//===-- sanitizer_common.h --------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is shared between run-time libraries of sanitizers. // // It declares common functions and classes that are used in both runtimes. // Implementation of some functions are provided in sanitizer_common, while // others must be defined by run-time library itself. //===----------------------------------------------------------------------===// #ifndef SANITIZER_COMMON_H #define SANITIZER_COMMON_H #include "sanitizer_flags.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_list.h" #include "sanitizer_mutex.h" #if defined(_MSC_VER) && !defined(__clang__) extern "C" void _ReadWriteBarrier(); #pragma intrinsic(_ReadWriteBarrier) #endif namespace __sanitizer { struct AddressInfo; struct BufferedStackTrace; struct SignalContext; struct StackTrace; struct SymbolizedStack; // Constants. const uptr kWordSize = SANITIZER_WORDSIZE / 8; const uptr kWordSizeInBits = 8 * kWordSize; const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE; const uptr kMaxPathLength = 4096; const uptr kMaxThreadStackSize = 1 << 30; // 1Gb const uptr kErrorMessageBufferSize = 1 << 16; // Denotes fake PC values that come from JIT/JAVA/etc. // For such PC values __tsan_symbolize_external_ex() will be called. const u64 kExternalPCBit = 1ULL << 60; extern const char *SanitizerToolName; // Can be changed by the tool. extern atomic_uint32_t current_verbosity; inline void SetVerbosity(int verbosity) { atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); } inline int Verbosity() { return atomic_load(¤t_verbosity, memory_order_relaxed); } #if SANITIZER_ANDROID && !defined(__aarch64__) // 32-bit Android only has 4k pages. inline uptr GetPageSize() { return 4096; } inline uptr GetPageSizeCached() { return 4096; } #else uptr GetPageSize(); extern uptr PageSizeCached; inline uptr GetPageSizeCached() { if (!PageSizeCached) PageSizeCached = GetPageSize(); return PageSizeCached; } #endif uptr GetMmapGranularity(); uptr GetMaxVirtualAddress(); uptr GetMaxUserVirtualAddress(); // Threads tid_t GetTid(); int TgKill(pid_t pid, tid_t tid, int sig); uptr GetThreadSelf(); void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom); void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size); // Memory management void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); inline void *MmapOrDieQuietly(uptr size, const char *mem_type) { return MmapOrDie(size, mem_type, /*raw_report*/ true); } void UnmapOrDie(void *addr, uptr size, bool raw_report = false); // Behaves just like MmapOrDie, but tolerates out of memory condition, in that // case returns nullptr. void *MmapOrDieOnFatalError(uptr size, const char *mem_type); bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) WARN_UNUSED_RESULT; bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) WARN_UNUSED_RESULT; void *MmapNoReserveOrDie(uptr size, const char *mem_type); void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in // that case returns nullptr. void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name = nullptr); void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); void *MmapNoAccess(uptr size); // Map aligned chunk of address space; size and alignment are powers of two. // Dies on all but out of memory errors, in the latter case returns nullptr. void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, const char *mem_type); // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an // unaccessible memory. bool MprotectNoAccess(uptr addr, uptr size); bool MprotectReadOnly(uptr addr, uptr size); bool MprotectReadWrite(uptr addr, uptr size); void MprotectMallocZones(void *addr, int prot); #if SANITIZER_WINDOWS // Zero previously mmap'd memory. Currently used only on Windows. bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT; #endif #if SANITIZER_LINUX // Unmap memory. Currently only used on Linux. void UnmapFromTo(uptr from, uptr to); #endif // Maps shadow_size_bytes of shadow memory and returns shadow address. It will // be aligned to the mmap granularity * 2^shadow_scale, or to // 2^min_shadow_base_alignment if that is larger. The returned address will // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and // shadow_size_bytes bytes on the right, which on linux is mapped no access. // The high_mem_end may be updated if the original shadow size doesn't fit. uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, uptr min_shadow_base_alignment, uptr &high_mem_end, uptr granularity); // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size). // Reserves 2*S bytes of address space to the right of the returned address and // ring_buffer_size bytes to the left. The returned address is aligned to 2*S. // Also creates num_aliases regions of accessible memory starting at offset S // from the returned address. Each region has size alias_size and is backed by // the same physical memory. uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, uptr num_aliases, uptr ring_buffer_size); // Reserve memory range [beg, end]. If madvise_shadow is true then apply // madvise (e.g. hugepages, core dumping) requested by options. void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name, bool madvise_shadow = true); // Protect size bytes of memory starting at addr. Also try to protect // several pages at the start of the address space as specified by // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start. void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start, uptr zero_base_max_shadow_start); // Find an available address space. uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, uptr *largest_gap_found, uptr *max_occupied_addr); // Used to check if we can map shadow memory to a fixed location. bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); // Releases memory pages entirely within the [beg, end] address range. Noop if // the provided range does not contain at least one entire page. void ReleaseMemoryPagesToOS(uptr beg, uptr end); void IncreaseTotalMmap(uptr size); void DecreaseTotalMmap(uptr size); uptr GetRSS(); void SetShadowRegionHugePageMode(uptr addr, uptr length); bool DontDumpShadowMemory(uptr addr, uptr length); // Check if the built VMA size matches the runtime one. void CheckVMASize(); void RunMallocHooks(void *ptr, uptr size); int RunFreeHooks(void *ptr); class ReservedAddressRange { public: uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0); uptr InitAligned(uptr size, uptr align, const char *name = nullptr); uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr); uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); void Unmap(uptr addr, uptr size); void *base() const { return base_; } uptr size() const { return size_; } private: void* base_; uptr size_; const char* name_; uptr os_handle_; }; typedef void (*fill_profile_f)(uptr start, uptr rss, bool file, /*out*/ uptr *stats); // Parse the contents of /proc/self/smaps and generate a memory profile. // |cb| is a tool-specific callback that fills the |stats| array. void GetMemoryProfile(fill_profile_f cb, uptr *stats); void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps, uptr smaps_len); // Simple low-level (mmap-based) allocator for internal use. Doesn't have // constructor, so all instances of LowLevelAllocator should be // linker initialized. // // NOTE: Users should instead use the singleton provided via // `GetGlobalLowLevelAllocator()` rather than create a new one. This way, the // number of mmap fragments can be reduced and use the same contiguous mmap // provided by this singleton. class LowLevelAllocator { public: // Requires an external lock. void *Allocate(uptr size); private: char *allocated_end_; char *allocated_current_; }; // Set the min alignment of LowLevelAllocator to at least alignment. void SetLowLevelAllocateMinAlignment(uptr alignment); typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); // Allows to register tool-specific callbacks for LowLevelAllocator. // Passing NULL removes the callback. void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); LowLevelAllocator &GetGlobalLowLevelAllocator(); // IO void CatastrophicErrorWrite(const char *buffer, uptr length); void RawWrite(const char *buffer); bool ColorizeReports(); void RemoveANSIEscapeSequencesFromString(char *buffer); void Printf(const char *format, ...) FORMAT(1, 2); void Report(const char *format, ...) FORMAT(1, 2); void SetPrintfAndReportCallback(void (*callback)(const char *)); #define VReport(level, ...) \ do { \ if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ } while (0) #define VPrintf(level, ...) \ do { \ if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ } while (0) // Lock sanitizer error reporting and protects against nested errors. class ScopedErrorReportLock { public: ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); } ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); } static