//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines RangeConstraintManager, a class that tracks simple // equality and inequality constraints on symbolic values of ProgramState. // //===----------------------------------------------------------------------===// #include "clang/Basic/JsonSupport.h" #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace clang; using namespace ento; // This class can be extended with other tables which will help to reason // about ranges more precisely. class OperatorRelationsTable { static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE && BO_GE < BO_EQ && BO_EQ < BO_NE, "This class relies on operators order. Rework it otherwise."); public: enum TriStateKind { False = 0, True, Unknown, }; private: // CmpOpTable holds states which represent the corresponding range for // branching an exploded graph. We can reason about the branch if there is // a previously known fact of the existence of a comparison expression with // operands used in the current expression. // E.g. assuming (x < y) is true that means (x != y) is surely true. // if (x previous_operation y) // < | != | > // if (x operation y) // != | > | < // tristate // True | Unknown | False // // CmpOpTable represents next: // __|< |> |<=|>=|==|!=|UnknownX2| // < |1 |0 |* |0 |0 |* |1 | // > |0 |1 |0 |* |0 |* |1 | // <=|1 |0 |1 |* |1 |* |0 | // >=|0 |1 |* |1 |1 |* |0 | // ==|0 |0 |* |* |1 |0 |1 | // !=|1 |1 |* |* |0 |1 |0 | // // Columns stands for a previous operator. // Rows stands for a current operator. // Each row has exactly two `Unknown` cases. // UnknownX2 means that both `Unknown` previous operators are met in code, // and there is a special column for that, for example: // if (x >= y) // if (x != y) // if (x <= y) // False only static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1; const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = { // < > <= >= == != UnknownX2 {True, False, Unknown, False, False, Unknown, True}, // < {False, True, False, Unknown, False, Unknown, True}, // > {True, False, True, Unknown, True, Unknown, False}, // <= {False, True, Unknown, True, True, Unknown, False}, // >= {False, False, Unknown, Unknown, True, False, True}, // == {True, True, Unknown, Unknown, False, True, False}, // != }; static size_t getIndexFromOp(BinaryOperatorKind OP) { return static_cast(OP - BO_LT); } public: constexpr size_t getCmpOpCount() const { return CmpOpCount; } static BinaryOperatorKind getOpFromIndex(size_t Index) { return static_cast(Index + BO_LT); } TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP, BinaryOperatorKind QueriedOP) const { return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)]; } TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const { return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount]; } }; //===----------------------------------------------------------------------===// // RangeSet implementation //===----------------------------------------------------------------------===// RangeSet::ContainerType RangeSet::Factory::EmptySet{}; RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) { ContainerType Result; Result.reserve(LHS.size() + RHS.size()); std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), std::back_inserter(Result)); return makePersistent(std::move(Result)); } RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) { ContainerType Result; Result.reserve(Original.size() + 1); const_iterator Lower = llvm::lower_bound(Original, Element); Result.insert(Result.end(), Original.begin(), Lower); Result.push_back(Element); Result.insert(Result.end(), Lower, Original.end()); return makePersistent(std::move(Result)); } RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) { return add(Original, Range(Point)); } RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) { ContainerType Result = unite(*LHS.Impl, *RHS.Impl); return makePersistent(std::move(Result)); } RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) { ContainerType Result; Result.push_back(R); Result = unite(*Original.Impl, Result); return makePersistent(std::move(Result)); } RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) { return unite(Original, Range(ValueFactory.getValue(Point))); } RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From, llvm::APSInt To) { return unite(Original, Range(ValueFactory.getValue(From), ValueFactory.getValue(To))); } template void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) { std::swap(First, Second); std::swap(FirstEnd, SecondEnd); } RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS, const ContainerType &RHS) { if (LHS.empty()) return RHS; if (RHS.empty()) return LHS; using llvm::APSInt; using iterator = ContainerType::const_iterator; iterator First = LHS.begin(); iterator FirstEnd = LHS.end(); iterator Second = RHS.begin(); iterator SecondEnd = RHS.end(); APSIntType Ty = APSIntType(First->From()); const APSInt Min = Ty.getMinValue(); // Handle a corner case first when both range sets start from MIN. // This helps to avoid complicated conditions below. Specifically, this // particular check for `MIN` is not needed in the loop below every time // when we do `Second->From() - One` operation. if (Min == First->From() && Min == Second->From()) { if (First->To() > Second->To()) { // [ First ]---> // [ Second ]-----> // MIN^ // The Second range is entirely inside the First one. // Check if Second is the last in its RangeSet. if (++Second == SecondEnd) // [ First ]--[ First + 1 ]---> // [ Second ]---------------------> // MIN^ // The Union is equal to First's RangeSet. return LHS; } else { // case 1: [ First ]-----> // case 2: [ First ]---> // [ Second ]---> // MIN^ // The First range is entirely inside or equal to the Second one. // Check if First is the last in its RangeSet. if (++First == FirstEnd) // [ First ]-----------------------> // [ Second ]--[ Second + 1 ]----> // MIN^ // The Union is equal to Second's RangeSet. return RHS; } } const APSInt One = Ty.getValue(1); ContainerType Result; // This is called when there are no ranges left in one of the ranges. // Append the rest of the ranges from another range set to the Result // and return with that. const auto AppendTheRest = [&Result](iterator I, iterator E) { Result.append(I, E); return Result; }; while (true) { // We want to keep the following invariant at all times: // ---[ First ------> // -----[ Second ---> if (First->From() > Second->From()) swapIterators(First, FirstEnd, Second, SecondEnd); // The Union definitely starts with First->From(). // ----------[ First ------> // ------------[ Second ---> // ----------[ Union ------> // UnionStart^ const llvm::APSInt &UnionStart = First->From(); // Loop where the invariant holds. while (true) { // Skip all enclosed ranges. // ---[ First ]---> // -----[ Second ]--[ Second + 1 ]--[ Second + N ]-----> while (First->To() >= Second->To()) { // Check if Second is the last in its RangeSet. if (++Second == SecondEnd) { // Append the Union. // ---[ Union ]---> // -----[ Second ]-----> // --------[ First ]---> // UnionEnd^ Result.emplace_back(UnionStart, First->To()); // ---[ Union ]-----------------> // --------------[ First + 1]---> // Append all remaining ranges from the First's RangeSet. return AppendTheRest(++First, FirstEnd); } } // Check if First and Second are disjoint. It means that we find // the end of the Union. Exit the loop and append the Union. // ---[ First ]=-------------> // ------------=[ Second ]---> // ----MinusOne^ if (First->To() < Second->From() - One) break; // First is entirely inside the Union. Go next. // ---[ Union -----------> // ---- [ First ]--------> // -------[ Second ]-----> // Check if First is the last in its RangeSet. if (++First == FirstEnd) { // Append the Union. // ---[ Union ]---> // -----[ First ]-------> // --------[ Second ]---> // UnionEnd^ Result.emplace_back(UnionStart, Second->To()); // ---[ Union ]------------------> // --------------[ Second + 1]---> // Append all remaining ranges from the Second's RangeSet. return AppendTheRest(++Second, SecondEnd); } // We know that we are at one of the two cases: // case 1: --[ First ]---------> // case 2: ----[ First ]-------> // --------[ Second ]----------> // In both cases First starts after Second->From(). // Make sure that the loop invariant holds. swapIterators(First, FirstEnd, Second, SecondEnd); } // Here First and Second are disjoint. // Append the Union. // ---[ Union ]---------------> // -----------------[ Second ]---> // ------[ First ]---------------> // UnionEnd^ Result.emplace_back(UnionStart, First->To()); // Check if First is the last in its RangeSet. if (++First == FirstEnd) // ---[ Union ]---------------> // --------------[ Second ]---> // Append all remaining ranges from the Second's RangeSet. return AppendTheRest(Second, SecondEnd); } llvm_unreachable("Normally, we should not reach here"); } RangeSet RangeSet::Factory::getRangeSet(Range From) { ContainerType Result; Result.push_back(From); return makePersistent(std::move(Result)); } RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) { llvm::FoldingSetNodeID ID; void *InsertPos; From.Profile(ID); ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos); if (!Result) { // It is cheaper to fully construct the resulting range on stack // and move it to the freshly allocated buffer if we don't have // a set like this already. Result = construct(std::move(From)); Cache.InsertNode(Result, InsertPos); } return Result; } RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) { void *Buffer = Arena.Allocate(); return new (Buffer) ContainerType(std::move(From)); } const llvm::APSInt &RangeSet::getMinValue() const { assert(!isEmpty()); return begin()->From(); } const llvm::APSInt &RangeSet::getMaxValue() const { assert(!isEmpty()); return std::prev(end())->To(); } bool clang::ento::RangeSet::isUnsigned() const { assert(!isEmpty()); return begin()->From().isUnsigned(); } uint32_t clang::ento::RangeSet::getBitWidth() const { assert(!isEmpty()); return begin()->From().getBitWidth(); } APSIntType clang::ento::RangeSet::getAPSIntType() const { assert(!isEmpty()); return APSIntType(begin()->From()); } bool RangeSet::containsImpl(llvm::APSInt &Point) const { if (isEmpty() || !pin(Point)) return false; Range Dummy(Point); const_iterator It = llvm::upper_bound(*this, Dummy); if (It == begin()) return false; return std::prev(It)->Includes(Point); } bool RangeSet::pin(llvm::APSInt &Point) const { APSIntType Type(getMinValue()); if (Type.testInRange(Point, true) != APSIntType::RTR_Within) return false; Type.apply(Point); return true; } bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { // This function has nine cases, the cartesian product of range-testing // both the upper and lower bounds against the symbol's type. // Each case requires a different pinning operation. // The function returns false if the described range is entirely outside // the range of values for the associated symbol. APSIntType Type(getMinValue()); APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); switch (LowerTest) { case APSIntType::RTR_Below: switch (UpperTest) { case APSIntType::RTR_Below: // The entire range is outside the symbol's set of possible values. // If this is a conventionally-ordered range, the state is infeasible. if (Lower <= Upper) return false; // However, if the range wraps around, it spans all possible values. Lower = Type.getMinValue(); Upper = Type.getMaxValue(); break; case APSIntType::RTR_Within: // The range starts below what's possible but ends within it. Pin. Lower = Type.getMinValue(); Type.apply(Upper); break; case APSIntType::RTR_Above: // The range spans all possible values for the symbol. Pin. Lower = Type.getMinValue(); Upper = Type.getMaxValue(); break; } break; case APSIntType::RTR_Within: switch (UpperTest) { case APSIntType::RTR_Below: // The range wraps around, but all lower values are not possible. Type.apply(Lower); Upper = Type.getMaxValue(); break; case APSIntType::RTR_Within: // The range may or may not wrap around, but both limits are valid. Type.apply(Lower); Type.apply(Upper); break; case APSIntType::RTR_Above: // The range starts within what's possible but ends above it. Pin. Type.apply(Lower); Upper = Type.getMaxValue(); break; } break; case APSIntType::RTR_Above: switch (UpperTest) { case APSIntType::RTR_Below: // The range wraps but is outside the symbol's set of possible values. return false; case APSIntType::RTR_Within: // The range starts above what's possible but ends within it (wrap). Lower = Type.getMinValue(); Type.apply(Upper); break; case APSIntType::RTR_Above: // The entire range is outside the symbol's set of possible values. // If this is a conventionally-ordered range, the state is infeasible. if (Lower <= Upper) return false; // However, if the range wraps around, it spans all possible values. Lower = Type.getMinValue(); Upper = Type.getMaxValue(); break; } break; } return true; } RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower, llvm::APSInt Upper) { if (What.isEmpty() || !What.pin(Lower, Upper)) return getEmptySet(); ContainerType DummyContainer; if (Lower <= Upper) { // [Lower, Upper] is a regular range. // // Shortcut: check that there is even a possibility of the intersection // by checking the two following situations: // // <---[ What ]---[------]------> // Lower Upper // -or- // <----[------]----[ What ]----> // Lower Upper if (What.getMaxValue() < Lower || Upper < What.getMinValue()) return getEmptySet(); DummyContainer.push_back( Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper))); } else { // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX] // // Shortcut: check that there is even a possibility of the intersection // by checking the following situation: // // <------]---[ What ]---[------> // Upper Lower if (What.getMaxValue() < Lower && Upper < What.getMinValue()) return getEmptySet(); DummyContainer.push_back( Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper))); DummyContainer.push_back( Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower))); } return intersect(*What.Impl, DummyContainer); } RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS, const RangeSet::ContainerType &RHS) { ContainerType Result; Result.reserve(std::max(LHS.size(), RHS.size())); const_iterator First = LHS.begin(), Second = RHS.begin(), FirstEnd = LHS.end(), SecondEnd = RHS.end(); // If we ran out of ranges in one set, but not in the other, // it means that those elements are definitely not in the // intersection. while (First != FirstEnd && Second != SecondEnd) { // We want to keep the following invariant at all times: // // ----[ First ----------------------> // --------[ Second -----------------> if (Second->From() < First->From()) swapIterators(First, FirstEnd, Second, SecondEnd); // Loop where the invariant holds: do { // Check for the following situation: // // ----[ First ]---------------------> // ---------------[ Second ]---------> // // which means that... if (Second->From() > First->To()) { // ...First is not in the intersection. // // We should move on to the next range after First and break out of the // loop because the invariant might not be true. ++First; break; } // We have a guaranteed intersection at this point! // And this is the current situation: // // ----[ First ]-----------------> // -------[ Second ------------------> // // Additionally, it definitely starts with Second->From(). const llvm::APSInt &IntersectionStart = Second->From(); // It is important to know which of the two ranges' ends // is greater. That "longer" range might have some other // intersections, while the "shorter" range might not. if (Second->To() > First->To()) { // Here we make a decision to keep First as the "longer" // range. swapIterators(First, FirstEnd, Second, SecondEnd); } // At this point, we have the following situation: // // ---- First ]--------------------> // ---- Second ]--[ Second+1 ----------> // // We don't know the relationship between First->From and // Second->From and we don't know whether Second+1 intersects // with First. // // However, we know that [IntersectionStart, Second->To] is // a part of the intersection... Result.push_back(Range(IntersectionStart, Second->To())); ++Second; // ...and that the invariant will hold for a valid Second+1 // because First->From <= Second->To < (Second+1)->From. } while (Second != SecondEnd); } if (Result.empty()) return getEmptySet(); return makePersistent(std::move(Result)); } RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) { // Shortcut: let's see if the intersection is even possible. if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() || RHS.getMaxValue() < LHS.getMinValue()) return getEmptySet(); return intersect(*LHS.Impl, *RHS.Impl); } RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) { if (LHS.containsImpl(Point)) return getRangeSet(ValueFactory.getValue(Point)); return getEmptySet(); } RangeSet RangeSet::Factory::negate(RangeSet What) { if (What.isEmpty()) return getEmptySet(); const llvm::APSInt SampleValue = What.getMinValue(); const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue); const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue); ContainerType Result; Result.reserve(What.size() + (SampleValue == MIN)); // Handle a special case for MIN value. const_iterator It = What.begin(); const_iterator End = What.end(); const llvm::APSInt &From = It->From(); const llvm::APSInt &To = It->To(); if (From == MIN) { // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX]. if (To == MAX) { return What; } const_iterator Last = std::prev(End); // Try to find and unite the following ranges: // [MIN, MIN] & [MIN + 1, N] => [MIN, N]. if (Last->To() == MAX) { // It means that in the original range we have ranges // [MIN, A], ... , [B, MAX] // And the result should be [MIN, -B], ..., [-A, MAX] Result.emplace_back(MIN, ValueFactory.getValue(-Last->From())); // We already negated Last, so we can skip it. End = Last; } else { // Add a separate range for the lowest value. Result.emplace_back(MIN, MIN); } // Skip adding the second range in case when [From, To] are [MIN, MIN]. if (To != MIN) { Result.emplace_back(ValueFactory.getValue(-To), MAX); } // Skip the first range in the loop. ++It; } // Negate all other ranges. for (; It != End; ++It) { // Negate int values. const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To()); const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From()); // Add a negated range. Result.emplace_back(NewFrom, NewTo); } llvm::sort(Result); return makePersistent(std::move(Result)); } // Convert range set to the given integral type using truncation and promotion. // This works similar to APSIntType::apply function but for the range set. RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) { // Set is empty or NOOP (aka cast to the same type). if (What.isEmpty() || What.getAPSIntType() == Ty) return What; const bool IsConversion = What.isUnsigned() != Ty.isUnsigned(); const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth(); const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth(); if (IsTruncation) return makePersistent(truncateTo(What, Ty)); // Here we handle 2 cases: // - IsConversion && !IsPromotion. // In this case we handle changing a sign with same bitwidth: char -> uchar, // uint -> int. Here we convert negatives to positives and positives which // is out of range to negatives. We use convertTo function for that. // - IsConversion && IsPromotion && !What.isUnsigned(). // In this case we handle changing a sign from signeds to unsigneds with // higher bitwidth: char -> uint, int-> uint64. The point is that we also // need convert negatives to positives and use convertTo function as well. // For example, we don't need such a convertion when converting unsigned to // signed with higher bitwidth, because all the values of unsigned is valid // for the such signed. if (IsConversion && (!IsPromotion || !What.isUnsigned())) return makePersistent(convertTo(What, Ty)); assert(IsPromotion && "Only promotion operation from unsigneds left."); return makePersistent(promoteTo(What, Ty)); } RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) { assert(T->isIntegralOrEnumerationType() && "T shall be an integral type."); return castTo(What, ValueFactory.getAPSIntType(T)); } RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What, APSIntType Ty) { using llvm::APInt; using llvm::APSInt; ContainerType Result; ContainerType Dummy; // CastRangeSize is an amount of all possible values of cast type. // Example: `char` has 256 values; `short` has 65536 values. // But in fact we use `amount of values` - 1, because // we can't keep `amount of values of UINT64` inside uint64_t. // E.g. 256 is an amount of all possible values of `char` and we can't keep // it inside `char`. // And it's OK, it's enough to do correct calculations. uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue(); for (const Range &R : What) { // Get bounds of the given range. APSInt FromInt = R.From(); APSInt ToInt = R.To(); // CurrentRangeSize is an amount of all possible values of the current // range minus one. uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue(); // This is an optimization for a specific case when this Range covers // the whole range of the target type. Dummy.clear(); if (CurrentRangeSize >= CastRangeSize) { Dummy.emplace_back(ValueFactory.getMinValue(Ty), ValueFactory.getMaxValue(Ty)); Result = std::move(Dummy); break; } // Cast the bounds. Ty.apply(FromInt); Ty.apply(ToInt); const APSInt &PersistentFrom = ValueFactory.getValue(FromInt); const APSInt &PersistentTo = ValueFactory.getValue(ToInt); if (FromInt > ToInt) { Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo); Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty)); } else Dummy.emplace_back(PersistentFrom, PersistentTo); // Every range retrieved after truncation potentialy has garbage values. // So, we have to unite every next range with the previouses. Result = unite(Result, Dummy); } return Result; } // Divide the convertion into two phases (presented as loops here). // First phase(loop) works when casted values go in ascending order. // E.g. char{1,3,5,127} -> uint{1,3,5,127} // Interrupt the first phase and go to second one when casted values start // go in descending order. That means that we crossed over the middle of // the type value set (aka 0 for signeds and MAX/2+1 for unsigneds). // For instance: // 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1} // Here we put {1,3,5} to one array and {-128, -1} to another // 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3} // Here we put {128,129,255} to one array and {0,1,3} to another. // After that we unite both arrays. // NOTE: We don't just concatenate the arrays, because they may have // adjacent ranges, e.g.: // 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) -> // unite -> uchar(0, 255) // 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) -> // unite -> uchar(-2, 1) RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What, APSIntType Ty) { using llvm::APInt; using llvm::APSInt; using Bounds = std::pair; ContainerType AscendArray; ContainerType DescendArray; auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds { // Get bounds of the given range. APSInt FromInt = R.From(); APSInt ToInt = R.To(); // Cast the bounds. Ty.apply(FromInt); Ty.apply(ToInt); return {VF.getValue(FromInt), VF.getValue(ToInt)}; }; // Phase 1. Fill the first array. APSInt LastConvertedInt = Ty.getMinValue(); const auto *It = What.begin(); const auto *E = What.end(); while (It != E) { Bounds NewBounds = CastRange(*(It++)); // If values stop going acsending order, go to the second phase(loop). if (NewBounds.first < LastConvertedInt) { DescendArray.emplace_back(NewBounds.first, NewBounds.second); break; } // If the range contains a midpoint, then split the range. // E.g. char(-5, 5) -> uchar(251, 5) // Here we shall add a range (251, 255) to the first array and (0, 5) to the // second one. if (NewBounds.first > NewBounds.second) { DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second); AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty)); } else // Values are going acsending order. AscendArray.emplace_back(NewBounds.first, NewBounds.second); LastConvertedInt = NewBounds.first; } // Phase 2. Fill the second array. while (It != E) { Bounds NewBounds = CastRange(*(It++)); DescendArray.emplace_back(NewBounds.first, NewBounds.second); } // Unite both arrays. return unite(AscendArray, DescendArray); } /// Promotion from unsigneds to signeds/unsigneds left. RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What, APSIntType Ty) { ContainerType Result; // We definitely know the size of the result set. Result.reserve(What.size()); // Each unsigned value fits every larger type without any changes, // whether the larger type is signed or unsigned. So just promote and push // back each range one by one. for (const Range &R : What) { // Get bounds of the given range. llvm::APSInt FromInt = R.From(); llvm::APSInt ToInt = R.To(); // Cast the bounds. Ty.apply(FromInt); Ty.apply(ToInt); Result.emplace_back(ValueFactory.getValue(FromInt), ValueFactory.getValue(ToInt)); } return Result; } RangeSet RangeSet::Factory::deletePoint(RangeSet From, const llvm::APSInt &Point) { if (!From.contains(Point)) return From; llvm::APSInt Upper = Point; llvm::APSInt Lower = Point; ++Upper; --Lower; // Notice that the lower bound is greater than the upper bound. return intersect(From, Upper, Lower); } LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const { OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']'; } LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); } LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const { OS << "{ "; llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); }); OS << " }"; } LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); } REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef) namespace { class EquivalenceClass; } // end anonymous namespace REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass) REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet) REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet) REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass) REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet) namespace { /// This class encapsulates a set of symbols equal to each other. /// /// The main idea of the approach requiring such classes is in narrowing /// and sharing constraints between symbols within the class. Also we can /// conclude that there is no practical need in storing constraints for /// every member of the class separately. /// /// Main