//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/AST/Attr.h" #include "clang/AST/CharUnits.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Basic/JsonSupport.h" #include "clang/Basic/TargetInfo.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Representation of binding keys. //===----------------------------------------------------------------------===// namespace { class BindingKey { public: enum Kind { Default = 0x0, Direct = 0x1 }; private: enum { Symbolic = 0x2 }; llvm::PointerIntPair P; uint64_t Data; /// Create a key for a binding to region \p r, which has a symbolic offset /// from region \p Base. explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) : P(r, k | Symbolic), Data(reinterpret_cast(Base)) { assert(r && Base && "Must have known regions."); assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); } /// Create a key for a binding at \p offset from base region \p r. explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) : P(r, k), Data(offset) { assert(r && "Must have known regions."); assert(getOffset() == offset && "Failed to store offset"); assert((r == r->getBaseRegion() || isa(r)) && "Not a base"); } public: bool isDirect() const { return P.getInt() & Direct; } bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } const MemRegion *getRegion() const { return P.getPointer(); } uint64_t getOffset() const { assert(!hasSymbolicOffset()); return Data; } const SubRegion *getConcreteOffsetRegion() const { assert(hasSymbolicOffset()); return reinterpret_cast(static_cast(Data)); } const MemRegion *getBaseRegion() const { if (hasSymbolicOffset()) return getConcreteOffsetRegion()->getBaseRegion(); return getRegion()->getBaseRegion(); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddPointer(P.getOpaqueValue()); ID.AddInteger(Data); } static BindingKey Make(const MemRegion *R, Kind k); bool operator<(const BindingKey &X) const { if (P.getOpaqueValue() < X.P.getOpaqueValue()) return true; if (P.getOpaqueValue() > X.P.getOpaqueValue()) return false; return Data < X.Data; } bool operator==(const BindingKey &X) const { return P.getOpaqueValue() == X.P.getOpaqueValue() && Data == X.Data; } LLVM_DUMP_METHOD void dump() const; }; } // end anonymous namespace BindingKey BindingKey::Make(const MemRegion *R, Kind k) { const RegionOffset &RO = R->getAsOffset(); if (RO.hasSymbolicOffset()) return BindingKey(cast(R), cast(RO.getRegion()), k); return BindingKey(RO.getRegion(), RO.getOffset(), k); } namespace llvm { static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) { Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default") << "\", \"offset\": "; if (!K.hasSymbolicOffset()) Out << K.getOffset(); else Out << "null"; return Out; } } // namespace llvm #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void BindingKey::dump() const { llvm::errs() << *this; } #endif //===----------------------------------------------------------------------===// // Actual Store type. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap ClusterBindings; typedef llvm::ImmutableMapRef ClusterBindingsRef; typedef std::pair BindingPair; typedef llvm::ImmutableMap RegionBindings; namespace { class RegionBindingsRef : public llvm::ImmutableMapRef { ClusterBindings::Factory *CBFactory; // This flag indicates whether the current bindings are within the analysis // that has started from main(). It affects how we perform loads from // global variables that have initializers: if we have observed the // program execution from the start and we know that these variables // have not been overwritten yet, we can be sure that their initializers // are still relevant. This flag never gets changed when the bindings are // updated, so it could potentially be moved into RegionStoreManager // (as if it's the same bindings but a different loading procedure) // however that would have made the manager needlessly stateful. bool IsMainAnalysis; public: typedef llvm::ImmutableMapRef ParentTy; RegionBindingsRef(ClusterBindings::Factory &CBFactory, const RegionBindings::TreeTy *T, RegionBindings::TreeTy::Factory *F, bool IsMainAnalysis) : llvm::ImmutableMapRef(T, F), CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory, bool IsMainAnalysis) : llvm::ImmutableMapRef(P), CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} RegionBindingsRef add(key_type_ref K, data_type_ref D) const { return RegionBindingsRef(static_cast(this)->add(K, D), *CBFactory, IsMainAnalysis); } RegionBindingsRef remove(key_type_ref K) const { return RegionBindingsRef(static_cast(this)->remove(K), *CBFactory, IsMainAnalysis); } RegionBindingsRef addBinding(BindingKey K, SVal V) const; RegionBindingsRef addBinding(const MemRegion *R, BindingKey::Kind k, SVal V) const; const SVal *lookup(BindingKey K) const; const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; using llvm::ImmutableMapRef::lookup; RegionBindingsRef removeBinding(BindingKey K); RegionBindingsRef removeBinding(const MemRegion *R, BindingKey::Kind k); RegionBindingsRef removeBinding(const MemRegion *R) { return removeBinding(R, BindingKey::Direct). removeBinding(R, BindingKey::Default); } std::optional getDirectBinding(const MemRegion *R) const; /// getDefaultBinding - Returns an SVal* representing an optional default /// binding associated with a region and its subregions. std::optional getDefaultBinding(const MemRegion *R) const; /// Return the internal tree as a Store. Store asStore() const { llvm::PointerIntPair Ptr = { asImmutableMap().getRootWithoutRetain(), IsMainAnalysis}; return reinterpret_cast(Ptr.getOpaqueValue()); } bool isMainAnalysis() const { return IsMainAnalysis; } void printJson(raw_ostream &Out, const char *NL = "\n", unsigned int Space = 0, bool IsDot = false) const { for (iterator I = begin(), E = end(); I != E; ++I) { // TODO: We might need a .printJson for I.getKey() as well. Indent(Out, Space, IsDot) << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \"" << (const void *)I.getKey() << "\", \"items\": [" << NL; ++Space; const ClusterBindings &CB = I.getData(); for (ClusterBindings::iterator CI = CB.begin(), CE = CB.end(); CI != CE; ++CI) { Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": "; CI.getData().printJson(Out, /*AddQuotes=*/true); Out << " }"; if (std::next(CI) != CE) Out << ','; Out << NL; } --Space; Indent(Out, Space, IsDot) << "]}"; if (std::next(I) != E) Out << ','; Out << NL; } } LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); } }; } // end anonymous namespace typedef const RegionBindingsRef& RegionBindingsConstRef; std::optional RegionBindingsRef::getDirectBinding(const MemRegion *R) const { const SVal *V = lookup(R, BindingKey::Direct); return V ? std::optional(*V) : std::nullopt; } std::optional RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { const SVal *V = lookup(R, BindingKey::Default); return V ? std::optional(*V) : std::nullopt; } RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { const MemRegion *Base = K.getBaseRegion(); const ClusterBindings *ExistingCluster = lookup(Base); ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); ClusterBindings NewCluster = CBFactory->add(Cluster, K, V); return add(Base, NewCluster); } RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, BindingKey::Kind k, SVal V) const { return addBinding(BindingKey::Make(R, k), V); } const SVal *RegionBindingsRef::lookup(BindingKey K) const { const ClusterBindings *Cluster = lookup(K.getBaseRegion()); if (!Cluster) return nullptr; return Cluster->lookup(K); } const SVal *RegionBindingsRef::lookup(const MemRegion *R, BindingKey::Kind k) const { return lookup(BindingKey::Make(R, k)); } RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { const MemRegion *Base = K.getBaseRegion(); const ClusterBindings *Cluster = lookup(Base); if (!Cluster) return *this; ClusterBindings NewCluster = CBFactory->remove(*Cluster, K); if (NewCluster.isEmpty()) return remove(Base); return add(Base, NewCluster); } RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, BindingKey::Kind k){ return removeBinding(BindingKey::Make(R, k)); } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class InvalidateRegionsWorker; class RegionStoreManager : public StoreManager { public: RegionBindings::Factory RBFactory; mutable ClusterBindings::Factory CBFactory; typedef std::vector SValListTy; private: typedef llvm::DenseMap LazyBindingsMapTy; LazyBindingsMapTy LazyBindingsMap; /// The largest number of fields a struct can have and still be /// considered "small". /// /// This is currently used to decide whether or not it is worth "forcing" a /// LazyCompoundVal on bind. /// /// This is controlled by 'region-store-small-struct-limit' option. /// To disable all small-struct-dependent behavior, set the option to "0". unsigned SmallStructLimit; /// The largest number of element an array can have and still be /// considered "small". /// /// This is currently used to decide whether or not it is worth "forcing" a /// LazyCompoundVal on bind. /// /// This is controlled by 'region-store-small-struct-limit' option. /// To disable all small-struct-dependent behavior, set the option to "0". unsigned SmallArrayLimit; /// A helper used to populate the work list with the given set of /// regions. void populateWorkList(InvalidateRegionsWorker &W, ArrayRef Values, InvalidatedRegions *TopLevelRegions); public: RegionStoreManager(ProgramStateManager &mgr) : StoreManager(mgr), RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) { ExprEngine &Eng = StateMgr.getOwningEngine(); AnalyzerOptions &Options = Eng.getAnalysisManager().options; SmallStructLimit = Options.RegionStoreSmallStructLimit; SmallArrayLimit = Options.RegionStoreSmallArrayLimit; } /// setImplicitDefaultValue - Set the default binding for the provided /// MemRegion to the value implicitly defined for compound literals when /// the value is not specified. RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B, const MemRegion *R, QualType T); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(Loc Array, QualType ElementTy) override; /// Creates the Store that correctly represents memory contents before /// the beginning of the analysis of the given top-level stack frame. StoreRef getInitialStore(const LocationContext *InitLoc) override { bool IsMainAnalysis = false; if (const auto *FD = dyn_cast(InitLoc->getDecl())) IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus; return StoreRef(RegionBindingsRef( RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory), CBFactory, IsMainAnalysis).asStore(), *this); } //===-------------------------------------------------------------------===// // Binding