void Lock() SANITIZER_ACQUIRE(mutex_); static void Unlock() SANITIZER_RELEASE(mutex_); static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_); private: static atomic_uintptr_t reporting_thread_; static StaticSpinMutex mutex_; }; extern uptr stoptheworld_tracer_pid; extern uptr stoptheworld_tracer_ppid; bool IsAccessibleMemoryRange(uptr beg, uptr size); // Error report formatting. const char *StripPathPrefix(const char *filepath, const char *strip_file_prefix); // Strip the directories from the module name. const char *StripModuleName(const char *module); // OS uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len); uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); const char *GetProcessName(); void UpdateProcessName(); void CacheBinaryName(); void DisableCoreDumperIfNecessary(); void DumpProcessMap(); const char *GetEnv(const char *name); bool SetEnv(const char *name, const char *value); u32 GetUid(); void ReExec(); void CheckASLR(); void CheckMPROTECT(); char **GetArgv(); char **GetEnviron(); void PrintCmdline(); bool StackSizeIsUnlimited(); void SetStackSizeLimitInBytes(uptr limit); bool AddressSpaceIsUnlimited(); void SetAddressSpaceUnlimited(); void AdjustStackSize(void *attr); void PlatformPrepareForSandboxing(void *args); void SetSandboxingCallback(void (*f)()); void InitializeCoverage(bool enabled, const char *coverage_dir); void InitTlsSize(); uptr GetTlsSize(); // Other void WaitForDebugger(unsigned seconds, const char *label); void SleepForSeconds(unsigned seconds); void SleepForMillis(unsigned millis); u64 NanoTime(); u64 MonotonicNanoTime(); int Atexit(void (*function)(void)); bool TemplateMatch(const char *templ, const char *str); // Exit void NORETURN Abort(); void NORETURN Die(); void NORETURN CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, const char *mmap_type, error_t err, bool raw_report = false); void NORETURN ReportMunmapFailureAndDie(void *ptr, uptr size, error_t err, bool raw_report = false); // Returns true if the platform-specific error reported is an OOM error. bool ErrorIsOOM(error_t err); // This reports an error in the form: // // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}` // // Downstream tools that read sanitizer output will know that errors starting // in this format are specifically OOM errors. #define ERROR_OOM(err_msg, ...) \ Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__) // Specific tools may override behavior of "Die" function to do tool-specific // job. typedef void (*DieCallbackType)(void); // It's possible to add several callbacks that would be run when "Die" is // called. The callbacks will be run in the opposite order. The tools are // strongly recommended to setup all callbacks during initialization, when there // is only a single thread. bool AddDieCallback(DieCallbackType callback); bool RemoveDieCallback(DieCallbackType callback); void SetUserDieCallback(DieCallbackType callback); void SetCheckUnwindCallback(void (*callback)()); // Functions related to signal handling. typedef void (*SignalHandlerType)(int, void *, void *); HandleSignalMode GetHandleSignalMode(int signum); void InstallDeadlySignalHandlers(SignalHandlerType handler); // Signal reporting. // Each sanitizer uses slightly different implementation of stack unwinding. typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, const void *callback_context, BufferedStackTrace *stack); // Print deadly signal report and die. void HandleDeadlySignal(void *siginfo, void *context, u32 tid, UnwindSignalStackCallbackType unwind, const void *unwind_context); // Part of HandleDeadlySignal, exposed for asan. void StartReportDeadlySignal(); // Part of HandleDeadlySignal, exposed for asan. void ReportDeadlySignal(const SignalContext &sig, u32 tid, UnwindSignalStackCallbackType unwind, const void *unwind_context); // Alternative signal stack (POSIX-only). void SetAlternateSignalStack(); void UnsetAlternateSignalStack(); // Construct a one-line string: // SUMMARY: SanitizerToolName: error_message // and pass it to __sanitizer_report_error_summary. // If alt_tool_name is provided, it's used in place of SanitizerToolName. void ReportErrorSummary(const char *error_message, const char *alt_tool_name = nullptr); // Same as above, but construct error_message as: // error_type file:line[:column][ function] void ReportErrorSummary(const char *error_type, const AddressInfo &info, const char *alt_tool_name = nullptr); // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. void ReportErrorSummary(const char *error_type, const StackTrace *trace, const char *alt_tool_name = nullptr); // Skips frames which we consider internal and not usefull to the users. const SymbolizedStack *SkipInternalFrames(const SymbolizedStack *frames); void ReportMmapWriteExec(int prot, int mflags); // Math #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) extern "C" { unsigned char _BitScanForward(unsigned long *index, unsigned long mask); unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); #if defined(_WIN64) unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); #endif } #endif inline uptr MostSignificantSetBitIndex(uptr x) { CHECK_NE(x, 0U); unsigned long up; #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) # ifdef _WIN64 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); # else up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); # endif #elif defined(_WIN64) _BitScanReverse64(&up, x); #else _BitScanReverse(&up, x); #endif return up; } inline uptr LeastSignificantSetBitIndex(uptr x) { CHECK_NE(x, 0U); unsigned long up; #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) # ifdef _WIN64 up = __builtin_ctzll(x); # else up = __builtin_ctzl(x); # endif #elif defined(_WIN64) _BitScanForward64(&up, x); #else _BitScanForward(&up, x); #endif return up; } inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } inline uptr RoundUpToPowerOfTwo(uptr size) { CHECK(size); if (IsPowerOfTwo(size)) return size; uptr up = MostSignificantSetBitIndex(size); CHECK_LT(size, (1ULL << (up + 1))); CHECK_GT(size, (1ULL << up)); return 1ULL << (up + 1); } inline constexpr uptr RoundUpTo(uptr size, uptr boundary) { RAW_CHECK(IsPowerOfTwo(boundary)); return (size + boundary - 1) & ~(boundary - 1); } inline constexpr uptr RoundDownTo(uptr x, uptr boundary) { return x & ~(boundary - 1); } inline constexpr bool IsAligned(uptr a, uptr alignment) { return (a & (alignment - 1)) == 0; } inline uptr Log2(uptr x) { CHECK(IsPowerOfTwo(x)); return LeastSignificantSetBitIndex(x); } // Don't use std::min, std::max or std::swap, to minimize dependency // on libstdc++. template constexpr T Min(T a, T b) { return a < b ? a : b; } template constexpr T Max(T a, T b) { return a > b ? a : b; } template constexpr T Abs(T a) { return a < 0 ? -a : a; } template void Swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } // Char handling inline bool IsSpace(int c) { return (c == ' ') || (c == '\n') || (c == '\t') || (c == '\f') || (c == '\r') || (c == '\v'); } inline bool IsDigit(int c) { return (c >= '0') && (c <= '9'); } inline int ToLower(int c) { return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; } // A low-level vector based on mmap. May incur a significant memory overhead for // small vectors. // WARNING: The current implementation supports only POD types. template class InternalMmapVectorNoCtor { public: using value_type = T; void Initialize(uptr initial_capacity) { capacity_bytes_ = 0; size_ = 0; data_ = 0; reserve(initial_capacity); } void Destroy() { UnmapOrDie(data_, capacity_bytes_, raw_report); } T &operator[](uptr i) { CHECK_LT(i, size_); return data_[i]; } const T &operator[](uptr i) const { CHECK_LT(i, size_); return data_[i]; } void push_back(const T &element) { if (UNLIKELY(size_ >= capacity())) { CHECK_EQ(size_, capacity()); uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); Realloc(new_capacity); } internal_memcpy(&data_[size_++], &element, sizeof(T)); } T &back() { CHECK_GT(size_, 0); return data_[size_ - 1]; } void pop_back() { CHECK_GT(size_, 0); size_--; } uptr size() const { return size_; } const T *data() const { return data_; } T *data() { return data_; } uptr capacity() const { return capacity_bytes_ / sizeof(T); } void reserve(uptr new_size) { // Never downsize internal buffer. if (new_size > capacity()) Realloc(new_size); } void resize(uptr new_size) { if (new_size > size_) { reserve(new_size); internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); } size_ = new_size; } void clear() { size_ = 0; } bool empty() const { return size() == 0; } const T *begin() const { return data(); } T *begin() { return data(); } const T *end() const { return data() + size(); } T *end() { return data() + size(); } void swap(InternalMmapVectorNoCtor &other) { Swap(data_, other.data_); Swap(capacity_bytes_, other.capacity_bytes_); Swap(size_, other.size_); } private: NOINLINE void Realloc(uptr