terminology: /// /// * "Equivalence class" is an object of this class, which can be efficiently /// compared to other classes. It represents the whole class without /// storing the actual in it. The members of the class however can be /// retrieved from the state. /// /// * "Class members" are the symbols corresponding to the class. This means /// that A == B for every member symbols A and B from the class. Members of /// each class are stored in the state. /// /// * "Trivial class" is a class that has and ever had only one same symbol. /// /// * "Merge operation" merges two classes into one. It is the main operation /// to produce non-trivial classes. /// If, at some point, we can assume that two symbols from two distinct /// classes are equal, we can merge these classes. class EquivalenceClass : public llvm::FoldingSetNode { public: /// Find equivalence class for the given symbol in the given state. [[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State, SymbolRef Sym); /// Merge classes for the given symbols and return a new state. [[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, SymbolRef Second); // Merge this class with the given class and return a new state. [[nodiscard]] inline ProgramStateRef merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other); /// Return a set of class members for the given state. [[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const; /// Return true if the current class is trivial in the given state. /// A class is trivial if and only if there is not any member relations stored /// to it in State/ClassMembers. /// An equivalence class with one member might seem as it does not hold any /// meaningful information, i.e. that is a tautology. However, during the /// removal of dead symbols we do not remove classes with one member for /// resource and performance reasons. Consequently, a class with one member is /// not necessarily trivial. It could happen that we have a class with two /// members and then during the removal of dead symbols we remove one of its /// members. In this case, the class is still non-trivial (it still has the /// mappings in ClassMembers), even though it has only one member. [[nodiscard]] inline bool isTrivial(ProgramStateRef State) const; /// Return true if the current class is trivial and its only member is dead. [[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State, SymbolReaper &Reaper) const; [[nodiscard]] static inline ProgramStateRef markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, SymbolRef Second); [[nodiscard]] static inline ProgramStateRef markDisequal(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass First, EquivalenceClass Second); [[nodiscard]] inline ProgramStateRef markDisequal(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other) const; [[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State, SymbolRef Sym); [[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const; [[nodiscard]] inline ClassSet getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const; [[nodiscard]] static inline std::optional areEqual(ProgramStateRef State, EquivalenceClass First, EquivalenceClass Second); [[nodiscard]] static inline std::optional areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second); /// Remove one member from the class. [[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State, const SymbolRef Old); /// Iterate over all symbols and try to simplify them. [[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB, RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Class); void dumpToStream(ProgramStateRef State, raw_ostream &os) const; LLVM_DUMP_METHOD void dump(ProgramStateRef State) const { dumpToStream(State, llvm::errs()); } /// Check equivalence data for consistency. [[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool isClassDataConsistent(ProgramStateRef State); [[nodiscard]] QualType getType() const { return getRepresentativeSymbol()->getType(); } EquivalenceClass() = delete; EquivalenceClass(const EquivalenceClass &) = default; EquivalenceClass &operator=(const EquivalenceClass &) = delete; EquivalenceClass(EquivalenceClass &&) = default; EquivalenceClass &operator=(EquivalenceClass &&) = delete; bool operator==(const EquivalenceClass &Other) const { return ID == Other.ID; } bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; } bool operator!=(const EquivalenceClass &Other) const { return !operator==(Other); } static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) { ID.AddInteger(CID); } void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); } private: /* implicit */ EquivalenceClass(SymbolRef Sym) : ID(reinterpret_cast(Sym)) {} /// This function is intended to be used ONLY within the class. /// The fact that ID is a pointer to a symbol is an implementation detail /// and should stay that way. /// In the current implementation, we use it to retrieve the only member /// of the trivial class. SymbolRef getRepresentativeSymbol() const { return reinterpret_cast(ID); } static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State); inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State, SymbolSet Members, EquivalenceClass Other, SymbolSet OtherMembers); static inline bool addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints, RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass First, EquivalenceClass Second); /// This is a unique identifier of the class. uintptr_t ID; }; //===----------------------------------------------------------------------===// // Constraint functions //===----------------------------------------------------------------------===// [[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool areFeasible(ConstraintRangeTy Constraints) { return llvm::none_of( Constraints, [](const std::pair &ClassConstraint) { return ClassConstraint.second.isEmpty(); }); } [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, EquivalenceClass Class) { return State->get(Class); } [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, SymbolRef Sym) { return getConstraint(State, EquivalenceClass::find(State, Sym)); } [[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State, EquivalenceClass Class, RangeSet Constraint) { return State->set(Class, Constraint); } [[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State, ConstraintRangeTy Constraints) { return State->set(Constraints); } //===----------------------------------------------------------------------===// // Equality/diseqiality abstraction //===----------------------------------------------------------------------===// /// A small helper function for detecting symbolic (dis)equality. /// /// Equality check can have different forms (like a == b or a - b) and this /// class encapsulates those away if the only thing the user wants to check - /// whether it's equality/diseqiality or not. /// /// \returns true if assuming this Sym to be true means equality of operands /// false if it means disequality of operands /// std::nullopt otherwise std::optional meansEquality(const SymSymExpr *Sym) { switch (Sym->getOpcode()) { case BO_Sub: // This case is: A - B != 0 -> disequality check. return false; case BO_EQ: // This case is: A == B != 0 -> equality check. return true; case BO_NE: // This case is: A != B != 0 -> diseqiality check. return false; default: return std::nullopt; } } //===----------------------------------------------------------------------===// // Intersection functions //===----------------------------------------------------------------------===// template [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, SecondTy Second, RestTy... Tail); template struct IntersectionTraits; template struct IntersectionTraits { // Found RangeSet, no need to check any further using Type = RangeSet; }; template <> struct IntersectionTraits<> { // We ran out of types, and we didn't find any RangeSet, so the result should // be optional. using Type = std::optional; }; template struct IntersectionTraits { // If current type is Optional or a raw pointer, we should keep looking. using Type = typename IntersectionTraits::Type; }; template [[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) { // If the list contains only RangeSet or std::optional, simply // return that range set. return End; } [[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline std::optional intersect(RangeSet::Factory &F, const RangeSet *End) { // This is an extraneous conversion from a raw pointer into // std::optional if (End) { return *End; } return std::nullopt; } template [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, RangeSet Second, RestTy... Tail) { // Here we call either the or version // of the function and can be sure that the result is RangeSet. return intersect(F, F.intersect(Head, Second), Tail...); } template [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, SecondTy Second, RestTy... Tail) { if (Second) { // Here we call the version of the function... return intersect(F, Head, *Second, Tail...); } // ...and here it is either or , which // means that the result is definitely RangeSet. return intersect(F, Head, Tail...); } /// Main generic intersect function. /// It intersects all of the given range sets. If some of the given arguments /// don't hold a range set (nullptr or std::nullopt), the function will skip /// them. /// /// Available representations for the arguments are: /// * RangeSet /// * std::optional /// * RangeSet * /// Pointer to a RangeSet is automatically assumed to be nullable and will get /// checked as well as the optional version. If this behaviour is undesired, /// please dereference the pointer in the call. /// /// Return type depends on the arguments' types. If we can be sure in compile /// time that there will be a range set as a result, the returning type is /// simply RangeSet, in other cases we have to back off to /// std::optional. /// /// Please, prefer optional range sets to raw pointers. If the last argument is /// a raw pointer and all previous arguments are std::nullopt, it will cost one /// additional check to convert RangeSet * into std::optional. template [[nodiscard]] inline typename IntersectionTraits::Type intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second, RestTy... Tail) { if (Head) { return intersect(F, *Head, Second, Tail...); } return intersect(F, Second, Tail...); } //===----------------------------------------------------------------------===// // Symbolic reasoning logic //===----------------------------------------------------------------------===// /// A little component aggregating all of the reasoning we have about /// the ranges of symbolic expressions. /// /// Even when we don't know the exact values of the operands, we still /// can get a pretty good estimate of the result's range. class SymbolicRangeInferrer : public SymExprVisitor { public: template static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State, SourceType Origin) { SymbolicRangeInferrer Inferrer(F, State); return Inferrer.infer(Origin); } RangeSet VisitSymExpr(SymbolRef Sym) { if (std::optional RS = getRangeForNegatedSym(Sym)) return *RS; // If we've reached this line, the actual type of the symbolic // expression is not supported for advanced inference. // In this case, we simply backoff to the default "let's simply // infer the range from the expression's type". return infer(Sym->getType()); } RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) { if (std::optional RS = getRangeForNegatedUnarySym(USE)) return *RS; return infer(USE->getType()); } RangeSet VisitSymIntExpr(const SymIntExpr *Sym) { return VisitBinaryOperator(Sym); } RangeSet VisitIntSymExpr(const IntSymExpr *Sym) { return VisitBinaryOperator(Sym); } RangeSet VisitSymSymExpr(const SymSymExpr *SSE) { return intersect( RangeFactory, // If Sym is a difference of symbols A - B, then maybe we have range // set stored for B - A. // // If we have range set stored for both A - B and B - A then // calculate the effective range set by intersecting the range set // for A - B and the negated range set of B - A. getRangeForNegatedSymSym(SSE), // If Sym is a comparison expression (except <=>), // find any other comparisons with the same operands. // See function description. getRangeForComparisonSymbol(SSE), // If Sym is (dis)equality, we might have some information // on that in our equality classes data structure. getRangeForEqualities(SSE), // And we should always check what we can get from the operands. VisitBinaryOperator(SSE)); } private: SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S) : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {} /// Infer range information from the given integer constant. /// /// It's not a real "inference", but is here for operating with /// sub-expressions in a more polymorphic manner. RangeSet inferAs(const llvm::APSInt &Val, QualType) { return {RangeFactory, Val}; } /// Infer range information from symbol in the context of the given type. RangeSet inferAs(SymbolRef Sym, QualType DestType) { QualType ActualType = Sym->getType(); // Check that we can reason about the symbol at all. if (ActualType->isIntegralOrEnumerationType() || Loc::isLocType(ActualType)) { return infer(Sym); } // Otherwise, let's simply infer from the destination type. // We couldn't figure out nothing else about that expression. return