//===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines BugReporter, a utility class for generating // PathDiagnostics. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/AST/ASTTypeTraits.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ParentMap.h" #include "clang/AST/ParentMapContext.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/Analysis/PathDiagnostic.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include using namespace clang; using namespace ento; using namespace llvm; #define DEBUG_TYPE "BugReporter" STATISTIC(MaxBugClassSize, "The maximum number of bug reports in the same equivalence class"); STATISTIC(MaxValidBugClassSize, "The maximum number of bug reports in the same equivalence class " "where at least one report is valid (not suppressed)"); BugReporterVisitor::~BugReporterVisitor() = default; void BugReporterContext::anchor() {} //===----------------------------------------------------------------------===// // PathDiagnosticBuilder and its associated routines and helper objects. //===----------------------------------------------------------------------===// namespace { /// A (CallPiece, node assiciated with its CallEnter) pair. using CallWithEntry = std::pair; using CallWithEntryStack = SmallVector; /// Map from each node to the diagnostic pieces visitors emit for them. using VisitorsDiagnosticsTy = llvm::DenseMap>; /// A map from PathDiagnosticPiece to the LocationContext of the inlined /// function call it represents. using LocationContextMap = llvm::DenseMap; /// A helper class that contains everything needed to construct a /// PathDiagnostic object. It does no much more then providing convenient /// getters and some well placed asserts for extra security. class PathDiagnosticConstruct { /// The consumer we're constructing the bug report for. const PathDiagnosticConsumer *Consumer; /// Our current position in the bug path, which is owned by /// PathDiagnosticBuilder. const ExplodedNode *CurrentNode; /// A mapping from parts of the bug path (for example, a function call, which /// would span backwards from a CallExit to a CallEnter with the nodes in /// between them) with the location contexts it is associated with. LocationContextMap LCM; const SourceManager &SM; public: /// We keep stack of calls to functions as we're ascending the bug path. /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use /// that instead? CallWithEntryStack CallStack; /// The bug report we're constructing. For ease of use, this field is kept /// public, though some "shortcut" getters are provided for commonly used /// methods of PathDiagnostic. std::unique_ptr PD; public: PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode, const PathSensitiveBugReport *R); /// \returns the location context associated with the current position in the /// bug path. const LocationContext *getCurrLocationContext() const { assert(CurrentNode && "Already reached the root!"); return CurrentNode->getLocationContext(); } /// Same as getCurrLocationContext (they should always return the same /// location context), but works after reaching the root of the bug path as /// well. const LocationContext *getLocationContextForActivePath() const { return LCM.find(&PD->getActivePath())->getSecond(); } const ExplodedNode *getCurrentNode() const { return CurrentNode; } /// Steps the current node to its predecessor. /// \returns whether we reached the root of the bug path. bool ascendToPrevNode() { CurrentNode = CurrentNode->getFirstPred(); return static_cast(CurrentNode); } const ParentMap &getParentMap() const { return getCurrLocationContext()->getParentMap(); } const SourceManager &getSourceManager() const { return SM; } const Stmt *getParent(const Stmt *S) const { return getParentMap().getParent(S); } void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) { assert(Path && LC); LCM[Path] = LC; } const LocationContext *getLocationContextFor(const PathPieces *Path) const { assert(LCM.count(Path) && "Failed to find the context associated with these pieces!"); return LCM.find(Path)->getSecond(); } bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); } PathPieces &getActivePath() { return PD->getActivePath(); } PathPieces &getMutablePieces() { return PD->getMutablePieces(); } bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); } bool shouldAddControlNotes() const { return Consumer->shouldAddControlNotes(); } bool shouldGenerateDiagnostics() const { return Consumer->shouldGenerateDiagnostics(); } bool supportsLogicalOpControlFlow() const { return Consumer->supportsLogicalOpControlFlow(); } }; /// Contains every contextual information needed for constructing a /// PathDiagnostic object for a given bug report. This class and its fields are /// immutable, and passes a BugReportConstruct object around during the /// construction. class PathDiagnosticBuilder : public BugReporterContext { /// A linear path from the error node to the root. std::unique_ptr BugPath; /// The bug report we're describing. Visitors create their diagnostics with /// them being the last entities being able to modify it (for example, /// changing interestingness here would cause inconsistencies as to how this /// file and visitors construct diagnostics), hence its const. const PathSensitiveBugReport *R; /// The leaf of the bug path. This isn't the same as the bug reports error /// node, which refers to the *original* graph, not the bug path. const ExplodedNode *const ErrorNode; /// The diagnostic pieces visitors emitted, which is expected to be collected /// by the time this builder is constructed. std::unique_ptr VisitorsDiagnostics; public: /// Find a non-invalidated report for a given equivalence class, and returns /// a PathDiagnosticBuilder able to construct bug reports for different /// consumers. Returns std::nullopt if no valid report is found. static std::optional findValidReport(ArrayRef &bugReports, PathSensitiveBugReporter &Reporter); PathDiagnosticBuilder( BugReporterContext BRC, std::unique_ptr BugPath, PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, std::unique_ptr VisitorsDiagnostics); /// This function is responsible for generating diagnostic pieces that are /// *not* provided by bug report visitors. /// These diagnostics may differ depending on the consumer's settings, /// and are therefore constructed separately for each consumer. /// /// There are two path diagnostics generation modes: with adding edges (used /// for plists) and without (used for HTML and text). When edges are added, /// the path is modified to insert artificially generated edges. /// Otherwise, more detailed diagnostics is emitted for block edges, /// explaining the transitions in words. std::unique_ptr generate(const PathDiagnosticConsumer *PDC) const; private: void updateStackPiecesWithMessage(PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const; void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const; void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C, BlockEdge BE) const; PathDiagnosticPieceRef generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S, PathDiagnosticLocation &Start) const; PathDiagnosticPieceRef generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst, PathDiagnosticLocation &Start) const; PathDiagnosticPieceRef generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src, const CFGBlock *DstC) const; PathDiagnosticLocation ExecutionContinues(const PathDiagnosticConstruct &C) const; PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const; const PathSensitiveBugReport *getBugReport() const { return R; } }; } // namespace //===----------------------------------------------------------------------===// // Base implementation of stack hint generators. //===----------------------------------------------------------------------===// StackHintGenerator::~StackHintGenerator() = default; std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){ if (!N) return getMessageForSymbolNotFound(); ProgramPoint P = N->getLocation(); CallExitEnd CExit = P.castAs(); // FIXME: Use CallEvent to abstract this over all calls. const Stmt *CallSite = CExit.getCalleeContext()->getCallSite(); const auto *CE = dyn_cast_or_null(CallSite); if (!CE) return {}; // Check if one of the parameters are set to the interesting symbol. for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) { SVal SV = N->getSVal(ArgExpr); // Check if the variable corresponding to the symbol is passed by value. SymbolRef AS = SV.getAsLocSymbol(); if (AS == Sym) { return getMessageForArg(ArgExpr, Idx); } // Check if the parameter is a pointer to the symbol. if (std::optional Reg = SV.getAs()) { // Do not attempt to dereference void*. if (ArgExpr->getType()->isVoidPointerType()) continue; SVal PSV = N->getState()->getSVal(Reg->getRegion()); SymbolRef AS = PSV.getAsLocSymbol(); if (AS == Sym) { return getMessageForArg(ArgExpr, Idx); } } } // Check if we are returning the interesting symbol. SVal SV = N->getSVal(CE); SymbolRef RetSym = SV.getAsLocSymbol(); if (RetSym == Sym) { return getMessageForReturn(CE); } return getMessageForSymbolNotFound(); } std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE, unsigned ArgIndex) { // Printed parameters start at 1, not 0. ++ArgIndex; return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) + llvm::getOrdinalSuffix(ArgIndex) + " parameter").str(); } //===----------------------------------------------------------------------===// // Diagnostic cleanup. //===----------------------------------------------------------------------===// static PathDiagnosticEventPiece * eventsDescribeSameCondition(PathDiagnosticEventPiece *X, PathDiagnosticEventPiece *Y) { // Prefer diagnostics that come from ConditionBRVisitor over // those that came from TrackConstraintBRVisitor, // unless the one from ConditionBRVisitor is // its generic fallback diagnostic. const void *tagPreferred = ConditionBRVisitor::getTag(); const void *tagLesser = TrackConstraintBRVisitor::getTag(); if (X->getLocation() != Y->getLocation()) return nullptr; if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; return nullptr; } /// An optimization pass over PathPieces that removes redundant diagnostics /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both /// BugReporterVisitors use different methods to generate diagnostics, with /// one capable of emitting diagnostics in some cases but not in others. This /// can lead to redundant diagnostic pieces at the same point in a path. static void removeRedundantMsgs(PathPieces &path) { unsigned N = path.size(); if (N < 2) return; // NOTE: this loop intentionally is not using an iterator. Instead, we // are streaming the path and modifying it in place. This is done by // grabbing the front, processing it, and if we decide to keep it append // it to the end of the path. The entire path is processed in this way. for (unsigned i = 0; i < N; ++i) { auto piece = std::move(path.front()); path.pop_front(); switch (piece->getKind()) { case PathDiagnosticPiece::Call: removeRedundantMsgs(cast(*piece).path); break; case PathDiagnosticPiece::Macro: removeRedundantMsgs(cast(*piece).subPieces); break; case PathDiagnosticPiece::Event: { if (i == N-1) break; if (auto *nextEvent = dyn_cast(path.front().get())) { auto *event = cast(piece.get()); // Check to see if we should keep one of the two pieces. If we // come up with a preference, record which piece to keep, and consume // another piece from the path. if (auto *pieceToKeep = eventsDescribeSameCondition(event, nextEvent)) { piece = std::move(pieceToKeep == event ? piece : path.front()); path.pop_front(); ++i; } } break; } case PathDiagnosticPiece::ControlFlow: case PathDiagnosticPiece::Note: case PathDiagnosticPiece::PopUp: break; } path.push_back(std::move(piece)); } } /// Recursively