//===- ASTWriter.cpp - AST File Writer ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the ASTWriter class, which writes AST files. // //===----------------------------------------------------------------------===// #include "ASTCommon.h" #include "ASTReaderInternals.h" #include "MultiOnDiskHashTable.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTUnresolvedSet.h" #include "clang/AST/AbstractTypeWriter.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclContextInternals.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/LambdaCapture.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/OpenMPClause.h" #include "clang/AST/RawCommentList.h" #include "clang/AST/TemplateName.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemOptions.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Lambda.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/Module.h" #include "clang/Basic/ObjCRuntime.h" #include "clang/Basic/OpenCLOptions.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/Version.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/ModuleMap.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Lex/Token.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/Sema.h" #include "clang/Sema/Weak.h" #include "clang/Serialization/ASTBitCodes.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/ASTRecordWriter.h" #include "clang/Serialization/InMemoryModuleCache.h" #include "clang/Serialization/ModuleFile.h" #include "clang/Serialization/ModuleFileExtension.h" #include "clang/Serialization/SerializationDiagnostic.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/Bitstream/BitCodes.h" #include "llvm/Bitstream/BitstreamWriter.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compression.h" #include "llvm/Support/DJB.h" #include "llvm/Support/Endian.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/OnDiskHashTable.h" #include "llvm/Support/Path.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/VersionTuple.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace clang; using namespace clang::serialization; template static StringRef bytes(const std::vector &v) { if (v.empty()) return StringRef(); return StringRef(reinterpret_cast(&v[0]), sizeof(T) * v.size()); } template static StringRef bytes(const SmallVectorImpl &v) { return StringRef(reinterpret_cast(v.data()), sizeof(T) * v.size()); } static std::string bytes(const std::vector &V) { std::string Str; Str.reserve(V.size() / 8); for (unsigned I = 0, E = V.size(); I < E;) { char Byte = 0; for (unsigned Bit = 0; Bit < 8 && I < E; ++Bit, ++I) Byte |= V[I] << Bit; Str += Byte; } return Str; } //===----------------------------------------------------------------------===// // Type serialization //===----------------------------------------------------------------------===// static TypeCode getTypeCodeForTypeClass(Type::TypeClass id) { switch (id) { #define TYPE_BIT_CODE(CLASS_ID, CODE_ID, CODE_VALUE) \ case Type::CLASS_ID: return TYPE_##CODE_ID; #include "clang/Serialization/TypeBitCodes.def" case Type::Builtin: llvm_unreachable("shouldn't be serializing a builtin type this way"); } llvm_unreachable("bad type kind"); } namespace { std::set GetAffectingModuleMaps(const Preprocessor &PP, Module *RootModule) { SmallVector ModulesToProcess{RootModule}; const HeaderSearch &HS = PP.getHeaderSearchInfo(); SmallVector FilesByUID; HS.getFileMgr().GetUniqueIDMapping(FilesByUID); if (FilesByUID.size() > HS.header_file_size()) FilesByUID.resize(HS.header_file_size()); for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) { OptionalFileEntryRef File = FilesByUID[UID]; if (!File) continue; const HeaderFileInfo *HFI = HS.getExistingFileInfo(*File, /*WantExternal*/ false); if (!HFI || (HFI->isModuleHeader && !HFI->isCompilingModuleHeader)) continue; for (const auto &KH : HS.findResolvedModulesForHeader(*File)) { if (!KH.getModule()) continue; ModulesToProcess.push_back(KH.getModule()); } } const ModuleMap &MM = HS.getModuleMap(); SourceManager &SourceMgr = PP.getSourceManager(); std::set ModuleMaps{}; auto CollectIncludingModuleMaps = [&](FileEntryRef F) { if (!ModuleMaps.insert(F).second) return; FileID FID = SourceMgr.translateFile(F); SourceLocation Loc = SourceMgr.getIncludeLoc(FID); // The include location of inferred module maps can point into the header // file that triggered the inferring. Cut off the walk if that's the case. while (Loc.isValid() && isModuleMap(SourceMgr.getFileCharacteristic(Loc))) { FID = SourceMgr.getFileID(Loc); if (!ModuleMaps.insert(*SourceMgr.getFileEntryRefForID(FID)).second) break; Loc = SourceMgr.getIncludeLoc(FID); } }; std::set ProcessedModules; auto CollectIncludingMapsFromAncestors = [&](const Module *M) { for (const Module *Mod = M; Mod; Mod = Mod->Parent) { if (!ProcessedModules.insert(Mod).second) break; // The containing module map is affecting, because it's being pointed // into by Module::DefinitionLoc. if (auto ModuleMapFile = MM.getContainingModuleMapFile(Mod)) CollectIncludingModuleMaps(*ModuleMapFile); // For inferred modules, the module map that allowed inferring is not in // the include chain of the virtual containing module map file. It did // affect the compilation, though. if (auto ModuleMapFile = MM.getModuleMapFileForUniquing(Mod)) CollectIncludingModuleMaps(*ModuleMapFile); } }; for (const Module *CurrentModule : ModulesToProcess) { CollectIncludingMapsFromAncestors(CurrentModule); for (const Module *ImportedModule : CurrentModule->Imports) CollectIncludingMapsFromAncestors(ImportedModule); for (const Module *UndeclaredModule : CurrentModule->UndeclaredUses) CollectIncludingMapsFromAncestors(UndeclaredModule); } return ModuleMaps; } class ASTTypeWriter { ASTWriter &Writer; ASTWriter::RecordData Record; ASTRecordWriter BasicWriter; public: ASTTypeWriter(ASTWriter &Writer) : Writer(Writer), BasicWriter(Writer, Record) {} uint64_t write(QualType T) { if (T.hasLocalNonFastQualifiers()) { Qualifiers Qs = T.getLocalQualifiers(); BasicWriter.writeQualType(T.getLocalUnqualifiedType()); BasicWriter.writeQualifiers(Qs); return BasicWriter.Emit(TYPE_EXT_QUAL, Writer.getTypeExtQualAbbrev()); } const Type *typePtr = T.getTypePtr(); serialization::AbstractTypeWriter atw(BasicWriter); atw.write(typePtr); return BasicWriter.Emit(getTypeCodeForTypeClass(typePtr->getTypeClass()), /*abbrev*/ 0); } }; class TypeLocWriter : public TypeLocVisitor { using LocSeq = SourceLocationSequence; ASTRecordWriter &Record; LocSeq *Seq; void addSourceLocation(SourceLocation Loc) { Record.AddSourceLocation(Loc, Seq); } void addSourceRange(SourceRange Range) { Record.AddSourceRange(Range, Seq); } public: TypeLocWriter(ASTRecordWriter &Record, LocSeq *Seq) : Record(Record), Seq(Seq) {} #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitArrayTypeLoc(ArrayTypeLoc TyLoc); void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc); }; } // namespace void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { addSourceLocation(TL.getBuiltinLoc()); if (TL.needsExtraLocalData()) { Record.push_back(TL.getWrittenTypeSpec()); Record.push_back(static_cast(TL.getWrittenSignSpec())); Record.push_back(static_cast(TL.getWrittenWidthSpec())); Record.push_back(TL.hasModeAttr()); } } void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) { addSourceLocation(TL.getStarLoc()); } void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { addSourceLocation(TL.getCaretLoc()); } void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { addSourceLocation(TL.getAmpLoc()); } void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { addSourceLocation(TL.getAmpAmpLoc()); } void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { addSourceLocation(TL.getStarLoc()); Record.AddTypeSourceInfo(TL.getClassTInfo()); } void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) { addSourceLocation(TL.getLBracketLoc()); addSourceLocation(TL.getRBracketLoc()); Record.push_back(TL.getSizeExpr() ? 1 : 0); if (TL.getSizeExpr()) Record.AddStmt(TL.getSizeExpr()); } void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentAddressSpaceTypeLoc( DependentAddressSpaceTypeLoc TL) { addSourceLocation(TL.getAttrNameLoc()); SourceRange range = TL.getAttrOperandParensRange(); addSourceLocation(range.getBegin()); addSourceLocation(range.getEnd()); Record.AddStmt(TL.getAttrExprOperand()); } void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitDependentVectorTypeLoc( DependentVectorTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitConstantMatrixTypeLoc(ConstantMatrixTypeLoc TL) { addSourceLocation(TL.getAttrNameLoc()); SourceRange range = TL.getAttrOperandParensRange(); addSourceLocation(range.getBegin()); addSourceLocation(range.getEnd()); Record.AddStmt(TL.getAttrRowOperand()); Record.AddStmt(TL.getAttrColumnOperand()); } void TypeLocWriter::VisitDependentSizedMatrixTypeLoc( DependentSizedMatrixTypeLoc TL) { addSourceLocation(TL.getAttrNameLoc()); SourceRange range = TL.getAttrOperandParensRange(); addSourceLocation(range.getBegin()); addSourceLocation(range.getEnd()); Record.AddStmt(TL.getAttrRowOperand()); Record.AddStmt(TL.getAttrColumnOperand()); } void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) { addSourceLocation(TL.getLocalRangeBegin()); addSourceLocation(TL.getLParenLoc()); addSourceLocation(TL.getRParenLoc()); addSourceRange(TL.getExceptionSpecRange()); addSourceLocation(TL.getLocalRangeEnd()); for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) Record.AddDeclRef(TL.getParam(i)); } void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitUsingTypeLoc(UsingTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitObjCTypeParamTypeLoc(ObjCTypeParamTypeLoc TL) { if (TL.getNumProtocols()) { addSourceLocation(TL.getProtocolLAngleLoc()); addSourceLocation(TL.getProtocolRAngleLoc()); } for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) addSourceLocation(TL.getProtocolLoc(i)); } void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { addSourceLocation(TL.getTypeofLoc()); addSourceLocation(TL.getLParenLoc()); addSourceLocation(TL.getRParenLoc()); } void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { addSourceLocation(TL.getTypeofLoc()); addSourceLocation(TL.getLParenLoc()); addSourceLocation(TL.getRParenLoc()); Record.AddTypeSourceInfo(TL.getUnmodifiedTInfo()); } void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { addSourceLocation(TL.getDecltypeLoc()); addSourceLocation(TL.getRParenLoc()); } void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { addSourceLocation(TL.getKWLoc()); addSourceLocation(TL.getLParenLoc()); addSourceLocation(TL.getRParenLoc()); Record.AddTypeSourceInfo(TL.getUnderlyingTInfo()); } void ASTRecordWriter::AddConceptReference(const ConceptReference *CR) { assert(CR); AddNestedNameSpecifierLoc(CR->getNestedNameSpecifierLoc()); AddSourceLocation(CR->getTemplateKWLoc()); AddDeclarationNameInfo(CR->getConceptNameInfo()); AddDeclRef(CR->getFoundDecl()); AddDeclRef(CR->getNamedConcept()); push_back(CR->getTemplateArgsAsWritten() != nullptr); if (CR->getTemplateArgsAsWritten()) AddASTTemplateArgumentListInfo(CR->getTemplateArgsAsWritten()); } void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) { addSourceLocation(TL.getNameLoc()); auto *CR = TL.getConceptReference(); Record.push_back(TL.isConstrained() && CR); if (TL.isConstrained() && CR) Record.AddConceptReference(CR); Record.push_back(TL.isDecltypeAuto()); if (TL.isDecltypeAuto()) addSourceLocation(TL.getRParenLoc()); } void TypeLocWriter::VisitDeducedTemplateSpecializationTypeLoc( DeducedTemplateSpecializationTypeLoc TL) { addSourceLocation(TL.getTemplateNameLoc()); } void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) { Record.AddAttr(TL.getAttr()); } void TypeLocWriter::VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) { // Nothing to do. } void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc( SubstTemplateTypeParmPackTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { addSourceLocation(TL.getTemplateKeywordLoc()); addSourceLocation(TL.getTemplateNameLoc()); addSourceLocation(TL.getLAngleLoc()); addSourceLocation(TL.getRAngleLoc()); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) Record.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(), TL.getArgLoc(i).getLocInfo()); } void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) { addSourceLocation(TL.getLParenLoc()); addSourceLocation(TL.getRParenLoc()); } void TypeLocWriter::VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { addSourceLocation(TL.getExpansionLoc()); } void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { addSourceLocation(TL.getElaboratedKeywordLoc()); Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc()); } void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { addSourceLocation(TL.getElaboratedKeywordLoc()); Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc()); addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { addSourceLocation(TL.getElaboratedKeywordLoc()); Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc()); addSourceLocation(TL.getTemplateKeywordLoc()); addSourceLocation(TL.getTemplateNameLoc()); addSourceLocation(TL.getLAngleLoc()); addSourceLocation(TL.getRAngleLoc()); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) Record.