infer(DestType); } RangeSet infer(SymbolRef Sym) { return intersect(RangeFactory, // Of course, we should take the constraint directly // associated with this symbol into consideration. getConstraint(State, Sym), // Apart from the Sym itself, we can infer quite a lot if // we look into subexpressions of Sym. Visit(Sym)); } RangeSet infer(EquivalenceClass Class) { if (const RangeSet *AssociatedConstraint = getConstraint(State, Class)) return *AssociatedConstraint; return infer(Class.getType()); } /// Infer range information solely from the type. RangeSet infer(QualType T) { // Lazily generate a new RangeSet representing all possible values for the // given symbol type. RangeSet Result(RangeFactory, ValueFactory.getMinValue(T), ValueFactory.getMaxValue(T)); // References are known to be non-zero. if (T->isReferenceType()) return assumeNonZero(Result, T); return Result; } template RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) { // TODO #1: VisitBinaryOperator implementation might not make a good // use of the inferred ranges. In this case, we might be calculating // everything for nothing. This being said, we should introduce some // sort of laziness mechanism here. // // TODO #2: We didn't go into the nested expressions before, so it // might cause us spending much more time doing the inference. // This can be a problem for deeply nested expressions that are // involved in conditions and get tested continuously. We definitely // need to address this issue and introduce some sort of caching // in here. QualType ResultType = Sym->getType(); return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType), Sym->getOpcode(), inferAs(Sym->getRHS(), ResultType), ResultType); } RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, RangeSet RHS, QualType T); //===----------------------------------------------------------------------===// // Ranges and operators //===----------------------------------------------------------------------===// /// Return a rough approximation of the given range set. /// /// For the range set: /// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] } /// it will return the range [x_0, y_N]. static Range fillGaps(RangeSet Origin) { assert(!Origin.isEmpty()); return {Origin.getMinValue(), Origin.getMaxValue()}; } /// Try to convert given range into the given type. /// /// It will return std::nullopt only when the trivial conversion is possible. std::optional convert(const Range &Origin, APSIntType To) { if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within || To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) { return std::nullopt; } return Range(ValueFactory.Convert(To, Origin.From()), ValueFactory.Convert(To, Origin.To())); } template RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { assert(!LHS.isEmpty() && !RHS.isEmpty()); Range CoarseLHS = fillGaps(LHS); Range CoarseRHS = fillGaps(RHS); APSIntType ResultType = ValueFactory.getAPSIntType(T); // We need to convert ranges to the resulting type, so we can compare values // and combine them in a meaningful (in terms of the given operation) way. auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType); auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType); // It is hard to reason about ranges when conversion changes // borders of the ranges. if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) { return infer(T); } return VisitBinaryOperator(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T); } template RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) { return infer(T); } /// Return a symmetrical range for the given range and type. /// /// If T is signed, return the smallest range [-x..x] that covers the original /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't /// exist due to original range covering min(T)). /// /// If T is unsigned, return the smallest range [0..x] that covers the /// original range. Range getSymmetricalRange(Range Origin, QualType T) { APSIntType RangeType = ValueFactory.getAPSIntType(T); if (RangeType.isUnsigned()) { return Range(ValueFactory.getMinValue(RangeType), Origin.To()); } if (Origin.From().isMinSignedValue()) { // If mini is a minimal signed value, absolute value of it is greater // than the maximal signed value. In order to avoid these // complications, we simply return the whole range. return {ValueFactory.getMinValue(RangeType), ValueFactory.getMaxValue(RangeType)}; } // At this point, we are sure that the type is signed and we can safely // use unary - operator. // // While calculating absolute maximum, we can use the following formula // because of these reasons: // * If From >= 0 then To >= From and To >= -From. // AbsMax == To == max(To, -From) // * If To <= 0 then -From >= -To and -From >= From. // AbsMax == -From == max(-From, To) // * Otherwise, From <= 0, To >= 0, and // AbsMax == max(abs(From), abs(To)) llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To()); // Intersection is guaranteed to be non-empty. return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)}; } /// Return a range set subtracting zero from \p Domain. RangeSet assumeNonZero(RangeSet Domain, QualType T) { APSIntType IntType = ValueFactory.getAPSIntType(T); return RangeFactory.deletePoint(Domain, IntType.getZeroValue()); } template std::optional getRangeForNegatedExpr(ProduceNegatedSymFunc F, QualType T) { // Do not negate if the type cannot be meaningfully negated. if (!T->isUnsignedIntegerOrEnumerationType() && !T->isSignedIntegerOrEnumerationType()) return std::nullopt; if (SymbolRef NegatedSym = F()) if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) return RangeFactory.negate(*NegatedRange); return std::nullopt; } std::optional getRangeForNegatedUnarySym(const UnarySymExpr *USE) { // Just get the operand when we negate a symbol that is already negated. // -(-a) == a return getRangeForNegatedExpr( [USE]() -> SymbolRef { if (USE->getOpcode() == UO_Minus) return USE->getOperand(); return nullptr; }, USE->getType()); } std::optional getRangeForNegatedSymSym(const SymSymExpr *SSE) { return getRangeForNegatedExpr( [SSE, State = this->State]() -> SymbolRef { if (SSE->getOpcode() == BO_Sub) return State->getSymbolManager().getSymSymExpr( SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType()); return nullptr; }, SSE->getType()); } std::optional getRangeForNegatedSym(SymbolRef Sym) { return getRangeForNegatedExpr( [Sym, State = this->State]() { return State->getSymbolManager().getUnarySymExpr(Sym, UO_Minus, Sym->getType()); }, Sym->getType()); } // Returns ranges only for binary comparison operators (except <=>) // when left and right operands are symbolic values. // Finds any other comparisons with the same operands. // Then do logical calculations and refuse impossible branches. // E.g. (x < y) and (x > y) at the same time are impossible. // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only. // E.g. (x == y) and (y == x) are just reversed but the same. // It covers all possible combinations (see CmpOpTable description). // Note that `x` and `y` can also stand for subexpressions, // not only for actual symbols. std::optional getRangeForComparisonSymbol(const SymSymExpr *SSE) { const BinaryOperatorKind CurrentOP = SSE->getOpcode(); // We currently do not support <=> (C++20). if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp)) return std::nullopt; static const OperatorRelationsTable CmpOpTable{}; const SymExpr *LHS = SSE->getLHS(); const SymExpr *RHS = SSE->getRHS(); QualType T = SSE->getType(); SymbolManager &SymMgr = State->getSymbolManager(); // We use this variable to store the last queried operator (`QueriedOP`) // for which the `getCmpOpState` returned with `Unknown`. If there are two // different OPs that returned `Unknown` then we have to query the special // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)` // never returns `Unknown`, so `CurrentOP` is a good initial value. BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP; // Loop goes through all of the columns exept the last one ('UnknownX2'). // We treat `UnknownX2` column separately at the end of the loop body. for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) { // Let's find an expression e.g. (x < y). BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i); const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T); const RangeSet *QueriedRangeSet = getConstraint(State, SymSym); // If ranges were not previously found, // try to find a reversed expression (y > x). if (!QueriedRangeSet) { const BinaryOperatorKind ROP = BinaryOperator::reverseComparisonOp(QueriedOP); SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T); QueriedRangeSet = getConstraint(State, SymSym); } if (!QueriedRangeSet || QueriedRangeSet->isEmpty()) continue; const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue(); const bool isInFalseBranch = ConcreteValue ? (*ConcreteValue == 0) : false; // If it is a false branch, we shall be guided by opposite operator, // because the table is made assuming we are in the true branch. // E.g. when (x <= y) is false, then (x > y) is true. if (isInFalseBranch) QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP); OperatorRelationsTable::TriStateKind BranchState = CmpOpTable.getCmpOpState(CurrentOP, QueriedOP); if (BranchState == OperatorRelationsTable::Unknown) { if (LastQueriedOpToUnknown != CurrentOP && LastQueriedOpToUnknown != QueriedOP) { // If we got the Unknown state for both different operators. // if (x <= y) // assume true // if (x != y) // assume true // if (x < y) // would be also true // Get a state from `UnknownX2` column. BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP); } else { LastQueriedOpToUnknown = QueriedOP; continue; } } return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T) : getFalseRange(T); } return std::nullopt; } std::optional getRangeForEqualities(const SymSymExpr *Sym) { std::optional Equality = meansEquality(Sym); if (!Equality) return std::nullopt; if (std::optional AreEqual = EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) { // Here we cover two cases at once: // * if Sym is equality and its operands are known to be equal -> true // * if Sym is disequality and its operands are disequal -> true if (*AreEqual == *Equality) { return getTrueRange(Sym->getType()); } // Opposite combinations result in false. return getFalseRange(Sym->getType()); } return std::nullopt; } RangeSet getTrueRange(QualType T) { RangeSet TypeRange = infer(T); return assumeNonZero(TypeRange, T); } RangeSet getFalseRange(QualType T) { const llvm::APSInt &Zero = ValueFactory.getValue(0, T); return RangeSet(RangeFactory, Zero); } BasicValueFactory &ValueFactory; RangeSet::Factory &RangeFactory; ProgramStateRef State; }; //===----------------------------------------------------------------------===// // Range-based reasoning about symbolic operations //===----------------------------------------------------------------------===// template <> RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { assert(!LHS.isEmpty() && !RHS.isEmpty()); if (LHS.getAPSIntType() == RHS.getAPSIntType()) { if (intersect(RangeFactory, LHS, RHS).isEmpty()) return getTrueRange(T); } else { // We can only lose information if we are casting smaller signed type to // bigger unsigned type. For e.g., // LHS (unsigned short): [2, USHRT_MAX] // RHS (signed short): [SHRT_MIN, 0] // // Casting RHS to LHS type will leave us with overlapping values // CastedRHS : [0, 0] U [SHRT_MAX + 1, USHRT_MAX] // // We can avoid this by checking if signed type's maximum value is lesser // than unsigned type's minimum value. // If both have different signs then only we can get more information. if (LHS.isUnsigned() != RHS.isUnsigned()) { if (LHS.isUnsigned() && (LHS.getBitWidth() >= RHS.getBitWidth())) { if (RHS.getMaxValue().isNegative() || LHS.getAPSIntType().convert(RHS.getMaxValue()) < LHS.getMinValue()) return getTrueRange(T); } else if (RHS.isUnsigned() && (LHS.getBitWidth() <= RHS.getBitWidth())) { if (LHS.getMaxValue().isNegative() || RHS.getAPSIntType().convert(LHS.getMaxValue()) < RHS.getMinValue()) return getTrueRange(T); } } // Both RangeSets should be casted to bigger unsigned type. APSIntType CastingType(std::max(LHS.getBitWidth(), RHS.getBitWidth()), LHS.isUnsigned() || RHS.isUnsigned()); RangeSet CastedLHS = RangeFactory.castTo(LHS, CastingType); RangeSet CastedRHS = RangeFactory.castTo(RHS, CastingType); if (intersect(RangeFactory, CastedLHS, CastedRHS).isEmpty()) return getTrueRange(T); } // In all other cases, the resulting range cannot be deduced. return infer(T); } template <> RangeSet SymbolicRangeInferrer::VisitBinaryOperator(Range LHS, Range RHS, QualType T) { APSIntType ResultType = ValueFactory.getAPSIntType(T); llvm::APSInt Zero = ResultType.getZeroValue(); bool IsLHSPositiveOrZero = LHS.From() >= Zero; bool IsRHSPositiveOrZero = RHS.From() >= Zero; bool IsLHSNegative = LHS.To() < Zero; bool IsRHSNegative = RHS.To() < Zero; // Check if both ranges have the same sign. if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || (IsLHSNegative && IsRHSNegative)) { // The result is definitely greater or equal than any of the operands. const llvm::APSInt &Min = std::max(LHS.From(), RHS.From()); // We estimate maximal value for positives as the maximal value for the // given type. For negatives, we estimate it with -1 (e.g. 