values to regions. //===-------------------------------------------------------------------===// RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindingsRef B, InvalidatedRegions *Invalidated); StoreRef invalidateRegions(Store store, ArrayRef Values, const Expr *E, unsigned Count, const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, RegionAndSymbolInvalidationTraits &ITraits, InvalidatedRegions *Invalidated, InvalidatedRegions *InvalidatedTopLevel) override; bool scanReachableSymbols(Store S, const MemRegion *R, ScanReachableSymbols &Callbacks) override; RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B, const SubRegion *R); std::optional getConstantValFromConstArrayInitializer(RegionBindingsConstRef B, const ElementRegion *R); std::optional getSValFromInitListExpr(const InitListExpr *ILE, const SmallVector &ConcreteOffsets, QualType ElemT); SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset, QualType ElemT); public: // Part of public interface to class. StoreRef Bind(Store store, Loc LV, SVal V) override { return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this); } RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V); // BindDefaultInitial is only used to initialize a region with // a default value. StoreRef BindDefaultInitial(Store store, const MemRegion *R, SVal V) override { RegionBindingsRef B = getRegionBindings(store); // Use other APIs when you have to wipe the region that was initialized // earlier. assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) && "Double initialization!"); B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); } // BindDefaultZero is used for zeroing constructors that may accidentally // overwrite existing bindings. StoreRef BindDefaultZero(Store store, const MemRegion *R) override { // FIXME: The offsets of empty bases can be tricky because of // of the so called "empty base class optimization". // If a base class has been optimized out // we should not try to create a binding, otherwise we should. // Unfortunately, at the moment ASTRecordLayout doesn't expose // the actual sizes of the empty bases // and trying to infer them from offsets/alignments // seems to be error-prone and non-trivial because of the trailing padding. // As a temporary mitigation we don't create bindings for empty bases. if (const auto *BR = dyn_cast(R)) if (BR->getDecl()->isEmpty()) return StoreRef(store, *this); RegionBindingsRef B = getRegionBindings(store); SVal V = svalBuilder.makeZeroVal(Ctx.CharTy); B = removeSubRegionBindings(B, cast(R)); B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); } /// Attempt to extract the fields of \p LCV and bind them to the struct region /// \p R. /// /// This path is used when it seems advantageous to "force" loading the values /// within a LazyCompoundVal to bind memberwise to the struct region, rather /// than using a Default binding at the base of the entire region. This is a /// heuristic attempting to avoid building long chains of LazyCompoundVals. /// /// \returns The updated store bindings, or \c std::nullopt if binding /// non-lazily would be too expensive. std::optional tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD, nonloc::LazyCompoundVal LCV); /// BindStruct - Bind a compound value to a structure. RegionBindingsRef bindStruct(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V); /// BindVector - Bind a compound value to a vector. RegionBindingsRef bindVector(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V); std::optional tryBindSmallArray(RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT, nonloc::LazyCompoundVal LCV); RegionBindingsRef bindArray(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V); /// Clears out all bindings in the given region and assigns a new value /// as a Default binding. RegionBindingsRef bindAggregate(RegionBindingsConstRef B, const TypedRegion *R, SVal DefaultVal); /// Create a new store with the specified binding removed. /// \param ST the original store, that is the basis for the new store. /// \param L the location whose binding should be removed. StoreRef killBinding(Store ST, Loc L) override; void incrementReferenceCount(Store store) override { getRegionBindings(store).manualRetain(); } /// If the StoreManager supports it, decrement the reference count of /// the specified Store object. If the reference count hits 0, the memory /// associated with the object is recycled. void decrementReferenceCount(Store store) override { getRegionBindings(store).manualRelease(); } bool includedInBindings(Store store, const MemRegion *region) const override; /// Return the value bound to specified location in a given state. /// /// The high level logic for this method is this: /// getBinding (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SVal getBinding(Store S, Loc L, QualType T) override { return getBinding(getRegionBindings(S), L, T); } std::optional getDefaultBinding(Store S, const MemRegion *R) override { RegionBindingsRef B = getRegionBindings(S); // Default bindings are always applied over a base region so look up the // base region's default binding, otherwise the lookup will fail when R // is at an offset from R->getBaseRegion(). return B.getDefaultBinding(R->getBaseRegion()); } SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); SVal getBindingForLazySymbol(const TypedValueRegion *R); SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, const TypedValueRegion *R, QualType Ty); SVal getLazyBinding(const SubRegion *LazyBindingRegion, RegionBindingsRef LazyBinding); /// Get bindings for the values in a struct and return a CompoundVal, used /// when doing struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); /// Used to lazily generate derived symbols for bindings that are defined /// implicitly by default bindings in a super region. /// /// Note that callers may need to specially handle LazyCompoundVals, which /// are returned as is in case the caller needs to treat them differently. std::optional getBindingForDerivedDefaultValue(RegionBindingsConstRef B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty); /// Get the state and region whose binding this region \p R corresponds to. /// /// If there is no lazy binding for \p R, the returned value will have a null /// \c second. Note that a null pointer can represents a valid Store. std::pair findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, const SubRegion *originalRegion); /// Returns the cached set of interesting SVals contained within a lazy /// binding. /// /// The precise value of "interesting" is determined for the purposes of /// RegionStore's internal analysis. It must always contain all regions and /// symbols, but may omit constants and other kinds of SVal. /// /// In contrast to compound values, LazyCompoundVals are also added /// to the 'interesting values' list in addition to the child interesting /// values. const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); //===------------------------------------------------------------------===// // State pruning. //===------------------------------------------------------------------===// /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed. StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper) override; //===------------------------------------------------------------------===// // Utility methods. //===------------------------------------------------------------------===// RegionBindingsRef getRegionBindings(Store store) const { llvm::PointerIntPair Ptr; Ptr.setFromOpaqueValue(const_cast(store)); return RegionBindingsRef( CBFactory, static_cast(Ptr.getPointer()), RBFactory.getTreeFactory(), Ptr.getInt()); } void printJson(raw_ostream &Out, Store S, const char *NL = "\n", unsigned int Space = 0, bool IsDot = false) const override; void iterBindings(Store store, BindingsHandler& f) override { RegionBindingsRef B = getRegionBindings(store); for (const auto &[Region, Cluster] : B) { for (const auto &[Key, Value] : Cluster) { if (!Key.isDirect()) continue; if (const SubRegion *R = dyn_cast(Key.getRegion())) { // FIXME: Possibly incorporate the offset? if (!f.HandleBinding(*this, store, R, Value)) return; } } } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // RegionStore creation. //===----------------------------------------------------------------------===// std::unique_ptr ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { return std::make_unique(StMgr); } //===----------------------------------------------------------------------===// // Region Cluster analysis. //===----------------------------------------------------------------------===// namespace { /// Used to determine which global regions are automatically included in the /// initial worklist of a ClusterAnalysis. enum GlobalsFilterKind { /// Don't include any global regions. GFK_None, /// Only include system globals. GFK_SystemOnly, /// Include all global regions. GFK_All }; template class ClusterAnalysis { protected: typedef llvm::DenseMap ClusterMap; typedef const MemRegion * WorkListElement; typedef SmallVector WorkList; llvm::SmallPtrSet Visited; WorkList WL; RegionStoreManager &RM; ASTContext &Ctx; SValBuilder &svalBuilder; RegionBindingsRef B; protected: const ClusterBindings *getCluster(const MemRegion *R) { return B.lookup(R); } /// Returns true if all clusters in the given memspace should be initially /// included in the cluster analysis. Subclasses may provide their /// own implementation. bool includeEntireMemorySpace(const MemRegion *Base) { return false; } public: ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, RegionBindingsRef b) : RM(rm), Ctx(StateMgr.getContext()), svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} RegionBindingsRef getRegionBindings() const { return B; } bool isVisited(const MemRegion *R) { return Visited.count(getCluster(R)); } void GenerateClusters() { // Scan the entire set of bindings and record the region clusters. for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const MemRegion *Base = RI.getKey(); const ClusterBindings &Cluster = RI.getData(); assert(!Cluster.isEmpty() && "Empty clusters should be removed"); static_cast(this)->VisitAddedToCluster(Base, Cluster); // If the base's memspace should be entirely invalidated, add the cluster // to the workspace up front. if (static_cast(this)->includeEntireMemorySpace(Base)) AddToWorkList(WorkListElement(Base), &Cluster); } } bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { if (C && !Visited.insert(C).second) return false; WL.push_back(E); return true; } bool AddToWorkList(const MemRegion *R) { return