scan through a path and prune out calls and macros pieces /// that aren't needed. Return true if afterwards the path contains /// "interesting stuff" which means it shouldn't be pruned from the parent path. static bool removeUnneededCalls(const PathDiagnosticConstruct &C, PathPieces &pieces, const PathSensitiveBugReport *R, bool IsInteresting = false) { bool containsSomethingInteresting = IsInteresting; const unsigned N = pieces.size(); for (unsigned i = 0 ; i < N ; ++i) { // Remove the front piece from the path. If it is still something we // want to keep once we are done, we will push it back on the end. auto piece = std::move(pieces.front()); pieces.pop_front(); switch (piece->getKind()) { case PathDiagnosticPiece::Call: { auto &call = cast(*piece); // Check if the location context is interesting. if (!removeUnneededCalls( C, call.path, R, R->isInteresting(C.getLocationContextFor(&call.path)))) continue; containsSomethingInteresting = true; break; } case PathDiagnosticPiece::Macro: { auto ¯o = cast(*piece); if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting)) continue; containsSomethingInteresting = true; break; } case PathDiagnosticPiece::Event: { auto &event = cast(*piece); // We never throw away an event, but we do throw it away wholesale // as part of a path if we throw the entire path away. containsSomethingInteresting |= !event.isPrunable(); break; } case PathDiagnosticPiece::ControlFlow: case PathDiagnosticPiece::Note: case PathDiagnosticPiece::PopUp: break; } pieces.push_back(std::move(piece)); } return containsSomethingInteresting; } /// Same logic as above to remove extra pieces. static void removePopUpNotes(PathPieces &Path) { for (unsigned int i = 0; i < Path.size(); ++i) { auto Piece = std::move(Path.front()); Path.pop_front(); if (!isa(*Piece)) Path.push_back(std::move(Piece)); } } /// Returns true if the given decl has been implicitly given a body, either by /// the analyzer or by the compiler proper. static bool hasImplicitBody(const Decl *D) { assert(D); return D->isImplicit() || !D->hasBody(); } /// Recursively scan through a path and make sure that all call pieces have /// valid locations. static void adjustCallLocations(PathPieces &Pieces, PathDiagnosticLocation *LastCallLocation = nullptr) { for (const auto &I : Pieces) { auto *Call = dyn_cast(I.get()); if (!Call) continue; if (LastCallLocation) { bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) Call->callEnter = *LastCallLocation; if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) Call->callReturn = *LastCallLocation; } // Recursively clean out the subclass. Keep this call around if // it contains any informative diagnostics. PathDiagnosticLocation *ThisCallLocation; if (Call->callEnterWithin.asLocation().isValid() && !hasImplicitBody(Call->getCallee())) ThisCallLocation = &Call->callEnterWithin; else ThisCallLocation = &Call->callEnter; assert(ThisCallLocation && "Outermost call has an invalid location"); adjustCallLocations(Call->path, ThisCallLocation); } } /// Remove edges in and out of C++ default initializer expressions. These are /// for fields that have in-class initializers, as opposed to being initialized /// explicitly in a constructor or braced list. static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { if (auto *C = dyn_cast(I->get())) removeEdgesToDefaultInitializers(C->path); if (auto *M = dyn_cast(I->get())) removeEdgesToDefaultInitializers(M->subPieces); if (auto *CF = dyn_cast(I->get())) { const Stmt *Start = CF->getStartLocation().asStmt(); const Stmt *End = CF->getEndLocation().asStmt(); if (isa_and_nonnull(Start)) { I = Pieces.erase(I); continue; } else if (isa_and_nonnull(End)) { PathPieces::iterator Next = std::next(I); if (Next != E) { if (auto *NextCF = dyn_cast(Next->get())) { NextCF->setStartLocation(CF->getStartLocation()); } } I = Pieces.erase(I); continue; } } I++; } } /// Remove all pieces with invalid locations as these cannot be serialized. /// We might have pieces with invalid locations as a result of inlining Body /// Farm generated functions. static void removePiecesWithInvalidLocations(PathPieces &Pieces) { for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { if (auto *C = dyn_cast(I->get())) removePiecesWithInvalidLocations(C->path); if (auto *M = dyn_cast(I->get())) removePiecesWithInvalidLocations(M->subPieces); if (!(*I)->getLocation().isValid() || !(*I)->getLocation().asLocation().isValid()) { I = Pieces.erase(I); continue; } I++; } } PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( const PathDiagnosticConstruct &C) const { if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) return PathDiagnosticLocation(S, getSourceManager(), C.getCurrLocationContext()); return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(), getSourceManager()); } PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const { // Slow, but probably doesn't matter. if (os.str().empty()) os << ' '; const PathDiagnosticLocation &Loc = ExecutionContinues(C); if (Loc.asStmt()) os << "Execution continues on line " << getSourceManager().getExpansionLineNumber(Loc.asLocation()) << '.'; else { os << "Execution jumps to the end of the "; const Decl *D = C.getCurrLocationContext()->getDecl(); if (isa(D)) os << "method"; else if (isa(D)) os << "function"; else { assert(isa(D)); os << "anonymous block"; } os << '.'; } return Loc; } static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { if (isa(S) && PM.isConsumedExpr(cast(S))) return PM.getParentIgnoreParens(S); const Stmt *Parent = PM.getParentIgnoreParens(S); if (!Parent) return nullptr; switch (Parent->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::DoStmtClass: case Stmt::WhileStmtClass: case Stmt::ObjCForCollectionStmtClass: case Stmt::CXXForRangeStmtClass: return Parent; default: break; } return nullptr; } static PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC, bool allowNestedContexts = false) { if (!S) return {}; const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager(); while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) { switch (Parent->getStmtClass()) { case Stmt::BinaryOperatorClass: { const auto *B = cast(Parent); if (B->isLogicalOp()) return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); break; } case Stmt::CompoundStmtClass: case Stmt::StmtExprClass: return PathDiagnosticLocation(S, SMgr, LC); case Stmt::ChooseExprClass: // Similar to '?' if we are referring to condition, just have the edge // point to the entire choose expression. if (allowNestedContexts || cast(Parent)->getCond() == S) return PathDiagnosticLocation(Parent, SMgr, LC); else return PathDiagnosticLocation(S, SMgr, LC); case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: // For '?', if we are referring to condition, just have the edge point // to the entire '?' expression. if (allowNestedContexts || cast(Parent)->getCond() == S) return PathDiagnosticLocation(Parent, SMgr, LC); else return PathDiagnosticLocation(S, SMgr, LC); case Stmt::CXXForRangeStmtClass: if (cast(Parent)->getBody() == S) return PathDiagnosticLocation(S, SMgr, LC); break; case Stmt::DoStmtClass: return PathDiagnosticLocation(S, SMgr, LC); case Stmt::ForStmtClass: if (cast(Parent)->getBody() == S) return PathDiagnosticLocation(S, SMgr, LC); break; case Stmt::IfStmtClass: if (cast(Parent)->getCond() != S) return PathDiagnosticLocation(S, SMgr, LC); break; case Stmt::ObjCForCollectionStmtClass: if (cast(Parent)->getBody() == S) return PathDiagnosticLocation(S, SMgr, LC); break; case Stmt::WhileStmtClass: if (cast(Parent)->getCond() != S) return PathDiagnosticLocation(S, SMgr, LC); break; default: break; } S = Parent; } assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); return PathDiagnosticLocation(S, SMgr, LC); } //===----------------------------------------------------------------------===// // "Minimal" path diagnostic generation algorithm. //===----------------------------------------------------------------------===// /// If the piece contains a special message, add it to all the call pieces on /// the active stack. For example, my_malloc allocated memory, so MallocChecker /// will construct an event at the call to malloc(), and add a stack hint that /// an allocated memory was returned. We'll use this hint to construct a message /// when returning from the call to my_malloc /// /// void *my_malloc() { return malloc(sizeof(int)); } /// void fishy() { /// void *ptr = my_malloc(); // returned allocated memory /// } // leak void PathDiagnosticBuilder::updateStackPiecesWithMessage( PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const { if (R->hasCallStackHint(P)) for (const auto &I : CallStack) { PathDiagnosticCallPiece *CP = I.first; const ExplodedNode *N = I.second; std::string stackMsg = R->getCallStackMessage(P, N); // The last message on the path to final bug is the most important // one. Since we traverse the path backwards, do not add the message // if one has been previously added. if (!CP->hasCallStackMessage()) CP->setCallStackMessage(stackMsg); } } static void CompactMacroExpandedPieces(PathPieces &path, const SourceManager& SM); PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP( const PathDiagnosticConstruct &C, const CFGBlock *Dst, PathDiagnosticLocation &Start) const { const SourceManager &SM = getSourceManager(); // Figure out what case arm we took. std::string sbuf; llvm::raw_string_ostream os(sbuf); PathDiagnosticLocation End; if (const Stmt *S = Dst->getLabel()) { End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext()); switch (S->getStmtClass()) { default: os << "No cases match in the switch statement. " "Control jumps to line " << End.asLocation().getExpansionLineNumber(); break; case Stmt::DefaultStmtClass: os << "Control jumps to the 'default' case at line " << End.asLocation().getExpansionLineNumber(); break; case Stmt::CaseStmtClass: { os << "Control jumps to 'case "; const auto *Case = cast(S); const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts(); // Determine if it is an enum. bool GetRawInt = true; if (const auto *DR = dyn_cast(LHS)) { // FIXME: Maybe this should be an assertion. Are there cases // were it is not an EnumConstantDecl? const auto *D = dyn_cast(DR->getDecl()); if (D) { GetRawInt = false; os << *D; } } if (GetRawInt) os << LHS->EvaluateKnownConstInt(getASTContext()); os << ":' at line " << End.asLocation().getExpansionLineNumber(); break; } } } else { os << "'Default' branch taken. "; End = ExecutionContinues(os, C); } return std::make_shared(Start, End, os.str()); } PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP( const PathDiagnosticConstruct &C, const Stmt *S, PathDiagnosticLocation &Start) const { std::string sbuf; llvm::raw_string_ostream os(sbuf); const PathDiagnosticLocation &End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); return std::make_shared(Start, End, os.str()); } PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP( const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src, const CFGBlock *Dst) const { const SourceManager &SM = getSourceManager(); const auto *B = cast(T); std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Left side of '"; PathDiagnosticLocation Start, End; if (B->getOpcode() == BO_LAnd) { os << "&&" << "' is "; if (*(Src->succ_begin() + 1) == Dst) { os << "false"; End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); Start = PathDiagnosticLocation::createOperatorLoc(B, SM); } else { os << "true"; Start = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); End = ExecutionContinues(C); } } else { assert(B->getOpcode() == BO_LOr); os << "||" << "' is "; if (*(Src->succ_begin() + 1) == Dst) { os << "false"; Start = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); End = ExecutionContinues(C); } else { os << "true"; End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); Start = PathDiagnosticLocation::createOperatorLoc(B, SM); } } return std::make_shared(Start, End, os.str()); } void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge( PathDiagnosticConstruct &C, BlockEdge BE) const { const SourceManager &SM = getSourceManager(); const LocationContext *LC = C.getCurrLocationContext(); const CFGBlock *Src = BE.getSrc(); const CFGBlock *Dst = BE.getDst(); const Stmt *T = Src->getTerminatorStmt(); if (!T) return; auto Start = PathDiagnosticLocation::createBegin(T, SM, LC); switch (T->getStmtClass()) { default: break; case Stmt::GotoStmtClass: case Stmt::IndirectGotoStmtClass: { if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start)); break; } case Stmt::SwitchStmtClass: { C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start)); break; } case Stmt::BreakStmtClass: case Stmt::ContinueStmtClass: { std::string sbuf; llvm::raw_string_ostream os(sbuf); PathDiagnosticLocation End = ExecutionContinues(os, C); C.getActivePath().push_front( std::make_shared(Start, End, os.str())); break; } // Determine control-flow for ternary '?'