new_capacity) { CHECK_GT(new_capacity, 0); CHECK_LE(size_, new_capacity); uptr new_capacity_bytes = RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached()); T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector", raw_report); internal_memcpy(new_data, data_, size_ * sizeof(T)); UnmapOrDie(data_, capacity_bytes_, raw_report); data_ = new_data; capacity_bytes_ = new_capacity_bytes; } T *data_; uptr capacity_bytes_; uptr size_; }; template bool operator==(const InternalMmapVectorNoCtor &lhs, const InternalMmapVectorNoCtor &rhs) { if (lhs.size() != rhs.size()) return false; return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0; } template bool operator!=(const InternalMmapVectorNoCtor &lhs, const InternalMmapVectorNoCtor &rhs) { return !(lhs == rhs); } template class InternalMmapVector : public InternalMmapVectorNoCtor { public: InternalMmapVector() { InternalMmapVectorNoCtor::Initialize(0); } explicit InternalMmapVector(uptr cnt) { InternalMmapVectorNoCtor::Initialize(cnt); this->resize(cnt); } ~InternalMmapVector() { InternalMmapVectorNoCtor::Destroy(); } // Disallow copies and moves. InternalMmapVector(const InternalMmapVector &) = delete; InternalMmapVector &operator=(const InternalMmapVector &) = delete; InternalMmapVector(InternalMmapVector &&) = delete; InternalMmapVector &operator=(InternalMmapVector &&) = delete; }; class InternalScopedString { public: InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; } uptr length() const { return buffer_.size() - 1; } void clear() { buffer_.resize(1); buffer_[0] = '\0'; } void Append(const char *str); void AppendF(const char *format, ...) FORMAT(2, 3); const char *data() const { return buffer_.data(); } char *data() { return buffer_.data(); } private: InternalMmapVector buffer_; }; template struct CompareLess { bool operator()(const T &a, const T &b) const { return a < b; } }; // HeapSort for arrays and InternalMmapVector. template > void Sort(T *v, uptr size, Compare comp = {}) { if (size < 2) return; // Stage 1: insert elements to the heap. for (uptr i = 1; i < size; i++) { uptr j, p; for (j = i; j > 0; j = p) { p = (j - 1) / 2; if (comp(v[p], v[j])) Swap(v[j], v[p]); else break; } } // Stage 2: swap largest element with the last one, // and sink the new top. for (uptr i = size - 1; i > 0; i--) { Swap(v[0], v[i]); uptr j, max_ind; for (j = 0; j < i; j = max_ind) { uptr left = 2 * j + 1; uptr right = 2 * j + 2; max_ind = j; if (left < i && comp(v[max_ind], v[left])) max_ind = left; if (right < i && comp(v[max_ind], v[right])) max_ind = right; if (max_ind != j) Swap(v[j], v[max_ind]); else break; } } } // Works like std::lower_bound: finds the first element that is not less // than the val. template > uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) { uptr first = 0; uptr last = v.size(); while (last > first) { uptr mid = (first + last) / 2; if (comp(v[mid], val)) first = mid + 1; else last = mid; } return first; } enum ModuleArch { kModuleArchUnknown, kModuleArchI386, kModuleArchX86_64, kModuleArchX86_64H, kModuleArchARMV6, kModuleArchARMV7, kModuleArchARMV7S, kModuleArchARMV7K, kModuleArchARM64, kModuleArchLoongArch64, kModuleArchRISCV64, kModuleArchHexagon }; // Sorts and removes duplicates from the container. template > void SortAndDedup(Container &v, Compare comp = {}) { Sort(v.data(), v.size(), comp); uptr size = v.size(); if (size < 2) return; uptr last = 0; for (uptr i = 1; i < size; ++i) { if (comp(v[last], v[i])) { ++last; if (last != i) v[last] = v[i]; } else { CHECK(!comp(v[i], v[last])); } } v.resize(last + 1); } constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28); // Opens the file 'file_name" and reads up to 'max_len' bytes. // The resulting buffer is mmaped and stored in '*buff'. // Returns true if file was successfully opened and read. bool ReadFileToVector(const char *file_name, InternalMmapVectorNoCtor *buff, uptr max_len = kDefaultFileMaxSize, error_t *errno_p = nullptr); // Opens the file 'file_name" and reads up to 'max_len' bytes. // This function is less I/O efficient than ReadFileToVector as it may reread // file multiple times to avoid mmap during read attempts. It's used to read // procmap, so short reads with mmap in between can produce inconsistent result. // The resulting buffer is mmaped and stored in '*buff'. // The size of the mmaped region is stored in '*buff_size'. // The total number of read bytes is stored in '*read_len'. // Returns true if file was