//===-- hwasan_thread_list.h ------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of HWAddressSanitizer. // //===----------------------------------------------------------------------===// // HwasanThreadList is a registry for live threads, as well as an allocator for // HwasanThread objects and their stack history ring buffers. There are // constraints on memory layout of the shadow region and CompactRingBuffer that // are part of the ABI contract between compiler-rt and llvm. // // * Start of the shadow memory region is aligned to 2**kShadowBaseAlignment. // * All stack ring buffers are located within (2**kShadowBaseAlignment) // sized region below and adjacent to the shadow region. // * Each ring buffer has a size of (2**N)*4096 where N is in [0, 7), and is // aligned to twice its size. The value of N can be different for each buffer. // // These constrains guarantee that, given an address A of any element of the // ring buffer, // A_next = (A + sizeof(uptr)) & ~((1 << (N + 13)) - 1) // is the address of the next element of that ring buffer (with wrap-around). // And, with K = kShadowBaseAlignment, // S = (A | ((1 << K) - 1)) + 1 // (align up to kShadowBaseAlignment) is the start of the shadow region. // // These calculations are used in compiler instrumentation to update the ring // buffer and obtain the base address of shadow using only two inputs: address // of the current element of the ring buffer, and N (i.e. size of the ring // buffer). Since the value of N is very limited, we pack both inputs into a // single thread-local word as // (1 << (N + 56)) | A // See the implementation of class CompactRingBuffer, which is what is stored in // said thread-local word. // // Note the unusual way of aligning up the address of the shadow: // (A | ((1 << K) - 1)) + 1 // It is only correct if A is not already equal to the shadow base address, but // it saves 2 instructions on AArch64. #include "hwasan.h" #include "hwasan_allocator.h" #include "hwasan_flags.h" #include "hwasan_thread.h" #include "sanitizer_common/sanitizer_thread_arg_retval.h" namespace __hwasan { static uptr RingBufferSize() { uptr desired_bytes = flags()->stack_history_size * sizeof(uptr); // FIXME: increase the limit to 8 once this bug is fixed: // https://bugs.llvm.org/show_bug.cgi?id=39030 // Note that we *cannot* do that on Android, as the runtime will indefinitely // have to support code that is compiled with ashr, which only works with // shifts up to 6. for (int shift = 0; shift < 7; ++shift) { uptr size = 4096 * (1ULL << shift); if (size >= desired_bytes) return size; } Printf("stack history size too large: %d\n", flags()->stack_history_size); CHECK(0); return 0; } struct ThreadStats { uptr n_live_threads; uptr total_stack_size; }; class SANITIZER_MUTEX HwasanThreadList { public: HwasanThreadList(uptr storage, uptr size) : free_space_(storage), free_space_end_(storage + size) { // [storage, storage + size) is used as a vector of // thread_alloc_size_-sized, ring_buffer_size_*2-aligned elements. // Each element contains // * a ring buffer at offset 0, // * a Thread object at offset ring_buffer_size_. ring_buffer_size_ = RingBufferSize(); thread_alloc_size_ = RoundUpTo(ring_buffer_size_ + sizeof(Thread), ring_buffer_size_ * 2); } Thread *CreateCurrentThread(const Thread::InitState *state = nullptr) SANITIZER_EXCLUDES(free_list_mutex_, live_list_mutex_) { Thread *t = nullptr; { SpinMutexLock l(&free_list_mutex_); if (!free_list_.empty()) { t = free_list_.back(); free_list_.pop_back(); } } if (t) { uptr start = (uptr)t - ring_buffer_size_; internal_memset((void *)start, 0, ring_buffer_size_ + sizeof(Thread)); } else { t = AllocThread(); } { SpinMutexLock l(&live_list_mutex_); live_list_.push_back(t); } t->Init((uptr)t - ring_buffer_size_, ring_buffer_size_, state); AddThreadStats(t); return t; } void DontNeedThread(Thread *t) { uptr start = (uptr)t - ring_buffer_size_; ReleaseMemoryPagesToOS(start, start + thread_alloc_size_); } void RemoveThreadFromLiveList(Thread *t) SANITIZER_EXCLUDES(live_list_mutex_) { SpinMutexLock l(&live_list_mutex_); for (Thread *&t2 : live_list_) if (t2 == t) { // To remove t2, copy the last element of the list in t2's position, and // pop_back(). This works even if t2 is itself the last element. t2 = live_list_.back(); live_list_.pop_back(); return; } CHECK(0 && "thread not found in live list"); } void ReleaseThread(Thread *t) SANITIZER_EXCLUDES(free_list_mutex_) { RemoveThreadStats(t); RemoveThreadFromLiveList(t); t->Destroy(); DontNeedThread(t); SpinMutexLock l(&free_list_mutex_); free_list_.push_back(t); } Thread *GetThreadByBufferAddress(uptr p) { return (Thread *)(RoundDownTo(p, ring_buffer_size_ * 2) + ring_buffer_size_); } uptr MemoryUsedPerThread() { uptr res = sizeof(Thread) + ring_buffer_size_; if (auto sz = flags()->heap_history_size) res += HeapAllocationsRingBuffer::SizeInBytes(sz); return res; } template void VisitAllLiveThreads(CB cb) SANITIZER_EXCLUDES(live_list_mutex_) { SpinMutexLock l(&live_list_mutex_); for (Thread *t : live_list_) cb(t); } template Thread *FindThreadLocked(CB cb) SANITIZER_CHECK_LOCKED(live_list_mutex_) { CheckLocked(); for (Thread *t : live_list_) if (cb(t)) return t; return nullptr; } void AddThreadStats(Thread *t) SANITIZER_EXCLUDES(stats_mutex_) { SpinMutexLock l(&stats_mutex_); stats_.n_live_threads++; stats_.total_stack_size += t->stack_size(); } void RemoveThreadStats(Thread *t) SANITIZER_EXCLUDES(stats_mutex_) { SpinMutexLock l(&stats_mutex_); stats_.n_live_threads--; stats_.total_stack_size -= t->stack_size(); } ThreadStats GetThreadStats() SANITIZER_EXCLUDES(stats_mutex_) { SpinMutexLock l(&stats_mutex_); return stats_; } uptr GetRingBufferSize() const { return ring_buffer_size_; } void Lock() SANITIZER_ACQUIRE(live_list_mutex_) { live_list_mutex_.Lock(); } void CheckLocked() const SANITIZER_CHECK_LOCKED(live_list_mutex_) { live_list_mutex_.CheckLocked(); } void Unlock() SANITIZER_RELEASE(live_list_mutex_) { live_list_mutex_.Unlock(); } private: Thread *AllocThread() { SpinMutexLock l(&free_space_mutex_); uptr align = ring_buffer_size_ * 2; CHECK(IsAligned(free_space_, align)); Thread *t = (Thread *)(free_space_ + ring_buffer_size_); free_space_ += thread_alloc_size_; CHECK_LE(free_space_, free_space_end_); return t; } SpinMutex free_space_mutex_; uptr free_space_; uptr free_space_end_; uptr ring_buffer_size_; uptr thread_alloc_size_; SpinMutex free_list_mutex_; InternalMmapVector free_list_ SANITIZER_GUARDED_BY(free_list_mutex_); SpinMutex live_list_mutex_; InternalMmapVector live_list_ SANITIZER_GUARDED_BY(live_list_mutex_); SpinMutex stats_mutex_; ThreadStats stats_ SANITIZER_GUARDED_BY(stats_mutex_); }; void InitThreadList(uptr storage, uptr size); HwasanThreadList &hwasanThreadList(); ThreadArgRetval &hwasanThreadArgRetval(); } // namespace __hwasan