. case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "'?' condition is "; if (*(Src->succ_begin() + 1) == Dst) os << "false"; else os << "true"; PathDiagnosticLocation End = ExecutionContinues(C); if (const Stmt *S = End.asStmt()) End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); C.getActivePath().push_front( std::make_shared(Start, End, os.str())); break; } // Determine control-flow for short-circuited '&&' and '||'. case Stmt::BinaryOperatorClass: { if (!C.supportsLogicalOpControlFlow()) break; C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst)); break; } case Stmt::DoStmtClass: if (*(Src->succ_begin()) == Dst) { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Loop condition is true. "; PathDiagnosticLocation End = ExecutionContinues(os, C); if (const Stmt *S = End.asStmt()) End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); C.getActivePath().push_front( std::make_shared(Start, End, os.str())); } else { PathDiagnosticLocation End = ExecutionContinues(C); if (const Stmt *S = End.asStmt()) End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); C.getActivePath().push_front( std::make_shared( Start, End, "Loop condition is false. Exiting loop")); } break; case Stmt::WhileStmtClass: case Stmt::ForStmtClass: if (*(Src->succ_begin() + 1) == Dst) { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Loop condition is false. "; PathDiagnosticLocation End = ExecutionContinues(os, C); if (const Stmt *S = End.asStmt()) End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); C.getActivePath().push_front( std::make_shared(Start, End, os.str())); } else { PathDiagnosticLocation End = ExecutionContinues(C); if (const Stmt *S = End.asStmt()) End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); C.getActivePath().push_front( std::make_shared( Start, End, "Loop condition is true. Entering loop body")); } break; case Stmt::IfStmtClass: { PathDiagnosticLocation End = ExecutionContinues(C); if (const Stmt *S = End.asStmt()) End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); if (*(Src->succ_begin() + 1) == Dst) C.getActivePath().push_front( std::make_shared( Start, End, "Taking false branch")); else C.getActivePath().push_front( std::make_shared( Start, End, "Taking true branch")); break; } } } //===----------------------------------------------------------------------===// // Functions for determining if a loop was executed 0 times. //===----------------------------------------------------------------------===// static bool isLoop(const Stmt *Term) { switch (Term->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::WhileStmtClass: case Stmt::ObjCForCollectionStmtClass: case Stmt::CXXForRangeStmtClass: return true; default: // Note that we intentionally do not include do..while here. return false; } } static bool isJumpToFalseBranch(const BlockEdge *BE) { const CFGBlock *Src = BE->getSrc(); assert(Src->succ_size() == 2); return (*(Src->succ_begin()+1) == BE->getDst()); } static bool isContainedByStmt(const ParentMap &PM, const Stmt *S, const Stmt *SubS) { while (SubS) { if (SubS == S) return true; SubS = PM.getParent(SubS); } return false; } static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term, const ExplodedNode *N) { while (N) { std::optional SP = N->getLocation().getAs(); if (SP) { const Stmt *S = SP->getStmt(); if (!isContainedByStmt(PM, Term, S)) return S; } N = N->getFirstPred(); } return nullptr; } static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) { const Stmt *LoopBody = nullptr; switch (Term->getStmtClass()) { case Stmt::CXXForRangeStmtClass: { const auto *FR = cast(Term); if (isContainedByStmt(PM, FR->getInc(), S)) return true; if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) return true; LoopBody = FR->getBody(); break; } case Stmt::ForStmtClass: { const auto *FS = cast(Term); if (isContainedByStmt(PM, FS->getInc(), S)) return true; LoopBody = FS->getBody(); break; } case Stmt::ObjCForCollectionStmtClass: { const auto *FC = cast(Term); LoopBody = FC->getBody(); break; } case Stmt::WhileStmtClass: LoopBody = cast(Term)->getBody(); break; default: return false; } return isContainedByStmt(PM, LoopBody, S); } /// Adds a sanitized control-flow diagnostic edge to a path. static void addEdgeToPath(PathPieces &path, PathDiagnosticLocation &PrevLoc, PathDiagnosticLocation NewLoc) { if (!NewLoc.isValid()) return; SourceLocation NewLocL = NewLoc.asLocation(); if (NewLocL.isInvalid()) return; if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { PrevLoc = NewLoc; return; } // Ignore self-edges, which occur when there are multiple nodes at the same // statement. if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) return; path.push_front( std::make_shared(NewLoc, PrevLoc)); PrevLoc = NewLoc; } /// A customized wrapper for CFGBlock::getTerminatorCondition() /// which returns the element for ObjCForCollectionStmts. static const Stmt *getTerminatorCondition(const CFGBlock *B) { const Stmt *S = B->getTerminatorCondition(); if (const auto *FS = dyn_cast_or_null(S)) return FS->getElement(); return S; } constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body"; constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times"; constexpr llvm::StringLiteral StrLoopRangeEmpty = "Loop body skipped when range is empty"; constexpr llvm::StringLiteral StrLoopCollectionEmpty = "Loop body skipped when collection is empty"; static std::unique_ptr findExecutedLines(const SourceManager &SM, const ExplodedNode *N); void PathDiagnosticBuilder::generatePathDiagnosticsForNode( PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const { ProgramPoint P = C.getCurrentNode()->getLocation(); const SourceManager &SM = getSourceManager(); // Have we encountered an entrance to a call? It may be // the case that we have not encountered a matching // call exit before this point. This means that the path // terminated within the call itself. if (auto CE = P.getAs()) { if (C.shouldAddPathEdges()) { // Add an edge to the start of the function. const StackFrameContext *CalleeLC = CE->getCalleeContext(); const Decl *D = CalleeLC->getDecl(); // Add the edge only when the callee has body. We jump to the beginning // of the *declaration*, however we expect it to be followed by the // body. This isn't the case for autosynthesized property accessors in // Objective-C. No need for a similar extra check for CallExit points // because the exit edge comes from a statement (i.e. return), // not from declaration. if (D->hasBody()) addEdgeToPath(C.getActivePath(), PrevLoc, PathDiagnosticLocation::createBegin(D, SM)); } // Did we visit an entire call? bool VisitedEntireCall = C.PD->isWithinCall(); C.PD->popActivePath(); PathDiagnosticCallPiece *Call; if (VisitedEntireCall) { Call = cast(C.getActivePath().front().get()); } else { // The path terminated within a nested location context, create a new // call piece to encapsulate the rest of the path pieces. const Decl *Caller = CE->getLocationContext()->getDecl(); Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller); assert(C.getActivePath().size() == 1 && C.getActivePath().front().get() == Call); // Since we just transferred the path over to the call piece, reset the // mapping of the active path to the current location context. assert(C.isInLocCtxMap(&C.getActivePath()) && "When we ascend to a previously unvisited call, the active path's " "address shouldn't change, but rather should be compacted into " "a single CallEvent!"); C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext()); // Record the location context mapping for the path within the call. assert(!C.isInLocCtxMap(&Call->path) && "When we ascend to a previously unvisited call, this must be the " "first time we encounter the caller context!"); C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); } Call->setCallee(*CE, SM); // Update the previous location in the active path. PrevLoc = Call->getLocation(); if (!C.CallStack.empty()) { assert(C.CallStack.back().first == Call); C.CallStack.pop_back(); } return; } assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() && "The current position in the bug path is out of sync with the " "location context associated with the active path!"); // Have we encountered an exit from a function call? if (std::optional CE = P.getAs()) { // We are descending into a call (backwards). Construct // a new call piece to contain the path pieces for that call. auto Call = PathDiagnosticCallPiece::construct(*CE, SM); // Record the mapping from call piece to LocationContext. assert(!C.isInLocCtxMap(&Call->path) && "We just entered a call, this must've been the first time we " "encounter its context!"); C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); if (C.shouldAddPathEdges()) { // Add the edge to the return site. addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn); PrevLoc.invalidate(); } auto *P = Call.get(); C.getActivePath().push_front(std::move(Call)); // Make the contents of the call the active path for now. C.PD->pushActivePath(&P->path); C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode())); return; } if (auto PS = P.getAs()) { if (!C.shouldAddPathEdges()) return; // Add an edge. If this is an ObjCForCollectionStmt do // not add an edge here as it appears in the CFG both // as a terminator and as a terminator condition. if (!isa(PS->getStmt())) { PathDiagnosticLocation L = PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext()); addEdgeToPath(C.getActivePath(), PrevLoc, L); } } else if (auto BE = P.getAs()) { if (C.shouldAddControlNotes()) { generateMinimalDiagForBlockEdge(C, *BE); } if (!C.shouldAddPathEdges()) { return; } // Are we jumping to the head of a loop? Add a special diagnostic. if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext()); const Stmt *Body = nullptr; if (const auto *FS = dyn_cast(Loop)) Body = FS->getBody(); else if (const auto *WS = dyn_cast(Loop)) Body = WS->getBody(); else if (const auto *OFS = dyn_cast(Loop)) { Body = OFS->getBody(); } else if (const auto *FRS = dyn_cast(Loop)) { Body = FRS->getBody(); } // do-while statements are explicitly excluded here auto p = std::make_shared( L, "Looping back to the head of the loop"); p->setPrunable(true); addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation()); // We might've added a very similar control node already if (!C.shouldAddControlNotes()) { C.getActivePath().push_front(std::move(p)); } if (const auto *CS = dyn_cast_or_null(Body)) { addEdgeToPath(C.getActivePath(), PrevLoc, PathDiagnosticLocation::createEndBrace(CS, SM)); } } const CFGBlock *BSrc = BE->getSrc(); const