successfully opened and read. bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, uptr *read_len, uptr max_len = kDefaultFileMaxSize, error_t *errno_p = nullptr); int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len, uptr *pc_offset); // When adding a new architecture, don't forget to also update // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp. inline const char *ModuleArchToString(ModuleArch arch) { switch (arch) { case kModuleArchUnknown: return ""; case kModuleArchI386: return "i386"; case kModuleArchX86_64: return "x86_64"; case kModuleArchX86_64H: return "x86_64h"; case kModuleArchARMV6: return "armv6"; case kModuleArchARMV7: return "armv7"; case kModuleArchARMV7S: return "armv7s"; case kModuleArchARMV7K: return "armv7k"; case kModuleArchARM64: return "arm64"; case kModuleArchLoongArch64: return "loongarch64"; case kModuleArchRISCV64: return "riscv64"; case kModuleArchHexagon: return "hexagon"; } CHECK(0 && "Invalid module arch"); return ""; } #if SANITIZER_APPLE const uptr kModuleUUIDSize = 16; #else const uptr kModuleUUIDSize = 32; #endif const uptr kMaxSegName = 16; // Represents a binary loaded into virtual memory (e.g. this can be an // executable or a shared object). class LoadedModule { public: LoadedModule() : full_name_(nullptr), base_address_(0), max_address_(0), arch_(kModuleArchUnknown), uuid_size_(0), instrumented_(false) { internal_memset(uuid_, 0, kModuleUUIDSize); ranges_.clear(); } void set(const char *module_name, uptr base_address); void set(const char *module_name, uptr base_address, ModuleArch arch, u8 uuid[kModuleUUIDSize], bool instrumented); void setUuid(const char *uuid, uptr size); void clear(); void addAddressRange(uptr beg, uptr end, bool executable, bool writable, const char *name = nullptr); bool containsAddress(uptr address) const; const char *full_name() const { return full_name_; } uptr base_address() const { return base_address_; } uptr max_address() const { return max_address_; } ModuleArch arch() const { return arch_; } const u8 *uuid() const { return uuid_; } uptr uuid_size() const { return uuid_size_; } bool instrumented() const { return instrumented_; } struct AddressRange { AddressRange *next; uptr beg; uptr end; bool executable; bool writable; char name[kMaxSegName]; AddressRange(uptr beg, uptr end, bool executable, bool writable, const char *name) : next(nullptr), beg(beg), end(end), executable(executable), writable(writable) { internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name)); } }; const IntrusiveList &ranges() const { return ranges_; } private: char *full_name_; // Owned. uptr base_address_; uptr max_address_; ModuleArch arch_; uptr uuid_size_; u8 uuid_[kModuleUUIDSize]; bool instrumented_; IntrusiveList ranges_; }; // List of LoadedModules. OS-dependent implementation is responsible for // filling this information. class ListOfModules { public: ListOfModules() : initialized(false) {} ~ListOfModules() { clear(); } void init(); void fallbackInit(); // Uses fallback init if available, otherwise clears const LoadedModule *begin() const { return modules_.begin(); } LoadedModule *begin() { return modules_.begin(); } const LoadedModule *end() const { return modules_.end(); } LoadedModule *end() { return modules_.end(); } uptr size() const { return modules_.size(); } const LoadedModule &operator[](uptr i) const { CHECK_LT(i, modules_.size()); return modules_[i]; } private: void clear() { for (auto &module : modules_) module.clear(); modules_.clear(); } void clearOrInit() { initialized ? clear() : modules_.Initialize(kInitialCapacity); initialized = true; } InternalMmapVectorNoCtor modules_; // We rarely have more than 16K loaded modules. static const uptr kInitialCapacity = 1 << 14; bool initialized; }; // Callback type for iterating over a set of memory ranges. typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); enum AndroidApiLevel { ANDROID_NOT_ANDROID = 0, ANDROID_KITKAT = 19, ANDROID_LOLLIPOP_MR1 = 22, ANDROID_POST_LOLLIPOP = 23 }; void WriteToSyslog(const char *buffer); #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__) #define SANITIZER_WIN_TRACE 1 #else #define SANITIZER_WIN_TRACE 0 #endif #if SANITIZER_APPLE || SANITIZER_WIN_TRACE void LogFullErrorReport(const char *buffer); #else inline void LogFullErrorReport(const char *buffer) {} #endif #if SANITIZER_LINUX || SANITIZER_APPLE void WriteOneLineToSyslog(const char *s); void LogMessageOnPrintf(const char *str); #else