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(), TL.getArgLoc(I).getLocInfo()); } void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { addSourceLocation(TL.getEllipsisLoc()); } void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { addSourceLocation(TL.getNameLoc()); addSourceLocation(TL.getNameEndLoc()); } void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { Record.push_back(TL.hasBaseTypeAsWritten()); addSourceLocation(TL.getTypeArgsLAngleLoc()); addSourceLocation(TL.getTypeArgsRAngleLoc()); for (unsigned i = 0, e = TL.getNumTypeArgs(); i != e; ++i) Record.AddTypeSourceInfo(TL.getTypeArgTInfo(i)); addSourceLocation(TL.getProtocolLAngleLoc()); addSourceLocation(TL.getProtocolRAngleLoc()); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) addSourceLocation(TL.getProtocolLoc(i)); } void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { addSourceLocation(TL.getStarLoc()); } void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) { addSourceLocation(TL.getKWLoc()); addSourceLocation(TL.getLParenLoc()); addSourceLocation(TL.getRParenLoc()); } void TypeLocWriter::VisitPipeTypeLoc(PipeTypeLoc TL) { addSourceLocation(TL.getKWLoc()); } void TypeLocWriter::VisitBitIntTypeLoc(clang::BitIntTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void TypeLocWriter::VisitDependentBitIntTypeLoc( clang::DependentBitIntTypeLoc TL) { addSourceLocation(TL.getNameLoc()); } void ASTWriter::WriteTypeAbbrevs() { using namespace llvm; std::shared_ptr Abv; // Abbreviation for TYPE_EXT_QUAL Abv = std::make_shared(); Abv->Add(BitCodeAbbrevOp(serialization::TYPE_EXT_QUAL)); Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Quals TypeExtQualAbbrev = Stream.EmitAbbrev(std::move(Abv)); } //===----------------------------------------------------------------------===// // ASTWriter Implementation //===----------------------------------------------------------------------===// static void EmitBlockID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { Record.clear(); Record.push_back(ID); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record); // Emit the block name if present. if (!Name || Name[0] == 0) return; Record.clear(); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record); } static void EmitRecordID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { Record.clear(); Record.push_back(ID); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record); } static void AddStmtsExprs(llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { #define RECORD(X) EmitRecordID(X, #X, Stream, Record) RECORD(STMT_STOP); RECORD(STMT_NULL_PTR); RECORD(STMT_REF_PTR); RECORD(STMT_NULL); RECORD(STMT_COMPOUND); RECORD(STMT_CASE); RECORD(STMT_DEFAULT); RECORD(STMT_LABEL); RECORD(STMT_ATTRIBUTED); RECORD(STMT_IF); RECORD(STMT_SWITCH); RECORD(STMT_WHILE); RECORD(STMT_DO); RECORD(STMT_FOR); RECORD(STMT_GOTO); RECORD(STMT_INDIRECT_GOTO); RECORD(STMT_CONTINUE); RECORD(STMT_BREAK); RECORD(STMT_RETURN); RECORD(STMT_DECL); RECORD(STMT_GCCASM); RECORD(STMT_MSASM); RECORD(EXPR_PREDEFINED); RECORD(EXPR_DECL_REF); RECORD(EXPR_INTEGER_LITERAL); RECORD(EXPR_FIXEDPOINT_LITERAL); RECORD(EXPR_FLOATING_LITERAL); RECORD(EXPR_IMAGINARY_LITERAL); RECORD(EXPR_STRING_LITERAL); RECORD(EXPR_CHARACTER_LITERAL); RECORD(EXPR_PAREN); RECORD(EXPR_PAREN_LIST); RECORD(EXPR_UNARY_OPERATOR); RECORD(EXPR_SIZEOF_ALIGN_OF); RECORD(EXPR_ARRAY_SUBSCRIPT); RECORD(EXPR_CALL); RECORD(EXPR_MEMBER); RECORD(EXPR_BINARY_OPERATOR); RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR); RECORD(EXPR_CONDITIONAL_OPERATOR); RECORD(EXPR_IMPLICIT_CAST); RECORD(EXPR_CSTYLE_CAST); RECORD(EXPR_COMPOUND_LITERAL); RECORD(EXPR_EXT_VECTOR_ELEMENT); RECORD(EXPR_INIT_LIST); RECORD(EXPR_DESIGNATED_INIT); RECORD(EXPR_DESIGNATED_INIT_UPDATE); RECORD(EXPR_IMPLICIT_VALUE_INIT); RECORD(EXPR_NO_INIT); RECORD(EXPR_VA_ARG); RECORD(EXPR_ADDR_LABEL); RECORD(EXPR_STMT); RECORD(EXPR_CHOOSE); RECORD(EXPR_GNU_NULL); RECORD(EXPR_SHUFFLE_VECTOR); RECORD(EXPR_BLOCK); RECORD(EXPR_GENERIC_SELECTION); RECORD(EXPR_OBJC_STRING_LITERAL); RECORD(EXPR_OBJC_BOXED_EXPRESSION); RECORD(EXPR_OBJC_ARRAY_LITERAL); RECORD(EXPR_OBJC_DICTIONARY_LITERAL); RECORD(EXPR_OBJC_ENCODE); RECORD(EXPR_OBJC_SELECTOR_EXPR); RECORD(EXPR_OBJC_PROTOCOL_EXPR); RECORD(EXPR_OBJC_IVAR_REF_EXPR); RECORD(EXPR_OBJC_PROPERTY_REF_EXPR); RECORD(EXPR_OBJC_KVC_REF_EXPR); RECORD(EXPR_OBJC_MESSAGE_EXPR); RECORD(STMT_OBJC_FOR_COLLECTION); RECORD(STMT_OBJC_CATCH); RECORD(STMT_OBJC_FINALLY); RECORD(STMT_OBJC_AT_TRY); RECORD(STMT_OBJC_AT_SYNCHRONIZED); RECORD(STMT_OBJC_AT_THROW); RECORD(EXPR_OBJC_BOOL_LITERAL); RECORD(STMT_CXX_CATCH); RECORD(STMT_CXX_TRY); RECORD(STMT_CXX_FOR_RANGE); RECORD(EXPR_CXX_OPERATOR_CALL); RECORD(EXPR_CXX_MEMBER_CALL); RECORD(EXPR_CXX_REWRITTEN_BINARY_OPERATOR); RECORD(EXPR_CXX_CONSTRUCT); RECORD(EXPR_CXX_TEMPORARY_OBJECT); RECORD(EXPR_CXX_STATIC_CAST); RECORD(EXPR_CXX_DYNAMIC_CAST); RECORD(EXPR_CXX_REINTERPRET_CAST); RECORD(EXPR_CXX_CONST_CAST); RECORD(EXPR_CXX_ADDRSPACE_CAST); RECORD(EXPR_CXX_FUNCTIONAL_CAST); RECORD(EXPR_USER_DEFINED_LITERAL); RECORD(EXPR_CXX_STD_INITIALIZER_LIST); RECORD(EXPR_CXX_BOOL_LITERAL); RECORD(EXPR_CXX_PAREN_LIST_INIT); RECORD(EXPR_CXX_NULL_PTR_LITERAL); RECORD(EXPR_CXX_TYPEID_EXPR); RECORD(EXPR_CXX_TYPEID_TYPE); RECORD(EXPR_CXX_THIS); RECORD(EXPR_CXX_THROW); RECORD(EXPR_CXX_DEFAULT_ARG); RECORD(EXPR_CXX_DEFAULT_INIT); RECORD(EXPR_CXX_BIND_TEMPORARY); RECORD(EXPR_CXX_SCALAR_VALUE_INIT); RECORD(EXPR_CXX_NEW); RECORD(EXPR_CXX_DELETE); RECORD(EXPR_CXX_PSEUDO_DESTRUCTOR); RECORD(EXPR_EXPR_WITH_CLEANUPS); RECORD(EXPR_CXX_DEPENDENT_SCOPE_MEMBER); RECORD(EXPR_CXX_DEPENDENT_SCOPE_DECL_REF); RECORD(EXPR_CXX_UNRESOLVED_CONSTRUCT); RECORD(EXPR_CXX_UNRESOLVED_MEMBER); RECORD(EXPR_CXX_UNRESOLVED_LOOKUP); RECORD(EXPR_CXX_EXPRESSION_TRAIT); RECORD(EXPR_CXX_NOEXCEPT); RECORD(EXPR_OPAQUE_VALUE); RECORD(EXPR_BINARY_CONDITIONAL_OPERATOR); RECORD(EXPR_TYPE_TRAIT); RECORD(EXPR_ARRAY_TYPE_TRAIT); RECORD(EXPR_PACK_EXPANSION); RECORD(EXPR_SIZEOF_PACK); RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM); RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK); RECORD(EXPR_FUNCTION_PARM_PACK); RECORD(EXPR_MATERIALIZE_TEMPORARY); RECORD(EXPR_CUDA_KERNEL_CALL); RECORD(EXPR_CXX_UUIDOF_EXPR); RECORD(EXPR_CXX_UUIDOF_TYPE); RECORD(EXPR_LAMBDA); #undef RECORD } void ASTWriter::WriteBlockInfoBlock() { RecordData Record; Stream.EnterBlockInfoBlock(); #define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record) #define RECORD(X) EmitRecordID(X, #X, Stream, Record) // Control Block. BLOCK(CONTROL_BLOCK); RECORD(METADATA); RECORD(MODULE_NAME); RECORD(MODULE_DIRECTORY); RECORD(MODULE_MAP_FILE); RECORD(IMPORTS); RECORD(ORIGINAL_FILE); RECORD(ORIGINAL_FILE_ID); RECORD(INPUT_FILE_OFFSETS); BLOCK(OPTIONS_BLOCK); RECORD(LANGUAGE_OPTIONS); RECORD(TARGET_OPTIONS); RECORD(FILE_SYSTEM_OPTIONS); RECORD(HEADER_SEARCH_OPTIONS); RECORD(PREPROCESSOR_OPTIONS); BLOCK(INPUT_FILES_BLOCK); RECORD(INPUT_FILE); RECORD(INPUT_FILE_HASH); // AST Top-Level Block. BLOCK(AST_BLOCK); RECORD(TYPE_OFFSET); RECORD(DECL_OFFSET); RECORD(IDENTIFIER_OFFSET); RECORD(IDENTIFIER_TABLE); RECORD(EAGERLY_DESERIALIZED_DECLS); RECORD(MODULAR_CODEGEN_DECLS); RECORD(SPECIAL_TYPES); RECORD(STATISTICS); RECORD(TENTATIVE_DEFINITIONS); RECORD(SELECTOR_OFFSETS); RECORD(METHOD_POOL); RECORD(PP_COUNTER_VALUE); RECORD(SOURCE_LOCATION_OFFSETS); RECORD(EXT_VECTOR_DECLS); RECORD(UNUSED_FILESCOPED_DECLS); RECORD(PPD_ENTITIES_OFFSETS); RECORD(VTABLE_USES); RECORD(PPD_SKIPPED_RANGES); RECORD(REFERENCED_SELECTOR_POOL); RECORD(TU_UPDATE_LEXICAL); RECORD(SEMA_DECL_REFS); RECORD(WEAK_UNDECLARED_IDENTIFIERS); RECORD(PENDING_IMPLICIT_INSTANTIATIONS); RECORD(UPDATE_VISIBLE); RECORD(DECL_UPDATE_OFFSETS); RECORD(DECL_UPDATES); RECORD(CUDA_SPECIAL_DECL_REFS); RECORD(HEADER_SEARCH_TABLE); RECORD(FP_PRAGMA_OPTIONS); RECORD(OPENCL_EXTENSIONS); RECORD(OPENCL_EXTENSION_TYPES); RECORD(OPENCL_EXTENSION_DECLS); RECORD(DELEGATING_CTORS); RECORD(KNOWN_NAMESPACES); RECORD(MODULE_OFFSET_MAP); RECORD(SOURCE_MANAGER_LINE_TABLE); RECORD(OBJC_CATEGORIES_MAP); RECORD(FILE_SORTED_DECLS); RECORD(IMPORTED_MODULES); RECORD(OBJC_CATEGORIES); RECORD(MACRO_OFFSET); RECORD(INTERESTING_IDENTIFIERS); RECORD(UNDEFINED_BUT_USED); RECORD(LATE_PARSED_TEMPLATE); RECORD(OPTIMIZE_PRAGMA_OPTIONS); RECORD(MSSTRUCT_PRAGMA_OPTIONS); RECORD(POINTERS_TO_MEMBERS_PRAGMA_OPTIONS); RECORD(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES); RECORD(DELETE_EXPRS_TO_ANALYZE); RECORD(CUDA_PRAGMA_FORCE_HOST_DEVICE_DEPTH); RECORD(PP_CONDITIONAL_STACK); RECORD(DECLS_TO_CHECK_FOR_DEFERRED_DIAGS); RECORD(PP_ASSUME_NONNULL_LOC); // SourceManager Block. BLOCK(SOURCE_MANAGER_BLOCK); RECORD(SM_SLOC_FILE_ENTRY); RECORD(SM_SLOC_BUFFER_ENTRY); RECORD(SM_SLOC_BUFFER_BLOB); RECORD(SM_SLOC_BUFFER_BLOB_COMPRESSED); RECORD(SM_SLOC_EXPANSION_ENTRY); // Preprocessor Block. BLOCK(PREPROCESSOR_BLOCK); RECORD(PP_MACRO_DIRECTIVE_HISTORY); RECORD(PP_MACRO_FUNCTION_LIKE); RECORD(PP_MACRO_OBJECT_LIKE); RECORD(PP_MODULE_MACRO); RECORD(PP_TOKEN); // Submodule Block. BLOCK(SUBMODULE_BLOCK); RECORD(SUBMODULE_METADATA); RECORD(SUBMODULE_DEFINITION); RECORD(SUBMODULE_UMBRELLA_HEADER); RECORD(SUBMODULE_HEADER); RECORD(SUBMODULE_TOPHEADER); RECORD(SUBMODULE_UMBRELLA_DIR); RECORD(SUBMODULE_IMPORTS); RECORD(SUBMODULE_AFFECTING_MODULES); RECORD(SUBMODULE_EXPORTS); RECORD(SUBMODULE_REQUIRES); RECORD(SUBMODULE_EXCLUDED_HEADER); RECORD(SUBMODULE_LINK_LIBRARY); RECORD(SUBMODULE_CONFIG_MACRO); RECORD(SUBMODULE_CONFLICT); RECORD(SUBMODULE_PRIVATE_HEADER); RECORD(SUBMODULE_TEXTUAL_HEADER); RECORD(SUBMODULE_PRIVATE_TEXTUAL_HEADER); RECORD(SUBMODULE_INITIALIZERS); RECORD(SUBMODULE_EXPORT_AS); // Comments Block. BLOCK(COMMENTS_BLOCK); RECORD(COMMENTS_RAW_COMMENT); // Decls and Types block. BLOCK(DECLTYPES_BLOCK); RECORD(TYPE_EXT_QUAL); RECORD(TYPE_COMPLEX); RECORD(TYPE_POINTER); RECORD(TYPE_BLOCK_POINTER); RECORD(TYPE_LVALUE_REFERENCE); RECORD(TYPE_RVALUE_REFERENCE); RECORD(TYPE_MEMBER_POINTER); RECORD(TYPE_CONSTANT_ARRAY); RECORD(TYPE_INCOMPLETE_ARRAY); RECORD(TYPE_VARIABLE_ARRAY); RECORD(TYPE_VECTOR); RECORD(TYPE_EXT_VECTOR); RECORD(TYPE_FUNCTION_NO_PROTO); RECORD(TYPE_FUNCTION_PROTO); RECORD(TYPE_TYPEDEF); RECORD(TYPE_TYPEOF_EXPR); RECORD(TYPE_TYPEOF); RECORD(TYPE_RECORD); RECORD(TYPE_ENUM); RECORD(TYPE_OBJC_INTERFACE); RECORD(TYPE_OBJC_OBJECT_POINTER); RECORD(TYPE_DECLTYPE); RECORD(TYPE_ELABORATED); RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM); RECORD(TYPE_UNRESOLVED_USING); RECORD(TYPE_INJECTED_CLASS_NAME); RECORD(TYPE_OBJC_OBJECT); RECORD(TYPE_TEMPLATE_TYPE_PARM); RECORD(TYPE_TEMPLATE_SPECIALIZATION); RECORD(TYPE_DEPENDENT_NAME); RECORD(TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION); RECORD(TYPE_DEPENDENT_SIZED_ARRAY); RECORD(TYPE_PAREN); RECORD(TYPE_MACRO_QUALIFIED); RECORD(TYPE_PACK_EXPANSION); RECORD(TYPE_ATTRIBUTED); RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK); RECORD(TYPE_AUTO); RECORD(TYPE_UNARY_TRANSFORM); RECORD(TYPE_ATOMIC); RECORD(TYPE_DECAYED); RECORD(TYPE_ADJUSTED); RECORD(TYPE_OBJC_TYPE_PARAM); RECORD(LOCAL_REDECLARATIONS); RECORD(DECL_TYPEDEF); RECORD(DECL_TYPEALIAS); RECORD(DECL_ENUM); RECORD(DECL_RECORD); RECORD(DECL_ENUM_CONSTANT); RECORD(DECL_FUNCTION); RECORD(DECL_OBJC_METHOD); RECORD(DECL_OBJC_INTERFACE); RECORD(DECL_OBJC_PROTOCOL); RECORD(DECL_OBJC_IVAR); RECORD(DECL_OBJC_AT_DEFS_FIELD); RECORD(DECL_OBJC_CATEGORY); RECORD(DECL_OBJC_CATEGORY_IMPL); RECORD(DECL_OBJC_IMPLEMENTATION); RECORD(DECL_OBJC_COMPATIBLE_ALIAS); RECORD(DECL_OBJC_PROPERTY); RECORD(DECL_OBJC_PROPERTY_IMPL); RECORD(DECL_FIELD); RECORD(DECL_MS_PROPERTY); RECORD(DECL_VAR); RECORD(DECL_IMPLICIT_PARAM); RECORD(DECL_PARM_VAR); RECORD(DECL_FILE_SCOPE_ASM); RECORD(DECL_BLOCK); RECORD(DECL_CONTEXT_LEXICAL); RECORD(DECL_CONTEXT_VISIBLE); RECORD(DECL_NAMESPACE); RECORD(DECL_NAMESPACE_ALIAS); RECORD(DECL_USING); RECORD(DECL_USING_SHADOW); RECORD(DECL_USING_DIRECTIVE); RECORD(DECL_UNRESOLVED_USING_VALUE); RECORD(DECL_UNRESOLVED_USING_TYPENAME); RECORD(DECL_LINKAGE_SPEC); RECORD(DECL_CXX_RECORD); RECORD(DECL_CXX_METHOD); RECORD(DECL_CXX_CONSTRUCTOR); RECORD(DECL_CXX_DESTRUCTOR); RECORD(DECL_CXX_CONVERSION); RECORD(DECL_ACCESS_SPEC); RECORD(DECL_FRIEND); RECORD(DECL_FRIEND_TEMPLATE); RECORD(DECL_CLASS_TEMPLATE); RECORD(DECL_CLASS_TEMPLATE_SPECIALIZATION); RECORD(DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION); RECORD(DECL_VAR_TEMPLATE); RECORD(DECL_VAR_TEMPLATE_SPECIALIZATION); RECORD(DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION); RECORD(DECL_FUNCTION_TEMPLATE); RECORD(DECL_TEMPLATE_TYPE_PARM); RECORD(DECL_NON_TYPE_TEMPLATE_PARM); RECORD(DECL_TEMPLATE_TEMPLATE_PARM); RECORD(DECL_CONCEPT); RECORD(DECL_REQUIRES_EXPR_BODY); RECORD(DECL_TYPE_ALIAS_TEMPLATE); RECORD(DECL_STATIC_ASSERT); RECORD(DECL_CXX_BASE_SPECIFIERS); RECORD(DECL_CXX_CTOR_INITIALIZERS); RECORD(DECL_INDIRECTFIELD); RECORD(DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK); RECORD(DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK); RECORD(DECL_IMPORT); RECORD(DECL_OMP_THREADPRIVATE); RECORD(DECL_EMPTY); RECORD(DECL_OBJC_TYPE_PARAM); RECORD(DECL_OMP_CAPTUREDEXPR); RECORD(DECL_PRAGMA_COMMENT); RECORD(DECL_PRAGMA_DETECT_MISMATCH); RECORD(DECL_OMP_DECLARE_REDUCTION); RECORD(DECL_OMP_ALLOCATE); RECORD(DECL_HLSL_BUFFER); // Statements and Exprs can occur in the Decls and Types block. AddStmtsExprs(Stream, Record); BLOCK(PREPROCESSOR_DETAIL_BLOCK); RECORD(PPD_MACRO_EXPANSION); RECORD(PPD_MACRO_DEFINITION); RECORD(PPD_INCLUSION_DIRECTIVE); // Decls and Types block. BLOCK(EXTENSION_BLOCK); RECORD(EXTENSION_METADATA); BLOCK(UNHASHED_CONTROL_BLOCK); RECORD(SIGNATURE); RECORD(AST_BLOCK_HASH); RECORD(DIAGNOSTIC_OPTIONS); RECORD(HEADER_SEARCH_PATHS); RECORD(DIAG_PRAGMA_MAPPINGS); #undef RECORD #undef BLOCK Stream.ExitBlock(); } /// Prepares a path for being written to an AST file by converting it /// to an absolute path and removing nested './'s. /// /// \return \c true if the path was changed. static bool cleanPathForOutput(FileManager &FileMgr, SmallVectorImpl &Path) { bool Changed = FileMgr.makeAbsolutePath(Path); return Changed | llvm::sys::path::remove_dots(Path); } /// Adjusts the given filename to only write out the portion of the /// filename that is not part of the system root directory. /// /// \param Filename the file name to adjust. /// /// \param BaseDir When non-NULL, the PCH file is a relocatable AST file and /// the returned filename will be adjusted by this root directory. /// /// \returns either the original filename (if it needs no adjustment) or the /// adjusted filename (which points into the @p Filename parameter). static const char * adjustFilenameForRelocatableAST(const char *Filename, StringRef BaseDir) { assert(Filename && "No file name to adjust?"); if (BaseDir.empty()) return Filename; // Verify that the filename and the system root have the same prefix. unsigned Pos = 0; for (; Filename[Pos] && Pos < BaseDir.size(); ++Pos) if (Filename[Pos] != BaseDir[Pos]) return Filename; // Prefixes don't match. // We hit the end of the filename before we hit the end of the system root. if (!Filename[Pos]) return Filename; // If there's not a path separator at the end of the base directory nor // immediately after it, then this isn't within the base directory. if (!llvm::sys::path::is_separator(Filename[Pos])) { if (!llvm::sys::path::is_separator(BaseDir.back())) return Filename; } else { // If the file name has a '/' at the current position, skip over the '/'. // We distinguish relative paths from absolute paths by the // absence of '/' at the beginning of relative paths. // // FIXME: This is wrong. We distinguish them by asking if the path is // absolute, which isn't the same thing. And there might be multiple '/'s // in a row. Use a better mechanism to indicate whether we have emitted an // absolute or relative path. ++Pos; } return Filename + Pos; } std::pair ASTWriter::createSignature() const { StringRef AllBytes(Buffer.data(), Buffer.size()); llvm::SHA1 Hasher; Hasher.update(AllBytes.slice(ASTBlockRange.first, ASTBlockRange.second)); ASTFileSignature ASTBlockHash = ASTFileSignature::create(Hasher.result()); // Add the remaining bytes: // 1. Before the unhashed control block. Hasher.update(AllBytes.slice(0, UnhashedControlBlockRange.first)); // 2. Between the unhashed control block and the AST block. Hasher.update( AllBytes.slice(UnhashedControlBlockRange.second, ASTBlockRange.first)); // 3. After the AST block. Hasher.update(AllBytes.slice(ASTBlockRange.second, StringRef::npos)); ASTFileSignature Signature = ASTFileSignature::create(Hasher.result()); return std::make_pair(ASTBlockHash, Signature); } ASTFileSignature ASTWriter::backpatchSignature() { if (!WritingModule || !PP->getHeaderSearchInfo().getHeaderSearchOpts().ModulesHashContent) return {}; // For implicit modules, write the hash of the PCM as its signature. auto BackpatchSignatureAt = [&](const ASTFileSignature &S, uint64_t BitNo) { for (uint8_t Byte : S) { Stream.BackpatchByte(BitNo, Byte); BitNo += 8; } }; ASTFileSignature ASTBlockHash; ASTFileSignature Signature; std::tie(ASTBlockHash, Signature) = createSignature(); BackpatchSignatureAt(ASTBlockHash, ASTBlockHashOffset); BackpatchSignatureAt(Signature, SignatureOffset); return Signature; } void ASTWriter::writeUnhashedControlBlock(Preprocessor &PP, ASTContext &Context) { using namespace llvm; // Flush first to prepare the PCM hash (signature). Stream.FlushToWord(); UnhashedControlBlockRange.first = Stream.GetCurrentBitNo() >> 3; // Enter the block and prepare to write records. RecordData Record; Stream.EnterSubblock(UNHASHED_CONTROL_BLOCK_ID, 5); // For implicit modules, write the hash of the PCM as its signature. if (WritingModule && PP.getHeaderSearchInfo().getHeaderSearchOpts().ModulesHashContent) { // At this point, we don't know the actual signature of the file or the AST // block - we're only able to compute those at the end of the serialization // process. Let's store dummy signatures for now, and replace them with the // real ones later on. // The bitstream VBR-encodes record elements, which makes backpatching them // really difficult. Let's store the signatures as blobs instead - they are // guaranteed to be word-aligned, and we control their format/encoding. auto Dummy = ASTFileSignature::createDummy(); SmallString<128> Blob{Dummy.begin(), Dummy.end()}; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(AST_BLOCK_HASH)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned ASTBlockHashAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SIGNATURE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned SignatureAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Record.push_back(AST_BLOCK_HASH); Stream.EmitRecordWithBlob(ASTBlockHashAbbrev, Record, Blob); ASTBlockHashOffset = Stream.GetCurrentBitNo() - Blob.size() * 8; Record.clear(); Record.push_back(SIGNATURE); Stream.EmitRecordWithBlob(SignatureAbbrev, Record, Blob); SignatureOffset = Stream.GetCurrentBitNo() - Blob.size() * 8; Record.clear(); } const auto &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); // Diagnostic options. const auto &Diags = Context.getDiagnostics(); const DiagnosticOptions &DiagOpts = Diags.getDiagnosticOptions(); if (!HSOpts.ModulesSkipDiagnosticOptions) { #define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name); #define ENUM_DIAGOPT(Name, Type, Bits, Default) \ Record.push_back(static_cast(DiagOpts.get##Name())); #include "clang/Basic/DiagnosticOptions.def" Record.push_back(DiagOpts.Warnings.size()); for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I) AddString(DiagOpts.Warnings[I], Record); Record.push_back(DiagOpts.Remarks.size()); for (unsigned I = 0, N = DiagOpts.Remarks.size(); I != N; ++I) AddString(DiagOpts.Remarks[I], Record); // Note: we don't serialize the log or serialization file names, because // they are generally transient files and will almost always be overridden. Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record); Record.clear(); } // Header search paths. if (!HSOpts.ModulesSkipHeaderSearchPaths) { // Include entries. Record.push_back(HSOpts.UserEntries.size()); for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) { const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I]; AddString(Entry.Path, Record); Record.push_back(static_cast(Entry.Group)); Record.push_back(Entry.IsFramework); Record.push_back(Entry.IgnoreSysRoot); } // System header prefixes. Record.push_back(HSOpts.SystemHeaderPrefixes.size()); for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) { AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record); Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader); } // VFS overlay files. Record.push_back(HSOpts.VFSOverlayFiles.size()); for (StringRef VFSOverlayFile : HSOpts.VFSOverlayFiles) AddString(VFSOverlayFile, Record); Stream.EmitRecord(HEADER_SEARCH_PATHS, Record); } if (!HSOpts.ModulesSkipPragmaDiagnosticMappings) WritePragmaDiagnosticMappings(Diags, /* isModule = */ WritingModule); // Header search entry usage. auto HSEntryUsage = PP.getHeaderSearchInfo().computeUserEntryUsage(); auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_ENTRY_USAGE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // Number of bits. Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Bit vector. unsigned HSUsageAbbrevCode = Stream.EmitAbbrev(std::move(Abbrev)); { RecordData::value_type Record[] = {HEADER_SEARCH_ENTRY_USAGE, HSEntryUsage.size()}; Stream.EmitRecordWithBlob(HSUsageAbbrevCode, Record, bytes(HSEntryUsage)); } // Leave the options block. Stream.ExitBlock(); UnhashedControlBlockRange.second = Stream.GetCurrentBitNo() >> 3; } /// Write the control block. void ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context, StringRef isysroot) { using namespace llvm; Stream.EnterSubblock(CONTROL_BLOCK_ID, 5); RecordData Record; // Metadata auto MetadataAbbrev = std::make_shared(); MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA)); MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj. MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min. MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable // Standard C++ module MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Timestamps MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag unsigned MetadataAbbrevCode = Stream.EmitAbbrev(std::move(MetadataAbbrev)); assert((!WritingModule || isysroot.empty()) && "writing module as a relocatable PCH?"); { RecordData::value_type Record[] = {METADATA, VERSION_MAJOR, VERSION_MINOR, CLANG_VERSION_MAJOR, CLANG_VERSION_MINOR, !isysroot.empty(), isWritingStdCXXNamedModules(), IncludeTimestamps, ASTHasCompilerErrors}; Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record, getClangFullRepositoryVersion()); } if (WritingModule) { // Module name auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev)); RecordData::value_type Record[] = {MODULE_NAME}; Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name); } if (WritingModule && WritingModule->Directory) { SmallString<128> BaseDir; if (PP.getHeaderSearchInfo().getHeaderSearchOpts().ModuleFileHomeIsCwd) { // Use the current working directory as the base path for all inputs. auto CWD = Context.getSourceManager().getFileManager().getOptionalDirectoryRef( "."); BaseDir.assign(CWD->getName()); } else { BaseDir.assign(WritingModule->Directory->getName()); } cleanPathForOutput(Context.getSourceManager().getFileManager(), BaseDir); // If the home of the module is the current working directory, then we // want to pick up the cwd of the build process loading the module, not // our cwd, when we load this module. if (!PP.getHeaderSearchInfo().getHeaderSearchOpts().ModuleFileHomeIsCwd && (!PP.getHeaderSearchInfo() .getHeaderSearchOpts() .ModuleMapFileHomeIsCwd || WritingModule->Directory->getName() != StringRef("."))) { // Module directory. auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(MODULE_DIRECTORY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Directory unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev)); RecordData::value_type Record[] = {MODULE_DIRECTORY}; Stream.EmitRecordWithBlob(AbbrevCode, Record, BaseDir); } // Write out all other paths relative to the base directory if possible. BaseDirectory.assign(BaseDir.begin(), BaseDir.end()); } else if (!isysroot.empty()) { // Write out paths relative to the sysroot if possible. BaseDirectory = std::string(isysroot); } // Module map file if (WritingModule && WritingModule->Kind == Module::ModuleMapModule) { Record.clear(); auto &Map = PP.getHeaderSearchInfo().getModuleMap(); AddPath(WritingModule->PresumedModuleMapFile.empty() ? Map.getModuleMapFileForUniquing(WritingModule) ->getNameAsRequested() : StringRef(WritingModule->PresumedModuleMapFile), Record); // Additional module map files. if (auto *AdditionalModMaps = Map.getAdditionalModuleMapFiles(WritingModule)) { Record.push_back(AdditionalModMaps->size()); SmallVector ModMaps(AdditionalModMaps->begin(), AdditionalModMaps->end()); llvm::sort(ModMaps, [](FileEntryRef A, FileEntryRef B) { return A.getName() < B.getName(); }); for (FileEntryRef F : ModMaps) AddPath(F.getName(), Record); } else { Record.push_back(0); } Stream.EmitRecord(MODULE_MAP_FILE, Record); } // Imports if (Chain) { serialization::ModuleManager &Mgr = Chain->getModuleManager(); Record.clear(); for (ModuleFile &M : Mgr) { // Skip modules that weren't directly imported. if (!M.isDirectlyImported()) continue; Record.push_back((unsigned)M.Kind); // FIXME: Stable encoding Record.push_back(M.StandardCXXModule); AddSourceLocation(M.ImportLoc, Record); // We don't want to hard code the information about imported modules // in the C++20 named modules. if (!M.StandardCXXModule) { // If we have calculated signature, there is no need to store // the size or timestamp. Record.push_back(M.Signature ? 0 : M.File.getSize()); Record.push_back(M.Signature ? 0 : getTimestampForOutput(M.File)); llvm::append_range(Record, M.Signature); } AddString(M.ModuleName, Record); if (!M.StandardCXXModule) AddPath(M.FileName, Record); } Stream.EmitRecord(IMPORTS, Record); } // Write the options block. Stream.EnterSubblock(OPTIONS_BLOCK_ID, 4); // Language options. Record.clear(); const LangOptions &LangOpts = Context.getLangOpts(); #define LANGOPT(Name, Bits, Default, Description) \ Record.push_back(LangOpts.Name); #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ Record.push_back(static_cast(LangOpts.get##Name())); #include "clang/Basic/LangOptions.def" #define SANITIZER(NAME, ID) \ Record.push_back(LangOpts.Sanitize.has(SanitizerKind::ID)); #include "clang/Basic/Sanitizers.def" Record.push_back(LangOpts.ModuleFeatures.size()); for (StringRef Feature : LangOpts.ModuleFeatures) AddString(Feature, Record); Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind()); AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record); AddString(LangOpts.CurrentModule, Record); // Comment options. Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size()); for (const auto &I : LangOpts.CommentOpts.BlockCommandNames) { AddString(I, Record); } Record.push_back(LangOpts.CommentOpts.ParseAllComments); // OpenMP offloading options. Record.push_back(LangOpts.OMPTargetTriples.size()); for (auto &T : LangOpts.OMPTargetTriples) AddString(T.getTriple(), Record); AddString(LangOpts.OMPHostIRFile, Record); Stream.EmitRecord(LANGUAGE_OPTIONS, Record); // Target options. Record.clear(); const TargetInfo &Target = Context.getTargetInfo(); const TargetOptions &TargetOpts = Target.getTargetOpts(); AddString(TargetOpts.Triple, Record); AddString(TargetOpts.CPU, Record); AddString(TargetOpts.TuneCPU, Record); AddString(TargetOpts.ABI, Record); Record.push_back(TargetOpts.FeaturesAsWritten.size()); for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) { AddString(TargetOpts.FeaturesAsWritten[I], Record); } Record.push_back(TargetOpts.Features.size()); for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) { AddString(TargetOpts.Features[I], Record); } Stream.EmitRecord(TARGET_OPTIONS, Record); // File system options. Record.clear(); const FileSystemOptions &FSOpts = Context.getSourceManager().getFileManager().getFileSystemOpts(); AddString(FSOpts.WorkingDir, Record); Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record); // Header search options. Record.clear(); const HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); AddString(HSOpts.Sysroot, Record); AddString(HSOpts.ResourceDir, Record); AddString(HSOpts.ModuleCachePath, Record); AddString(HSOpts.ModuleUserBuildPath, Record); Record.push_back(HSOpts.DisableModuleHash); Record.push_back(HSOpts.ImplicitModuleMaps); Record.push_back(HSOpts.ModuleMapFileHomeIsCwd); Record.push_back(HSOpts.EnablePrebuiltImplicitModules); Record.push_back(HSOpts.UseBuiltinIncludes); Record.push_back(HSOpts.UseStandardSystemIncludes); Record.push_back(HSOpts.UseStandardCXXIncludes); Record.push_back(HSOpts.UseLibcxx); // Write out the specific module cache path that contains the module files. AddString(PP.getHeaderSearchInfo().getModuleCachePath(), Record); Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record); // Preprocessor options. Record.clear(); const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts(); // If we're building an implicit module with a context hash, the importer is // guaranteed to have the same macros defined on the command line. Skip // writing them. bool SkipMacros = BuildingImplicitModule && !HSOpts.DisableModuleHash; bool WriteMacros = !SkipMacros; Record.push_back(WriteMacros); if (WriteMacros) { // Macro