0x11111111). // // TODO: We basically, limit the resulting range from below, but don't do // anything with the upper bound. // // For positive operands, it can be done as follows: for the upper // bound of LHS and RHS we calculate the most significant bit set. // Let's call it the N-th bit. Then we can estimate the maximal // number to be 2^(N+1)-1, i.e. the number with all the bits up to // the N-th bit set. const llvm::APSInt &Max = IsLHSNegative ? ValueFactory.getValue(--Zero) : ValueFactory.getMaxValue(ResultType); return {RangeFactory, ValueFactory.getValue(Min), Max}; } // Otherwise, let's check if at least one of the operands is negative. if (IsLHSNegative || IsRHSNegative) { // This means that the result is definitely negative as well. return {RangeFactory, ValueFactory.getMinValue(ResultType), ValueFactory.getValue(--Zero)}; } RangeSet DefaultRange = infer(T); // It is pretty hard to reason about operands with different signs // (and especially with possibly different signs). We simply check if it // can be zero. In order to conclude that the result could not be zero, // at least one of the operands should be definitely not zero itself. if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) { return assumeNonZero(DefaultRange, T); } // Nothing much else to do here. return DefaultRange; } template <> RangeSet SymbolicRangeInferrer::VisitBinaryOperator(Range LHS, Range RHS, QualType T) { APSIntType ResultType = ValueFactory.getAPSIntType(T); llvm::APSInt Zero = ResultType.getZeroValue(); bool IsLHSPositiveOrZero = LHS.From() >= Zero; bool IsRHSPositiveOrZero = RHS.From() >= Zero; bool IsLHSNegative = LHS.To() < Zero; bool IsRHSNegative = RHS.To() < Zero; // Check if both ranges have the same sign. if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || (IsLHSNegative && IsRHSNegative)) { // The result is definitely less or equal than any of the operands. const llvm::APSInt &Max = std::min(LHS.To(), RHS.To()); // We conservatively estimate lower bound to be the smallest positive // or negative value corresponding to the sign of the operands. const llvm::APSInt &Min = IsLHSNegative ? ValueFactory.getMinValue(ResultType) : ValueFactory.getValue(Zero); return {RangeFactory, Min, Max}; } // Otherwise, let's check if at least one of the operands is positive. if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) { // This makes result definitely positive. // // We can also reason about a maximal value by finding the maximal // value of the positive operand. const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To(); // The minimal value on the other hand is much harder to reason about. // The only thing we know for sure is that the result is positive. return {RangeFactory, ValueFactory.getValue(Zero), ValueFactory.getValue(Max)}; } // Nothing much else to do here. return infer(T); } template <> RangeSet SymbolicRangeInferrer::VisitBinaryOperator(Range LHS, Range RHS, QualType T) { llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue(); Range ConservativeRange = getSymmetricalRange(RHS, T); llvm::APSInt Max = ConservativeRange.To(); llvm::APSInt Min = ConservativeRange.From(); if (Max == Zero) { // It's an undefined behaviour to divide by 0 and it seems like we know // for sure that RHS is 0. Let's say that the resulting range is // simply infeasible for that matter. return RangeFactory.getEmptySet(); } // At this point, our conservative range is closed. The result, however, // couldn't be greater than the RHS' maximal absolute value. Because of // this reason, we turn the range into open (or half-open in case of // unsigned integers). // // While we operate on integer values, an open interval (a, b) can be easily // represented by the closed interval [a + 1, b - 1]. And this is exactly // what we do next. // // If we are dealing with unsigned case, we shouldn't move the lower bound. if (Min.isSigned()) { ++Min; } --Max; bool IsLHSPositiveOrZero = LHS.From() >= Zero; bool IsRHSPositiveOrZero = RHS.From() >= Zero; // Remainder operator results with negative operands is implementation // defined. Positive cases are much easier to reason about though. if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) { // If maximal value of LHS is less than maximal value of RHS, // the result won't get greater than LHS.To(). Max = std::min(LHS.To(), Max); // We want to check if it is a situation similar to the following: // // <------------|---[ LHS ]--------[ RHS ]-----> // -INF 0 +INF // // In this situation, we can conclude that (LHS / RHS) == 0 and // (LHS % RHS) == LHS. Min = LHS.To() < RHS.From() ? LHS.From() : Zero; } // Nevertheless, the symmetrical range for RHS is a conservative estimate // for any sign of either LHS, or RHS. return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)}; } RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, RangeSet RHS, QualType T) { // We should propagate information about unfeasbility of one of the // operands to the resulting range. if (LHS.isEmpty() || RHS.isEmpty()) { return RangeFactory.getEmptySet(); } switch (Op) { case BO_NE: return VisitBinaryOperator(LHS, RHS, T); case BO_Or: return VisitBinaryOperator(LHS, RHS, T); case BO_And: return VisitBinaryOperator(LHS, RHS, T); case BO_Rem: return VisitBinaryOperator(LHS, RHS, T); default: return infer(T); } } //===----------------------------------------------------------------------===// // Constraint manager implementation details //===----------------------------------------------------------------------===// class RangeConstraintManager : public RangedConstraintManager { public: RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB) : RangedConstraintManager(EE, SVB), F(getBasicVals()) {} //===------------------------------------------------------------------===// // Implementation for interface from ConstraintManager. //===------------------------------------------------------------------===// bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const override { // NOTE: ClassMembers are as simple as back pointers for ClassMap, // so comparing constraint ranges and class maps should be // sufficient. return S1->get() == S2->get() && S1->get() == S2->get(); } bool canReasonAbout(SVal X) const override; ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; const llvm::APSInt *getSymVal(ProgramStateRef State, SymbolRef Sym) const override; const llvm::APSInt *getSymMinVal(ProgramStateRef State, SymbolRef Sym) const override; const llvm::APSInt *getSymMaxVal(ProgramStateRef State, SymbolRef Sym) const override; ProgramStateRef removeDeadBindings(ProgramStateRef State, SymbolReaper &SymReaper) override; void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", unsigned int Space = 0, bool IsDot = false) const override; void printValue(raw_ostream &Out, ProgramStateRef State, SymbolRef Sym) override; void printConstraints(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", unsigned int Space = 0, bool IsDot = false) const; void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", unsigned int Space = 0, bool IsDot = false) const; void printDisequalities(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", unsigned int Space = 0, bool IsDot = false) const; //===------------------------------------------------------------------===// // Implementation for interface from RangedConstraintManager. //===------------------------------------------------------------------===// ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) override; ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) override; ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) override; ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) override; ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) override; ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) override; ProgramStateRef assumeSymWithinInclusiveRange( ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; ProgramStateRef assumeSymOutsideInclusiveRange( ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; private: RangeSet::Factory F; RangeSet getRange(ProgramStateRef State, SymbolRef Sym); RangeSet getRange(ProgramStateRef State, EquivalenceClass Class); ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym, RangeSet Range); ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class, RangeSet Range); RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment); RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment); RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment); RangeSet getSymLERange(llvm::function_ref RS, const llvm::APSInt &Int, const llvm::APSInt &Adjustment); RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment); }; //===----------------------------------------------------------------------===// // Constraint assignment logic //===----------------------------------------------------------------------===// /// ConstraintAssignorBase is a small utility class that unifies visitor /// for ranges with a visitor for constraints (rangeset/range/constant). /// /// It is designed to have one derived class, but generally it can have more. /// Derived class can control which types we handle by defining methods of the /// following form: /// /// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym, /// CONSTRAINT Constraint); /// /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.) /// CONSTRAINT is the type of constraint (RangeSet/Range/Const) /// return value signifies whether we should try other handle methods /// (i.e. false would mean to stop right after calling this method) template class ConstraintAssignorBase { public: using Const = const llvm::APSInt &; #define DISPATCH(CLASS) return assign##CLASS##Impl(cast(Sym), Constraint) #define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \ if (!static_cast(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \ return false void assign(SymbolRef Sym, RangeSet Constraint) { assignImpl(Sym, Constraint); } bool assignImpl(SymbolRef Sym, RangeSet Constraint) { switch (Sym->getKind()) { #define SYMBOL(Id, Parent) \ case SymExpr::Id##Kind: \ DISPATCH(Id); #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" } llvm_unreachable("Unknown SymExpr kind!"); } #define DEFAULT_ASSIGN(Id) \ bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \ return true; \ } \ bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \ bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; } // When we dispatch for constraint types, we first try to check // if the new constraint is the constant and try the corresponding // assignor methods. If it didn't interrupt, we can proceed to the // range, and finally to the range set. #define CONSTRAINT_DISPATCH(Id) \ if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \ ASSIGN(Id, Const, Sym, *Const); \ } \ if (Constraint.size() == 1) { \ ASSIGN(Id, Range, Sym, *Constraint.begin()); \ } \ ASSIGN(Id, RangeSet, Sym, Constraint) // Our internal assign method first tries to call assignor methods for all // constraint types that apply. And if not interrupted, continues with its // parent class. #define SYMBOL(Id, Parent) \ bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \ CONSTRAINT_DISPATCH(Id); \ DISPATCH(Parent); \ } \ DEFAULT_ASSIGN(Id) #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent) #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" // Default implementations for the top class that doesn't have parents. bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) { CONSTRAINT_DISPATCH(SymExpr); return true; } DEFAULT_ASSIGN(SymExpr); #undef DISPATCH #undef CONSTRAINT_DISPATCH #undef DEFAULT_ASSIGN #undef ASSIGN }; /// A little component aggregating all of the reasoning we have about /// assigning new constraints to symbols. /// /// The main purpose of this class is to associate constraints to symbols, /// and impose additional constraints on other symbols, when we can imply /// them. /// /// It has a nice symmetry with SymbolicRangeInferrer. When the latter /// can provide more precise ranges by looking into the operands of the /// expression in question, ConstraintAssignor looks into the operands /// to see if we can imply more from the new constraint. class ConstraintAssignor : public ConstraintAssignorBase { public: template [[nodiscard]] static ProgramStateRef assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F, ClassOrSymbol CoS, RangeSet NewConstraint) { if (!State || NewConstraint.isEmpty()) return nullptr; ConstraintAssignor Assignor{State, Builder, F}; return Assignor.assign(CoS, NewConstraint); } /// Handle expressions like: a % b != 0. template bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) { if (Sym->getOpcode() != BO_Rem) return true; // a % b != 0 implies that a != 0. if (!Constraint.containsZero()) { SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS()); if (auto NonLocSymSVal = SymSVal.getAs()) { State = State->assume(*NonLocSymSVal, true); if (!State) return false; } } return true; } inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint); inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym, RangeSet Constraint) { return handleRemainderOp(Sym, Constraint); } inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym, RangeSet Constraint); private: ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F) : State(State), Builder(Builder), RangeFactory(F) {} using Base = ConstraintAssignorBase; /// Base method for handling new constraints for symbols. [[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) { // All constraints are actually associated with equivalence classes, and // that's what we are going to do first. State = assign(EquivalenceClass::find(State, Sym), NewConstraint); if (!State) return nullptr; // And after that we can check what other things we can get from this // constraint. Base::assign(Sym, NewConstraint); return State; } /// Base method for handling new constraints for classes. [[nodiscard]] ProgramStateRef assign(EquivalenceClass Class, RangeSet NewConstraint) { // There is a chance that we might need to update constraints for the // classes that are known to be disequal to Class. // // In order for this to be even possible, the new constraint should // be simply a constant because we can't reason about range disequalities. if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) { ConstraintRangeTy Constraints = State->get(); ConstraintRangeTy::Factory &CF = State->get_context(); // Add new constraint. Constraints = CF.add(Constraints, Class, NewConstraint); for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) { RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange( RangeFactory, State, DisequalClass); UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point); // If we end up with at least one of the disequal classes to be // constrained with an empty range-set, the state is infeasible. if (UpdatedConstraint.isEmpty()) return nullptr; Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint); } assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " "a state with infeasible constraints"); return setConstraints(State, Constraints); } return setConstraint(State, Class, NewConstraint); } ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS, SymbolRef RHS) { return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS); } ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS, SymbolRef RHS) { return EquivalenceClass::merge(RangeFactory, State, LHS, RHS); } [[nodiscard]] std::optional interpreteAsBool(RangeSet Constraint) { assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here"); if (Constraint.getConcreteValue()) return !Constraint.getConcreteValue()->isZero(); if (!Constraint.containsZero()) return true; return std::nullopt; } ProgramStateRef State; SValBuilder &Builder; RangeSet::Factory &RangeFactory; }; bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym, const llvm::APSInt &Constraint) { llvm::SmallSet SimplifiedClasses; // Iterate over all equivalence classes and try to simplify them. ClassMembersTy Members = State->get(); for (std::pair ClassToSymbolSet : Members) { EquivalenceClass Class = ClassToSymbolSet.first; State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); if (!State) return false; SimplifiedClasses.insert(Class); } // Trivial equivalence classes (those that have only one symbol member) are // not stored in the State. Thus, we must skim through the constraints as // well. And we try to simplify symbols in the constraints. ConstraintRangeTy Constraints = State->get(); for (std::pair ClassConstraint : Constraints) { EquivalenceClass Class = ClassConstraint.first; if (SimplifiedClasses.count(Class)) // Already simplified. continue; State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); if (!State) return false; } // We may have trivial equivalence classes in the disequality info as // well, and we need to simplify them. DisequalityMapTy DisequalityInfo = State->get(); for (std::pair DisequalityEntry : DisequalityInfo) { EquivalenceClass Class = DisequalityEntry.first; ClassSet DisequalClasses = DisequalityEntry.second; State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); if (!State) return false; } return true; } bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym, RangeSet Constraint) { if (!handleRemainderOp(Sym, Constraint)) return false; std::optional ConstraintAsBool = interpreteAsBool(Constraint); if (!ConstraintAsBool) return true; if (std::optional Equality = meansEquality(Sym)) { // Here we cover two cases: // * if Sym is equality and the new constraint is true -> Sym's operands // should be marked as equal // * if Sym is disequality and the new constraint is false -> Sym's // operands should be also marked as equal if (*Equality == *ConstraintAsBool) { State = trackEquality(State, Sym->getLHS(), Sym->getRHS()); } else { // Other combinations leave as with disequal operands. State = trackDisequality(State, Sym->getLHS(), Sym->getRHS()); } if (!State) return false; } return true; } } // end anonymous namespace std::unique_ptr ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, ExprEngine *Eng) { return std::make_unique(Eng, StMgr.getSValBuilder()); } ConstraintMap ento::getConstraintMap(ProgramStateRef State) { ConstraintMap::Factory &F = State->get_context(); ConstraintMap Result = F.getEmptyMap(); ConstraintRangeTy Constraints = State->get(); for (std::pair ClassConstraint : Constraints) { EquivalenceClass Class = ClassConstraint.first; SymbolSet ClassMembers = Class.getClassMembers(State); assert(!ClassMembers.isEmpty() && "Class must always have at least one member!"); SymbolRef Representative = *ClassMembers.begin(); Result = F.add(Result, Representative, ClassConstraint.second); } return Result; } //===----------------------------------------------------------------------===// // EqualityClass implementation details //===----------------------------------------------------------------------===// LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State, raw_ostream &os) const { SymbolSet ClassMembers = getClassMembers(State); for (const SymbolRef &MemberSym : ClassMembers) { MemberSym->dump(); os << "\n"; } } inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State, SymbolRef Sym) { assert(State && "State should not be null"); assert(Sym && "Symbol should not be null"); // We store far from all Symbol -> Class mappings if (const EquivalenceClass *NontrivialClass = State->get(Sym)) return *NontrivialClass; // This is a trivial class of Sym. return Sym; } inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, SymbolRef Second) { EquivalenceClass FirstClass = find(State, First); EquivalenceClass SecondClass = find(State, Second); return FirstClass.merge(F, State, SecondClass); } inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other) { // It is already the same class. if (*this == Other) return State; // FIXME: As of now, we support only equivalence classes of the same type. // This limitation is connected to the lack of explicit casts in // our symbolic expression model. // // That means that for `int x` and `char y` we don't distinguish // between these two very different cases: // * `x == y` // * `(char)x == y` // // The moment we introduce symbolic casts, this restriction can be // lifted. if (getType() != Other.getType()) return State; SymbolSet Members = getClassMembers(State); SymbolSet OtherMembers = Other.getClassMembers(State); // We estimate the size of the class by the height of tree containing // its members. Merging is not a trivial operation, so it's easier to // merge the smaller class into the bigger one. if (Members.getHeight() >= OtherMembers.getHeight()) { return mergeImpl(F, State, Members, Other, OtherMembers); } else { return Other.mergeImpl(F, State, OtherMembers, *this, Members); } } inline ProgramStateRef EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory, ProgramStateRef State, SymbolSet MyMembers, EquivalenceClass Other, SymbolSet OtherMembers) { // Essentially what we try to recreate here is some kind of union-find // data structure. It does have certain limitations due to persistence // and the need to remove elements from classes. // // In this setting, EquialityClass object is the representative of the class // or the parent element. ClassMap is a mapping of class members to their // parent. Unlike the union-find structure, they all point directly to the // class representative because we don't have an opportunity to actually do // path compression when dealing with immutability. This means that we // compress paths every time we do merges. It also means that we lose // the main amortized complexity benefit from the original data structure. ConstraintRangeTy Constraints = State->get(); ConstraintRangeTy::Factory &CRF = State->get_context(); // 1. If the merged classes have any constraints associated with them, we // need to transfer them to the class we have left. // // Intersection here makes perfect sense because both of these constraints // must hold for the whole new class. if (std::optional NewClassConstraint = intersect(RangeFactory, getConstraint(State, *this), getConstraint(State, Other))) { // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because // range inferrer shouldn't generate ranges incompatible with // equivalence classes. However, at the moment, due to imperfections // in the solver, it is possible and the merge function can also // return infeasible states aka null states. if (NewClassConstraint->isEmpty()) // Infeasible state return nullptr; // No need in tracking constraints of a now-dissolved class. Constraints = CRF.remove(Constraints, Other); // Assign new constraints for this class. Constraints = CRF.add(Constraints, *this, *NewClassConstraint); assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " "a state with infeasible constraints"); State = State->set(Constraints); } // 2. Get ALL equivalence-related maps ClassMapTy Classes = State->get(); ClassMapTy::Factory &CMF = State->get_context(); ClassMembersTy Members = State->get(); ClassMembersTy::Factory &MF = State->get_context(); DisequalityMapTy DisequalityInfo = State->get(); DisequalityMapTy::Factory &DF = State->get_context(); ClassSet::Factory &CF = State->get_context(); SymbolSet::Factory &F = getMembersFactory(State); // 2. Merge members of the Other class into the current class. SymbolSet NewClassMembers = MyMembers; for (SymbolRef Sym : OtherMembers) { NewClassMembers = F.add(NewClassMembers, Sym); // *this is now the class for all these new symbols. Classes = CMF.add(Classes, Sym, *this); } // 3. Adjust member mapping. // // No need in tracking members of a now-dissolved class. Members = MF.remove(Members, Other); // Now only the current class is mapped to all the symbols. Members = MF.add(Members, *this, NewClassMembers); // 4. Update disequality relations ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF); // We are about to merge two classes but they are already known to be // non-equal. This is a contradiction. if (DisequalToOther.contains(*this)) return nullptr; if (!DisequalToOther.isEmpty()) { ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF); DisequalityInfo = DF.remove(DisequalityInfo, Other); for (EquivalenceClass DisequalClass : DisequalToOther) { DisequalToThis = CF.add(DisequalToThis, DisequalClass); // Disequality is a symmetric relation meaning that if // DisequalToOther not null then the set for DisequalClass is not // empty and has at least Other. ClassSet OriginalSetLinkedToOther = *DisequalityInfo.lookup(DisequalClass); // Other will be eliminated and we should replace it with the bigger // united class. ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other); NewSet = CF.add(NewSet, *this); DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet); } DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis); State = State->set(DisequalityInfo); } // 5. Update the state State = State->set(Classes); State = State->set(Members); return State; } inline SymbolSet::Factory & EquivalenceClass::getMembersFactory(ProgramStateRef State) { return State->get_context(); } SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const { if (const SymbolSet *Members = State->get(*this)) return *Members; // This class is trivial, so we need to construct a set // with just that one symbol from the class. SymbolSet::Factory &F = getMembersFactory(State); return F.add(F.getEmptySet(), getRepresentativeSymbol()); } bool EquivalenceClass::isTrivial(ProgramStateRef State) const { return State->get(*this) == nullptr; } bool EquivalenceClass::isTriviallyDead(ProgramStateRef State, SymbolReaper &Reaper) const { return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol()); } inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, SymbolRef First, SymbolRef Second) { return markDisequal(RF, State, find(State, First), find(State, Second)); } inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, EquivalenceClass Second) { return First.markDisequal(RF, State, Second); } inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass Other) const { // If we know that two classes are equal, we can only produce an infeasible // state. if (*this == Other) { return nullptr; } DisequalityMapTy DisequalityInfo = State->get(); ConstraintRangeTy Constraints = State->get(); // Disequality is a symmetric relation, so if we mark A as disequal to B, // we should also mark B as disequalt to A. if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this, Other) || !