thr)); CHECK(TraceAcquire(thr, &ev)); } { Lock lock(&ctx->slot_mtx); // There is a small chance that the slot may be not queued at this point. // This can happen if the slot has kEpochLast epoch and another thread // in FindSlotAndLock discovered that it's exhausted and removed it from // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart // was called with the slot locked and epoch already at kEpochLast, // or (2) if we've acquired a new slot in SlotLock in the beginning // of the function and the slot was at kEpochLast - 1, so after increment // in SlotAttachAndLock it become kEpochLast. if (ctx->slot_queue.Queued(thr->slot)) { ctx->slot_queue.Remove(thr->slot); ctx->slot_queue.PushBack(thr->slot); } if (recycle) ctx->trace_part_recycle.PushBack(recycle); } DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid, trace->parts.Front(), trace->parts.Back(), atomic_load_relaxed(&thr->trace_pos)); } void ThreadIgnoreBegin(ThreadState* thr, uptr pc) { DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); thr->ignore_reads_and_writes++; CHECK_GT(thr->ignore_reads_and_writes, 0); thr->fast_state.SetIgnoreBit(); #if !SANITIZER_GO if (pc && !ctx->after_multithreaded_fork) thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); #endif } void ThreadIgnoreEnd(ThreadState *thr) { DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); CHECK_GT(thr->ignore_reads_and_writes, 0); thr->ignore_reads_and_writes--; if (thr->ignore_reads_and_writes == 0) { thr->fast_state.ClearIgnoreBit(); #if !SANITIZER_GO thr->mop_ignore_set.Reset(); #endif } } #if !SANITIZER_GO extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr __tsan_testonly_shadow_stack_current_size() { ThreadState *thr = cur_thread(); return thr->shadow_stack_pos - thr->shadow_stack; } #endif void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); thr->ignore_sync++; CHECK_GT(thr->ignore_sync, 0); #if !SANITIZER_GO if (pc && !ctx->after_multithreaded_fork) thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); #endif } void ThreadIgnoreSyncEnd(ThreadState *thr) { DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); CHECK_GT(thr->ignore_sync, 0); thr->ignore_sync--; #if !SANITIZER_GO if (thr->ignore_sync == 0) thr->sync_ignore_set.Reset(); #endif } bool MD5Hash::operator==(const MD5Hash &other) const { return hash[0] == other.hash[0] && hash[1] == other.hash[1]; } #if SANITIZER_DEBUG void build_consistency_debug() {} #else void build_consistency_release() {} #endif } // namespace __tsan #if SANITIZER_CHECK_DEADLOCKS namespace __sanitizer { using namespace __tsan; MutexMeta mutex_meta[] = { {MutexInvalid, "Invalid", {}}, {MutexThreadRegistry, "ThreadRegistry", {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}}, {MutexTypeReport, "Report", {MutexTypeTrace}}, {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}}, {MutexTypeAnnotations, "Annotations", {}}, {MutexTypeAtExit, "AtExit", {}}, {MutexTypeFired, "Fired", {MutexLeaf}}, {MutexTypeRacy, "Racy", {MutexLeaf}}, {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}}, {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}}, {MutexTypeTrace, "Trace", {}}, {MutexTypeSlot, "Slot", {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry, MutexTypeSlots}}, {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}}, {}, }; void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); } } // namespace __sanitizer #endif