static_cast(this)->AddToWorkList(R); } void RunWorkList() { while (!WL.empty()) { WorkListElement E = WL.pop_back_val(); const MemRegion *BaseR = E; static_cast(this)->VisitCluster(BaseR, getCluster(BaseR)); } } void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, bool Flag) { static_cast(this)->VisitCluster(BaseR, C); } }; } //===----------------------------------------------------------------------===// // Binding invalidation. //===----------------------------------------------------------------------===// bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, ScanReachableSymbols &Callbacks) { assert(R == R->getBaseRegion() && "Should only be called for base regions"); RegionBindingsRef B = getRegionBindings(S); const ClusterBindings *Cluster = B.lookup(R); if (!Cluster) return true; for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); RI != RE; ++RI) { if (!Callbacks.scan(RI.getData())) return false; } return true; } static inline bool isUnionField(const FieldRegion *FR) { return FR->getDecl()->getParent()->isUnion(); } typedef SmallVector FieldVector; static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); const MemRegion *Base = K.getConcreteOffsetRegion(); const MemRegion *R = K.getRegion(); while (R != Base) { if (const FieldRegion *FR = dyn_cast(R)) if (!isUnionField(FR)) Fields.push_back(FR->getDecl()); R = cast(R)->getSuperRegion(); } } static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); if (Fields.empty()) return true; FieldVector FieldsInBindingKey; getSymbolicOffsetFields(K, FieldsInBindingKey); ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); if (Delta >= 0) return std::equal(FieldsInBindingKey.begin() + Delta, FieldsInBindingKey.end(), Fields.begin()); else return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), Fields.begin() - Delta); } /// Collects all bindings in \p Cluster that may refer to bindings within /// \p Top. /// /// Each binding is a pair whose \c first is the key (a BindingKey) and whose /// \c second is the value (an SVal). /// /// The \p IncludeAllDefaultBindings parameter specifies whether to include /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is /// an aggregate within a larger aggregate with a default binding. static void collectSubRegionBindings(SmallVectorImpl &Bindings, SValBuilder &SVB, const ClusterBindings &Cluster, const SubRegion *Top, BindingKey TopKey, bool IncludeAllDefaultBindings) { FieldVector FieldsInSymbolicSubregions; if (TopKey.hasSymbolicOffset()) { getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions); Top = TopKey.getConcreteOffsetRegion(); TopKey = BindingKey::Make(Top, BindingKey::Default); } // Find the length (in bits) of the region being invalidated. uint64_t Length = UINT64_MAX; SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB); if (std::optional ExtentCI = Extent.getAs()) { const llvm::APSInt &ExtentInt = ExtentCI->getValue(); assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); // Extents are in bytes but region offsets are in bits. Be careful! Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); } else if (const FieldRegion *FR = dyn_cast(Top)) { if (FR->getDecl()->isBitField()) Length = FR->getDecl()->getBitWidthValue(SVB.getContext()); } for (const auto &StoreEntry : Cluster) { BindingKey NextKey = StoreEntry.first; if (NextKey.getRegion() == TopKey.getRegion()) { // FIXME: This doesn't catch the case where we're really invalidating a // region with a symbolic offset. Example: // R: points[i].y // Next: points[0].x if (NextKey.getOffset() > TopKey.getOffset() && NextKey.getOffset() - TopKey.getOffset() < Length) { // Case 1: The next binding is inside the region we're invalidating. // Include it. Bindings.push_back(StoreEntry); } else if (NextKey.getOffset() == TopKey.getOffset()) { // Case 2: The next binding is at the same offset as the region we're // invalidating. In this case, we need to leave default bindings alone, // since they may be providing a default value for a regions beyond what // we're invalidating. // FIXME: This is probably incorrect; consider invalidating an outer // struct whose first field is bound to a LazyCompoundVal. if (IncludeAllDefaultBindings || NextKey.isDirect()) Bindings.push_back(StoreEntry); } } else if (NextKey.hasSymbolicOffset()) { const MemRegion *Base = NextKey.getConcreteOffsetRegion(); if (Top->isSubRegionOf(Base) && Top != Base) { // Case 3: The next key is symbolic and we just changed something within // its concrete region. We don't know if the binding is still valid, so // we'll be conservative and include it. if (IncludeAllDefaultBindings || NextKey.isDirect()) if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) Bindings.push_back(StoreEntry); } else if (const SubRegion *BaseSR = dyn_cast(Base)) { // Case 4: The next key is symbolic, but we changed a known // super-region. In this case the binding is certainly included. if (BaseSR->isSubRegionOf(Top)) if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) Bindings.push_back(StoreEntry); } } } } static void collectSubRegionBindings(SmallVectorImpl &Bindings, SValBuilder &SVB, const ClusterBindings &Cluster, const SubRegion *Top, bool IncludeAllDefaultBindings) { collectSubRegionBindings(Bindings, SVB, Cluster, Top, BindingKey::Make(Top, BindingKey::Default), IncludeAllDefaultBindings); } RegionBindingsRef RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B, const SubRegion *Top) { BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default); const MemRegion *ClusterHead = TopKey.getBaseRegion(); if (Top == ClusterHead) { // We can remove an entire cluster's bindings all in one go. return B.remove(Top); } const ClusterBindings *Cluster = B.lookup(ClusterHead); if (!Cluster) { // If we're invalidating a region with a symbolic offset, we need to make // sure we don't treat the base region as uninitialized anymore. if (TopKey.hasSymbolicOffset()) { const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); return B.addBinding(Concrete, BindingKey::Default, UnknownVal()); } return B; } SmallVector Bindings; collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey, /*IncludeAllDefaultBindings=*/false); ClusterBindingsRef Result(*Cluster, CBFactory); for (BindingKey Key : llvm::make_first_range(Bindings)) Result = Result.remove(Key); // If we're invalidating a region with a symbolic offset, we need to make sure // we don't treat the base region as uninitialized anymore. // FIXME: This isn't very precise; see the example in // collectSubRegionBindings. if (TopKey.hasSymbolicOffset()) { const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default), UnknownVal()); } if (Result.isEmpty()) return B.remove(ClusterHead); return B.add(ClusterHead, Result.asImmutableMap()); } namespace { class InvalidateRegionsWorker : public ClusterAnalysis { const Expr *Ex; unsigned Count; const LocationContext *LCtx; InvalidatedSymbols &IS; RegionAndSymbolInvalidationTraits &ITraits; StoreManager::InvalidatedRegions *Regions; GlobalsFilterKind GlobalsFilter; public: InvalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindingsRef b, const Expr *ex, unsigned count, const LocationContext *lctx, InvalidatedSymbols &is, RegionAndSymbolInvalidationTraits &ITraitsIn, StoreManager::InvalidatedRegions *r, GlobalsFilterKind GFK) : ClusterAnalysis(rm, stateMgr, b), Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), GlobalsFilter(GFK) {} void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); void VisitBinding(SVal V); using ClusterAnalysis::AddToWorkList; bool AddToWorkList(const MemRegion *R); /// Returns true if all clusters in the memory space for \p Base should be /// be invalidated. bool includeEntireMemorySpace(const MemRegion *Base); /// Returns true if the memory space of the given region is one of the global /// regions specially included at the start of invalidation. bool isInitiallyIncludedGlobalRegion(const MemRegion *R); }; } bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) { bool doNotInvalidateSuperRegion = ITraits.hasTrait( R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); } void InvalidateRegionsWorker::VisitBinding(SVal V) { // A symbol? Mark it touched by the invalidation. if (SymbolRef Sym = V.getAsSymbol()) IS.insert(Sym); if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); return; } // Is it a LazyCompoundVal? All references get invalidated as well. if (std::optional LCS = V.getAs()) { // `getInterestingValues()` returns SVals contained within LazyCompoundVals, // so there is no need to visit them. for (SVal V : RM.getInterestingValues(*LCS)) if (!isa(V)) VisitBinding(V); return; } } void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, const ClusterBindings *C) { bool PreserveRegionsContents = ITraits.hasTrait(baseR, RegionAndSymbolInvalidationTraits::TK_PreserveContents); if (C) { for (SVal Val : llvm::make_second_range(*C)) VisitBinding(Val); // Invalidate regions contents. if (!PreserveRegionsContents) B = B.remove(baseR); } if (const auto *TO = dyn_cast(baseR)) { if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) { // Lambdas can affect all static local variables without explicitly // capturing those. // We invalidate all static locals referenced inside the lambda body. if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) { using namespace ast_matchers; const char *DeclBind = "DeclBind"; StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr( to(varDecl(hasStaticStorageDuration()).bind(DeclBind))))); auto Matches = match(RefToStatic, *RD->getLambdaCallOperator()->getBody(), RD->getASTContext()); for (BoundNodes &Match : Matches) { auto *VD = Match.getNodeAs(DeclBind); const VarRegion *ToInvalidate = RM.getRegionManager().getVarRegion(VD, LCtx); AddToWorkList(ToInvalidate); } } } } // BlockDataRegion? If so, invalidate captured variables that are passed // by reference. if (const BlockDataRegion *BR = dyn_cast(baseR)) { for (auto Var : BR->referenced_vars()) { const VarRegion *VR = Var.getCapturedRegion(); const VarDecl *VD = VR->getDecl(); if (VD->hasAttr() || !VD->hasLocalStorage()) { AddToWorkList(VR); } else if (Loc::isLocType(VR->getValueType())) { // Map the current bindings to a Store to retrieve the value // of the binding. If that binding itself is a region, we should // invalidate that region. This is because a block may capture // a pointer value, but the thing pointed by that pointer may // get invalidated. SVal V = RM.getBinding(B, loc::MemRegionVal(VR)); if (std::optional L = V.getAs()) { if (const MemRegion *LR = L->getAsRegion()) AddToWorkList(LR); } } } return; } // Symbolic region? if (const SymbolicRegion *SR = dyn_cast(baseR)) IS.insert(SR->getSymbol()); // Nothing else should be done in the case when we preserve regions context. if (PreserveRegionsContents) return; // Otherwise, we have a normal data region. Record that we touched the region. if (Regions) Regions->push_back(baseR); if (isa(baseR)) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelevant. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = B.addBinding(baseR, BindingKey::Default, V); return; } if (!baseR->isBoundable()) return; const TypedValueRegion *TR = cast(baseR); QualType T = TR->getValueType(); if (isInitiallyIncludedGlobalRegion(baseR)) { // If the region is a global and we are invalidating all globals, // erasing the entry is good enough. This causes all globals to be lazily // symbolicated from the same base symbol. return; } if (T->isRecordType()) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelevant. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = B.addBinding(baseR, BindingKey::Default, V); return; } if (const ArrayType *AT = Ctx.getAsArrayType(T)) { bool doNotInvalidateSuperRegion = ITraits.hasTrait( baseR, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); if (doNotInvalidateSuperRegion) { // We are not doing blank invalidation of the whole array region so we // have to manually invalidate each elements. std::optional NumElements; // Compute lower and upper offsets for region within array. if (const ConstantArrayType *CAT = dyn_cast(AT)) NumElements = CAT->getSize().getZExtValue(); if (!NumElements) // We are not dealing with a constant size array goto conjure_default; QualType ElementTy = AT->getElementType(); uint64_t ElemSize = Ctx.getTypeSize(ElementTy); const RegionOffset &RO = baseR->getAsOffset(); const MemRegion *SuperR = baseR->getBaseRegion(); if (RO.hasSymbolicOffset()) { // If base region has a symbolic offset, // we revert to invalidating the super region. if (SuperR) AddToWorkList(SuperR); goto conjure_default; } uint64_t LowerOffset = RO.getOffset(); uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; bool UpperOverflow = UpperOffset < LowerOffset; // Invalidate regions which are within array boundaries, // or have a symbolic offset. if (!SuperR) goto conjure_default; const ClusterBindings *C = B.lookup(SuperR); if (!C) goto conjure_default; for (const auto &[BK, V] : *C) { std::optional ROffset = BK.hasSymbolicOffset() ? std::optional() : BK.getOffset(); // Check offset is not symbolic and within array's boundaries. // Handles arrays of 0 elements and of 0-sized elements as well. if (!ROffset || ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || (UpperOverflow && (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { B = B.removeBinding(BK); // Bound symbolic regions need to be invalidated for dead symbol // detection. const MemRegion *R = V.getAsRegion(); if (isa_and_nonnull(R)) VisitBinding(V); } } } conjure_default: // Set the default value of the array to conjured symbol. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, AT->getElementType(), Count); B = B.addBinding(baseR, BindingKey::Default, V); return; } DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, T,Count); assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); B = B.addBinding(baseR, BindingKey::Direct, V); } bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion( const MemRegion *R) { switch (GlobalsFilter) { case GFK_None: return false; case GFK_SystemOnly: return isa(R->getMemorySpace()); case GFK_All: return isa(R->getMemorySpace()); } llvm_unreachable("unknown globals filter"); } bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { if (isInitiallyIncludedGlobalRegion(Base)) return true; const MemSpaceRegion *MemSpace = Base->getMemorySpace(); return ITraits.hasTrait(MemSpace, RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); } RegionBindingsRef RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindingsRef B, InvalidatedRegions *Invalidated) { // Bind the globals memory space to a new symbol that we will use to derive // the bindings for all globals. const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx, /* type does not matter */ Ctx.IntTy, Count); B = B.removeBinding(GS) .addBinding(BindingKey::Make(GS, BindingKey::Default), V); // Even if there are no bindings in the global scope, we still need to // record that we touched it. if (Invalidated) Invalidated->push_back(GS); return B; } void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W, ArrayRef Values, InvalidatedRegions *TopLevelRegions) { for (SVal V : Values) { if (auto LCS = V.getAs()) { for (SVal S : getInterestingValues(*LCS)) if (const MemRegion *R = S.getAsRegion()) W.AddToWorkList(R); continue; } if (const MemRegion *R = V.getAsRegion()) { if (TopLevelRegions) TopLevelRegions->push_back(R); W.AddToWorkList(R); continue; } } } StoreRef RegionStoreManager::invalidateRegions(Store store, ArrayRef Values, const Expr *Ex, unsigned Count, const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, RegionAndSymbolInvalidationTraits &ITraits, InvalidatedRegions *TopLevelRegions, InvalidatedRegions *Invalidated) { GlobalsFilterKind GlobalsFilter; if (Call) { if (Call->isInSystemHeader()) GlobalsFilter = GFK_SystemOnly; else GlobalsFilter = GFK_All; } else { GlobalsFilter = GFK_None; } RegionBindingsRef B = getRegionBindings(store); InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits, Invalidated, GlobalsFilter); // Scan the bindings and generate the clusters. W.GenerateClusters(); // Add the regions to the worklist. populateWorkList(W, Values, TopLevelRegions); W.RunWorkList(); // Return the new bindings. B = W.getRegionBindings(); // For calls, determine which global regions should be invalidated and // invalidate them. (Note that function-static and immutable globals are never // invalidated by this.) // TODO: This could possibly be more precise with modules. switch (GlobalsFilter) { case GFK_All: B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); [[fallthrough]]; case GFK_SystemOnly: B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); [[fallthrough]]; case GFK_None: break; } return StoreRef(B.asStore(), *this); } //===----------------------------------------------------------------------===// // Location and region casting. //===----------------------------------------------------------------------===// /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { if (isa(Array)) return Array; if (!isa(Array)) return UnknownVal(); const SubRegion *R = cast(Array.castAs().getRegion()); NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx)); } //===----------------------------------------------------------------------===// // Loading values from regions. //===----------------------------------------------------------------------===// SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { assert(!isa(L) && "location unknown"); assert(!isa(L) && "location undefined"); // For access to concrete addresses, return UnknownVal. Checks // for null dereferences (and similar errors) are done by checkers, not // the Store. // FIXME: We can consider lazily symbolicating such memory, but we really // should defer this when we can reason easily about symbolicating arrays // of bytes. if (L.getAs()) { return UnknownVal(); } if (!L.getAs()) { return UnknownVal(); } const MemRegion *MR = L.castAs().getRegion(); if (isa(MR)) { return UnknownVal(); } // Auto-detect the binding type. if (T.isNull()) { if (const auto *TVR = dyn_cast(MR)) T = TVR->getValueType(); else if (const auto *TR = dyn_cast(MR)) T = TR->getLocationType()->getPointeeType(); else if (const auto *SR = dyn_cast(MR)) T = SR->getPointeeStaticType(); } assert(!T.isNull() && "Unable to auto-detect binding type!"); assert(!T->isVoidType() && "Attempting to dereference a void pointer!"); if (!isa(MR)) MR = GetElementZeroRegion(cast(MR), T); // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const TypedValueRegion *R = cast(MR); QualType RTy = R->getValueType(); // FIXME: we do not yet model the parts of a complex type, so treat the // whole thing as "unknown". if (RTy->isAnyComplexType()) return UnknownVal(); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. if (RTy->isStructureOrClassType()) return getBindingForStruct(B, R); // FIXME: Handle unions. if (RTy->isUnionType()) return createLazyBinding(B, R); if (RTy->isArrayType()) { if (RTy->isConstantArrayType()) return getBindingForArray(B, R); else return UnknownVal(); } // FIXME: handle Vector types. if (RTy->isVectorType()) return UnknownVal(); if (const FieldRegion* FR = dyn_cast(R)) return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{}); if (const ElementRegion* ER = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the element type. Eventually we want to compose these values // more intelligently. For example, an 'element' can encompass multiple // bound regions (e.g., several bound bytes), or could be a subset of // a larger value. return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{}); } if (const ObjCIvarRegion *IVR = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the ivar type. What we should model is stores to ivars // that blow past the extent of the ivar. If the address of the ivar is // reinterpretted, it is possible we stored a different value that could // fit within the ivar. Either we need to cast these when storing them // or reinterpret them lazily (as we do here). return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{}); } if (const VarRegion *VR = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the variable type. What we should model is stores to variables // that blow past the extent of the variable. If the address of the // variable is reinterpretted, it is possible we stored a different value // that could fit within the variable. Either we need to cast these when // storing them or reinterpret them lazily (as we do here). return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{}); } const SVal *V = B.lookup(R, BindingKey::Direct); // Check if the region has a binding. if (V) return *V; // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. if (R->hasStackNonParametersStorage()) { // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return UndefinedVal(); } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } static QualType getUnderlyingType(const SubRegion *R) { QualType RegionTy; if (const TypedValueRegion *TVR = dyn_cast(R)) RegionTy = TVR->getValueType(); if (const SymbolicRegion *SR = dyn_cast(R)) RegionTy = SR->getSymbol()->getType(); return RegionTy; } /// Checks to see if store \p B has a lazy binding for region \p