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other, *this)) return nullptr; assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " "a state with infeasible constraints"); State = State->set(DisequalityInfo); State = State->set(Constraints); return State; } inline bool EquivalenceClass::addToDisequalityInfo( DisequalityMapTy &Info, ConstraintRangeTy &Constraints, RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, EquivalenceClass Second) { // 1. Get all of the required factories. DisequalityMapTy::Factory &F = State->get_context(); ClassSet::Factory &CF = State->get_context(); ConstraintRangeTy::Factory &CRF = State->get_context(); // 2. Add Second to the set of classes disequal to First. const ClassSet *CurrentSet = Info.lookup(First); ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet(); NewSet = CF.add(NewSet, Second); Info = F.add(Info, First, NewSet); // 3. If Second is known to be a constant, we can delete this point // from the constraint asociated with First. // // So, if Second == 10, it means that First != 10. // At the same time, the same logic does not apply to ranges. if (const RangeSet *SecondConstraint = Constraints.lookup(Second)) if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) { RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange( RF, State, First.getRepresentativeSymbol()); FirstConstraint = RF.deletePoint(FirstConstraint, *Point); // If the First class is about to be constrained with an empty // range-set, the state is infeasible. if (FirstConstraint.isEmpty()) return false; Constraints = CRF.add(Constraints, First, FirstConstraint); } return true; } inline std::optional EquivalenceClass::areEqual(ProgramStateRef State, SymbolRef FirstSym, SymbolRef SecondSym) { return EquivalenceClass::areEqual(State, find(State, FirstSym), find(State, SecondSym)); } inline std::optional EquivalenceClass::areEqual(ProgramStateRef State, EquivalenceClass First, EquivalenceClass Second) { // The same equivalence class => symbols are equal. if (First == Second) return true; // Let's check if we know anything about these two classes being not equal to // each other. ClassSet DisequalToFirst = First.getDisequalClasses(State); if (DisequalToFirst.contains(Second)) return false; // It is not clear. return std::nullopt; } [[nodiscard]] ProgramStateRef EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) { SymbolSet ClsMembers = getClassMembers(State); assert(ClsMembers.contains(Old)); // Remove `Old`'s Class->Sym relation. SymbolSet::Factory &F = getMembersFactory(State); ClassMembersTy::Factory &EMFactory = State->get_context(); ClsMembers = F.remove(ClsMembers, Old); // Ensure another precondition of the removeMember function (we can check // this only with isEmpty, thus we have to do the remove first). assert(!ClsMembers.isEmpty() && "Class should have had at least two members before member removal"); // Overwrite the existing members assigned to this class. ClassMembersTy ClassMembersMap = State->get(); ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers); State = State->set(ClassMembersMap); // Remove `Old`'s Sym->Class relation. ClassMapTy Classes = State->get(); ClassMapTy::Factory &CMF = State->get_context(); Classes = CMF.remove(Classes, Old); State = State->set(Classes); return State; } // Re-evaluate an SVal with top-level `State->assume` logic. [[nodiscard]] ProgramStateRef reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) { if (!Constraint) return State; const auto DefinedVal = TheValue.castAs(); // If the SVal is 0, we can simply interpret that as `false`. if (Constraint->encodesFalseRange()) return State->assume(DefinedVal, false); // If the constraint does not encode 0 then we can interpret that as `true` // AND as a Range(Set). if (Constraint->encodesTrueRange()) { State = State->assume(DefinedVal, true); if (!State) return nullptr; // Fall through, re-assume based on the range values as well. } // Overestimate the individual Ranges with the RangeSet' lowest and // highest values. return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(), Constraint->getMaxValue(), true); } // Iterate over all symbols and try to simplify them. Once a symbol is // simplified then we check if we can merge the simplified symbol's equivalence // class to this class. This way, we simplify not just the symbols but the // classes as well: we strive to keep the number of the classes to be the // absolute minimum. [[nodiscard]] ProgramStateRef EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Class) { SymbolSet ClassMembers = Class.getClassMembers(State); for (const SymbolRef &MemberSym : ClassMembers) { const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym); const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol(); // The symbol is collapsed to a constant, check if the current State is // still feasible. if (const auto CI = SimplifiedMemberVal.getAs()) { const llvm::APSInt &SV = CI->getValue(); const RangeSet *ClassConstraint = getConstraint(State, Class); // We have found a contradiction. if (ClassConstraint && !ClassConstraint->contains(SV)) return nullptr; } if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) { // The simplified symbol should be the member of the original Class, // however, it might be in another existing class at the moment. We // have to merge these classes. ProgramStateRef OldState = State; State = merge(F, State, MemberSym, SimplifiedMemberSym); if (!State) return nullptr; // No state change, no merge happened actually. if (OldState == State) continue; // Be aware that `SimplifiedMemberSym` might refer to an already dead // symbol. In that case, the eqclass of that might not be the same as the // eqclass of `MemberSym`. This is because the dead symbols are not // preserved in the `ClassMap`, hence // `find(State, SimplifiedMemberSym)` will result in a trivial eqclass // compared to the eqclass of `MemberSym`. // These eqclasses should be the same if `SimplifiedMemberSym` is alive. // --> assert(find(State, MemberSym) == find(State, SimplifiedMemberSym)) // // Note that `MemberSym` must be alive here since that is from the // `ClassMembers` where all the symbols are alive. // Remove the old and more complex symbol. State = find(State, MemberSym).removeMember(State, MemberSym); // Query the class constraint again b/c that may have changed during the // merge above. const RangeSet *ClassConstraint = getConstraint(State, Class); // Re-evaluate an SVal with top-level `State->assume`, this ignites // a RECURSIVE algorithm that will reach a FIXPOINT. // // About performance and complexity: Let us assume that in a State we // have N non-trivial equivalence classes and that all constraints and // disequality info is related to non-trivial classes. In the worst case, // we can simplify only one symbol of one class in each iteration. The // number of symbols in one class cannot grow b/c we replace the old // symbol with the simplified one. Also, the number of the equivalence // classes can decrease only, b/c the algorithm does a merge operation // optionally. We need N iterations in this case to reach the fixpoint. // Thus, the steps needed to be done in the worst case is proportional to // N*N. // // This worst case scenario can be extended to that case when we have // trivial classes in the constraints and in the disequality map. This // case can be reduced to the case with a State where there are only // non-trivial classes. This is because a merge operation on two trivial // classes results in one non-trivial class. State = reAssume(State, ClassConstraint, SimplifiedMemberVal); if (!State) return nullptr; } } return State; } inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State, SymbolRef Sym) { return find(State, Sym).getDisequalClasses(State); } inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State) const { return getDisequalClasses(State->get(), State->get_context()); } inline ClassSet EquivalenceClass::getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const { if (const ClassSet *DisequalClasses = Map.lookup(*this)) return *DisequalClasses; return Factory.getEmptySet(); } bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) { ClassMembersTy Members = State->get(); for (std::pair ClassMembersPair : Members) { for (SymbolRef Member : ClassMembersPair.second) { // Every member of the class should have a mapping back to the class. if (find(State, Member) == ClassMembersPair.first) { continue; } return false; } } DisequalityMapTy Disequalities = State->get(); for (std::pair DisequalityInfo : Disequalities) { EquivalenceClass Class = DisequalityInfo.first; ClassSet DisequalClasses = DisequalityInfo.second; // There is no use in keeping empty sets in the map. if (DisequalClasses.isEmpty()) return false; // Disequality is symmetrical, i.e. for every Class A and B that A != B, // B != A should also be true. for (EquivalenceClass DisequalClass : DisequalClasses) { const ClassSet *DisequalToDisequalClasses = Disequalities.lookup(DisequalClass); // It should be a set of at least one element: Class if (!DisequalToDisequalClasses || !DisequalToDisequalClasses->contains(Class)) return false; } } return true; } //===----------------------------------------------------------------------===// // RangeConstraintManager implementation //===----------------------------------------------------------------------===// bool RangeConstraintManager::canReasonAbout(SVal X) const { std::optional SymVal = X.getAs(); if (SymVal && SymVal->isExpression()) { const SymExpr *SE = SymVal->getSymbol(); if (const SymIntExpr *SIE = dyn_cast(SE)) { switch (SIE->getOpcode()) { // We don't reason yet about bitwise-constraints on symbolic values. case BO_And: case BO_Or: case BO_Xor: return false; // We don't reason yet about these arithmetic constraints on // symbolic values. case BO_Mul: case BO_Div: case BO_Rem: case BO_Shl: case BO_Shr: return false; // All other cases. default: return true; } } if (const SymSymExpr *SSE = dyn_cast(SE)) { // FIXME: Handle <=> here. if (BinaryOperator::isEqualityOp(SSE->getOpcode()) || BinaryOperator::isRelationalOp(SSE->getOpcode())) { // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. // We've recently started producing Loc <> NonLoc comparisons (that // result from casts of one of the operands between eg. intptr_t and // void *), but we can't reason about them yet. if (Loc::isLocType(SSE->getLHS()->getType())) { return Loc::isLocType(SSE->getRHS()->getType()); } } } return false; } return true; } ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, SymbolRef Sym) { const RangeSet *Ranges = getConstraint(State, Sym); // If we don't have any information about this symbol, it's underconstrained. if (!Ranges) return ConditionTruthVal(); // If we have a concrete value, see if it's zero. if (const llvm::APSInt *Value = Ranges->getConcreteValue()) return *Value == 0; BasicValueFactory &BV = getBasicVals(); APSIntType IntType = BV.getAPSIntType(Sym->getType()); llvm::APSInt Zero = IntType.getZeroValue(); // Check if zero is in the set of possible values. if (!Ranges->contains(Zero)) return false; // Zero is a possible value, but it is not the /only/ possible value. return ConditionTruthVal(); } const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, SymbolRef Sym) const { const RangeSet *T = getConstraint(St, Sym); return T ? T->getConcreteValue() : nullptr; } const llvm::APSInt *RangeConstraintManager::getSymMinVal(ProgramStateRef St, SymbolRef Sym) const { const RangeSet *T = getConstraint(St, Sym); if (!T || T->isEmpty()) return nullptr; return &T->getMinValue(); } const llvm::APSInt *RangeConstraintManager::getSymMaxVal(ProgramStateRef St, SymbolRef Sym) const { const RangeSet *T = getConstraint(St, Sym); if (!T || T->isEmpty()) return nullptr; return &T->getMaxValue(); } //===----------------------------------------------------------------------===// // Remove dead symbols from existing constraints //===----------------------------------------------------------------------===// /// Scan all symbols referenced by the constraints. If the symbol is not alive /// as marked in LSymbols, mark it as dead in DSymbols. ProgramStateRef RangeConstraintManager::removeDeadBindings(ProgramStateRef State, SymbolReaper &SymReaper) { ClassMembersTy ClassMembersMap = State->get(); ClassMembersTy NewClassMembersMap = ClassMembersMap; ClassMembersTy::Factory &EMFactory = State->get_context(); SymbolSet::Factory &SetFactory = State->get_context(); ConstraintRangeTy Constraints = State->get(); ConstraintRangeTy NewConstraints = Constraints; ConstraintRangeTy::Factory &ConstraintFactory = State->get_context(); ClassMapTy Map = State->get(); ClassMapTy NewMap = Map; ClassMapTy::Factory &ClassFactory = State->get_context(); DisequalityMapTy Disequalities = State->get(); DisequalityMapTy::Factory &DisequalityFactory = State->get_context(); ClassSet::Factory &ClassSetFactory = State->get_context(); bool ClassMapChanged = false; bool MembersMapChanged = false; bool ConstraintMapChanged = false; bool DisequalitiesChanged = false; auto removeDeadClass = [&](EquivalenceClass Class) { // Remove associated constraint ranges. Constraints = ConstraintFactory.remove(Constraints, Class); ConstraintMapChanged = true; // Update disequality information to not hold any information on the // removed class. ClassSet DisequalClasses = Class.getDisequalClasses(Disequalities, ClassSetFactory); if (!DisequalClasses.isEmpty()) { for (EquivalenceClass DisequalClass : DisequalClasses) { ClassSet DisequalToDisequalSet = DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory); // DisequalToDisequalSet