definitions. Record.push_back(PPOpts.Macros.size()); for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) { AddString(PPOpts.Macros[I].first, Record); Record.push_back(PPOpts.Macros[I].second); } } // Includes Record.push_back(PPOpts.Includes.size()); for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I) AddString(PPOpts.Includes[I], Record); // Macro includes Record.push_back(PPOpts.MacroIncludes.size()); for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I) AddString(PPOpts.MacroIncludes[I], Record); Record.push_back(PPOpts.UsePredefines); // Detailed record is important since it is used for the module cache hash. Record.push_back(PPOpts.DetailedRecord); AddString(PPOpts.ImplicitPCHInclude, Record); Record.push_back(static_cast(PPOpts.ObjCXXARCStandardLibrary)); Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record); // Leave the options block. Stream.ExitBlock(); // Original file name and file ID SourceManager &SM = Context.getSourceManager(); if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) { auto FileAbbrev = std::make_shared(); FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE)); FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned FileAbbrevCode = Stream.EmitAbbrev(std::move(FileAbbrev)); Record.clear(); Record.push_back(ORIGINAL_FILE); AddFileID(SM.getMainFileID(), Record); EmitRecordWithPath(FileAbbrevCode, Record, MainFile->getName()); } Record.clear(); AddFileID(SM.getMainFileID(), Record); Stream.EmitRecord(ORIGINAL_FILE_ID, Record); WriteInputFiles(Context.SourceMgr, PP.getHeaderSearchInfo().getHeaderSearchOpts()); Stream.ExitBlock(); } namespace { /// An input file. struct InputFileEntry { FileEntryRef File; bool IsSystemFile; bool IsTransient; bool BufferOverridden; bool IsTopLevel; bool IsModuleMap; uint32_t ContentHash[2]; InputFileEntry(FileEntryRef File) : File(File) {} }; } // namespace void ASTWriter::WriteInputFiles(SourceManager &SourceMgr, HeaderSearchOptions &HSOpts) { using namespace llvm; Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4); // Create input-file abbreviation. auto IFAbbrev = std::make_shared(); IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE)); IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Transient IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Top-level IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Module map IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // Name as req. len IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name as req. + name unsigned IFAbbrevCode = Stream.EmitAbbrev(std::move(IFAbbrev)); // Create input file hash abbreviation. auto IFHAbbrev = std::make_shared(); IFHAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_HASH)); IFHAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); IFHAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); unsigned IFHAbbrevCode = Stream.EmitAbbrev(std::move(IFHAbbrev)); uint64_t InputFilesOffsetBase = Stream.GetCurrentBitNo(); // Get all ContentCache objects for files. std::vector UserFiles; std::vector SystemFiles; for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) { // Get this source location entry. const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I); assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc); // We only care about file entries that were not overridden. if (!SLoc->isFile()) continue; const SrcMgr::FileInfo &File = SLoc->getFile(); const SrcMgr::ContentCache *Cache = &File.getContentCache(); if (!Cache->OrigEntry) continue; // Do not emit input files that do not affect current module. if (!IsSLocAffecting[I]) continue; InputFileEntry Entry(*Cache->OrigEntry); Entry.IsSystemFile = isSystem(File.getFileCharacteristic()); Entry.IsTransient = Cache->IsTransient; Entry.BufferOverridden = Cache->BufferOverridden; Entry.IsTopLevel = File.getIncludeLoc().isInvalid(); Entry.IsModuleMap = isModuleMap(File.getFileCharacteristic()); auto ContentHash = hash_code(-1); if (PP->getHeaderSearchInfo() .getHeaderSearchOpts() .ValidateASTInputFilesContent) { auto MemBuff = Cache->getBufferIfLoaded(); if (MemBuff) ContentHash = hash_value(MemBuff->getBuffer()); else PP->Diag(SourceLocation(), diag::err_module_unable_to_hash_content) << Entry.File.getName(); } auto CH = llvm::APInt(64, ContentHash); Entry.ContentHash[0] = static_cast(CH.getLoBits(32).getZExtValue()); Entry.ContentHash[1] = static_cast(CH.getHiBits(32).getZExtValue()); if (Entry.IsSystemFile) SystemFiles.push_back(Entry); else UserFiles.push_back(Entry); } // User files go at the front, system files at the back. auto SortedFiles = llvm::concat(std::move(UserFiles), std::move(SystemFiles)); unsigned UserFilesNum = 0; // Write out all of the input files. std::vector InputFileOffsets; for (const auto &Entry : SortedFiles) { uint32_t &InputFileID = InputFileIDs[Entry.File]; if (InputFileID != 0) continue; // already recorded this file. // Record this entry's offset. InputFileOffsets.push_back(Stream.GetCurrentBitNo() - InputFilesOffsetBase); InputFileID = InputFileOffsets.size(); if (!Entry.IsSystemFile) ++UserFilesNum; // Emit size/modification time for this file. // And whether this file was overridden. { SmallString<128> NameAsRequested = Entry.File.getNameAsRequested(); SmallString<128> Name = Entry.File.getName(); PreparePathForOutput(NameAsRequested); PreparePathForOutput(Name); if (Name == NameAsRequested) Name.clear(); RecordData::value_type Record[] = { INPUT_FILE, InputFileOffsets.size(), (uint64_t)Entry.File.getSize(), (uint64_t)getTimestampForOutput(Entry.File), Entry.BufferOverridden, Entry.IsTransient, Entry.IsTopLevel, Entry.IsModuleMap, NameAsRequested.size()}; Stream.EmitRecordWithBlob(IFAbbrevCode, Record, (NameAsRequested + Name).str()); } // Emit content hash for this file. { RecordData::value_type Record[] = {INPUT_FILE_HASH, Entry.ContentHash[0], Entry.ContentHash[1]}; Stream.EmitRecordWithAbbrev(IFHAbbrevCode, Record); } } Stream.ExitBlock(); // Create input file offsets abbreviation. auto OffsetsAbbrev = std::make_shared(); OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS)); OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system // input files OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(std::move(OffsetsAbbrev)); // Write input file offsets. RecordData::value_type Record[] = {INPUT_FILE_OFFSETS, InputFileOffsets.size(), UserFilesNum}; Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, bytes(InputFileOffsets)); } //===----------------------------------------------------------------------===// // Source Manager Serialization //===----------------------------------------------------------------------===// /// Create an abbreviation for the SLocEntry that refers to a /// file. static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives // FileEntry fields. Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls return Stream.EmitAbbrev(std::move(Abbrev)); } /// Create an abbreviation for the SLocEntry that refers to a /// buffer. static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob return Stream.EmitAbbrev(std::move(Abbrev)); } /// Create an abbreviation for the SLocEntry that refers to a /// buffer's blob. static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream, bool Compressed) { using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(Compressed ? SM_SLOC_BUFFER_BLOB_COMPRESSED : SM_SLOC_BUFFER_BLOB)); if (Compressed) Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Uncompressed size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob return Stream.EmitAbbrev(std::move(Abbrev)); } /// Create an abbreviation for the SLocEntry that refers to a macro /// expansion. static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Start location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // End location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Is token range Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length return Stream.EmitAbbrev(std::move(Abbrev)); } /// Emit key length and data length as ULEB-encoded data, and return them as a /// pair. static std::pair emitULEBKeyDataLength(unsigned KeyLen, unsigned DataLen, raw_ostream &Out) { llvm::encodeULEB128(KeyLen, Out); llvm::encodeULEB128(DataLen, Out); return std::make_pair(KeyLen, DataLen); } namespace { // Trait used for the on-disk hash table of header search information. class HeaderFileInfoTrait { ASTWriter &Writer; // Keep track of the framework names we've used during serialization. SmallString<128> FrameworkStringData; llvm::StringMap FrameworkNameOffset; public: HeaderFileInfoTrait(ASTWriter &Writer) : Writer(Writer) {} struct key_type { StringRef Filename; off_t Size; time_t ModTime; }; using key_type_ref = const key_type &; using UnresolvedModule = llvm::PointerIntPair; struct data_type { const HeaderFileInfo &HFI; bool AlreadyIncluded; ArrayRef KnownHeaders; UnresolvedModule Unresolved; }; using data_type_ref = const data_type &; using hash_value_type = unsigned; using offset_type = unsigned; hash_value_type ComputeHash(key_type_ref key) { // The hash is based only on size/time of the file, so that the reader can // match even when symlinking or excess path elements ("foo/../", "../") // change the form of the name. However, complete path is still the key. return llvm::hash_combine(key.Size, key.ModTime); } std::pair EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) { unsigned KeyLen = key.Filename.size() + 1 + 8 + 8; unsigned DataLen = 1 + 4 + 4; for (auto ModInfo : Data.KnownHeaders) if (Writer.getLocalOrImportedSubmoduleID(ModInfo.getModule())) DataLen += 4; if (Data.Unresolved.getPointer()) DataLen += 4; return emitULEBKeyDataLength(KeyLen, DataLen, Out); } void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); LE.write(key.Size); KeyLen -= 8; LE.write(key.ModTime); KeyLen -= 8; Out.write(key.Filename.data(), KeyLen); } void EmitData(raw_ostream &Out, key_type_ref key, data_type_ref Data, unsigned DataLen) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); uint64_t Start = Out.tell(); (void)Start; unsigned char Flags = (Data.AlreadyIncluded << 6) | (Data.HFI.isImport << 5) | (Writer.isWritingStdCXXNamedModules() ? 0 : Data.HFI.isPragmaOnce << 4) | (Data.HFI.DirInfo << 1) | Data.HFI.IndexHeaderMapHeader; LE.write(Flags); if (!Data.HFI.ControllingMacro) LE.write(Data.HFI.ControllingMacroID); else LE.write(Writer.getIdentifierRef(Data.HFI.ControllingMacro)); unsigned Offset = 0; if (!Data.HFI.Framework.empty()) { // If this header refers into a framework, save the framework name. llvm::StringMap::iterator Pos = FrameworkNameOffset.find(Data.HFI.Framework); if (Pos == FrameworkNameOffset.end()) { Offset = FrameworkStringData.size() + 1; FrameworkStringData.append(Data.HFI.Framework); FrameworkStringData.push_back(0); FrameworkNameOffset[Data.HFI.Framework] = Offset; } else Offset = Pos->second; } LE.write(Offset); auto EmitModule = [&](Module *M, ModuleMap::ModuleHeaderRole Role) { if (uint32_t ModID = Writer.getLocalOrImportedSubmoduleID(M)) { uint32_t Value = (ModID << 3) | (unsigned)Role; assert((Value >> 3) == ModID && "overflow in header module info"); LE.write(Value); } }; for (auto ModInfo : Data.KnownHeaders) EmitModule(ModInfo.getModule(), ModInfo.getRole()); if (Data.Unresolved.getPointer()) EmitModule(Data.Unresolved.getPointer(), Data.Unresolved.getInt()); assert(Out.tell() - Start == DataLen && "Wrong data length"); } const char *strings_begin() const { return FrameworkStringData.begin(); } const char *strings_end() const { return FrameworkStringData.end(); } }; } // namespace /// Write the header search block for the list of files that /// /// \param HS The header search structure to save. void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS) { HeaderFileInfoTrait GeneratorTrait(*this); llvm::OnDiskChainedHashTableGenerator Generator; SmallVector SavedStrings; unsigned NumHeaderSearchEntries = 0; // Find all unresolved headers for the current module. We generally will // have resolved them before we get here, but not necessarily: we might be // compiling a preprocessed module, where there is no requirement for the // original files to exist any more. const HeaderFileInfo Empty; // So we can take a reference. if (WritingModule) { llvm::SmallVector Worklist(1, WritingModule); while (!Worklist.empty()) { Module *M = Worklist.pop_back_val(); // We don't care about headers in unimportable submodules. if (M->isUnimportable()) continue; // Map to disk files where possible, to pick up any missing stat // information. This also means we don't need to check the unresolved // headers list when emitting resolved headers in the first loop below. // FIXME: It'd be preferable to avoid doing this if we were given // sufficient stat information in the module map. HS.getModuleMap().resolveHeaderDirectives(M, /*File=*/std::nullopt); // If the file didn't exist, we can still create a module if we were given // enough information in the module map. for (const auto &U : M->MissingHeaders) { // Check that we were given enough information to build a module // without this file existing on disk. if (!U.Size || (!U.ModTime && IncludeTimestamps)) { PP->Diag(U.FileNameLoc, diag::err_module_no_size_mtime_for_header) << WritingModule->getFullModuleName() << U.Size.has_value() << U.FileName; continue; } // Form the effective relative pathname for the file. SmallString<128> Filename(M->Directory->getName()); llvm::sys::path::append(Filename, U.FileName); PreparePathForOutput(Filename); StringRef FilenameDup = strdup(Filename.c_str()); SavedStrings.push_back(FilenameDup.data()); HeaderFileInfoTrait::key_type Key = { FilenameDup, *U.Size, IncludeTimestamps ? *U.ModTime : 0}; HeaderFileInfoTrait::data_type Data = { Empty, false, {}, {M, ModuleMap::headerKindToRole(U.Kind)}}; // FIXME: Deal with cases where there are multiple unresolved header // directives in different submodules for the same header. Generator.insert(Key, Data, GeneratorTrait); ++NumHeaderSearchEntries; } auto SubmodulesRange = M->submodules(); Worklist.append(SubmodulesRange.begin(), SubmodulesRange.end()); } } SmallVector FilesByUID; HS.getFileMgr().GetUniqueIDMapping(FilesByUID); if (FilesByUID.size() > HS.header_file_size()) FilesByUID.resize(HS.header_file_size()); for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) { OptionalFileEntryRef