inline void WriteOneLineToSyslog(const char *s) {} inline void LogMessageOnPrintf(const char *str) {} #endif #if SANITIZER_LINUX || SANITIZER_WIN_TRACE // Initialize Android logging. Any writes before this are silently lost. void AndroidLogInit(); void SetAbortMessage(const char *); #else inline void AndroidLogInit() {} // FIXME: MacOS implementation could use CRSetCrashLogMessage. inline void SetAbortMessage(const char *) {} #endif #if SANITIZER_ANDROID void SanitizerInitializeUnwinder(); AndroidApiLevel AndroidGetApiLevel(); #else inline void AndroidLogWrite(const char *buffer_unused) {} inline void SanitizerInitializeUnwinder() {} inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } #endif inline uptr GetPthreadDestructorIterations() { #if SANITIZER_ANDROID return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; #elif SANITIZER_POSIX return 4; #else // Unused on Windows. return 0; #endif } void *internal_start_thread(void *(*func)(void*), void *arg); void internal_join_thread(void *th); void MaybeStartBackgroudThread(); // Make the compiler think that something is going on there. // Use this inside a loop that looks like memset/memcpy/etc to prevent the // compiler from recognising it and turning it into an actual call to // memset/memcpy/etc. static inline void SanitizerBreakOptimization(void *arg) { #if defined(_MSC_VER) && !defined(__clang__) _ReadWriteBarrier(); #else __asm__ __volatile__("" : : "r" (arg) : "memory"); #endif } struct SignalContext { void *siginfo; void *context; uptr addr; uptr pc; uptr sp; uptr bp; bool is_memory_access; enum WriteFlag { Unknown, Read, Write } write_flag; // In some cases the kernel cannot provide the true faulting address; `addr` // will be zero then. This field allows to distinguish between these cases // and dereferences of null. bool is_true_faulting_addr; // VS2013 doesn't implement unrestricted unions, so we need a trivial default // constructor SignalContext() = default; // Creates signal context in a platform-specific manner. // SignalContext is going to keep pointers to siginfo and context without // owning them. SignalContext(void *siginfo, void *context) : siginfo(siginfo), context(context), addr(GetAddress()), is_memory_access(IsMemoryAccess()), write_flag(GetWriteFlag()), is_true_faulting_addr(IsTrueFaultingAddress()) { InitPcSpBp(); } static void DumpAllRegisters(void *context); // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. int GetType() const; // String description of the signal. const char *Describe() const; // Returns true if signal is stack overflow. bool IsStackOverflow() const; private: // Platform specific initialization. void InitPcSpBp(); uptr GetAddress() const; WriteFlag GetWriteFlag() const; bool IsMemoryAccess() const; bool IsTrueFaultingAddress() const; }; void InitializePlatformEarly(); template class RunOnDestruction { public: explicit RunOnDestruction(Fn fn) : fn_(fn) {} ~RunOnDestruction() { fn_(); } private: Fn fn_; }; // A simple scope guard. Usage: // auto cleanup = at_scope_exit([]{ do_cleanup; }); template RunOnDestruction at_scope_exit(Fn fn) { return RunOnDestruction(fn); } // Linux on 64-bit s390 had a nasty bug that crashes the whole machine // if a process uses virtual memory over 4TB (as many sanitizers like // to do). This function will abort the process if running on a kernel // that looks vulnerable. #if SANITIZER_LINUX && SANITIZER_S390_64 void AvoidCVE_2016_2143(); #else inline void AvoidCVE_2016_2143() {} #endif struct StackDepotStats { uptr n_uniq_ids; uptr allocated; }; // The default value for allocator_release_to_os_interval_ms common flag to // indicate that sanitizer allocator should not attempt to release memory to OS. const s32 kReleaseToOSIntervalNever = -1; void CheckNoDeepBind(const char *filename, int flag); // Returns the requested amount of random data (up to 256 bytes) that can then // be used to seed a PRNG. Defaults to blocking like the underlying syscall. bool GetRandom(void *buffer, uptr length, bool blocking = true); // Returns the number of logical processors on the system. u32 GetNumberOfCPUs(); extern u32 NumberOfCPUsCached; inline u32 GetNumberOfCPUsCached() { if (!NumberOfCPUsCached) NumberOfCPUsCached = GetNumberOfCPUs(); return NumberOfCPUsCached; } } // namespace __sanitizer inline void *operator new(__sanitizer::usize size, __sanitizer::LowLevelAllocator &alloc) { return alloc.Allocate(size); } #endif // SANITIZER_COMMON_H