R. /// /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected /// if there are additional bindings within \p R. /// /// Note that unlike RegionStoreManager::findLazyBinding, this will not search /// for lazy bindings for super-regions of \p R. static std::optional getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, const SubRegion *R, bool AllowSubregionBindings) { std::optional V = B.getDefaultBinding(R); if (!V) return std::nullopt; std::optional LCV = V->getAs(); if (!LCV) return std::nullopt; // If the LCV is for a subregion, the types might not match, and we shouldn't // reuse the binding. QualType RegionTy = getUnderlyingType(R); if (!RegionTy.isNull() && !RegionTy->isVoidPointerType()) { QualType SourceRegionTy = LCV->getRegion()->getValueType(); if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy)) return std::nullopt; } if (!AllowSubregionBindings) { // If there are any other bindings within this region, we shouldn't reuse // the top-level binding. SmallVector Bindings; collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R, /*IncludeAllDefaultBindings=*/true); if (Bindings.size() > 1) return std::nullopt; } return *LCV; } std::pair RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, const SubRegion *originalRegion) { if (originalRegion != R) { if (std::optional V = getExistingLazyBinding(svalBuilder, B, R, true)) return std::make_pair(V->getStore(), V->getRegion()); } typedef std::pair StoreRegionPair; StoreRegionPair Result = StoreRegionPair(); if (const ElementRegion *ER = dyn_cast(R)) { Result = findLazyBinding(B, cast(ER->getSuperRegion()), originalRegion); if (Result.second) Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second); } else if (const FieldRegion *FR = dyn_cast(R)) { Result = findLazyBinding(B, cast(FR->getSuperRegion()), originalRegion); if (Result.second) Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second); } else if (const CXXBaseObjectRegion *BaseReg = dyn_cast(R)) { // C++ base object region is another kind of region that we should blast // through to look for lazy compound value. It is like a field region. Result = findLazyBinding(B, cast(BaseReg->getSuperRegion()), originalRegion); if (Result.second) Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg, Result.second); } return Result; } /// This is a helper function for `getConstantValFromConstArrayInitializer`. /// /// Return an array of extents of the declared array type. /// /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }. static SmallVector getConstantArrayExtents(const ConstantArrayType *CAT) { assert(CAT && "ConstantArrayType should not be null"); CAT = cast(CAT->getCanonicalTypeInternal()); SmallVector Extents; do { Extents.push_back(CAT->getSize().getZExtValue()); } while ((CAT = dyn_cast(CAT->getElementType()))); return Extents; } /// This is a helper function for `getConstantValFromConstArrayInitializer`. /// /// Return an array of offsets from nested ElementRegions and a root base /// region. The array is never empty and a base region is never null. /// /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }. /// This represents an access through indirection: `arr[1][2][3];` /// /// \param ER The given (possibly nested) ElementRegion. /// /// \note The result array is in the reverse order of indirection expression: /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n /// is a number of indirections. It may not affect performance in real-life /// code, though. static std::pair, const MemRegion *> getElementRegionOffsetsWithBase(const ElementRegion *ER) { assert(ER && "ConstantArrayType should not be null"); const MemRegion *Base; SmallVector SValOffsets; do { SValOffsets.push_back(ER->getIndex()); Base = ER->getSuperRegion(); ER = dyn_cast(Base); } while (ER); return {SValOffsets, Base}; } /// This is a helper function for `getConstantValFromConstArrayInitializer`. /// /// Convert array of offsets from `SVal` to `uint64_t` in consideration of /// respective array extents. /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed /// order (expectedly received from `getElementRegionOffsetsWithBase`). /// \param ArrayExtents [in] The array of extents. /// \param DstOffsets [out] The array of offsets of type `uint64_t`. /// \returns: /// - `std::nullopt` for successful convertion. /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal /// will be returned as a suitable value of the access operation. /// which should be returned as a correct /// /// \example: /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 } /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) } /// // DstOffsets { 4, 5, 6 } /// // returns std::nullopt /// int x2 = arr[42][5][-6]; // returns UndefinedVal /// int x3 = arr[4][5][x2]; // returns UnknownVal static std::optional convertOffsetsFromSvalToUnsigneds(const SmallVector &SrcOffsets, const SmallVector ArrayExtents, SmallVector &DstOffsets) { // Check offsets for being out of bounds. // C++20 [expr.add] 7.6.6.4 (excerpt): // If P points to an array element i of an array object x with n // elements, where i < 0 or i > n, the behavior is undefined. // Dereferencing is not allowed on the "one past the last // element", when i == n. // Example: // const int arr[3][2] = {{1, 2}, {3, 4}}; // arr[0][0]; // 1 // arr[0][1]; // 2 // arr[0][2]; // UB // arr[1][0]; // 3 // arr[1][1]; // 4 // arr[1][-1]; // UB // arr[2][0]; // 0 // arr[2][1]; // 0 // arr[-2][0]; // UB DstOffsets.resize(SrcOffsets.size()); auto ExtentIt = ArrayExtents.begin(); auto OffsetIt = DstOffsets.begin(); // Reverse `SValOffsets` to make it consistent with `ArrayExtents`. for (SVal V : llvm::reverse(SrcOffsets)) { if (auto CI = V.getAs()) { // When offset is out of array's bounds, result is UB. const llvm::APSInt &Offset = CI->getValue(); if (Offset.isNegative() || Offset.uge(*(ExtentIt++))) return UndefinedVal(); // Store index in a reversive order. *(OffsetIt++) = Offset.getZExtValue(); continue; } // Symbolic index presented. Return Unknown value. // FIXME: We also need to take ElementRegions with symbolic indexes into // account. return UnknownVal(); } return std::nullopt; } std::optional RegionStoreManager::getConstantValFromConstArrayInitializer( RegionBindingsConstRef B, const ElementRegion *R) { assert(R && "ElementRegion should not be null"); // Treat an n-dimensional array. SmallVector SValOffsets; const MemRegion *Base; std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R); const VarRegion *VR = dyn_cast(Base); if (!VR) return std::nullopt; assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the " "offsets vector is not empty."); // Check if the containing array has an initialized value that we can trust. // We can trust a const value or a value of a global initializer in main(). const VarDecl *VD = VR->getDecl(); if (!VD->getType().isConstQualified() && !R->getElementType().isConstQualified() && (!B.isMainAnalysis() || !VD->hasGlobalStorage())) return std::nullopt; // Array's declaration should have `ConstantArrayType` type, because only this // type contains an array extent. It may happen that array type can be of // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType` // type, we should find the declaration in the redeclarations chain that has // the initialization expression. // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD` // from which an initializer is obtained. We replace current `VD` with the new // `VD`. If the return value of the function is null than `VD` won't be // replaced. const Expr *Init = VD->getAnyInitializer(VD); // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check // `Init` for null only and don't worry about the replaced `VD`. if (!Init) return std::nullopt; // Array's declaration should have ConstantArrayType type, because only this // type contains an array extent. const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType()); if (!CAT) return std::nullopt; // Get array extents. SmallVector Extents = getConstantArrayExtents(CAT); // The number of offsets should equal to the numbers of extents, // otherwise wrong type punning occurred. For instance: // int arr[1][2][3]; // auto ptr = (int(*)[42])arr; // auto x = ptr[4][2]; // UB // FIXME: Should return UndefinedVal. if (SValOffsets.size() != Extents.size()) return std::nullopt; SmallVector ConcreteOffsets; if (std::optional V = convertOffsetsFromSvalToUnsigneds( SValOffsets, Extents, ConcreteOffsets)) return *V; // Handle InitListExpr. // Example: // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 }; if (const auto *ILE = dyn_cast(Init)) return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType()); // Handle StringLiteral. // Example: // const char arr[] = "abc"; if (const auto *SL = dyn_cast(Init)) return getSValFromStringLiteral(SL, ConcreteOffsets.front(), R->getElementType()); // FIXME: Handle CompoundLiteralExpr. return std::nullopt; } /// Returns an SVal, if possible, for the specified position of an /// initialization list. /// /// \param ILE The given initialization list. /// \param Offsets The array of unsigned offsets. E.g. for the expression /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }. /// \param ElemT The type of the result SVal expression. /// \return Optional SVal for the particular position in the initialization /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets: /// - {1, 1} returns SVal{4}, because it's the second position in the second /// sublist; /// - {3, 0} returns SVal{0}, because there's no explicit value at this /// position in the sublist. /// /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets /// for the given initialization list. Otherwise SVal can be an equivalent to 0 /// or lead to assertion. std::optional RegionStoreManager::getSValFromInitListExpr( const InitListExpr *ILE, const SmallVector &Offsets, QualType ElemT) { assert(ILE && "InitListExpr should not be null"); for (uint64_t Offset : Offsets) { // C++20 [dcl.init.string] 9.4.2.1: // An array of ordinary character type [...] can be initialized by [...] // an appropriately-typed string-literal enclosed in braces. // Example: // const char arr[] = { "abc" }; if (ILE->isStringLiteralInit()) if (const auto *SL = dyn_cast(ILE->getInit(0))) return getSValFromStringLiteral(SL, Offset, ElemT); // C++20 [expr.add] 9.4.17.5 (excerpt): // i-th array element is value-initialized for each k < i ≤ n, // where k is an expression-list size and n is an array extent. if (Offset >= ILE->getNumInits()) return svalBuilder.makeZeroVal(ElemT); const Expr *E = ILE->getInit(Offset); const auto *IL = dyn_cast(E); if (!IL) // Return a constant value, if it is presented. // FIXME: Support other SVals. return svalBuilder.getConstantVal(E); // Go to the nested initializer list. ILE = IL; } assert(ILE); // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an // enum? return std::nullopt; } /// Returns an SVal, if possible, for the specified position in a string /// literal. /// /// \param SL The given string literal. /// \param Offset The unsigned offset. E.g. for the expression /// `char x = str[42];` an offset should be 42. /// E.g. for the string "abc" offset: /// - 1 returns SVal{b}, because it's the second position in the string. /// - 42 returns SVal{0}, because there's no explicit value at this /// position in the string. /// \param ElemT The type of the result SVal expression. /// /// NOTE: We return `0` for every offset >= the literal length for array /// declarations, like: /// const char str[42] = "123"; // Literal length is 4. /// char c = str[41]; // Offset is 41. /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like: /// const char * const str = "123"; // Literal length is 4. /// char c = str[41]; // Offset is 41. Returns `0`, but Undef /// // expected. /// It should be properly handled before reaching this point. /// The main problem is that we can't distinguish between these declarations, /// because in case of array we can get the Decl from VarRegion, but in case /// of pointer the region is a StringRegion, which doesn't contain a Decl. /// Possible solution could be passing an array extent along with the offset. SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset, QualType ElemT) { assert(SL && "StringLiteral should not be null"); // C++20 [dcl.init.string] 9.4.2.3: // If there are fewer initializers than there are array elements, each // element not explicitly initialized shall be zero-initialized [dcl.init]. uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset); return svalBuilder.makeIntVal(Code, ElemT); } static std::optional getDerivedSymbolForBinding( RegionBindingsConstRef B, const TypedValueRegion *BaseRegion, const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) { assert(BaseRegion); QualType BaseTy = BaseRegion->getValueType(); QualType Ty = SubReg->getValueType(); if (BaseTy->isScalarType() && Ty->isScalarType()) { if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) { if (const std::optional &ParentValue = B.getDirectBinding(BaseRegion)) { if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol()) return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg); if (ParentValue->isUndef()) return UndefinedVal(); // Other cases: give up. We are indexing into a larger object // that has some value, but we don't know how to handle that yet. return UnknownVal(); } } } return std::nullopt; } SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, const ElementRegion* R) { // Check if the region has a binding. if (const std::optional &V = B.getDirectBinding(R)) return *V; const MemRegion* superR = R->getSuperRegion(); // Check if the region is an element region of a string literal. if (const StringRegion *StrR = dyn_cast(superR)) { // FIXME: Handle loads from strings where the literal is treated as // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according // to C++20 7.2.1.11 [basic.lval]. QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); if (!Ctx.hasSameUnqualifiedType(T, R->getElementType())) return UnknownVal(); if (const auto CI = R->getIndex().getAs()) { const llvm::APSInt &Idx = CI->getValue(); if (Idx < 0) return UndefinedVal(); const StringLiteral *SL = StrR->getStringLiteral(); return getSValFromStringLiteral(SL, Idx.getZExtValue(), T); } } else if (isa(superR)) { if (std::optional V = getConstantValFromConstArrayInitializer(B, R)) return *V; } // Check for loads from a code text region. For such loads, just give up. if (isa(superR)) return UnknownVal(); // Handle the case where we are indexing into a larger scalar object. // For example, this handles: // int x = ... // char *y = &x; // return *y; // FIXME: This is a hack, and doesn't do anything really intelligent yet. const RegionRawOffset &O = R->getAsArrayOffset(); // If we cannot reason about the offset, return an unknown value. if (!O.getRegion()) return UnknownVal(); if (const TypedValueRegion *baseR = dyn_cast(O.getRegion())) if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder)) return *V; return getBindingForFieldOrElementCommon(B, R, R->getElementType()); } SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, const FieldRegion* R) { // Check if the region has a binding. if (const std::optional &V = B.getDirectBinding(R)) return *V; // If the containing record was initialized, try to get its constant value. const FieldDecl *FD = R->getDecl(); QualType Ty = FD->getType(); const MemRegion* superR = R->getSuperRegion(); if (const auto *VR = dyn_cast(superR)) { const VarDecl *VD = VR->getDecl(); QualType RecordVarTy = VD->getType(); unsigned Index = FD->getFieldIndex(); // Either the record variable or the field has an initializer that we can // trust. We trust initializers of constants and, additionally, respect // initializers of globals when analyzing main(). if (RecordVarTy.isConstQualified() || Ty.isConstQualified() || (B.isMainAnalysis() && VD->hasGlobalStorage())) if (const Expr *Init = VD->getAnyInitializer()) if (const auto *InitList = dyn_cast(Init)) { if (Index < InitList->getNumInits()) { if (const Expr *FieldInit = InitList->getInit(Index)) if (std::optional V = svalBuilder.getConstantVal(FieldInit)) return *V; } else { return svalBuilder.makeZeroVal(Ty); } } } // Handle the case where we are accessing into a larger scalar object. // For example, this handles: // struct header { // unsigned a : 1; // unsigned b : 1; // }; // struct parse_t { // unsigned bits0 : 1; // unsigned bits2 : 2; // <-- header // unsigned bits4 : 4; // }; // int parse(parse_t *p) { // unsigned copy = p->bits2; // header *bits = (header *)© // return bits->b; <-- here // } if (const auto *Base = dyn_cast(R->getBaseRegion())) if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder)) return *V; return getBindingForFieldOrElementCommon(B, R, Ty); } std::optional RegionStoreManager::getBindingForDerivedDefaultValue( RegionBindingsConstRef B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty) { if (const std::optional &D = B.getDefaultBinding(superR)) { SVal val = *D; if (SymbolRef parentSym = val.getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); if (val.isZeroConstant()) return svalBuilder.makeZeroVal(Ty); if (val.isUnknownOrUndef()) return val; // Lazy bindings are usually handled through getExistingLazyBinding(). // We should unify these two code paths at some point. if (isa(val)) return val; llvm_unreachable("Unknown default value"); } return std::nullopt; } SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, RegionBindingsRef LazyBinding) { SVal Result; if (const ElementRegion *ER = dyn_cast(LazyBindingRegion)) Result = getBindingForElement(LazyBinding, ER); else Result = getBindingForField(LazyBinding, cast(LazyBindingRegion)); // FIXME: This is a hack to deal with RegionStore's inability to distinguish a // default value for /part/ of an aggregate from a default value for the // /entire/ aggregate. The most common case of this is when struct Outer // has as its first member a struct Inner, which is copied in from a stack // variable. In this case, even if the Outer's default value is symbolic, 0, // or unknown, it gets overridden by the Inner's default value of undefined. // // This is a general problem -- if the Inner is zero-initialized, the Outer // will now look zero-initialized. The proper way to solve this is with a // new version of RegionStore that tracks the extent of a binding as well // as the offset. // // This hack only takes care of the undefined case because that can very // quickly result in a warning. if (Result.isUndef()) Result = UnknownVal(); return Result; } SVal RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, const TypedValueRegion *R, QualType Ty) { // At this point we have already checked in either getBindingForElement or // getBindingForField if 'R' has a direct binding. // Lazy binding? Store lazyBindingStore = nullptr; const SubRegion *lazyBindingRegion = nullptr; std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R); if (lazyBindingRegion) return getLazyBinding(lazyBindingRegion, getRegionBindings(lazyBindingStore)); // Record whether or not we see a symbolic index. That can completely // be out of scope of our lookup. bool hasSymbolicIndex = false; // FIXME: This is a hack to deal with RegionStore's inability to distinguish a // default value for /part/ of an aggregate from a default value for the // /entire/ aggregate. The most common case of this is when struct Outer // has as its first member a struct Inner, which is copied in from a stack // variable. In this case, even if the Outer's default value is symbolic, 0, // or unknown, it gets overridden by the Inner's default value of undefined. // // This is a general problem -- if the Inner is zero-initialized, the Outer // will now look zero-initialized. The proper way to solve this is with a // new version of RegionStore that tracks the extent of a binding as well // as the offset. // // This hack only takes care of the undefined case because that can very // quickly result in a warning. bool hasPartialLazyBinding = false; const SubRegion *SR = R; while (SR) { const MemRegion *Base = SR->getSuperRegion(); if (std::optional D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) { if (D->getAs()) { hasPartialLazyBinding = true; break; } return *D; } if (const ElementRegion *ER = dyn_cast(Base)) { NonLoc index = ER->getIndex(); if (!index.isConstant()) hasSymbolicIndex = true; } // If our super region is a field or element itself, walk up the region // hierarchy to see if there is a default value installed in an ancestor. SR = dyn_cast(Base); } if (R->hasStackNonParametersStorage()) { if (isa(R)) { // Currently we don't reason specially about Clang-style vectors. Check // if superR is a vector and if so return Unknown. if (const TypedValueRegion *typedSuperR = dyn_cast(R->getSuperRegion())) { if (typedSuperR->getValueType()->isVectorType()) return UnknownVal(); } } // FIXME: We also need to take ElementRegions with symbolic indexes into // account. This case handles both directly accessing an ElementRegion // with a symbolic offset, but also fields within an element with // a symbolic offset. if (hasSymbolicIndex) return UnknownVal(); // Additionally allow introspection of a block's internal layout. // Try to get direct binding if all other attempts