ParentMap &PM = C.getParentMap(); if (const Stmt *Term = BSrc->getTerminatorStmt()) { // Are we jumping past the loop body without ever executing the // loop (because the condition was false)? if (isLoop(Term)) { const Stmt *TermCond = getTerminatorCondition(BSrc); bool IsInLoopBody = isInLoopBody( PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term); StringRef str; if (isJumpToFalseBranch(&*BE)) { if (!IsInLoopBody) { if (isa(Term)) { str = StrLoopCollectionEmpty; } else if (isa(Term)) { str = StrLoopRangeEmpty; } else { str = StrLoopBodyZero; } } } else { str = StrEnteringLoop; } if (!str.empty()) { PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, C.getCurrLocationContext()); auto PE = std::make_shared(L, str); PE->setPrunable(true); addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation()); // We might've added a very similar control node already if (!C.shouldAddControlNotes()) { C.getActivePath().push_front(std::move(PE)); } } } else if (isa(Term)) { PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext()); addEdgeToPath(C.getActivePath(), PrevLoc, L); } } } } static std::unique_ptr generateDiagnosticForBasicReport(const BasicBugReport *R) { const BugType &BT = R->getBugType(); return std::make_unique( BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), R->getDescription(), R->getShortDescription(/*UseFallback=*/false), BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), std::make_unique()); } static std::unique_ptr generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R, const SourceManager &SM) { const BugType &BT = R->getBugType(); return std::make_unique( BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), R->getDescription(), R->getShortDescription(/*UseFallback=*/false), BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), findExecutedLines(SM, R->getErrorNode())); } static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { if (!S) return nullptr; while (true) { S = PM.getParentIgnoreParens(S); if (!S) break; if (isa(S)) continue; break; } return S; } static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { switch (S->getStmtClass()) { case Stmt::BinaryOperatorClass: { const auto *BO = cast(S); if (!BO->isLogicalOp()) return false; return BO->getLHS() == Cond || BO->getRHS() == Cond; } case Stmt::IfStmtClass: return cast(S)->getCond() == Cond; case Stmt::ForStmtClass: return cast(S)->getCond() == Cond; case Stmt::WhileStmtClass: return cast(S)->getCond() == Cond; case Stmt::DoStmtClass: return cast(S)->getCond() == Cond; case Stmt::ChooseExprClass: return cast(S)->getCond() == Cond; case Stmt::IndirectGotoStmtClass: return cast(S)->getTarget() == Cond; case Stmt::SwitchStmtClass: return cast(S)->getCond() == Cond; case Stmt::BinaryConditionalOperatorClass: return cast(S)->getCond() == Cond; case Stmt::ConditionalOperatorClass: { const auto *CO = cast(S); return CO->getCond() == Cond || CO->getLHS() == Cond || CO->getRHS() == Cond; } case Stmt::ObjCForCollectionStmtClass: return cast(S)->getElement() == Cond; case Stmt::CXXForRangeStmtClass: { const auto *FRS = cast(S); return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; } default: return false; } } static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { if (const auto *FS = dyn_cast(FL)) return FS->getInc() == S || FS->getInit() == S; if (const auto *FRS = dyn_cast(FL)) return FRS->getInc() == S || FRS->getRangeStmt() == S || FRS->getLoopVarStmt() || FRS->getRangeInit() == S; return false; } using OptimizedCallsSet = llvm::DenseSet; /// Adds synthetic edges from top-level statements to their subexpressions. /// /// This avoids a "swoosh" effect, where an edge from a top-level statement A /// points to a sub-expression B.1 that's not at the start of B. In these cases, /// we'd like to see an edge from A to B, then another one from B to B.1. static void addContextEdges(PathPieces &pieces, const LocationContext *LC) { const ParentMap &PM = LC->getParentMap(); PathPieces::iterator Prev = pieces.end(); for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; Prev = I, ++I) { auto *Piece = dyn_cast(I->get()); if (!Piece) continue; PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); SmallVector SrcContexts; PathDiagnosticLocation NextSrcContext = SrcLoc; const Stmt *InnerStmt = nullptr; while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { SrcContexts.push_back(NextSrcContext); InnerStmt = NextSrcContext.asStmt(); NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC, /*allowNested=*/true); } // Repeatedly split the edge as necessary. // This is important for nested logical expressions (||, &&, ?:) where we // want to show all the levels of context. while (true) { const Stmt *Dst = Piece->getEndLocation().getStmtOrNull(); // We are looking at an edge. Is the destination within a larger // expression? PathDiagnosticLocation DstContext = getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true); if (!DstContext.isValid() || DstContext.asStmt() == Dst) break; // If the source is in the same context, we're already good. if (llvm::is_contained(SrcContexts, DstContext)) break; // Update the subexpression node to point to the context edge. Piece->setStartLocation(DstContext); // Try to extend the previous edge if it's at the same level as the source // context. if (Prev != E) { auto *PrevPiece = dyn_cast(Prev->get()); if (PrevPiece) { if (const Stmt *PrevSrc = PrevPiece->getStartLocation().getStmtOrNull()) { const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); if (PrevSrcParent == getStmtParent(DstContext.getStmtOrNull(), PM)) { PrevPiece->setEndLocation(DstContext); break; } } } } // Otherwise, split the current edge into a context edge and a // subexpression edge. Note that the context statement may itself have // context. auto P = std::make_shared(SrcLoc, DstContext); Piece = P.get(); I = pieces.insert(I, std::move(P)); } } } /// Move edges from a branch condition to a branch target /// when the condition is simple. /// /// This restructures some of the work of addContextEdges. That function /// creates edges this may destroy, but they work together to create a more /// aesthetically set of edges around branches. After the call to /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from /// the branch to the branch condition, and (3) an edge from the branch /// condition to the branch target. We keep (1), but may wish to remove (2) /// and move the source of (3) to the branch if the branch condition is simple. static void simplifySimpleBranches(PathPieces &pieces) { for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { const auto *PieceI = dyn_cast(I->get()); if (!PieceI) continue; const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); if (!s1Start || !s1End) continue; PathPieces::iterator NextI = I; ++NextI; if (NextI == E) break; PathDiagnosticControlFlowPiece *PieceNextI = nullptr; while (true) { if (NextI == E) break; const auto *EV = dyn_cast(NextI->get()); if (EV) { StringRef S = EV->getString(); if (S == StrEnteringLoop || S == StrLoopBodyZero || S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { ++NextI; continue; } break; } PieceNextI = dyn_cast(NextI->get()); break; } if (!PieceNextI) continue; const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); if (!s2Start || !s2End || s1End != s2Start) continue; // We only perform this transformation for specific branch kinds. // We don't want to do this for do..while, for example. if (!isa(s1Start)) continue; // Is s1End the branch condition? if (!isConditionForTerminator(s1Start, s1End)) continue; // Perform the hoisting by eliminating (2) and changing the start // location of (3). PieceNextI->setStartLocation(PieceI->getStartLocation()); I = pieces.erase(I); } } /// Returns the number of bytes in the given (character-based) SourceRange. /// /// If the locations in the range are not on the same line, returns /// std::nullopt. /// /// Note that this does not do a precise user-visible character or column count. static std::optional getLengthOnSingleLine(const SourceManager &SM, SourceRange Range) { SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), SM.getExpansionRange(Range.getEnd()).getEnd()); FileID FID = SM.getFileID(ExpansionRange.getBegin()); if (FID != SM.getFileID(ExpansionRange.getEnd())) return std::nullopt; std::optional Buffer = SM.getBufferOrNone(FID); if (!Buffer) return std::nullopt; unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); // We're searching the raw bytes of the buffer here, which might include // escaped newlines and such. That's okay; we're trying to decide whether the // SourceRange is covering a large or small amount of space in the user's // editor. if (Snippet.find_first_of("\r\n") != StringRef::npos) return std::nullopt; // This isn't Unicode-aware, but it doesn't need to be. return Snippet.size(); } /// \sa getLengthOnSingleLine(SourceManager, SourceRange) static std::optional getLengthOnSingleLine(const SourceManager &SM, const Stmt *S) { return getLengthOnSingleLine(SM, S->getSourceRange()); } /// Eliminate two-edge cycles created by addContextEdges(). /// /// Once all the context edges are in place, there are plenty of cases where /// there's a single edge from a top-level statement to a subexpression, /// followed by a single path note, and then a reverse edge to get back out to /// the top level. If the statement is simple enough, the subexpression edges /// just add noise and make it harder to understand what's going on. /// /// This function only removes edges in pairs, because removing only one edge /// might leave other edges dangling. /// /// This will not remove edges in more complicated situations: /// - if there is more than one "hop" leading to or from a subexpression. /// - if there is an inlined call between the edges instead of a single event. /// - if the whole statement is large enough that having subexpression arrows /// might be helpful. static void removeContextCycles(PathPieces &Path, const SourceManager &SM) { for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { // Pattern match the current piece and its successor. const auto *PieceI = dyn_cast(I->get()); if (!PieceI) { ++I; continue; } const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); PathPieces::iterator NextI = I; ++NextI; if (NextI == E) break; const auto *PieceNextI = dyn_cast(NextI->get()); if (!PieceNextI) { if (isa(NextI->get())) { ++NextI; if (NextI == E) break; PieceNextI = dyn_cast(NextI->get()); } if (!PieceNextI) { ++I; continue; } } const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { const size_t MAX_SHORT_LINE_LENGTH = 80; std::optional s1Length = getLengthOnSingleLine(SM, s1Start); if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { std::optional s2Length = getLengthOnSingleLine(SM, s2Start); if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { Path.erase(I); I = Path.erase(NextI); continue; } } } ++I; } } /// Return true if X is contained by Y. static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) { while (X) { if (X == Y) return true; X = PM.getParent(X); } return false; } // Remove short edges on the same line less than 3 columns in difference. static void removePunyEdges(PathPieces &path, const SourceManager &SM, const ParentMap &PM) { bool erased = false; for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; erased ? I : ++I) { erased = false; const auto *PieceI = dyn_cast(I->get()); if (!PieceI) continue; const Stmt *start = PieceI->getStartLocation().getStmtOrNull(); const Stmt *end = PieceI->getEndLocation().getStmtOrNull(); if (!start || !end) continue; const Stmt *endParent = PM.getParent(end); if (!endParent) continue; if (isConditionForTerminator(end, endParent)) continue; SourceLocation FirstLoc = start->getBeginLoc(); SourceLocation SecondLoc = end->getBeginLoc(); if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) continue; if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) std::swap(SecondLoc, FirstLoc); SourceRange EdgeRange(FirstLoc, SecondLoc); std::optional ByteWidth = getLengthOnSingleLine(SM, EdgeRange); // If the statements are on different lines, continue. if (!ByteWidth) continue; const size_t MAX_PUNY_EDGE_LENGTH = 2; if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { // FIXME: There are enough /bytes/ between the endpoints of the edge, but // there might not be enough /columns/. A proper user-visible column count // is probably too expensive, though. I = path.erase(I); erased = true; continue; } } } static void removeIdenticalEvents(PathPieces &path) { for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { const auto *PieceI = dyn_cast(I->get()); if (!PieceI) continue; PathPieces::iterator NextI = I; ++NextI; if (NextI == E) return; const auto *PieceNextI = dyn_cast(NextI->get()); if (!PieceNextI) continue; // Erase the second piece if it has the same exact message text. if (PieceI->getString() == PieceNextI->getString()) { path.erase(NextI); } } } static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path, OptimizedCallsSet &OCS) { bool hasChanges = false; const LocationContext *LC = C.getLocationContextFor(&path); assert(LC); const ParentMap &PM = LC->getParentMap(); const SourceManager &SM = C.getSourceManager(); for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { // Optimize subpaths. if (auto *CallI = dyn_cast(I->get())) { // Record the fact that a call has been optimized so we only do the // effort once. if (!OCS.count(CallI)) { while (optimizeEdges(C, CallI->path, OCS)) { } OCS.insert(CallI); } ++I; continue; } // Pattern match the current piece and its successor. auto *PieceI = dyn_cast(I->get()); if (!PieceI) { ++I; continue; } const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); const Stmt *level1 = getStmtParent(s1Start, PM); const Stmt *level2 = getStmtParent(s1End, PM); PathPieces::iterator NextI = I; ++NextI; if (NextI == E) break; const auto *PieceNextI = dyn_cast(NextI->get()); if (!PieceNextI) { ++I; continue; } const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); const Stmt *level3 = getStmtParent(s2Start, PM); const Stmt *level4 = getStmtParent(s2End, PM); // Rule I. // // If we have two consecutive control edges whose end/begin locations // are at the same level (e.g. statements or top-level expressions within // a compound statement, or siblings share a single ancestor expression), // then merge them if they have no interesting intermediate event. // // For example: // // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. // // NOTE: this will be limited later in cases where we add barriers // to prevent this optimization. if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { PieceI->setEndLocation(PieceNextI->getEndLocation()); path.erase(NextI); hasChanges = true; continue; } // Rule II. // // Eliminate edges between subexpressions and parent expressions // when the subexpression is consumed. // // NOTE: this will be limited later in cases where we add barriers // to prevent this optimization. if (s1End && s1End == s2Start && level2) { bool removeEdge = false; // Remove edges into the increment or initialization of a // loop that have no interleaving event. This means that // they aren't interesting. if (isIncrementOrInitInForLoop(s1End, level2)) removeEdge = true; // Next only consider edges that are not anchored on // the condition of a terminator. This are intermediate edges // that we might want to trim. else if (!isConditionForTerminator(level2, s1End)) { // Trim edges on expressions that are consumed by // the parent expression. if (isa(s1End) && PM.isConsumedExpr(cast(s1End))) { removeEdge = true; } // Trim edges where a lexical containment doesn't exist. // For example: // // X -> Y -> Z // // If 'Z' lexically contains Y (it is an ancestor) and // 'X' does not lexically contain Y (it is a descendant OR // it has no lexical relationship at all) then trim. // // This can eliminate edges where we dive into a subexpression // and then pop back out, etc. else if (s1Start && s2End && lexicalContains(PM, s2Start, s2End) && !lexicalContains(PM, s1End, s1Start)) { removeEdge = true; } // Trim edges from a subexpression back to the top level if the // subexpression is on a different line. // // A.1 -> A -> B // becomes // A.1 -> B // // These edges just look ugly and don't usually add anything. else if (s1Start && s2End && lexicalContains(PM, s1Start, s1End)) { SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), PieceI->getStartLocation().asLocation()); if (!getLengthOnSingleLine(SM, EdgeRange)) removeEdge = true; } } if (removeEdge) { PieceI->setEndLocation(PieceNextI->getEndLocation()); path.erase(NextI); hasChanges = true; continue; } } // Optimize edges for ObjC fast-enumeration loops. // // (X -> collection) -> (collection -> element) // // becomes: // // (X -> element) if (s1End == s2Start) { const auto *FS = dyn_cast_or_null(level3); if (FS && FS->getCollection()->IgnoreParens() == s2Start && s2End == FS->getElement()) { PieceI->setEndLocation(PieceNextI->getEndLocation()); path.erase(NextI); hasChanges = true; continue; } } // No changes at this index? Move to the next one. ++I; } if (!hasChanges) { // Adjust edges into subexpressions to make them more uniform // and aesthetically pleasing. addContextEdges(path, LC); // Remove "cyclical" edges that include one or more context edges. removeContextCycles(path, SM); // Hoist edges originating from branch conditions to branches // for simple branches. simplifySimpleBranches(path); // Remove any puny edges left over after primary optimization pass. removePunyEdges(path, SM, PM); // Remove identical events. removeIdenticalEvents(path); } return hasChanges; } /// Drop the very first edge in a path, which should be a function entry edge. /// /// If the first edge is not a function entry edge (say, because the first /// statement had an invalid source location), this function does nothing. // FIXME: We should just generate invalid edges anyway and have the optimizer // deal with them. static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C, PathPieces &Path) { const auto *FirstEdge = dyn_cast(Path.front().get()); if (!FirstEdge) return; const Decl *D = C.getLocationContextFor(&Path)->getDecl(); PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, C.getSourceManager()); if (FirstEdge->getStartLocation() != EntryLoc) return; Path.pop_front(); } /// Populate executes lines with lines containing at least one diagnostics. static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) { PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true); FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines(); for (const auto &P : path) { FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc(); FileID FID = Loc.getFileID(); unsigned LineNo = Loc.getLineNumber(); assert(FID.isValid()); ExecutedLines[FID].insert(LineNo); } } PathDiagnosticConstruct::PathDiagnosticConstruct( const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode, const PathSensitiveBugReport *R) : Consumer(PDC), CurrentNode(ErrorNode), SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()), PD(generateEmptyDiagnosticForReport(R, getSourceManager())) { LCM[&PD->getActivePath()] = ErrorNode->getLocationContext(); } PathDiagnosticBuilder::PathDiagnosticBuilder( BugReporterContext BRC, std::unique_ptr BugPath, PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, std::unique_ptr VisitorsDiagnostics) : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r), ErrorNode(ErrorNode), VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {} std::unique_ptr PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const { PathDiagnosticConstruct Construct(PDC, ErrorNode, R); const SourceManager &SM = getSourceManager(); const AnalyzerOptions &Opts = getAnalyzerOptions(); if (!PDC->shouldGenerateDiagnostics()) return generateEmptyDiagnosticForReport(R, getSourceManager()); // Construct the final (warning) event for the bug report. auto EndNotes = VisitorsDiagnostics->find(ErrorNode); PathDiagnosticPieceRef LastPiece; if (EndNotes != VisitorsDiagnostics->end()) { assert(!EndNotes->second.empty()); LastPiece = EndNotes->second[0]; } else { LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode, *getBugReport()); } Construct.PD->setEndOfPath(LastPiece); PathDiagnosticLocation PrevLoc = Construct.PD->getLocation(); // From the error node to the root, ascend the bug path and construct the bug // report. while (Construct.ascendToPrevNode()) { generatePathDiagnosticsForNode(Construct, PrevLoc); auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode()); if (VisitorNotes == VisitorsDiagnostics->end()) continue; // This is a workaround due to inability to put shared PathDiagnosticPiece // into a FoldingSet. std::set DeduplicationSet; // Add pieces from custom visitors. for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) { llvm::FoldingSetNodeID ID; Note->Profile(ID); if (!DeduplicationSet.insert(ID).second) continue; if (PDC->shouldAddPathEdges()) addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation()); updateStackPiecesWithMessage(Note, Construct.CallStack); Construct.getActivePath().push_front(Note); } } if (PDC->shouldAddPathEdges()) { // Add an edge to the start of the function. // We'll prune it out later, but it helps make diagnostics more uniform. const StackFrameContext *CalleeLC = Construct.getLocationContextForActivePath()->getStackFrame(); const Decl *D = CalleeLC->getDecl(); addEdgeToPath(Construct.getActivePath(), PrevLoc, PathDiagnosticLocation::createBegin(D, SM)); } // Finally, prune the diagnostic path of uninteresting stuff. if (!Construct.PD->path.empty()) { if (R->shouldPrunePath() && Opts.ShouldPrunePaths) { bool stillHasNotes = removeUnneededCalls(Construct, Construct.getMutablePieces(), R); assert(stillHasNotes); (void)stillHasNotes; } // Remove pop-up notes if needed. if (!Opts.ShouldAddPopUpNotes) removePopUpNotes(Construct.getMutablePieces()); // Redirect all call pieces to have valid locations. adjustCallLocations(Construct.getMutablePieces()); removePiecesWithInvalidLocations(Construct.getMutablePieces()); if (PDC->shouldAddPathEdges()) { // Reduce the number of edges from a very conservative set // to an aesthetically pleasing subset that conveys the // necessary information. OptimizedCallsSet OCS; while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) { } // Drop the very first function-entry edge. It's not really necessary // for top-level functions. dropFunctionEntryEdge(Construct, Construct.getMutablePieces()); } // Remove messages that are basically the same, and edges that may not // make sense. // We have to do this after edge optimization in the Extensive mode. removeRedundantMsgs(Construct.getMutablePieces()); removeEdgesToDefaultInitializers(Construct.getMutablePieces()); } if (Opts.ShouldDisplayMacroExpansions) CompactMacroExpandedPieces(Construct.getMutablePieces(), SM); return std::move(Construct.PD); } //===----------------------------------------------------------------------===// // Methods for BugType and subclasses. //===----------------------------------------------------------------------===// void BugType::anchor() {} //===----------------------------------------------------------------------===// // Methods for BugReport and subclasses. //===----------------------------------------------------------------------===// LLVM_ATTRIBUTE_USED static bool isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) { for (const std::pair &Pair : Registry.Dependencies) { if (Pair.second == CheckerName) return true; } return false; } LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry, StringRef CheckerName) { for (const CheckerInfo &Checker : Registry.Checkers) { if (Checker.FullName == CheckerName) return Checker.IsHidden; } llvm_unreachable( "Checker name not found in CheckerRegistry -- did you retrieve it " "correctly from CheckerManager::getCurrentCheckerName?"); } PathSensitiveBugReport::PathSensitiveBugReport( const BugType &bt, StringRef shortDesc, StringRef desc, const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique, const Decl *DeclToUnique) : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode), ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()), UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) { assert(!isDependency(ErrorNode->getState() ->getAnalysisManager() .getCheckerManager() ->getCheckerRegistryData(), bt.getCheckerName()) && "Some checkers depend on this one! We don't allow dependency " "checkers to emit warnings, because checkers should depend on " "*modeling*, not *diagnostics*."); assert((bt.getCheckerName().starts_with("debug") || !isHidden(ErrorNode->getState() ->getAnalysisManager() .getCheckerManager() ->getCheckerRegistryData(), bt.getCheckerName())) && "Hidden checkers musn't emit diagnostics as they are by definition " "non-user facing!"); } void PathSensitiveBugReport::addVisitor( std::unique_ptr visitor) { if (!visitor) return; llvm::FoldingSetNodeID ID; visitor->Profile(ID); void *InsertPos = nullptr; if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { return; } Callbacks.push_back(std::move(visitor)); } void PathSensitiveBugReport::clearVisitors() { Callbacks.clear(); } const Decl *PathSensitiveBugReport::getDeclWithIssue() const { const ExplodedNode *N = getErrorNode(); if (!N) return nullptr; const LocationContext *LC = N->getLocationContext(); return LC->getStackFrame()->getDecl(); } void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const { hash.AddInteger(static_cast(getKind())); hash.AddPointer(&BT); hash.AddString(Description); assert(Location.isValid()); Location.Profile(hash); for (SourceRange range : Ranges) { if (!range.isValid()) continue; hash.Add(range.getBegin()); hash.Add(range.getEnd()); } } void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const { hash.AddInteger(static_cast(getKind())); hash.AddPointer(&BT); hash.AddString(Description); PathDiagnosticLocation UL = getUniqueingLocation(); if (UL.isValid()) { UL.Profile(hash); } else { // TODO: The statement may be null if the report was emitted before any // statements were executed. In particular, some checkers by design // occasionally emit their reports in empty functions (that have no // statements in their body). Do we profile correctly in this case? hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics()); } for (SourceRange range : Ranges) { if (!range.isValid()) continue; hash.Add(range.getBegin()); hash.Add(range.getEnd()); } } template static void insertToInterestingnessMap( llvm::DenseMap &InterestingnessMap, T Val, bugreporter::TrackingKind TKind) { auto Result = InterestingnessMap.insert({Val, TKind}); if (Result.second) return; // Even if this symbol/region was already marked as interesting as a // condition, if we later mark it as interesting again but with // thorough tracking, overwrite it. Entities marked with thorough // interestiness are the most important (or most interesting, if you will), // and we wouldn't like to downplay their importance. switch (TKind) { case bugreporter::TrackingKind::Thorough: Result.first->getSecond() = bugreporter::TrackingKind::Thorough; return; case bugreporter::TrackingKind::Condition: return; } llvm_unreachable( "BugReport::markInteresting currently can only handle 2 different " "tracking kinds! Please define what tracking kind should this entitiy" "have, if it was already marked as interesting with a different kind!"); } void PathSensitiveBugReport::markInteresting(SymbolRef sym, bugreporter::TrackingKind TKind) { if (!sym) return; insertToInterestingnessMap(InterestingSymbols, sym, TKind); // FIXME: No tests exist for this code and it is questionable: // How to handle multiple metadata for the same region? if (const auto *meta = dyn_cast(sym)) markInteresting(meta->getRegion(), TKind); } void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) { if (!sym) return; InterestingSymbols.erase(sym); // The metadata part of markInteresting is not reversed here. // Just making the same region not interesting is incorrect // in specific cases. if (const auto *meta = dyn_cast(sym)) markNotInteresting(meta->getRegion()); } void PathSensitiveBugReport::markInteresting(const MemRegion *R, bugreporter::TrackingKind TKind) { if (!R) return; R = R->getBaseRegion(); insertToInterestingnessMap(InterestingRegions, R, TKind); if (const auto *SR = dyn_cast(R)) markInteresting(SR->getSymbol(), TKind); } void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) { if (!R) return; R = R->getBaseRegion(); InterestingRegions.erase(R); if (const auto *SR = dyn_cast(R)) markNotInteresting(SR->getSymbol()); } void PathSensitiveBugReport::markInteresting(SVal V, bugreporter::TrackingKind TKind) { markInteresting(V.getAsRegion(), TKind); markInteresting(V.getAsSymbol(), TKind); } void PathSensitiveBugReport::markInteresting(const LocationContext *LC) { if (!LC) return; InterestingLocationContexts.insert(LC); } std::optional PathSensitiveBugReport::getInterestingnessKind(SVal V) const { auto RKind = getInterestingnessKind(V.getAsRegion()); auto SKind = getInterestingnessKind(V.getAsSymbol()); if (!RKind) return SKind; if (!SKind) return RKind; // If either is marked with throrough tracking, return that, we wouldn't like // to downplay a note's importance by 'only' mentioning it as a condition. switch(*RKind) { case bugreporter::TrackingKind::Thorough: return RKind; case bugreporter::TrackingKind::Condition: return SKind; } llvm_unreachable( "BugReport::getInterestingnessKind currently can only handle 2 different " "tracking kinds! Please define what tracking kind should we return here " "when the kind of getAsRegion() and getAsSymbol() is different!"); return std::nullopt; } std::optional PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const { if (!sym) return std::nullopt; // We don't currently consider metadata symbols to be interesting // even if we know their region is interesting. Is that correct behavior? auto It = InterestingSymbols.find(sym); if (It == InterestingSymbols.end()) return std::nullopt; return It->getSecond(); } std::optional PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const { if (!R) return std::nullopt; R = R->getBaseRegion(); auto It = InterestingRegions.find(R); if (It != InterestingRegions.end()) return It->getSecond(); if (const auto *SR = dyn_cast(R)) return getInterestingnessKind(SR->getSymbol()); return std::nullopt; } bool PathSensitiveBugReport::isInteresting(SVal V) const { return getInterestingnessKind(V).has_value(); } bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const { return getInterestingnessKind(sym).has_value(); } bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const { return getInterestingnessKind(R).has_value(); } bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const { if (!LC) return false; return InterestingLocationContexts.count(LC); } const Stmt *PathSensitiveBugReport::getStmt() const { if (!ErrorNode) return nullptr; ProgramPoint ProgP = ErrorNode->getLocation(); const Stmt *S = nullptr; if (std::optional BE = ProgP.getAs()) { CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); if (BE->getBlock() == &Exit) S = ErrorNode->getPreviousStmtForDiagnostics(); } if (!S) S = ErrorNode->getStmtForDiagnostics(); return S; } ArrayRef PathSensitiveBugReport::getRanges() const { // If no custom ranges, add the range of the statement corresponding to // the error node. if (Ranges.empty() && isa_and_nonnull(getStmt())) return ErrorNodeRange; return Ranges; } PathDiagnosticLocation PathSensitiveBugReport::getLocation() const { assert(ErrorNode && "Cannot create a location with a null node."); const Stmt *S = ErrorNode->getStmtForDiagnostics(); ProgramPoint P = ErrorNode->getLocation(); const LocationContext *LC = P.getLocationContext(); SourceManager &SM = ErrorNode->getState()->getStateManager().getContext().getSourceManager(); if (!S) { // If this is an implicit call, return the implicit call point location. if (std::optional PIE = P.getAs()) return PathDiagnosticLocation(PIE->getLocation(), SM); if (auto FE = P.getAs()) { if (const ReturnStmt *RS = FE->getStmt()) return PathDiagnosticLocation::createBegin(RS, SM, LC); } S = ErrorNode->getNextStmtForDiagnostics(); } if (S) { // Attributed statements usually have corrupted begin locations, // it's OK to ignore attributes for our purposes and deal with // the actual annotated statement. if (const auto *AS = dyn_cast(S)) S = AS->getSubStmt(); // For member expressions, return the location of the '.' or '->'. if (const auto *ME = dyn_cast(S)) return PathDiagnosticLocation::createMemberLoc(ME, SM); // For binary operators, return the location of the operator. if (const auto *B = dyn_cast(S)) return PathDiagnosticLocation::createOperatorLoc(B, SM); if (P.getAs()) return PathDiagnosticLocation::createEnd(S, SM, LC); if (S->getBeginLoc().isValid()) return PathDiagnosticLocation(S, SM, LC); return PathDiagnosticLocation( PathDiagnosticLocation::getValidSourceLocation(S, LC), SM); } return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(), SM); } //===----------------------------------------------------------------------===// // Methods for BugReporter and subclasses. //===----------------------------------------------------------------------===// const ExplodedGraph &PathSensitiveBugReporter::getGraph() const { return Eng.getGraph(); } ProgramStateManager &PathSensitiveBugReporter::getStateManager() const { return Eng.getStateManager(); } BugReporter::BugReporter(BugReporterData &d) : D(d) {} BugReporter::~BugReporter() { // Make sure reports are flushed. assert(StrBugTypes.empty() && "Destroying BugReporter before diagnostics are emitted!"); // Free the bug reports we are tracking. for (const auto I : EQClassesVector) delete I; } void BugReporter::FlushReports() { // We need to flush reports in deterministic order to ensure the order // of the reports is consistent between runs. for (const auto EQ : EQClassesVector) FlushReport(*EQ); // BugReporter owns and deletes only BugTypes created implicitly through // EmitBasicReport. // FIXME: There are leaks from checkers that assume that the BugTypes they // create will be destroyed by the BugReporter. StrBugTypes.clear(); } //===----------------------------------------------------------------------===// // PathDiagnostics generation. //===----------------------------------------------------------------------===// namespace { /// A wrapper around an ExplodedGraph that contains a single path from the root /// to the error node. class BugPathInfo { public: std::unique_ptr BugPath; PathSensitiveBugReport *Report; const ExplodedNode *ErrorNode; }; /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can /// conveniently retrieve bug paths from a single error node to the root. class BugPathGetter { std::unique_ptr TrimmedGraph; using PriorityMapTy = llvm::DenseMap; /// Assign each node with its distance from the root. PriorityMapTy PriorityMap; /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph, /// we need to pair it to the error node of the constructed trimmed graph. using ReportNewNodePair = std::pair; SmallVector ReportNodes; BugPathInfo CurrentBugPath; /// A helper class for sorting ExplodedNodes by priority. template class PriorityCompare { const PriorityMapTy &PriorityMap; public: PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); PriorityMapTy::const_iterator E = PriorityMap.end(); if (LI == E) return Descending; if (RI == E) return !Descending; return Descending ? LI->second > RI->second : LI->second < RI->second; } bool operator()(const ReportNewNodePair &LHS, const ReportNewNodePair &RHS) const { return (*this)(LHS.second, RHS.second); } }; public: BugPathGetter(const ExplodedGraph *OriginalGraph, ArrayRef &bugReports); BugPathInfo *getNextBugPath(); }; } // namespace BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph, ArrayRef &bugReports) { SmallVector Nodes; for (const auto I : bugReports) { assert(I->isValid() && "We only allow BugReporterVisitors and BugReporter itself to " "invalidate reports!"); Nodes.emplace_back(I->getErrorNode()); } // The trimmed graph is created in the body of the constructor to ensure // that the DenseMaps have been initialized already. InterExplodedGraphMap ForwardMap; TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap); // Find the (first) error node in the trimmed graph. We just need to consult // the node map which maps from nodes in the original graph to nodes // in the new graph. llvm::SmallPtrSet RemainingNodes; for (PathSensitiveBugReport *Report : bugReports) { const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode()); assert(NewNode && "Failed to construct a trimmed graph that contains this error " "node!"); ReportNodes.emplace_back(Report, NewNode); RemainingNodes.insert(NewNode); } assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); // Perform a forward BFS to find all the shortest paths. std::queue WS; assert(TrimmedGraph->num_roots() == 1); WS.push(*TrimmedGraph->roots_begin()); unsigned Priority = 0; while (!WS.empty()) { const ExplodedNode *Node = WS.front(); WS.pop(); PriorityMapTy::iterator PriorityEntry; bool IsNew; std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority}); ++Priority; if (!IsNew) { assert(PriorityEntry->second <= Priority); continue; } if (RemainingNodes.erase(Node)) if (RemainingNodes.empty()) break; for (const ExplodedNode *Succ : Node->succs()) WS.push(Succ); } // Sort the error paths from longest to shortest. llvm::sort(ReportNodes, PriorityCompare(PriorityMap)); } BugPathInfo *BugPathGetter::getNextBugPath() { if (ReportNodes.empty()) return nullptr; const ExplodedNode *OrigN; std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val(); assert(PriorityMap.contains(OrigN) && "error node not accessible from root"); // Create a new graph with a single path. This is the graph that will be // returned to the caller. auto GNew = std::make_unique(); // Now walk from the error node up the BFS path, always taking the // predeccessor with the lowest number. ExplodedNode *Succ = nullptr; while (true) { // Create the equivalent node in the new graph with the same state // and location. ExplodedNode *NewN = GNew->createUncachedNode( OrigN->getLocation(), OrigN->getState(), OrigN->getID(), OrigN->isSink()); // Link up the new node with the previous node. if (Succ) Succ->addPredecessor(NewN, *GNew); else CurrentBugPath.ErrorNode = NewN; Succ = NewN; // Are we at the final node? if (OrigN->pred_empty()) { GNew->addRoot(NewN); break; } // Find the next predeccessor node. We choose the node that is marked // with the lowest BFS number. OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), PriorityCompare(PriorityMap)); } CurrentBugPath.BugPath = std::move(GNew); return &CurrentBugPath; } /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic /// object and collapses PathDiagosticPieces that are expanded by macros. static void CompactMacroExpandedPieces(PathPieces &path, const SourceManager& SM) { using MacroStackTy = std::vector< std::pair, SourceLocation>>; using PiecesTy = std::vector; MacroStackTy MacroStack; PiecesTy Pieces; for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I) { const auto &piece = *I; // Recursively compact calls. if (auto *call = dyn_cast(&*piece)) { CompactMacroExpandedPieces(call->path, SM); } // Get the location of the PathDiagnosticPiece. const FullSourceLoc Loc = piece->getLocation().asLocation(); // Determine the instantiation location, which is the location we group // related PathDiagnosticPieces. SourceLocation InstantiationLoc = Loc.isMacroID() ? SM.getExpansionLoc(Loc) : SourceLocation(); if (Loc.isFileID()) { MacroStack.clear(); Pieces.push_back(piece); continue; } assert(Loc.isMacroID()); // Is the PathDiagnosticPiece within the same macro group? if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { MacroStack.back().first->subPieces.push_back(piece); continue; } // We aren't in the same group. Are we descending into a new macro // or are part of an old one? std::shared_ptr MacroGroup; SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? SM.getExpansionLoc(Loc) : SourceLocation(); // Walk the entire macro stack. while (!MacroStack.empty()) { if (InstantiationLoc == MacroStack.back().second) { MacroGroup = MacroStack.back().first; break; } if (ParentInstantiationLoc == MacroStack.back().second) { MacroGroup = MacroStack.back().first; break; } MacroStack.pop_back(); } if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { // Create a new macro group and add it to the stack. auto NewGroup = std::make_shared( PathDiagnosticLocation::createSingleLocation(piece->getLocation())); if (MacroGroup) MacroGroup->subPieces.push_back(NewGroup); else { assert(InstantiationLoc.isFileID()); Pieces.push_back(NewGroup); } MacroGroup = NewGroup; MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); } // Finally, add the PathDiagnosticPiece to the group. MacroGroup->subPieces.push_back(piece); } // Now take the pieces and construct a new PathDiagnostic. path.clear(); path.insert(path.end(), Pieces.begin(), Pieces.end()); } /// Generate notes from all visitors. /// Notes associated with @c ErrorNode are generated using /// @c getEndPath, and the rest are generated with @c VisitNode. static std::unique_ptr generateVisitorsDiagnostics(PathSensitiveBugReport *R, const ExplodedNode *ErrorNode, BugReporterContext &BRC) { std::unique_ptr Notes = std::make_unique(); PathSensitiveBugReport::VisitorList visitors; // Run visitors on all nodes starting from the node *before* the last one. // The last node is reserved for notes generated with @c getEndPath. const ExplodedNode *NextNode = ErrorNode->getFirstPred(); while (NextNode) { // At each iteration, move all visitors from report to visitor list. This is // important, because the Profile() functions of the visitors make sure that // a visitor isn't added multiple times for the same node, but it's fine // to add the a visitor with Profile() for different nodes (e.g. tracking // a region at different points of the symbolic execution). for (std::unique_ptr &Visitor : R->visitors()) visitors.push_back(std::move(Visitor)); R->clearVisitors(); const ExplodedNode *Pred = NextNode->getFirstPred(); if (!Pred) { PathDiagnosticPieceRef LastPiece; for (auto &V : visitors) { V->finalizeVisitor(BRC, ErrorNode, *R); if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) { assert(!LastPiece && "There can only be one final piece in a diagnostic."); assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event && "The final piece must contain a message!"); LastPiece = std::move(Piece); (*Notes)[ErrorNode].push_back(LastPiece); } } break; } for (auto &V : visitors) { auto P = V->VisitNode(NextNode, BRC, *R); if (P) (*Notes)[NextNode].push_back(std::move(P)); } if (!R->isValid()) break; NextNode = Pred; } return Notes; } std::optional PathDiagnosticBuilder::findValidReport( ArrayRef &bugReports, PathSensitiveBugReporter &Reporter) { BugPathGetter BugGraph(&Reporter.getGraph(), bugReports); while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) { // Find the BugReport with the original location. PathSensitiveBugReport *R = BugPath->Report; assert(R && "No original report found for sliced graph."); assert(R->isValid() && "Report selected by trimmed graph marked invalid."); const ExplodedNode *ErrorNode = BugPath->ErrorNode; // Register refutation visitors first, if they mark the bug invalid no // further analysis is required R->addVisitor(); // Register additional node visitors. R->addVisitor(); R->addVisitor(); R->addVisitor(); BugReporterContext BRC(Reporter); // Run all visitors on a given graph, once. std::unique_ptr visitorNotes = generateVisitorsDiagnostics(R, ErrorNode, BRC); if (R->isValid()) { if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) { // If crosscheck is enabled, remove all visitors, add the refutation // visitor and check again R->clearVisitors(); R->addVisitor(); // We don't overwrite the notes inserted by other visitors because the // refutation manager does not add any new note to the path generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC); } // Check if the bug is still valid if (R->isValid()) return PathDiagnosticBuilder( std::move(BRC), std::move(BugPath->BugPath), BugPath->Report, BugPath->ErrorNode, std::move(visitorNotes)); } } return {}; } std::unique_ptr PathSensitiveBugReporter::generatePathDiagnostics( ArrayRef consumers, ArrayRef &bugReports) { assert(!bugReports.empty()); auto Out = std::make_unique(); std::optional PDB = PathDiagnosticBuilder::findValidReport(bugReports, *this); if (PDB) { for (PathDiagnosticConsumer *PC : consumers) { if (std::unique_ptr PD = PDB->generate(PC)) { (*Out)[PC] = std::move(PD); } } } return Out; } void BugReporter::emitReport(std::unique_ptr R) { bool ValidSourceLoc = R->getLocation().isValid(); assert(ValidSourceLoc); // If we mess up in a release build, we'd still prefer to just drop the bug // instead of trying to go on. if (!ValidSourceLoc) return; // If the user asked to suppress this report, we should skip it. if (UserSuppressions.isSuppressed(*R)) return; // Compute the bug report's hash to determine its equivalence class. llvm::FoldingSetNodeID ID; R->Profile(ID); // Lookup the equivance class. If there isn't one, create it. void *InsertPos; BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); if (!EQ) { EQ = new BugReportEquivClass(std::move(R)); EQClasses.InsertNode(EQ, InsertPos); EQClassesVector.push_back(EQ); } else EQ->AddReport(std::move(R)); } void PathSensitiveBugReporter::emitReport(std::unique_ptr R) { if (auto PR = dyn_cast(R.get())) if (const ExplodedNode *E = PR->getErrorNode()) { // An error node must either be a sink or have a tag, otherwise // it could get reclaimed before the path diagnostic is created. assert((E->isSink() || E->getLocation().getTag()) && "Error node must either be a sink or have a tag"); const AnalysisDeclContext *DeclCtx = E->getLocationContext()->getAnalysisDeclContext(); // The source of autosynthesized body can be handcrafted AST or a model // file. The locations from handcrafted ASTs have no valid source // locations and have to be discarded. Locations from model files should // be preserved for processing and reporting. if (DeclCtx->isBodyAutosynthesized() && !DeclCtx->isBodyAutosynthesizedFromModelFile()) return; } BugReporter::emitReport(std::move(R)); } //===----------------------------------------------------------------------===// // Emitting reports in equivalence classes. //===----------------------------------------------------------------------===// namespace { struct FRIEC_WLItem { const ExplodedNode *N; ExplodedNode::const_succ_iterator I, E; FRIEC_WLItem(const ExplodedNode *n) : N(n), I(N->succ_begin()), E(N->succ_end()) {} }; } // namespace BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass( BugReportEquivClass &EQ, SmallVectorImpl &bugReports) { // If we don't need to suppress any of the nodes because they are // post-dominated by a