is guaranteed to be non-empty for consistent // disequality info. assert(!DisequalToDisequalSet.isEmpty()); ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class); // No need in keeping an empty set. if (NewSet.isEmpty()) { Disequalities = DisequalityFactory.remove(Disequalities, DisequalClass); } else { Disequalities = DisequalityFactory.add(Disequalities, DisequalClass, NewSet); } } // Remove the data for the class Disequalities = DisequalityFactory.remove(Disequalities, Class); DisequalitiesChanged = true; } }; // 1. Let's see if dead symbols are trivial and have associated constraints. for (std::pair ClassConstraintPair : Constraints) { EquivalenceClass Class = ClassConstraintPair.first; if (Class.isTriviallyDead(State, SymReaper)) { // If this class is trivial, we can remove its constraints right away. removeDeadClass(Class); } } // 2. We don't need to track classes for dead symbols. for (std::pair SymbolClassPair : Map) { SymbolRef Sym = SymbolClassPair.first; if (SymReaper.isDead(Sym)) { ClassMapChanged = true; NewMap = ClassFactory.remove(NewMap, Sym); } } // 3. Remove dead members from classes and remove dead non-trivial classes // and their constraints. for (std::pair ClassMembersPair : ClassMembersMap) { EquivalenceClass Class = ClassMembersPair.first; SymbolSet LiveMembers = ClassMembersPair.second; bool MembersChanged = false; for (SymbolRef Member : ClassMembersPair.second) { if (SymReaper.isDead(Member)) { MembersChanged = true; LiveMembers = SetFactory.remove(LiveMembers, Member); } } // Check if the class changed. if (!MembersChanged) continue; MembersMapChanged = true; if (LiveMembers.isEmpty()) { // The class is dead now, we need to wipe it out of the members map... NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class); // ...and remove all of its constraints. removeDeadClass(Class); } else { // We need to change the members associated with the class. NewClassMembersMap = EMFactory.add(NewClassMembersMap, Class, LiveMembers); } } // 4. Update the state with new maps. // // Here we try to be humble and update a map only if it really changed. if (ClassMapChanged) State = State->set(NewMap); if (MembersMapChanged) State = State->set(NewClassMembersMap); if (ConstraintMapChanged) State = State->set(Constraints); if (DisequalitiesChanged) State = State->set(Disequalities); assert(EquivalenceClass::isClassDataConsistent(State)); return State; } RangeSet RangeConstraintManager::getRange(ProgramStateRef State, SymbolRef Sym) { return SymbolicRangeInferrer::inferRange(F, State, Sym); } ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State, SymbolRef Sym, RangeSet Range) { return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range); } //===------------------------------------------------------------------------=== // assumeSymX methods: protected interface for RangeConstraintManager. //===------------------------------------------------------------------------===/ // The syntax for ranges below is mathematical, using [x, y] for closed ranges // and (x, y) for open ranges. These ranges are modular, corresponding with // a common treatment of C integer overflow. This means that these methods // do not have to worry about overflow; RangeSet::Intersect can handle such a // "wraparound" range. // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, // UINT_MAX, 0, 1, and 2. ProgramStateRef RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { // Before we do any real work, see if the value can even show up. APSIntType AdjustmentType(Adjustment); if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) return St; llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment; RangeSet New = getRange(St, Sym); New = F.deletePoint(New, Point); return setRange(St, Sym, New); } ProgramStateRef RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { // Before we do any real work, see if the value can even show up. APSIntType AdjustmentType(Adjustment); if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) return nullptr; // [Int-Adjustment, Int-Adjustment] llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; RangeSet New = getRange(St, Sym); New = F.intersect(New, AdjInt); return setRange(St, Sym, New); } RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { // Before we do any real work, see if the value can even show up. APSIntType AdjustmentType(Adjustment); switch (AdjustmentType.testInRange(Int, true)) { case APSIntType::RTR_Below: return F.getEmptySet(); case APSIntType::RTR_Within: break; case APSIntType::RTR_Above: return getRange(St, Sym); } // Special case for Int == Min. This is always false. llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); llvm::APSInt Min = AdjustmentType.getMinValue(); if (ComparisonVal == Min) return F.getEmptySet(); llvm::APSInt Lower = Min - Adjustment; llvm::APSInt Upper = ComparisonVal - Adjustment; --Upper; RangeSet Result = getRange(St, Sym); return F.intersect(Result, Lower, Upper); } ProgramStateRef RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); return setRange(St, Sym, New); } RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { // Before we do any real work, see if the value can even show up. APSIntType AdjustmentType(Adjustment); switch (AdjustmentType.testInRange(Int, true)) { case APSIntType::RTR_Below: return getRange(St, Sym); case APSIntType::RTR_Within: break; case APSIntType::RTR_Above: return F.getEmptySet(); } // Special case for Int == Max. This is always false. llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); llvm::APSInt Max = AdjustmentType.getMaxValue(); if (ComparisonVal == Max) return F.getEmptySet(); llvm::APSInt Lower = ComparisonVal - Adjustment; llvm::APSInt Upper = Max - Adjustment; ++Lower; RangeSet SymRange = getRange(St, Sym); return F.intersect(SymRange, Lower, Upper); } ProgramStateRef RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); return setRange(St, Sym, New); } RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { // Before we do any real work, see if the value can even show up. APSIntType AdjustmentType(Adjustment); switch (AdjustmentType.testInRange(Int, true)) { case APSIntType::RTR_Below: return getRange(St, Sym); case APSIntType::RTR_Within: break; case APSIntType::RTR_Above: return F.getEmptySet(); } // Special case for Int == Min. This is always feasible. llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); llvm::APSInt Min = AdjustmentType.getMinValue(); if (ComparisonVal == Min) return getRange(St, Sym); llvm::APSInt Max = AdjustmentType.getMaxValue(); llvm::APSInt Lower = ComparisonVal - Adjustment; llvm::APSInt Upper = Max - Adjustment; RangeSet SymRange = getRange(St, Sym); return F.intersect(SymRange, Lower, Upper); } ProgramStateRef RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { RangeSet New = getSymGERange(St, Sym, Int, Adjustment); return setRange(St, Sym, New); } RangeSet RangeConstraintManager::getSymLERange(llvm::function_ref RS, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { // Before we do any real work, see if the value can even show up. APSIntType AdjustmentType(Adjustment); switch (AdjustmentType.testInRange(Int, true)) { case APSIntType::RTR_Below: return F.getEmptySet(); case APSIntType::RTR_Within: break; case APSIntType::RTR_Above: return RS(); } // Special case for Int == Max. This is always feasible. llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); llvm::APSInt Max = AdjustmentType.getMaxValue(); if (ComparisonVal == Max) return RS(); llvm::APSInt Min = AdjustmentType.getMinValue(); llvm::APSInt Lower = Min - Adjustment; llvm::APSInt Upper = ComparisonVal - Adjustment; RangeSet Default = RS(); return F.intersect(Default, Lower, Upper); } RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment); } ProgramStateRef RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, const llvm::APSInt &Int, const llvm::APSInt &Adjustment) { RangeSet New = getSymLERange(St, Sym, Int, Adjustment); return setRange(St, Sym, New); } ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment) { RangeSet New = getSymGERange(State, Sym, From, Adjustment); if (New.isEmpty()) return nullptr; RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment); return setRange(State, Sym, Out); } ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment) { RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); RangeSet New(F.add(RangeLT, RangeGT)); return setRange(State, Sym, New); } //===----------------------------------------------------------------------===// // Pretty-printing. //===----------------------------------------------------------------------===// void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State, const char *NL, unsigned int Space, bool IsDot) const { printConstraints(Out, State, NL, Space, IsDot); printEquivalenceClasses(Out, State, NL, Space, IsDot); printDisequalities(Out, State, NL, Space, IsDot); } void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State, SymbolRef Sym) { const RangeSet RS = getRange(State, Sym); Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:"); RS.dump(Out); } static std::string toString(const SymbolRef &Sym) { std::string S; llvm::raw_string_ostream O(S); Sym->dumpToStream(O); return O.str(); } void RangeConstraintManager::printConstraints(raw_ostream &Out, ProgramStateRef State, const char *NL, unsigned int Space, bool IsDot) const { ConstraintRangeTy Constraints = State->get(); Indent(Out, Space, IsDot) << "\"constraints\": "; if (Constraints.isEmpty()) { Out << "null," << NL; return; } std::map OrderedConstraints; for (std::pair P : Constraints) { SymbolSet ClassMembers = P.first.getClassMembers(State); for (const SymbolRef &ClassMember : ClassMembers) { bool insertion_took_place; std::tie(std::ignore, insertion_took_place) = OrderedConstraints.insert({toString(ClassMember), P.second}); assert(insertion_took_place && "two symbols should not have the same dump"); } } ++Space; Out << '[' << NL; bool First = true; for (std::pair P : OrderedConstraints) { if (First) { First = false; } else { Out << ','; Out << NL; } Indent(Out, Space, IsDot) << "{ \"symbol\": \"" << P.first << "\", \"range\": \""; P.second.dump(Out); Out << "\" }"; } Out << NL; --Space; Indent(Out, Space, IsDot) << "]," << NL; } static std::string toString(ProgramStateRef State, EquivalenceClass Class) { SymbolSet ClassMembers = Class.getClassMembers(State); llvm::SmallVector ClassMembersSorted(ClassMembers.begin(), ClassMembers.end()); llvm::sort(ClassMembersSorted, [](const SymbolRef &LHS, const SymbolRef &RHS) { return toString(LHS) < toString(RHS); }); bool FirstMember = true; std::string Str; llvm::raw_string_ostream Out(Str); Out << "[ "; for (SymbolRef ClassMember : ClassMembersSorted) { if (FirstMember) FirstMember = false; else Out << ", "; Out << "\"" << ClassMember << "\""; } Out << " ]"; return Out.str(); } void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, const char *NL, unsigned int Space, bool IsDot) const { ClassMembersTy Members = State->get(); Indent(Out, Space, IsDot) << "\"equivalence_classes\": "; if (Members.isEmpty()) { Out << "null," << NL; return; } std::set MembersStr; for (std::pair ClassToSymbolSet : Members) MembersStr.insert(toString(State, ClassToSymbolSet.first)); ++Space; Out << '[' << NL; bool FirstClass = true; for (const std::string &Str : MembersStr) { if (FirstClass) { FirstClass = false; } else { Out << ','; Out << NL; } Indent(Out, Space, IsDot); Out << Str; } Out << NL; --Space; Indent(Out, Space, IsDot) << "]," << NL; } void RangeConstraintManager::printDisequalities(raw_ostream &Out, ProgramStateRef State, const char *NL, unsigned int Space, bool IsDot) const { DisequalityMapTy Disequalities = State->get(); Indent(Out, Space, IsDot) << "\"disequality_info\": "; if (Disequalities.isEmpty()) { Out << "null," << NL; return; } // Transform the disequality info to an ordered map of // [string -> (ordered set of strings)] using EqClassesStrTy = std::set; using DisequalityInfoStrTy = std::map; DisequalityInfoStrTy DisequalityInfoStr; for (std::pair ClassToDisEqSet : Disequalities) { EquivalenceClass Class = ClassToDisEqSet.first; ClassSet DisequalClasses = ClassToDisEqSet.second; EqClassesStrTy MembersStr; for (EquivalenceClass DisEqClass : DisequalClasses) MembersStr.insert(toString(State, DisEqClass)); DisequalityInfoStr.insert({toString(State, Class), MembersStr}); } ++Space; Out << '[' << NL; bool FirstClass = true; for (std::pair ClassToDisEqSet : DisequalityInfoStr) { const std::string &Class = ClassToDisEqSet.first; if (FirstClass) { FirstClass = false; } else { Out << ','; Out << NL; } Indent(Out, Space, IsDot) << "{" << NL; unsigned int DisEqSpace = Space + 1; Indent(Out, DisEqSpace, IsDot) << "\"class\": "; Out << Class; const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second; if (!DisequalClasses.empty()) { Out << "," << NL; Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL; unsigned int DisEqClassSpace = DisEqSpace + 1; Indent(Out, DisEqClassSpace, IsDot); bool FirstDisEqClass = true; for (const std::string &DisEqClass : DisequalClasses) { if (FirstDisEqClass) { FirstDisEqClass = false; } else { Out << ',' << NL; Indent(Out, DisEqClassSpace, IsDot); } Out << DisEqClass; } Out << "]" << NL; } Indent(Out, Space, IsDot) << "}"; } Out << NL; --Space; Indent(Out, Space, IsDot) << "]," << NL; }