failed thus far. // Else, return UndefinedVal() if (!hasPartialLazyBinding && !isa(R->getBaseRegion())) { if (const std::optional &V = B.getDefaultBinding(R)) return *V; return UndefinedVal(); } } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion* R) { // Check if the region has a binding. if (const std::optional &V = B.getDirectBinding(R)) return *V; const MemRegion *superR = R->getSuperRegion(); // Check if the super region has a default binding. if (const std::optional &V = B.getDefaultBinding(superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); // Other cases: give up. return UnknownVal(); } return getBindingForLazySymbol(R); } SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, const VarRegion *R) { // Check if the region has a binding. if (std::optional V = B.getDirectBinding(R)) return *V; if (std::optional V = B.getDefaultBinding(R)) return *V; // Lazily derive a value for the VarRegion. const VarDecl *VD = R->getDecl(); const MemSpaceRegion *MS = R->getMemorySpace(); // Arguments are always symbolic. if (isa(MS)) return svalBuilder.getRegionValueSymbolVal(R); // Is 'VD' declared constant? If so, retrieve the constant value. if (VD->getType().isConstQualified()) { if (const Expr *Init = VD->getAnyInitializer()) { if (std::optional V = svalBuilder.getConstantVal(Init)) return *V; // If the variable is const qualified and has an initializer but // we couldn't evaluate initializer to a value, treat the value as // unknown. return UnknownVal(); } } // This must come after the check for constants because closure-captured // constant variables may appear in UnknownSpaceRegion. if (isa(MS)) return svalBuilder.getRegionValueSymbolVal(R); if (isa(MS)) { QualType T = VD->getType(); // If we're in main(), then global initializers have not become stale yet. if (B.isMainAnalysis()) if (const Expr *Init = VD->getAnyInitializer()) if (std::optional V = svalBuilder.getConstantVal(Init)) return *V; // Function-scoped static variables are default-initialized to 0; if they // have an initializer, it would have been processed by now. // FIXME: This is only true when we're starting analysis from main(). // We're losing a lot of coverage here. if (isa(MS)) return svalBuilder.makeZeroVal(T); if (std::optional V = getBindingForDerivedDefaultValue(B, MS, R, T)) { assert(!V->getAs()); return *V; } return svalBuilder.getRegionValueSymbolVal(R); } return UndefinedVal(); } SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } const RegionStoreManager::SValListTy & RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { // First, check the cache. LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData()); if (I != LazyBindingsMap.end()) return I->second; // If we don't have a list of values cached, start constructing it. SValListTy List; const SubRegion *LazyR = LCV.getRegion(); RegionBindingsRef B = getRegionBindings(LCV.getStore()); // If this region had /no/ bindings at the time, there are no interesting // values to return. const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion()); if (!Cluster) return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); SmallVector Bindings; collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR, /*IncludeAllDefaultBindings=*/true); for (SVal V : llvm::make_second_range(Bindings)) { if (V.isUnknownOrUndef() || V.isConstant()) continue; if (auto InnerLCV = V.getAs()) { const SValListTy &InnerList = getInterestingValues(*InnerLCV); List.insert(List.end(), InnerList.begin(), InnerList.end()); } List.push_back(V); } return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); } NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R) { if (std::optional V = getExistingLazyBinding(svalBuilder, B, R, false)) return *V; return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R); } static bool isRecordEmpty(const RecordDecl *RD) { if (!RD->field_empty()) return false; if (const CXXRecordDecl *CRD = dyn_cast(RD)) return CRD->getNumBases() == 0; return true; } SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R) { const RecordDecl *RD = R->getValueType()->castAs()->getDecl(); if (!RD->getDefinition() || isRecordEmpty(RD)) return UnknownVal(); return createLazyBinding(B, R); } SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R) { assert(Ctx.getAsConstantArrayType(R->getValueType()) && "Only constant array types can have compound bindings."); return createLazyBinding(B, R); } bool RegionStoreManager::includedInBindings(Store store, const MemRegion *region) const { RegionBindingsRef B = getRegionBindings(store); region = region->getBaseRegion(); // Quick path: if the base is the head of a cluster, the region is live. if (B.lookup(region)) return true; // Slow path: if the region is the VALUE of any binding, it is live. for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { const ClusterBindings &Cluster = RI.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { SVal D = CI.getData(); if (const MemRegion *R = D.getAsRegion()) if (R->getBaseRegion() == region) return true; } } return false; } //===----------------------------------------------------------------------===// // Binding values to regions. //===----------------------------------------------------------------------===// StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { if (std::optional LV = L.getAs()) if (const MemRegion* R = LV->getRegion()) return StoreRef(getRegionBindings(ST).removeBinding(R) .asImmutableMap() .getRootWithoutRetain(), *this); return StoreRef(ST, *this); } RegionBindingsRef RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) { if (L.getAs()) return B; // If we get here, the location should be a region. const MemRegion *R = L.castAs().getRegion(); // Check if the region is a struct region. if (const TypedValueRegion* TR = dyn_cast(R)) { QualType Ty = TR->getValueType(); if (Ty->isArrayType()) return bindArray(B, TR, V); if (Ty->isStructureOrClassType()) return bindStruct(B, TR, V); if (Ty->isVectorType()) return bindVector(B, TR, V); if (Ty->isUnionType()) return bindAggregate(B, TR, V); } // Binding directly to a symbolic region should be treated as binding // to element 0. if (const SymbolicRegion *SR = dyn_cast(R)) R = GetElementZeroRegion(SR, SR->getPointeeStaticType()); assert((!isa(R) || !B.lookup(R)) && "'this' pointer is not an l-value and is not assignable"); // Clear out bindings that may overlap with this binding. RegionBindingsRef NewB = removeSubRegionBindings(B, cast(R)); // LazyCompoundVals should be always bound as 'default' bindings. auto KeyKind = isa(V) ? BindingKey::Default : BindingKey::Direct; return NewB.addBinding(BindingKey::Make(R, KeyKind), V); } RegionBindingsRef RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B, const MemRegion *R, QualType T) { SVal V; if (Loc::isLocType(T)) V = svalBuilder.makeNullWithType(T); else if (T->isIntegralOrEnumerationType()) V = svalBuilder.makeZeroVal(T); else if (T->isStructureOrClassType() || T->isArrayType()) { // Set the default value to a zero constant when it is a structure // or array. The type doesn't really matter. V = svalBuilder.makeZeroVal(Ctx.IntTy); } else { // We can't represent values of this type, but we still need to set a value // to record that the region has been initialized. // If this assertion ever fires, a new case should be added above -- we // should know how to default-initialize any value we can symbolicate. assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); V = UnknownVal(); } return B.addBinding(R, BindingKey::Default, V); } std::optional RegionStoreManager::tryBindSmallArray( RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT, nonloc::LazyCompoundVal LCV) { auto CAT = dyn_cast(AT); // If we don't know the size, create a lazyCompoundVal instead. if (!CAT) return std::nullopt; QualType Ty = CAT->getElementType(); if (!(Ty->isScalarType() || Ty->isReferenceType())) return std::nullopt; // If the array is too big, create a LCV instead. uint64_t ArrSize = CAT->getSize().getLimitedValue(); if (ArrSize > SmallArrayLimit) return std::nullopt; RegionBindingsRef NewB = B; for (uint64_t i = 0; i < ArrSize; ++i) { auto Idx = svalBuilder.makeArrayIndex(i); const ElementRegion *SrcER = MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx); SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER); const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx); NewB = bind(NewB, loc::MemRegionVal(DstER), V); } return NewB; } RegionBindingsRef RegionStoreManager::bindArray(RegionBindingsConstRef B, const TypedValueRegion* R, SVal Init) { const ArrayType *AT =cast(Ctx.getCanonicalType(R->getValueType())); QualType ElementTy = AT->getElementType(); std::optional Size; if (const ConstantArrayType* CAT = dyn_cast(AT)) Size = CAT->getSize().getZExtValue(); // Check if the init expr is a literal. If so, bind the rvalue instead. // FIXME: It's not responsibility of the Store to transform this lvalue // to rvalue. ExprEngine or maybe even CFG should do this before binding. if (std::optional MRV = Init.getAs()) { SVal V = getBinding(B.asStore(), *MRV, R->getValueType()); return bindAggregate(B, R, V); } // Handle lazy compound values. if (std::optional LCV = Init.getAs()) { if (std::optional NewB = tryBindSmallArray(B, R, AT, *LCV)) return *NewB; return bindAggregate(B, R, Init); } if (Init.isUnknown()) return bindAggregate(B, R, UnknownVal()); // Remaining case: explicit compound values. const nonloc::CompoundVal& CV = Init.castAs(); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); uint64_t i = 0; RegionBindingsRef NewB(B); for (; Size ? i < *Size : true; ++i, ++VI) { // The init list might be shorter than the array length. if (VI == VE) break; NonLoc Idx = svalBuilder.makeArrayIndex(i); const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); if (ElementTy->isStructureOrClassType()) NewB = bindStruct(NewB, ER, *VI); else if (ElementTy->isArrayType()) NewB = bindArray(NewB, ER, *VI); else NewB = bind(NewB, loc::MemRegionVal(ER), *VI); } // If the init list is shorter than the array length (or the array has // variable length), set the array default value. Values that are already set // are not overwritten. if (!Size || i < *Size) NewB = setImplicitDefaultValue(NewB, R, ElementTy); return NewB; } RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V) { QualType T = R->getValueType(); const VectorType *VT = T->castAs(); // Use castAs for typedefs. // Handle lazy compound values and symbolic values. if (isa(V)) return bindAggregate(B, R, V); // We may get non-CompoundVal accidentally due to imprecise cast logic or // that we are binding symbolic struct value. Kill the field values, and if // the value is symbolic go and bind it as a "default" binding. if (!isa(V)) { return bindAggregate(B, R, UnknownVal()); } QualType ElemType = VT->getElementType(); nonloc::CompoundVal CV = V.castAs(); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); unsigned index = 0, numElements = VT->getNumElements(); RegionBindingsRef NewB(B); for ( ; index != numElements ; ++index) { if (VI == VE) break; NonLoc Idx = svalBuilder.makeArrayIndex(index); const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); if (ElemType->isArrayType()) NewB = bindArray(NewB, ER, *VI); else if (ElemType->isStructureOrClassType()) NewB = bindStruct(NewB, ER, *VI); else NewB = bind(NewB, loc::MemRegionVal(ER), *VI); } return NewB; } std::optional RegionStoreManager::tryBindSmallStruct( RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD, nonloc::LazyCompoundVal LCV) { FieldVector Fields; if (const CXXRecordDecl *Class = dyn_cast(RD)) if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) return std::nullopt; for (const auto *FD : RD->fields()) { if (FD->isUnnamedBitfield()) continue; // If there are too many fields, or if any of the fields are aggregates, // just use the LCV as a default binding. if (Fields.size() == SmallStructLimit) return std::nullopt; QualType Ty = FD->getType(); // Zero length arrays are basically no-ops, so we also ignore them here. if (Ty->isConstantArrayType() && Ctx.getConstantArrayElementCount(Ctx.getAsConstantArrayType(Ty)) == 0) continue; if (!