sink, simply add all the nodes in the equivalence class // to 'Nodes'. Any of the reports will serve as a "representative" report. assert(EQ.getReports().size() > 0); const BugType& BT = EQ.getReports()[0]->getBugType(); if (!BT.isSuppressOnSink()) { BugReport *R = EQ.getReports()[0].get(); for (auto &J : EQ.getReports()) { if (auto *PR = dyn_cast(J.get())) { R = PR; bugReports.push_back(PR); } } return R; } // For bug reports that should be suppressed when all paths are post-dominated // by a sink node, iterate through the reports in the equivalence class // until we find one that isn't post-dominated (if one exists). We use a // DFS traversal of the ExplodedGraph to find a non-sink node. We could write // this as a recursive function, but we don't want to risk blowing out the // stack for very long paths. BugReport *exampleReport = nullptr; for (const auto &I: EQ.getReports()) { auto *R = dyn_cast(I.get()); if (!R) continue; const ExplodedNode *errorNode = R->getErrorNode(); if (errorNode->isSink()) { llvm_unreachable( "BugType::isSuppressSink() should not be 'true' for sink end nodes"); } // No successors? By definition this nodes isn't post-dominated by a sink. if (errorNode->succ_empty()) { bugReports.push_back(R); if (!exampleReport) exampleReport = R; continue; } // See if we are in a no-return CFG block. If so, treat this similarly // to being post-dominated by a sink. This works better when the analysis // is incomplete and we have never reached the no-return function call(s) // that we'd inevitably bump into on this path. if (const CFGBlock *ErrorB = errorNode->getCFGBlock()) if (ErrorB->isInevitablySinking()) continue; // At this point we know that 'N' is not a sink and it has at least one // successor. Use a DFS worklist to find a non-sink end-of-path node. using WLItem = FRIEC_WLItem; using DFSWorkList = SmallVector; llvm::DenseMap Visited; DFSWorkList WL; WL.push_back(errorNode); Visited[errorNode] = 1; while (!WL.empty()) { WLItem &WI = WL.back(); assert(!WI.N->succ_empty()); for (; WI.I != WI.E; ++WI.I) { const ExplodedNode *Succ = *WI.I; // End-of-path node? if (Succ->succ_empty()) { // If we found an end-of-path node that is not a sink. if (!Succ->isSink()) { bugReports.push_back(R); if (!exampleReport) exampleReport = R; WL.clear(); break; } // Found a sink? Continue on to the next successor. continue; } // Mark the successor as visited. If it hasn't been explored, // enqueue it to the DFS worklist. unsigned &mark = Visited[Succ]; if (!mark) { mark = 1; WL.push_back(Succ); break; } } // The worklist may have been cleared at this point. First // check if it is empty before checking the last item. if (!WL.empty() && &WL.back() == &WI) WL.pop_back(); } } // ExampleReport will be NULL if all the nodes in the equivalence class // were post-dominated by sinks. return exampleReport; } void BugReporter::FlushReport(BugReportEquivClass& EQ) { SmallVector bugReports; BugReport *report = findReportInEquivalenceClass(EQ, bugReports); if (!report) return; // See whether we need to silence the checker/package. for (const std::string &CheckerOrPackage : getAnalyzerOptions().SilencedCheckersAndPackages) { if (report->getBugType().getCheckerName().starts_with(CheckerOrPackage)) return; } ArrayRef Consumers = getPathDiagnosticConsumers(); std::unique_ptr Diagnostics = generateDiagnosticForConsumerMap(report, Consumers, bugReports); for (auto &P : *Diagnostics) { PathDiagnosticConsumer *Consumer = P.first; std::unique_ptr &PD = P.second; // If the path is empty, generate a single step path with the location // of the issue. if (PD->path.empty()) { PathDiagnosticLocation L = report->getLocation(); auto piece = std::make_unique( L, report->getDescription()); for (SourceRange Range : report->getRanges()) piece->addRange(Range); PD->setEndOfPath(std::move(piece)); } PathPieces &Pieces = PD->getMutablePieces(); if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) { // For path diagnostic consumers that don't support extra notes, // we may optionally convert those to path notes. for (const auto &I : llvm::reverse(report->getNotes())) { PathDiagnosticNotePiece *Piece = I.get(); auto ConvertedPiece = std::make_shared( Piece->getLocation(), Piece->getString()); for (const auto &R: Piece->getRanges()) ConvertedPiece->addRange(R); Pieces.push_front(std::move(ConvertedPiece)); } } else { for (const auto &I : llvm::reverse(report->getNotes())) Pieces.push_front(I); } for (const auto &I : report->getFixits()) Pieces.back()->addFixit(I); updateExecutedLinesWithDiagnosticPieces(*PD); Consumer->HandlePathDiagnostic(std::move(PD)); } } /// Insert all lines participating in the function signature \p Signature /// into \p ExecutedLines. static void populateExecutedLinesWithFunctionSignature( const Decl *Signature, const SourceManager &SM, FilesToLineNumsMap &ExecutedLines) { SourceRange SignatureSourceRange; const Stmt* Body = Signature->getBody(); if (const auto FD = dyn_cast(Signature)) { SignatureSourceRange = FD->getSourceRange(); } else if (const auto OD = dyn_cast(Signature)) { SignatureSourceRange = OD->getSourceRange(); } else { return; } SourceLocation Start = SignatureSourceRange.getBegin(); SourceLocation End = Body ? Body->getSourceRange().getBegin() : SignatureSourceRange.getEnd(); if (!Start.isValid() || !End.isValid()) return; unsigned StartLine = SM.getExpansionLineNumber(Start); unsigned EndLine = SM.getExpansionLineNumber(End); FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); for (unsigned Line = StartLine; Line <= EndLine; Line++) ExecutedLines[FID].insert(Line); } static void populateExecutedLinesWithStmt( const Stmt *S, const SourceManager &SM, FilesToLineNumsMap &ExecutedLines) { SourceLocation Loc = S->getSourceRange().getBegin(); if (!Loc.isValid()) return; SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); FileID FID = SM.getFileID(ExpansionLoc); unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); ExecutedLines[FID].insert(LineNo); } /// \return all executed lines including function signatures on the path /// starting from \p N. static std::unique_ptr findExecutedLines(const SourceManager &SM, const ExplodedNode *N) { auto ExecutedLines = std::make_unique(); while (N) { if (N->getFirstPred() == nullptr) { // First node: show signature of the entrance point. const Decl *D = N->getLocationContext()->getDecl(); populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); } else if (auto CE = N->getLocationAs()) { // Inlined function: show signature. const Decl* D = CE->getCalleeContext()->getDecl(); populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); } else if (const Stmt *S = N->getStmtForDiagnostics()) { populateExecutedLinesWithStmt(S, SM, *ExecutedLines); // Show extra context for some parent kinds. const Stmt *P = N->getParentMap().getParent(S); // The path exploration can die before the node with the associated // return statement is generated, but we do want to show the whole // return. if (const auto *RS = dyn_cast_or_null(P)) { populateExecutedLinesWithStmt(RS, SM, *ExecutedLines); P = N->getParentMap().getParent(RS); } if (isa_and_nonnull(P)) populateExecutedLinesWithStmt(P, SM, *ExecutedLines); } N = N->getFirstPred(); } return ExecutedLines; } std::unique_ptr BugReporter::generateDiagnosticForConsumerMap( BugReport *exampleReport, ArrayRef consumers, ArrayRef bugReports) { auto *basicReport = cast(exampleReport); auto Out = std::make_unique(); for (auto *Consumer : consumers) (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport); return Out; } static PathDiagnosticCallPiece * getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP, const SourceManager &SMgr) { SourceLocation CallLoc = CP->callEnter.asLocation(); // If the call is within a macro, don't do anything (for now). if (CallLoc.isMacroID()) return nullptr; assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) && "The call piece should not be in a header file."); // Check if CP represents a path through a function outside of the main file. if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr)) return CP; const PathPieces &Path = CP->path; if (Path.empty()) return nullptr; // Check if the last piece in the callee path is a call to a function outside // of the main file. if (auto *CPInner = dyn_cast(Path.back().get())) return getFirstStackedCallToHeaderFile(CPInner, SMgr); // Otherwise, the last piece is in the main file. return nullptr; } static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) { if (PD.path.empty()) return; PathDiagnosticPiece *LastP = PD.path.back().get(); assert(LastP); const SourceManager &SMgr = LastP->getLocation().getManager(); // We only need to check if the report ends inside headers, if the last piece // is a call piece. if (auto *CP = dyn_cast(LastP)) { CP = getFirstStackedCallToHeaderFile(CP, SMgr); if (CP) { // Mark the piece. CP->setAsLastInMainSourceFile(); // Update the path diagnostic message. const auto *ND = dyn_cast(CP->getCallee()); if (ND) { SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << " (within a call to '" << ND->getDeclName() << "')"; PD.appendToDesc(os.str()); } // Reset the report containing declaration and location. PD.setDeclWithIssue(CP->getCaller()); PD.setLocation(CP->getLocation()); return; } } } std::unique_ptr PathSensitiveBugReporter::generateDiagnosticForConsumerMap( BugReport *exampleReport, ArrayRef consumers, ArrayRef bugReports) { std::vector BasicBugReports; std::vector PathSensitiveBugReports; if (isa(exampleReport)) return BugReporter::generateDiagnosticForConsumerMap(exampleReport, consumers, bugReports); // Generate the full path sensitive diagnostic, using the generation scheme // specified by the PathDiagnosticConsumer. Note that we have to generate // path diagnostics even for consumers which do not support paths, because // the BugReporterVisitors may mark this bug as a false positive. assert(!bugReports.empty()); MaxBugClassSize.updateMax(bugReports.size()); // Avoid copying the whole array because there may be a lot of reports. ArrayRef convertedArrayOfReports( reinterpret_cast(&*bugReports.begin()), reinterpret_cast(&*bugReports.end())); std::unique_ptr Out = generatePathDiagnostics( consumers, convertedArrayOfReports); if (Out->empty()) return Out; MaxValidBugClassSize.updateMax(bugReports.size()); // Examine the report and see if the last piece is in a header. Reset the // report location to the last piece in the main source file. const AnalyzerOptions &Opts = getAnalyzerOptions(); for (auto const &P : *Out) if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll) resetDiagnosticLocationToMainFile(*P.second); return Out; } void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, const CheckerBase *Checker, StringRef Name, StringRef Category, StringRef Str, PathDiagnosticLocation Loc, ArrayRef Ranges, ArrayRef Fixits) { EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str, Loc, Ranges, Fixits); } void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, CheckerNameRef CheckName, StringRef name, StringRef category, StringRef str, PathDiagnosticLocation Loc, ArrayRef Ranges, ArrayRef Fixits) { // 'BT' is owned by BugReporter. BugType *BT = getBugTypeForName(CheckName, name, category); auto R = std::make_unique(*BT, str, Loc); R->setDeclWithIssue(DeclWithIssue); for (const auto &SR : Ranges) R->addRange(SR); for (const auto &FH : Fixits) R->addFixItHint(FH); emitReport(std::move(R)); } BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName, StringRef name, StringRef category) { SmallString<136> fullDesc; llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name << ":" << category; std::unique_ptr &BT = StrBugTypes[fullDesc]; if (!BT) BT = std::make_unique(CheckName, name, category); return BT.get(); }