(Ty->isScalarType() || Ty->isReferenceType())) return std::nullopt; Fields.push_back(FD); } RegionBindingsRef NewB = B; for (const FieldDecl *Field : Fields) { const FieldRegion *SourceFR = MRMgr.getFieldRegion(Field, LCV.getRegion()); SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR); const FieldRegion *DestFR = MRMgr.getFieldRegion(Field, R); NewB = bind(NewB, loc::MemRegionVal(DestFR), V); } return NewB; } RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B, const TypedValueRegion *R, SVal V) { QualType T = R->getValueType(); assert(T->isStructureOrClassType()); const RecordType* RT = T->castAs(); const RecordDecl *RD = RT->getDecl(); if (!RD->isCompleteDefinition()) return B; // Handle lazy compound values and symbolic values. if (std::optional LCV = V.getAs()) { if (std::optional NewB = tryBindSmallStruct(B, R, RD, *LCV)) return *NewB; return bindAggregate(B, R, V); } if (isa(V)) return bindAggregate(B, R, V); // We may get non-CompoundVal accidentally due to imprecise cast logic or // that we are binding symbolic struct value. Kill the field values, and if // the value is symbolic go and bind it as a "default" binding. if (V.isUnknown() || !isa(V)) return bindAggregate(B, R, UnknownVal()); // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable) // list of other values. It appears pretty much only when there's an actual // initializer list expression in the program, and the analyzer tries to // unwrap it as soon as possible. // This code is where such unwrap happens: when the compound value is put into // the object that it was supposed to initialize (it's an *initializer* list, // after all), instead of binding the whole value to the whole object, we bind // sub-values to sub-objects. Sub-values may themselves be compound values, // and in this case the procedure becomes recursive. // FIXME: The annoying part about compound values is that they don't carry // any sort of information about which value corresponds to which sub-object. // It's simply a list of values in the middle of nowhere; we expect to match // them to sub-objects, essentially, "by index": first value binds to // the first field, second value binds to the second field, etc. // It would have been much safer to organize non-lazy compound values as // a mapping from fields/bases to values. const nonloc::CompoundVal& CV = V.castAs(); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RegionBindingsRef NewB(B); // In C++17 aggregates may have base classes, handle those as well. // They appear before fields in the initializer list / compound value. if (const auto *CRD = dyn_cast(RD)) { // If the object was constructed with a constructor, its value is a // LazyCompoundVal. If it's a raw CompoundVal, it means that we're // performing aggregate initialization. The only exception from this // rule is sending an Objective-C++ message that returns a C++ object // to a nil receiver; in this case the semantics is to return a // zero-initialized object even if it's a C++ object that doesn't have // this sort of constructor; the CompoundVal is empty in this case. assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) && "Non-aggregates are constructed with a constructor!"); for (const auto &B : CRD->bases()) { // (Multiple inheritance is fine though.) assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!"); if (VI == VE) break; QualType BTy = B.getType(); assert(BTy->isStructureOrClassType() && "Base classes must be classes!"); const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl(); assert(BRD && "Base classes must be C++ classes!"); const CXXBaseObjectRegion *BR = MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false); NewB = bindStruct(NewB, BR, *VI); ++VI; } } RecordDecl::field_iterator FI, FE; for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { if (VI == VE) break; // Skip any unnamed bitfields to stay in sync with the initializers. if (FI->isUnnamedBitfield()) continue; QualType FTy = FI->getType(); const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (FTy->isArrayType()) NewB = bindArray(NewB, FR, *VI); else if (FTy->isStructureOrClassType()) NewB = bindStruct(NewB, FR, *VI); else NewB = bind(NewB, loc::MemRegionVal(FR), *VI); ++VI; } // There may be fewer values in the initialize list than the fields of struct. if (FI != FE) { NewB = NewB.addBinding(R, BindingKey::Default, svalBuilder.makeIntVal(0, false)); } return NewB; } RegionBindingsRef RegionStoreManager::bindAggregate(RegionBindingsConstRef B, const TypedRegion *R, SVal Val) { // Remove the old bindings, using 'R' as the root of all regions // we will invalidate. Then add the new binding. return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val); } //===----------------------------------------------------------------------===// // State pruning. //===----------------------------------------------------------------------===// namespace { class RemoveDeadBindingsWorker : public ClusterAnalysis { SmallVector Postponed; SymbolReaper &SymReaper; const StackFrameContext *CurrentLCtx; public: RemoveDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindingsRef b, SymbolReaper &symReaper, const StackFrameContext *LCtx) : ClusterAnalysis(rm, stateMgr, b), SymReaper(symReaper), CurrentLCtx(LCtx) {} // Called by ClusterAnalysis. void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); using ClusterAnalysis::VisitCluster; using ClusterAnalysis::AddToWorkList; bool AddToWorkList(const MemRegion *R); bool UpdatePostponed(); void VisitBinding(SVal V); }; } bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) { const MemRegion *BaseR = R->getBaseRegion(); return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); } void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) { if (const VarRegion *VR = dyn_cast(baseR)) { if (SymReaper.isLive(VR)) AddToWorkList(baseR, &C); return; } if (const SymbolicRegion *SR = dyn_cast(baseR)) { if (SymReaper.isLive(SR->getSymbol())) AddToWorkList(SR, &C); else Postponed.push_back(SR); return; } if (isa(baseR)) { AddToWorkList(baseR, &C); return; } // CXXThisRegion in the current or parent location context is live. if (const CXXThisRegion *TR = dyn_cast(baseR)) { const auto *StackReg = cast(TR->getSuperRegion()); const StackFrameContext *RegCtx = StackReg->getStackFrame(); if (CurrentLCtx && (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) AddToWorkList(TR, &C); } } void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR, const ClusterBindings *C) { if (!C) return; // Mark the symbol for any SymbolicRegion with live bindings as live itself. // This means we should continue to track that symbol. if (const SymbolicRegion *SymR = dyn_cast(baseR)) SymReaper.markLive(SymR->getSymbol()); for (const auto &[Key, Val] : *C) { // Element index of a binding key is live. SymReaper.markElementIndicesLive(Key.getRegion()); VisitBinding(Val); } } void RemoveDeadBindingsWorker::VisitBinding(SVal V) { // Is it a LazyCompoundVal? All referenced regions are live as well. // The LazyCompoundVal itself is not live but should be readable. if (auto LCS = V.getAs()) { SymReaper.markLazilyCopied(LCS->getRegion()); for (SVal V : RM.getInterestingValues(*LCS)) { if (auto DepLCS = V.getAs()) SymReaper.markLazilyCopied(DepLCS->getRegion()); else VisitBinding(V); } return; } // If V is a region, then add it to the worklist. if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); SymReaper.markLive(R); // All regions captured by a block are also live. if (const BlockDataRegion *BR = dyn_cast(R)) { for (auto Var : BR->referenced_vars()) AddToWorkList(Var.getCapturedRegion()); } } // Update the set of live symbols. for (SymbolRef Sym : V.symbols()) SymReaper.markLive(Sym); } bool RemoveDeadBindingsWorker::UpdatePostponed() { // See if any postponed SymbolicRegions are actually live now, after // having done a scan. bool Changed = false; for (const SymbolicRegion *SR : Postponed) { if (SymReaper.isLive(SR->getSymbol())) { Changed |= AddToWorkList(SR); SR = nullptr; } } return Changed; } StoreRef RegionStoreManager::removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper) { RegionBindingsRef B = getRegionBindings(store); RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); W.GenerateClusters(); // Enqueue the region roots onto the worklist. for (const MemRegion *Reg : SymReaper.regions()) { W.AddToWorkList(Reg); } do W.RunWorkList(); while (W.UpdatePostponed()); // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (const MemRegion *Base : llvm::make_first_range(B)) { // If the cluster has been visited, we know the region has been marked. // Otherwise, remove the dead entry. if (!W.isVisited(Base)) B = B.remove(Base); } return StoreRef(B.asStore(), *this); } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL, unsigned int Space, bool IsDot) const { RegionBindingsRef Bindings = getRegionBindings(S); Indent(Out, Space, IsDot) << "\"store\": "; if (Bindings.isEmpty()) { Out << "null," << NL; return; } Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL; Bindings.printJson(Out, NL, Space + 1, IsDot); Indent(Out, Space, IsDot) << "]}," << NL; }