File = FilesByUID[UID]; if (!File) continue; // Get the file info. This will load info from the external source if // necessary. Skip emitting this file if we have no information on it // as a header file (in which case HFI will be null) or if it hasn't // changed since it was loaded. Also skip it if it's for a modular header // from a different module; in that case, we rely on the module(s) // containing the header to provide this information. const HeaderFileInfo *HFI = HS.getExistingFileInfo(*File, /*WantExternal*/!Chain); if (!HFI || (HFI->isModuleHeader && !HFI->isCompilingModuleHeader)) continue; // Massage the file path into an appropriate form. StringRef Filename = File->getName(); SmallString<128> FilenameTmp(Filename); if (PreparePathForOutput(FilenameTmp)) { // If we performed any translation on the file name at all, we need to // save this string, since the generator will refer to it later. Filename = StringRef(strdup(FilenameTmp.c_str())); SavedStrings.push_back(Filename.data()); } bool Included = PP->alreadyIncluded(*File); HeaderFileInfoTrait::key_type Key = { Filename, File->getSize(), getTimestampForOutput(*File) }; HeaderFileInfoTrait::data_type Data = { *HFI, Included, HS.getModuleMap().findResolvedModulesForHeader(*File), {} }; Generator.insert(Key, Data, GeneratorTrait); ++NumHeaderSearchEntries; } // Create the on-disk hash table in a buffer. SmallString<4096> TableData; uint32_t BucketOffset; { using namespace llvm::support; llvm::raw_svector_ostream Out(TableData); // Make sure that no bucket is at offset 0 endian::write(Out, 0, llvm::endianness::little); BucketOffset = Generator.Emit(Out, GeneratorTrait); } // Create a blob abbreviation using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned TableAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); // Write the header search table RecordData::value_type Record[] = {HEADER_SEARCH_TABLE, BucketOffset, NumHeaderSearchEntries, TableData.size()}; TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end()); Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData); // Free all of the strings we had to duplicate. for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I) free(const_cast(SavedStrings[I])); } static void emitBlob(llvm::BitstreamWriter &Stream, StringRef Blob, unsigned SLocBufferBlobCompressedAbbrv, unsigned SLocBufferBlobAbbrv) { using RecordDataType = ASTWriter::RecordData::value_type; // Compress the buffer if possible. We expect that almost all PCM // consumers will not want its contents. SmallVector CompressedBuffer; if (llvm::compression::zstd::isAvailable()) { llvm::compression::zstd::compress( llvm::arrayRefFromStringRef(Blob.drop_back(1)), CompressedBuffer, 9); RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB_COMPRESSED, Blob.size() - 1}; Stream.EmitRecordWithBlob(SLocBufferBlobCompressedAbbrv, Record, llvm::toStringRef(CompressedBuffer)); return; } if (llvm::compression::zlib::isAvailable()) { llvm::compression::zlib::compress( llvm::arrayRefFromStringRef(Blob.drop_back(1)), CompressedBuffer); RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB_COMPRESSED, Blob.size() - 1}; Stream.EmitRecordWithBlob(SLocBufferBlobCompressedAbbrv, Record, llvm::toStringRef(CompressedBuffer)); return; } RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB}; Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, Blob); } /// Writes the block containing the serialized form of the /// source manager. /// /// TODO: We should probably use an on-disk hash table (stored in a /// blob), indexed based on the file name, so that we only create /// entries for files that we actually need. In the common case (no /// errors), we probably won't have to create file entries for any of /// the files in the AST. void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr, const Preprocessor &PP) { RecordData Record; // Enter the source manager block. Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 4); const uint64_t SourceManagerBlockOffset = Stream.GetCurrentBitNo(); // Abbreviations for the various kinds of source-location entries. unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream); unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream); unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream, false); unsigned SLocBufferBlobCompressedAbbrv = CreateSLocBufferBlobAbbrev(Stream, true); unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream); // Write out the source location entry table. We skip the first // entry, which is always the same dummy entry. std::vector SLocEntryOffsets; uint64_t SLocEntryOffsetsBase = Stream.GetCurrentBitNo(); SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1); for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) { // Get this source location entry. const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I); FileID FID = FileID::get(I); assert(&SourceMgr.getSLocEntry(FID) == SLoc); // Record the offset of this source-location entry. uint64_t Offset = Stream.GetCurrentBitNo() - SLocEntryOffsetsBase; assert((Offset >> 32) == 0 && "SLocEntry offset too large"); // Figure out which record code to use. unsigned Code; if (SLoc->isFile()) { const SrcMgr::ContentCache *Cache = &SLoc->getFile().getContentCache(); if (Cache->OrigEntry) { Code = SM_SLOC_FILE_ENTRY; } else Code = SM_SLOC_BUFFER_ENTRY; } else Code = SM_SLOC_EXPANSION_ENTRY; Record.clear(); Record.push_back(Code); if (SLoc->isFile()) { const SrcMgr::FileInfo &File = SLoc->getFile(); const SrcMgr::ContentCache *Content = &File.getContentCache(); // Do not emit files that were not listed as inputs. if (!IsSLocAffecting[I]) continue; SLocEntryOffsets.push_back(Offset); // Starting offset of this entry within this module, so skip the dummy. Record.push_back(getAdjustedOffset(SLoc->getOffset()) - 2); AddSourceLocation(File.getIncludeLoc(), Record); Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding Record.push_back(File.hasLineDirectives()); bool EmitBlob = false; if (Content->OrigEntry) { assert(Content->OrigEntry == Content->ContentsEntry && "Writing to AST an overridden file is not supported"); // The source location entry is a file. Emit input file ID. assert(InputFileIDs[*Content->OrigEntry] != 0 && "Missed file entry"); Record.push_back(InputFileIDs[*Content->OrigEntry]); Record.push_back(getAdjustedNumCreatedFIDs(FID)); FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID); if (FDI != FileDeclIDs.end()) { Record.push_back(FDI->second->FirstDeclIndex); Record.push_back(FDI->second->DeclIDs.size()); } else { Record.push_back(0); Record.push_back(0); } Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record); if (Content->BufferOverridden || Content->IsTransient) EmitBlob = true; } else { // The source location entry is a buffer. The blob associated // with this entry contains the contents of the buffer. // We add one to the size so that we capture the trailing NULL // that is required by llvm::MemoryBuffer::getMemBuffer (on // the reader side). std::optional Buffer = Content->getBufferOrNone(PP.getDiagnostics(), PP.getFileManager()); StringRef Name = Buffer ? Buffer->getBufferIdentifier() : ""; Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record, StringRef(Name.data(), Name.size() + 1)); EmitBlob = true; } if (EmitBlob) { // Include the implicit terminating null character in the on-disk buffer // if we're writing it uncompressed. std::optional Buffer = Content->getBufferOrNone(PP.getDiagnostics(), PP.getFileManager()); if (!Buffer) Buffer = llvm::MemoryBufferRef("<<>>", ""); StringRef Blob(Buffer->getBufferStart(), Buffer->getBufferSize() + 1); emitBlob(Stream, Blob, SLocBufferBlobCompressedAbbrv, SLocBufferBlobAbbrv); } } else { // The source location entry is a macro expansion. const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion(); SLocEntryOffsets.push_back(Offset); // Starting offset of this entry within this module, so skip the dummy. Record.push_back(getAdjustedOffset(SLoc->getOffset()) - 2); LocSeq::State Seq; AddSourceLocation(Expansion.getSpellingLoc(), Record, Seq); AddSourceLocation(Expansion.getExpansionLocStart(), Record, Seq); AddSourceLocation(Expansion.isMacroArgExpansion() ? SourceLocation() : Expansion.getExpansionLocEnd(), Record, Seq); Record.push_back(Expansion.isExpansionTokenRange()); // Compute the token length for this macro expansion. SourceLocation::UIntTy NextOffset = SourceMgr.getNextLocalOffset(); if (I + 1 != N) NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset(); Record.push_back(getAdjustedOffset(NextOffset - SLoc->getOffset()) - 1); Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record); } } Stream.ExitBlock(); if (SLocEntryOffsets.empty()) return; // Write the source-location offsets table into the AST block. This // table is used for lazily loading source-location information. using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // base offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); { RecordData::value_type Record[] = { SOURCE_LOCATION_OFFSETS, SLocEntryOffsets.size(), getAdjustedOffset(SourceMgr.getNextLocalOffset()) - 1 /* skip dummy */, SLocEntryOffsetsBase - SourceManagerBlockOffset}; Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record, bytes(SLocEntryOffsets)); } // Write the line table. It depends on remapping working, so it must come // after the source location offsets. if (SourceMgr.hasLineTable()) { LineTableInfo &LineTable = SourceMgr.getLineTable(); Record.clear(); // Emit the needed file names. llvm::DenseMap FilenameMap; FilenameMap[-1] = -1; // For unspecified filenames. for (const auto &L : LineTable) { if (L.first.ID < 0) continue; for (auto &LE : L.second) { if (FilenameMap.insert(std::make_pair(LE.FilenameID, FilenameMap.size() - 1)).second) AddPath(LineTable.getFilename(LE.FilenameID), Record); } } Record.push_back(0); // Emit the line entries for (const auto &L : LineTable) { // Only emit entries for local files. if (L.first.ID < 0) continue; AddFileID(L.first, Record); // Emit the line entries Record.push_back(L.second.size()); for (const auto &LE : L.second) { Record.push_back(LE.FileOffset); Record.push_back(LE.LineNo); Record.push_back(FilenameMap[LE.FilenameID]); Record.push_back((unsigned)LE.FileKind); Record.push_back(LE.IncludeOffset); } } Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record); } } //===----------------------------------------------------------------------===// // Preprocessor Serialization //===----------------------------------------------------------------------===// static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule, const Preprocessor &PP) { if (MacroInfo *MI = MD->getMacroInfo()) if (MI->isBuiltinMacro()) return true; if (IsModule) { SourceLocation Loc = MD->getLocation(); if (Loc.isInvalid()) return true; if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID()) return true; } return false; } /// Writes the block containing the serialized form of the /// preprocessor. void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) { uint64_t MacroOffsetsBase = Stream.GetCurrentBitNo(); PreprocessingRecord *PPRec = PP.getPreprocessingRecord(); if (PPRec) WritePreprocessorDetail(*PPRec, MacroOffsetsBase); RecordData Record; RecordData ModuleMacroRecord; // If the preprocessor __COUNTER__ value has been bumped, remember it. if (PP.getCounterValue() != 0) { RecordData::value_type Record[] = {PP.getCounterValue()}; Stream.EmitRecord(PP_COUNTER_VALUE, Record); } // If we have a recorded #pragma assume_nonnull, remember it so it can be // replayed when the preamble terminates into the main file. SourceLocation AssumeNonNullLoc = PP.getPreambleRecordedPragmaAssumeNonNullLoc(); if (AssumeNonNullLoc.isValid()) { assert(PP.isRecordingPreamble()); AddSourceLocation(AssumeNonNullLoc, Record); Stream.EmitRecord(PP_ASSUME_NONNULL_LOC, Record); Record.clear(); } if (PP.isRecordingPreamble() && PP.hasRecordedPreamble()) { assert(!IsModule); auto SkipInfo = PP.getPreambleSkipInfo(); if (SkipInfo) { Record.push_back(true); AddSourceLocation(SkipInfo->HashTokenLoc, Record); AddSourceLocation(SkipInfo->IfTokenLoc, Record); Record.push_back(SkipInfo->FoundNonSkipPortion); Record.push_back(SkipInfo->FoundElse); AddSourceLocation(SkipInfo->ElseLoc, Record); } else { Record.push_back(false); } for (const auto &Cond : PP.getPreambleConditionalStack()) { AddSourceLocation(Cond.IfLoc, Record); Record.push_back(Cond.WasSkipping); Record.push_back(Cond.FoundNonSkip); Record.push_back(Cond.FoundElse); } Stream.EmitRecord(PP_CONDITIONAL_STACK, Record); Record.clear(); } // Enter the preprocessor block. Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3); // If the AST file contains __DATE__ or __TIME__ emit a warning about this. // FIXME: Include a location for the use, and say which one was used. if (PP.SawDateOrTime()) PP.Diag(SourceLocation(), diag::warn_module_uses_date_time) << IsModule; // Loop over all the macro directives that are live at the end of the file, // emitting each to the PP section. // Construct the list of identifiers with macro directives that need to be // serialized. SmallVector MacroIdentifiers; // It is meaningless to emit macros for named modules. It only wastes times // and spaces. if (!isWritingStdCXXNamedModules()) for (auto &Id : PP.getIdentifierTable()) if (Id.second->hadMacroDefinition() && (!Id.second->isFromAST() || Id.second->hasChangedSinceDeserialization())) MacroIdentifiers.push_back(Id.second); // Sort the set of macro definitions that need to be serialized by the // name of the macro, to provide a stable ordering. llvm::sort(MacroIdentifiers, llvm::deref>()); // Emit the macro directives as a list and associate the offset with the // identifier they belong to. for (const IdentifierInfo *Name : MacroIdentifiers) { MacroDirective *MD = PP.getLocalMacroDirectiveHistory(Name); uint64_t StartOffset = Stream.GetCurrentBitNo() - MacroOffsetsBase; assert((StartOffset >> 32) == 0 && "Macro identifiers offset too large"); // Write out any exported module macros. bool EmittedModuleMacros = false; // C+=20 Header Units are compiled module interfaces, but they preserve // macros that are live (i.e. have a defined value) at the end of the // compilation. So when writing a header unit, we preserve only the final // value of each macro (and discard any that are undefined). Header units // do not have sub-modules (although they might import other header units). // PCH files, conversely, retain the history of each macro's define/undef // and of leaf macros in sub modules. if (IsModule && WritingModule->isHeaderUnit()) { // This is for the main TU when it is a C++20 header unit. // We preserve the final state of defined macros, and we do not emit ones // that are undefined. if (!MD || shouldIgnoreMacro(MD, IsModule, PP) || MD->getKind() == MacroDirective::MD_Undefine) continue; AddSourceLocation(MD->getLocation(), Record); Record.push_back(MD->getKind()); if (auto *DefMD = dyn_cast(MD)) { Record.push_back(getMacroRef(DefMD->getInfo(), Name)); } else if (auto *VisMD = dyn_cast(MD)) { Record.push_back(VisMD->isPublic()); } ModuleMacroRecord.push_back(getSubmoduleID(WritingModule)); ModuleMacroRecord.push_back(getMacroRef(MD->getMacroInfo(), Name)); Stream.EmitRecord(PP_MODULE_MACRO, ModuleMacroRecord); ModuleMacroRecord.clear(); EmittedModuleMacros = true; } else { // Emit the macro directives in reverse source order. for (; MD; MD = MD->getPrevious()) { // Once we hit an ignored macro, we're done: the rest of the chain // will all be ignored macros. if (shouldIgnoreMacro(MD, IsModule, PP)) break; AddSourceLocation(MD->getLocation(), Record); Record.push_back(MD->getKind()); if (auto *DefMD = dyn_cast(MD)) { Record.push_back(getMacroRef(DefMD->getInfo(), Name)); } else if (auto *VisMD = dyn_cast(MD)) { Record.push_back(VisMD->isPublic()); } } // We write out exported module macros for PCH as well. auto Leafs = PP.getLeafModuleMacros(Name); SmallVector Worklist(Leafs.begin(), Leafs.end()); llvm::DenseMap Visits; while (!Worklist.empty()) { auto *Macro = Worklist.pop_back_val(); // Emit a record indicating this submodule exports this macro. ModuleMacroRecord.push_back(getSubmoduleID(Macro->getOwningModule())); ModuleMacroRecord.push_back(getMacroRef(Macro->getMacroInfo(), Name)); for (auto *M : Macro->overrides()) ModuleMacroRecord.push_back(getSubmoduleID(M->getOwningModule())); Stream.EmitRecord(PP_MODULE_MACRO, ModuleMacroRecord); ModuleMacroRecord.clear(); // Enqueue overridden macros once we've visited all their ancestors. for (auto *M : Macro->overrides()) if (++Visits[M] == M->getNumOverridingMacros()) Worklist.push_back(M); EmittedModuleMacros = true; } } if (Record.empty() && !EmittedModuleMacros) continue; IdentMacroDirectivesOffsetMap[Name] = StartOffset; Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record); Record.clear(); } /// Offsets of each of the macros into the bitstream, indexed by /// the local macro ID /// /// For each identifier that is associated with a macro, this map /// provides the offset into the bitstream where that macro is /// defined. std::vector MacroOffsets; for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) { const IdentifierInfo *Name = MacroInfosToEmit[I].Name; MacroInfo *MI = MacroInfosToEmit[I].MI; MacroID ID = MacroInfosToEmit[I].ID; if (ID < FirstMacroID) { assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?"); continue; } // Record the local offset of this macro. unsigned Index = ID - FirstMacroID; if (Index >= MacroOffsets.size()) MacroOffsets.resize(Index + 1); uint64_t Offset = Stream.GetCurrentBitNo() - MacroOffsetsBase; assert((Offset >> 32) == 0 && "Macro offset too large"); MacroOffsets[Index] = Offset; AddIdentifierRef(Name, Record); AddSourceLocation(MI->getDefinitionLoc(), Record); AddSourceLocation(MI->getDefinitionEndLoc(), Record); Record.push_back(MI->isUsed()); Record.push_back(MI->isUsedForHeaderGuard()); Record.push_back(MI->getNumTokens()); unsigned Code; if (MI->isObjectLike()) { Code = PP_MACRO_OBJECT_LIKE; } else { Code = PP_MACRO_FUNCTION_LIKE; Record.push_back(MI->isC99Varargs()); Record.push_back(MI->isGNUVarargs()); Record.push_back(MI->hasCommaPasting()); Record.push_back(MI->getNumParams()); for (const IdentifierInfo *Param : MI->params()) AddIdentifierRef(Param, Record); } // If we have a detailed preprocessing record, record the macro definition // ID that corresponds to this macro. if (PPRec) Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]); Stream.EmitRecord(Code, Record); Record.clear(); // Emit the tokens array. for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) { // Note that we know that the preprocessor does not have any annotation // tokens in it because they are created by the parser, and thus can't // be in a macro definition. const Token &Tok = MI->getReplacementToken(TokNo); AddToken(Tok, Record); Stream.EmitRecord(PP_TOKEN, Record); Record.clear(); } ++NumMacros; } Stream.ExitBlock(); // Write the offsets table for macro IDs. using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // base offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); { RecordData::value_type Record[] = {MACRO_OFFSET, MacroOffsets.size(), FirstMacroID - NUM_PREDEF_MACRO_IDS, MacroOffsetsBase - ASTBlockStartOffset}; Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record, bytes(MacroOffsets)); } } void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec, uint64_t MacroOffsetsBase) { if (PPRec.local_begin() == PPRec.local_end()) return; SmallVector PreprocessedEntityOffsets; // Enter the preprocessor block. Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3); // If the preprocessor has a preprocessing record, emit it. unsigned NumPreprocessingRecords = 0; using namespace llvm; // Set up the abbreviation for unsigned InclusionAbbrev = 0; { auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); InclusionAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); } unsigned FirstPreprocessorEntityID = (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0) + NUM_PREDEF_PP_ENTITY_IDS; unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID; RecordData Record; for (PreprocessingRecord::iterator E = PPRec.local_begin(), EEnd = PPRec.local_end(); E != EEnd; (void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) { Record.clear(); uint64_t Offset = Stream.GetCurrentBitNo() - MacroOffsetsBase; assert((Offset >> 32) == 0 && "Preprocessed entity offset too large"); PreprocessedEntityOffsets.push_back( PPEntityOffset(getAdjustedRange((*E)->getSourceRange()), Offset)); if (auto *MD = dyn_cast(*E)) { // Record this macro definition's ID. MacroDefinitions[MD] = NextPreprocessorEntityID; AddIdentifierRef(MD->getName(), Record); Stream.EmitRecord(PPD_MACRO_DEFINITION, Record); continue; } if (auto *ME = dyn_cast(*E)) { Record.push_back(ME->isBuiltinMacro()); if (ME->isBuiltinMacro()) AddIdentifierRef(ME->getName(), Record); else Record.push_back(MacroDefinitions[ME->getDefinition()]); Stream.EmitRecord(PPD_MACRO_EXPANSION, Record); continue; } if (auto *ID = dyn_cast(*E)) { Record.push_back(PPD_INCLUSION_DIRECTIVE); Record.push_back(ID->getFileName().size()); Record.push_back(ID->wasInQuotes()); Record.push_back(static_cast(ID->getKind())); Record.push_back(ID->importedModule()); SmallString<64> Buffer; Buffer += ID->getFileName(); // Check that the FileEntry is not null because it was not resolved and // we create a PCH even with compiler errors. if (ID->getFile()) Buffer += ID->getFile()->getName(); Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer); continue; } llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter"); } Stream.ExitBlock(); // Write the offsets table for the preprocessing record. if (NumPreprocessingRecords > 0) { assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords); // Write the offsets table for identifier IDs. using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); RecordData::value_type Record[] = {PPD_ENTITIES_OFFSETS, FirstPreprocessorEntityID - NUM_PREDEF_PP_ENTITY_IDS}; Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record, bytes(PreprocessedEntityOffsets)); } // Write the skipped region table for the preprocessing record. ArrayRef SkippedRanges = PPRec.getSkippedRanges(); if (SkippedRanges.size() > 0) { std::vector SerializedSkippedRanges; SerializedSkippedRanges.reserve(SkippedRanges.size()); for (auto const& Range : SkippedRanges) SerializedSkippedRanges.emplace_back(Range); using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(PPD_SKIPPED_RANGES)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned PPESkippedRangeAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Record.clear(); Record.push_back(PPD_SKIPPED_RANGES); Stream.EmitRecordWithBlob(PPESkippedRangeAbbrev, Record, bytes(SerializedSkippedRanges)); } } unsigned ASTWriter::getLocalOrImportedSubmoduleID(const Module *Mod) { if (!Mod) return 0; auto Known = SubmoduleIDs.find(Mod); if (Known != SubmoduleIDs.end()) return Known->second; auto *Top = Mod->getTopLevelModule(); if (Top != WritingModule && (getLangOpts().CompilingPCH || !Top->fullModuleNameIs(StringRef(getLangOpts().CurrentModule)))) return 0; return SubmoduleIDs[Mod] = NextSubmoduleID++; } unsigned ASTWriter::getSubmoduleID(Module *Mod) { unsigned ID = getLocalOrImportedSubmoduleID(Mod); // FIXME: This can easily happen, if we have a reference to a submodule that // did not result in us loading a module file for that submodule. For // instance, a cross-top-level-module 'conflict' declaration will hit this. // assert((ID || !Mod) && // "asked for module ID for non-local, non-imported module"); return ID; } /// Compute the number of modules within the given tree (including the /// given module). static unsigned getNumberOfModules(Module *Mod) { unsigned ChildModules = 0; for (auto *Submodule : Mod->submodules()) ChildModules += getNumberOfModules(Submodule); return ChildModules + 1; } void ASTWriter::WriteSubmodules(Module *WritingModule) { // Enter the submodule description block. Stream.EnterSubblock(SUBMODULE_BLOCK_ID, /*bits for abbreviations*/5); // Write the abbreviations needed for the submodules block. using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Kind Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Definition location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ModuleMapIsPriv... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // NamedModuleHasN... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned DefinitionAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned UmbrellaAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned HeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned TopHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature unsigned RequiresAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TEXTUAL_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned TextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_TEXTUAL_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned PrivateTextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFLICT)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Other module Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Message unsigned ConflictAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXPORT_AS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name unsigned ExportAsAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); // Write the submodule metadata block. RecordData::value_type Record[] = { getNumberOfModules(WritingModule), FirstSubmoduleID - NUM_PREDEF_SUBMODULE_IDS}; Stream.EmitRecord(SUBMODULE_METADATA, Record); // Write all of the submodules. std::queue Q; Q.push(WritingModule); while (!Q.empty()) { Module *Mod = Q.front(); Q.pop(); unsigned ID = getSubmoduleID(Mod); uint64_t ParentID = 0; if (Mod->Parent) { assert(SubmoduleIDs[Mod->Parent] && "Submodule parent not written?"); ParentID = SubmoduleIDs[Mod->Parent]; } uint64_t DefinitionLoc = SourceLocationEncoding::encode(getAdjustedLocation(Mod->DefinitionLoc)); // Emit the definition of the block. { RecordData::value_type Record[] = {SUBMODULE_DEFINITION, ID, ParentID, (RecordData::value_type)Mod->Kind, DefinitionLoc, Mod->IsFramework, Mod->IsExplicit, Mod->IsSystem, Mod->IsExternC, Mod->InferSubmodules, Mod->InferExplicitSubmodules, Mod->InferExportWildcard, Mod->ConfigMacrosExhaustive, Mod->ModuleMapIsPrivate, Mod->NamedModuleHasInit}; Stream.EmitRecordWithBlob(DefinitionAbbrev, Record, Mod->Name); } // Emit the requirements. for (const auto &R : Mod->Requirements) { RecordData::value_type Record[] = {SUBMODULE_REQUIRES, R.second}; Stream.EmitRecordWithBlob(RequiresAbbrev, Record, R.first); } // Emit the umbrella header, if there is one. if (std::optional UmbrellaHeader = Mod->getUmbrellaHeaderAsWritten()) { RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_HEADER}; Stream.EmitRecordWithBlob(UmbrellaAbbrev, Record, UmbrellaHeader->NameAsWritten); } else if (std::optional UmbrellaDir = Mod->getUmbrellaDirAsWritten()) { RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_DIR}; Stream.EmitRecordWithBlob(UmbrellaDirAbbrev, Record, UmbrellaDir->NameAsWritten); } // Emit the headers. struct { unsigned RecordKind; unsigned Abbrev; Module::HeaderKind HeaderKind; } HeaderLists[] = { {SUBMODULE_HEADER, HeaderAbbrev, Module::HK_Normal}, {SUBMODULE_TEXTUAL_HEADER, TextualHeaderAbbrev, Module::HK_Textual}, {SUBMODULE_PRIVATE_HEADER, PrivateHeaderAbbrev, Module::HK_Private}, {SUBMODULE_PRIVATE_TEXTUAL_HEADER, PrivateTextualHeaderAbbrev, Module::HK_PrivateTextual}, {SUBMODULE_EXCLUDED_HEADER, ExcludedHeaderAbbrev, Module::HK_Excluded} }; for (auto &HL : HeaderLists) { RecordData::value_type Record[] = {HL.RecordKind}; for (auto &H : Mod->Headers[HL.HeaderKind]) Stream.EmitRecordWithBlob(HL.Abbrev, Record, H.NameAsWritten); } // Emit the top headers. { RecordData::value_type Record[] = {SUBMODULE_TOPHEADER}; for (FileEntryRef H : Mod->getTopHeaders(PP->getFileManager())) { SmallString<128> HeaderName(H.getName()); PreparePathForOutput(HeaderName); Stream.EmitRecordWithBlob(TopHeaderAbbrev, Record, HeaderName); } } // Emit the imports. if (!Mod->Imports.empty()) { RecordData Record; for (auto *I : Mod->Imports) Record.push_back(getSubmoduleID(I)); Stream.EmitRecord(SUBMODULE_IMPORTS, Record); } // Emit the modules affecting compilation that were not imported. if (!Mod->AffectingClangModules.empty()) { RecordData Record; for (auto *I : Mod->AffectingClangModules) Record.push_back(getSubmoduleID(I)); Stream.EmitRecord(SUBMODULE_AFFECTING_MODULES, Record); } // Emit the exports. if (!Mod->Exports.empty()) { RecordData Record; for (const auto &E : Mod->Exports) { // FIXME: This may fail; we don't require that all exported modules // are local or imported. Record.push_back(getSubmoduleID(E.getPointer())); Record.push_back(E.getInt()); } Stream.EmitRecord(SUBMODULE_EXPORTS, Record); } //FIXME: How do we emit the 'use'd modules? They may not be submodules. // Might be unnecessary as use declarations are only used to build the // module itself. // TODO: Consider serializing undeclared uses of modules. // Emit the link libraries. for (const auto &LL : Mod->LinkLibraries) { RecordData::value_type Record[] = {SUBMODULE_LINK_LIBRARY, LL.IsFramework}; Stream.EmitRecordWithBlob(LinkLibraryAbbrev, Record, LL.Library); } // Emit the conflicts. for (const auto &C : Mod->Conflicts) { // FIXME: This may fail; we don't require that all conflicting modules // are local or imported. RecordData::value_type Record[] = {SUBMODULE_CONFLICT, getSubmoduleID(C.Other)}; Stream.EmitRecordWithBlob(ConflictAbbrev, Record, C.Message); } // Emit the configuration macros. for (const auto &CM : Mod->ConfigMacros) { RecordData::value_type Record[] = {SUBMODULE_CONFIG_MACRO}; Stream.EmitRecordWithBlob(ConfigMacroAbbrev, Record, CM); } // Emit the initializers, if any. RecordData Inits; for (Decl *D : Context->getModuleInitializers(Mod)) Inits.push_back(GetDeclRef(D)); if (!Inits.empty()) Stream.EmitRecord(SUBMODULE_INITIALIZERS, Inits); // Emit the name of the re-exported module, if any. if (!Mod->ExportAsModule.empty()) { RecordData::value_type Record[] = {SUBMODULE_EXPORT_AS}; Stream.EmitRecordWithBlob(ExportAsAbbrev, Record, Mod->ExportAsModule); } // Queue up the submodules of this module. for (auto *M : Mod->submodules()) Q.push(M); } Stream.ExitBlock(); assert((NextSubmoduleID - FirstSubmoduleID == getNumberOfModules(WritingModule)) && "Wrong # of submodules; found a reference to a non-local, " "non-imported submodule?"); } void ASTWriter::WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag, bool isModule) { llvm::SmallDenseMap DiagStateIDMap; unsigned CurrID = 0; RecordData Record; auto EncodeDiagStateFlags = [](const DiagnosticsEngine::DiagState *DS) -> unsigned { unsigned Result = (unsigned)DS->ExtBehavior; for (unsigned Val : {(unsigned)DS->IgnoreAllWarnings, (unsigned)DS->EnableAllWarnings, (unsigned)DS->WarningsAsErrors, (unsigned)DS->ErrorsAsFatal, (unsigned)DS->SuppressSystemWarnings}) Result = (Result << 1) | Val; return Result; }; unsigned Flags = EncodeDiagStateFlags(Diag.DiagStatesByLoc.FirstDiagState); Record.push_back(Flags); auto AddDiagState = [&](const DiagnosticsEngine::DiagState *State, bool IncludeNonPragmaStates) { // Ensure that the diagnostic state wasn't modified since it was created. // We will not correctly round-trip this information otherwise. assert(Flags == EncodeDiagStateFlags(State) && "diag state flags vary in single AST file"); // If we ever serialize non-pragma mappings outside the initial state, the // code below will need to consider more than getDefaultMapping. assert(!IncludeNonPragmaStates || State == Diag.DiagStatesByLoc.FirstDiagState); unsigned &DiagStateID = DiagStateIDMap[State]; Record.push_back(DiagStateID); if (DiagStateID == 0) { DiagStateID = ++CurrID; SmallVector> Mappings; // Add a placeholder for the number of mappings. auto SizeIdx = Record.size(); Record.emplace_back(); for (const auto &I : *State) { // Maybe skip non-pragmas. if (!I.second.isPragma() && !IncludeNonPragmaStates) continue; // Skip default mappings. We have a mapping for every diagnostic ever // emitted, regardless of whether it was customized. if (!I.second.isPragma() && I.second == DiagnosticIDs::getDefaultMapping(I.first)) continue; Mappings.push_back(I); } // Sort by diag::kind for deterministic output. llvm::sort(Mappings, [](const auto &LHS, const auto &RHS) { return LHS.first < RHS.first; }); for (const auto &I : Mappings) { Record.push_back(I.first); Record.push_back(I.second.serialize()); } // Update the placeholder. Record[SizeIdx] = (Record.size() - SizeIdx) / 2; } }; AddDiagState(Diag.DiagStatesByLoc.FirstDiagState, isModule); // Reserve a spot for the number of locations with state transitions. auto NumLocationsIdx = Record.size(); Record.emplace_back(); // Emit the state transitions. unsigned NumLocations = 0; for (auto &FileIDAndFile : Diag.DiagStatesByLoc.Files) { if (!FileIDAndFile.first.isValid() || !FileIDAndFile.second.HasLocalTransitions) continue; ++NumLocations; SourceLocation Loc = Diag.SourceMgr->getComposedLoc(FileIDAndFile.first, 0); assert(!Loc.isInvalid() && "start loc for valid FileID is invalid"); AddSourceLocation(Loc, Record); Record.push_back(FileIDAndFile.second.StateTransitions.size()); for (auto &StatePoint : FileIDAndFile.second.StateTransitions) { Record.push_back(getAdjustedOffset(StatePoint.Offset)); AddDiagState(StatePoint.State, false); } } // Backpatch the number of locations. Record[NumLocationsIdx] = NumLocations; // Emit CurDiagStateLoc. Do it last in order to match source order. // // This also protects against a hypothetical corner case with simulating // -Werror settings for implicit modules in the ASTReader, where reading // CurDiagState out of context could change whether warning pragmas are // treated as errors. AddSourceLocation(Diag.DiagStatesByLoc.CurDiagStateLoc, Record); AddDiagState(Diag.DiagStatesByLoc.CurDiagState, false); Stream.EmitRecord(DIAG_PRAGMA_MAPPINGS, Record); } //===----------------------------------------------------------------------===// // Type Serialization //===----------------------------------------------------------------------===// /// Write the representation of a type to the AST stream. void ASTWriter::WriteType(QualType T) { TypeIdx &IdxRef = TypeIdxs[T]; if (IdxRef.getIndex() == 0) // we haven't seen this type before. IdxRef = TypeIdx(NextTypeID++); TypeIdx Idx = IdxRef; assert(Idx.getIndex() >= FirstTypeID && "Re-writing a type from a prior AST"); // Emit the type's representation. uint64_t Offset = ASTTypeWriter(*this).write(T) - DeclTypesBlockStartOffset; // Record the offset for this type. unsigned Index = Idx.getIndex() - FirstTypeID; if (TypeOffsets.size() == Index) TypeOffsets.emplace_back(Offset); else if (TypeOffsets.size() < Index) { TypeOffsets.resize(Index + 1); TypeOffsets[Index].setBitOffset(Offset); } else { llvm_unreachable("Types emitted in wrong order"); } } //===----------------------------------------------------------------------===// // Declaration Serialization //===----------------------------------------------------------------------===// /// Write the block containing all of the declaration IDs /// lexically declared within the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_LEXICAL block within the /// bitstream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context, DeclContext *DC) { if (DC->decls_empty()) return 0; uint64_t Offset = Stream.GetCurrentBitNo(); SmallVector KindDeclPairs; for (const auto *D : DC->decls()) { KindDeclPairs.push_back(D->getKind()); KindDeclPairs.push_back(GetDeclRef(D)); } ++NumLexicalDeclContexts; RecordData::value_type Record[] = {DECL_CONTEXT_LEXICAL}; Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record, bytes(KindDeclPairs)); return Offset; } void ASTWriter::WriteTypeDeclOffsets() { using namespace llvm; // Write the type offsets array auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base type index Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); { RecordData::value_type Record[] = {TYPE_OFFSET, TypeOffsets.size(), FirstTypeID - NUM_PREDEF_TYPE_IDS}; Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, bytes(TypeOffsets)); } // Write the declaration offsets array Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base decl ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); { RecordData::value_type Record[] = {DECL_OFFSET, DeclOffsets.size(), FirstDeclID - NUM_PREDEF_DECL_IDS}; Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, bytes(DeclOffsets)); } } void ASTWriter::WriteFileDeclIDsMap() { using namespace llvm; SmallVector, 64> SortedFileDeclIDs; SortedFileDeclIDs.reserve(FileDeclIDs.size()); for (const auto &P : FileDeclIDs) SortedFileDeclIDs.push_back(std::make_pair(P.first, P.second.get())); llvm::sort(SortedFileDeclIDs, llvm::less_first()); // Join the vectors of DeclIDs from all files. SmallVector FileGroupedDeclIDs; for (auto &FileDeclEntry : SortedFileDeclIDs) { DeclIDInFileInfo &Info = *FileDeclEntry.second; Info.FirstDeclIndex = FileGroupedDeclIDs.size(); llvm::stable_sort(Info.DeclIDs); for (auto &LocDeclEntry : Info.DeclIDs) FileGroupedDeclIDs.push_back(LocDeclEntry.second); } auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(FILE_SORTED_DECLS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev)); RecordData::value_type Record[] = {FILE_SORTED_DECLS, FileGroupedDeclIDs.size()}; Stream.EmitRecordWithBlob(AbbrevCode, Record, bytes(FileGroupedDeclIDs)); } void ASTWriter::WriteComments() { Stream.EnterSubblock(COMMENTS_BLOCK_ID, 3); auto _ = llvm::make_scope_exit([this] { Stream.ExitBlock(); }); if (!PP->getPreprocessorOpts().WriteCommentListToPCH) return; // Don't write comments to BMI to reduce the size of BMI. // If language services (e.g., clangd) want such abilities, // we can offer a special option then. if (isWritingStdCXXNamedModules()) return; RecordData Record; for (const auto &FO : Context->Comments.OrderedComments) { for (const auto &OC : FO.second) { const RawComment *I = OC.second; Record.clear(); AddSourceRange(I->getSourceRange(), Record); Record.push_back(I->getKind()); Record.push_back(I->isTrailingComment()); Record.push_back(I->isAlmostTrailingComment()); Stream.EmitRecord(COMMENTS_RAW_COMMENT, Record); } } } //===----------------------------------------------------------------------===// // Global Method Pool and Selector Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTMethodPoolTrait { ASTWriter &Writer; public: using key_type = Selector; using key_type_ref = key_type; struct data_type { SelectorID ID; ObjCMethodList Instance, Factory; }; using data_type_ref = const data_type &; using hash_value_type = unsigned; using offset_type = unsigned; explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) {} static hash_value_type ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } std::pair EmitKeyDataLength(raw_ostream& Out, Selector Sel, data_type_ref Methods) { unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4); unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (ShouldWriteMethodListNode(Method)) DataLen += 4; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (ShouldWriteMethodListNode(Method)) DataLen += 4; return emitULEBKeyDataLength(KeyLen, DataLen, Out); } void EmitKey(raw_ostream& Out, Selector Sel, unsigned) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); uint64_t Start = Out.tell(); assert((Start >> 32) == 0 && "Selector key offset too large"); Writer.SetSelectorOffset(Sel, Start); unsigned N = Sel.getNumArgs(); LE.write(N); if (N == 0) N = 1; for (unsigned I = 0; I != N; ++I) LE.write( Writer.getIdentifierRef(Sel.getIdentifierInfoForSlot(I))); } void EmitData(raw_ostream& Out, key_type_ref, data_type_ref Methods, unsigned DataLen) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); uint64_t Start = Out.tell(); (void)Start; LE.write(Methods.ID); unsigned NumInstanceMethods = 0; for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (ShouldWriteMethodListNode(Method)) ++NumInstanceMethods; unsigned NumFactoryMethods = 0; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (ShouldWriteMethodListNode(Method)) ++NumFactoryMethods; unsigned InstanceBits = Methods.Instance.getBits(); assert(InstanceBits < 4); unsigned InstanceHasMoreThanOneDeclBit = Methods.Instance.hasMoreThanOneDecl(); unsigned FullInstanceBits = (NumInstanceMethods << 3) | (InstanceHasMoreThanOneDeclBit << 2) | InstanceBits; unsigned FactoryBits = Methods.Factory.getBits(); assert(FactoryBits < 4); unsigned FactoryHasMoreThanOneDeclBit = Methods.Factory.hasMoreThanOneDecl(); unsigned FullFactoryBits = (NumFactoryMethods << 3) | (FactoryHasMoreThanOneDeclBit << 2) | FactoryBits; LE.write(FullInstanceBits); LE.write(FullFactoryBits); for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (ShouldWriteMethodListNode(Method)) LE.write(Writer.getDeclID(Method->getMethod())); for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (ShouldWriteMethodListNode(Method)) LE.write(Writer.getDeclID(Method->getMethod())); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } private: static bool ShouldWriteMethodListNode(const ObjCMethodList *Node) { return (Node->getMethod() && !Node->getMethod()->isFromASTFile()); } }; } // namespace /// Write ObjC data: selectors and the method pool. /// /// The method pool contains both instance and factory methods, stored /// in an on-disk hash table indexed by the selector. The hash table also /// contains an empty entry for every other selector known to Sema. void ASTWriter::WriteSelectors(Sema &SemaRef) { using namespace llvm; // Do we have to do anything at all? if (SemaRef.MethodPool.empty() && SelectorIDs.empty()) return; unsigned NumTableEntries = 0; // Create and write out the blob that contains selectors and the method pool. { llvm::OnDiskChainedHashTableGenerator Generator; ASTMethodPoolTrait Trait(*this); // Create the on-disk hash table representation. We walk through every // selector we've seen and look it up in the method pool. SelectorOffsets.resize(NextSelectorID - FirstSelectorID); for (auto &SelectorAndID : SelectorIDs) { Selector S = SelectorAndID.first; SelectorID ID = SelectorAndID.second; Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S); ASTMethodPoolTrait::data_type Data = { ID, ObjCMethodList(), ObjCMethodList() }; if (F != SemaRef.MethodPool.end()) { Data.Instance = F->second.first; Data.Factory = F->second.second; } // Only write this selector if it's not in an existing AST or something // changed. if (Chain && ID < FirstSelectorID) { // Selector already exists. Did it change? bool changed = false; for (ObjCMethodList *M = &Data.Instance; M && M->getMethod(); M = M->getNext()) { if (!M->getMethod()->isFromASTFile()) { changed = true; Data.Instance = *M; break; } } for (ObjCMethodList *M = &Data.Factory; M && M->getMethod(); M = M->getNext()) { if (!M->getMethod()->isFromASTFile()) { changed = true; Data.Factory = *M; break; } } if (!changed) continue; } else if (Data.Instance.getMethod() || Data.Factory.getMethod()) { // A new method pool entry. ++NumTableEntries; } Generator.insert(S, Data, Trait); } // Create the on-disk hash table in a buffer. SmallString<4096> MethodPool; uint32_t BucketOffset; { using namespace llvm::support; ASTMethodPoolTrait Trait(*this); llvm::raw_svector_ostream Out(MethodPool); // Make sure that no bucket is at offset 0 endian::write(Out, 0, llvm::endianness::little); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MethodPoolAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); // Write the method pool { RecordData::value_type Record[] = {METHOD_POOL, BucketOffset, NumTableEntries}; Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool); } // Create a blob abbreviation for the selector table offsets. Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); // Write the selector offsets table. { RecordData::value_type Record[] = { SELECTOR_OFFSETS, SelectorOffsets.size(), FirstSelectorID - NUM_PREDEF_SELECTOR_IDS}; Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record, bytes(SelectorOffsets)); } } } /// Write the selectors referenced in @selector expression into AST file. void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) { using namespace llvm; if (SemaRef.ReferencedSelectors.empty()) return; RecordData Record; ASTRecordWriter Writer(*this, Record); // Note: this writes out all references even for a dependent AST. But it is // very tricky to fix, and given that @selector shouldn't really appear in // headers, probably not worth it. It's not a correctness issue. for (auto &SelectorAndLocation : SemaRef.ReferencedSelectors) { Selector Sel = SelectorAndLocation.first; SourceLocation Loc = SelectorAndLocation.second; Writer.AddSelectorRef(Sel); Writer.AddSourceLocation(Loc); } Writer.Emit(REFERENCED_SELECTOR_POOL); } //===----------------------------------------------------------------------===// // Identifier Table Serialization //===----------------------------------------------------------------------===// /// Determine the declaration that should be put into the name lookup table to /// represent the given declaration in this module. This is usually D itself, /// but if D was imported and merged into a local declaration, we want the most /// recent local declaration instead. The chosen declaration will be the most /// recent declaration in any module that imports this one. static NamedDecl *getDeclForLocalLookup(const LangOptions &LangOpts, NamedDecl *D) { if (!LangOpts.Modules || !D->isFromASTFile()) return D; if (Decl *Redecl = D->getPreviousDecl()) { // For Redeclarable decls, a prior declaration might be local. for (; Redecl; Redecl = Redecl->getPreviousDecl()) { // If we find a local decl, we're done. if (!Redecl->isFromASTFile()) { // Exception: in very rare cases (for injected-class-names), not all // redeclarations are in the same semantic context. Skip ones in a // different context. They don't go in this lookup table at all. if (!Redecl->getDeclContext()->getRedeclContext()->Equals( D->getDeclContext()->getRedeclContext())) continue; return cast(Redecl); } // If we find a decl from a (chained-)PCH stop since we won't find a // local one. if (Redecl->getOwningModuleID() == 0) break; } } else if (Decl *First = D->getCanonicalDecl()) { // For Mergeable decls, the first decl might be local. if (!First->isFromASTFile()) return cast(First); } // All declarations are imported. Our most recent declaration will also be // the most recent one in anyone who imports us. return D; } namespace { class ASTIdentifierTableTrait { ASTWriter &Writer; Preprocessor &PP; IdentifierResolver &IdResolver; bool IsModule; bool NeedDecls; ASTWriter::RecordData *InterestingIdentifierOffsets; /// Determines whether this is an "interesting" identifier that needs a /// full IdentifierInfo structure written into the hash table. Notably, this /// doesn't check whether the name has macros defined; use PublicMacroIterator /// to check that. bool isInterestingIdentifier(const IdentifierInfo *II, uint64_t MacroOffset) { if (MacroOffset || II->isPoisoned() || (!IsModule && II->getObjCOrBuiltinID()) || II->hasRevertedTokenIDToIdentifier() || (NeedDecls && II->getFETokenInfo())) return true; return false; } public: using key_type = IdentifierInfo *; using key_type_ref = key_type; using data_type = IdentID; using data_type_ref = data_type; using hash_value_type = unsigned; using offset_type = unsigned; ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP, IdentifierResolver &IdResolver, bool IsModule, ASTWriter::RecordData *InterestingIdentifierOffsets) : Writer(Writer), PP(PP), IdResolver(IdResolver), IsModule(IsModule), NeedDecls(!IsModule || !Writer.getLangOpts().CPlusPlus), InterestingIdentifierOffsets(InterestingIdentifierOffsets) {} bool needDecls() const { return NeedDecls; } static hash_value_type ComputeHash(const IdentifierInfo* II) { return llvm::djbHash(II->getName()); } bool isInterestingIdentifier(const IdentifierInfo *II) { auto MacroOffset = Writer.getMacroDirectivesOffset(II); return isInterestingIdentifier(II, MacroOffset); } bool isInterestingNonMacroIdentifier(const IdentifierInfo *II) { return isInterestingIdentifier(II, 0); } std::pair EmitKeyDataLength(raw_ostream& Out, IdentifierInfo* II, IdentID ID) { // Record the location of the identifier data. This is used when generating // the mapping from persistent IDs to strings. Writer.SetIdentifierOffset(II, Out.tell()); auto MacroOffset = Writer.getMacroDirectivesOffset(II); // Emit the offset of the key/data length information to the interesting // identifiers table if necessary. if (InterestingIdentifierOffsets && isInterestingIdentifier(II, MacroOffset)) InterestingIdentifierOffsets->push_back(Out.tell()); unsigned KeyLen = II->getLength() + 1; unsigned DataLen = 4; // 4 bytes for the persistent ID << 1 if (isInterestingIdentifier(II, MacroOffset)) { DataLen += 2; // 2 bytes for builtin ID DataLen += 2; // 2 bytes for flags if (MacroOffset) DataLen += 4; // MacroDirectives offset. if (NeedDecls) DataLen += std::distance(IdResolver.begin(II), IdResolver.end()) * 4; } return emitULEBKeyDataLength(KeyLen, DataLen, Out); } void EmitKey(raw_ostream& Out, const IdentifierInfo* II, unsigned KeyLen) { Out.write(II->getNameStart(), KeyLen); } void EmitData(raw_ostream& Out, IdentifierInfo* II, IdentID ID, unsigned) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); auto MacroOffset = Writer.getMacroDirectivesOffset(II); if (!isInterestingIdentifier(II, MacroOffset)) { LE.write(ID << 1); return; } LE.write((ID << 1) | 0x01); uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID(); assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader."); LE.write(Bits); Bits = 0; bool HadMacroDefinition = MacroOffset != 0; Bits = (Bits << 1) | unsigned(HadMacroDefinition); Bits = (Bits << 1) | unsigned(II->isExtensionToken()); Bits = (Bits << 1) | unsigned(II->isPoisoned()); Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier()); Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword()); LE.write(Bits); if (HadMacroDefinition) LE.write(MacroOffset); if (NeedDecls) { // Emit the declaration IDs in reverse order, because the // IdentifierResolver provides the declarations as they would be // visible (e.g., the function "stat" would come before the struct // "stat"), but the ASTReader adds declarations to the end of the list // (so we need to see the struct "stat" before the function "stat"). // Only emit declarations that aren't from a chained PCH, though. SmallVector Decls(IdResolver.decls(II)); for (NamedDecl *D : llvm::reverse(Decls)) LE.write( Writer.getDeclID(getDeclForLocalLookup(PP.getLangOpts(), D))); } } }; } // namespace /// Write the identifier table into the AST file. /// /// The identifier table consists of a blob containing string data /// (the actual identifiers themselves) and a separate "offsets" index /// that maps identifier IDs to locations within the blob. void ASTWriter::WriteIdentifierTable(Preprocessor &PP, IdentifierResolver &IdResolver, bool IsModule) { using namespace llvm; RecordData InterestingIdents; // Create and write out the blob that contains the identifier // strings. { llvm::OnDiskChainedHashTableGenerator Generator; ASTIdentifierTableTrait Trait(*this, PP, IdResolver, IsModule, IsModule ? &InterestingIdents : nullptr); // Look for any identifiers that were named while processing the // headers, but are otherwise not needed. We add these to the hash // table to enable checking of the predefines buffer in the case // where the user adds new macro definitions when building the AST // file. SmallVector IIs; for (const auto &ID : PP.getIdentifierTable()) if (Trait.isInterestingNonMacroIdentifier(ID.second)) IIs.push_back(ID.second); // Sort the identifiers lexicographically before getting the references so // that their order is stable. llvm::sort(IIs, llvm::deref>()); for (const IdentifierInfo *II : IIs) getIdentifierRef(II); // Create the on-disk hash table representation. We only store offsets // for identifiers that appear here for the first time. IdentifierOffsets.resize(NextIdentID - FirstIdentID); for (auto IdentIDPair : IdentifierIDs) { auto *II = const_cast(IdentIDPair.first); IdentID ID = IdentIDPair.second; assert(II && "NULL identifier in identifier table"); // Write out identifiers if either the ID is local or the identifier has // changed since it was loaded. if (ID >= FirstIdentID || !Chain || !II->isFromAST() || II->hasChangedSinceDeserialization() || (Trait.needDecls() && II->hasFETokenInfoChangedSinceDeserialization())) Generator.insert(II, ID, Trait); } // Create the on-disk hash table in a buffer. SmallString<4096> IdentifierTable; uint32_t BucketOffset; { using namespace llvm::support; llvm::raw_svector_ostream Out(IdentifierTable); // Make sure that no bucket is at offset 0 endian::write(Out, 0, llvm::endianness::little); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IDTableAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); // Write the identifier table RecordData::value_type Record[] = {IDENTIFIER_TABLE, BucketOffset}; Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable); } // Write the offsets table for identifier IDs. auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); #ifndef NDEBUG for (unsigned I = 0, N = IdentifierOffsets.size(); I != N; ++I) assert(IdentifierOffsets[I] && "Missing identifier offset?"); #endif RecordData::value_type Record[] = {IDENTIFIER_OFFSET, IdentifierOffsets.size(), FirstIdentID - NUM_PREDEF_IDENT_IDS}; Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record, bytes(IdentifierOffsets)); // In C++, write the list of interesting identifiers (those that are // defined as macros, poisoned, or similar unusual things). if (!InterestingIdents.empty()) Stream.EmitRecord(INTERESTING_IDENTIFIERS, InterestingIdents); } //===----------------------------------------------------------------------===// // DeclContext's Name Lookup Table Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTDeclContextNameLookupTrait { ASTWriter &Writer; llvm::SmallVector DeclIDs; public: using key_type = DeclarationNameKey; using key_type_ref = key_type; /// A start and end index into DeclIDs, representing a sequence of decls. using data_type = std::pair; using data_type_ref = const data_type &; using hash_value_type = unsigned; using offset_type = unsigned; explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) {} template data_type getData(const Coll &Decls) { unsigned Start = DeclIDs.size(); for (NamedDecl *D : Decls) { DeclIDs.push_back( Writer.GetDeclRef(getDeclForLocalLookup(Writer.getLangOpts(), D))); } return std::make_pair(Start, DeclIDs.size()); } data_type ImportData(const reader::ASTDeclContextNameLookupTrait::data_type &FromReader) { unsigned Start = DeclIDs.size(); llvm::append_range(DeclIDs, FromReader); return std::make_pair(Start, DeclIDs.size()); } static bool EqualKey(key_type_ref a, key_type_ref b) { return a == b; } hash_value_type ComputeHash(DeclarationNameKey Name) { return Name.getHash(); } void EmitFileRef(raw_ostream &Out, ModuleFile *F) const { assert(Writer.hasChain() && "have reference to loaded module file but no chain?"); using namespace llvm::support; endian::write(Out, Writer.getChain()->getModuleFileID(F), llvm::endianness::little); } std::pair EmitKeyDataLength(raw_ostream &Out, DeclarationNameKey Name, data_type_ref Lookup) { unsigned KeyLen = 1; switch (Name.getKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXDeductionGuideName: KeyLen += 4; break; case DeclarationName::CXXOperatorName: KeyLen += 1; break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: break; } // 4 bytes for each DeclID. unsigned DataLen = 4 * (Lookup.second - Lookup.first); return emitULEBKeyDataLength(KeyLen, DataLen, Out); } void EmitKey(raw_ostream &Out, DeclarationNameKey Name, unsigned) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); LE.write(Name.getKind()); switch (Name.getKind()) { case DeclarationName::Identifier: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXDeductionGuideName: LE.write(Writer.getIdentifierRef(Name.getIdentifier())); return; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: LE.write(Writer.getSelectorRef(Name.getSelector())); return; case DeclarationName::CXXOperatorName: assert(Name.getOperatorKind() < NUM_OVERLOADED_OPERATORS && "Invalid operator?"); LE.write(Name.getOperatorKind()); return; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: return; } llvm_unreachable("Invalid name kind?"); } void EmitData(raw_ostream &Out, key_type_ref, data_type Lookup, unsigned DataLen) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); uint64_t Start = Out.tell(); (void)Start; for (unsigned I = Lookup.first, N = Lookup.second; I != N; ++I) LE.write(DeclIDs[I]); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } }; } // namespace bool ASTWriter::isLookupResultExternal(StoredDeclsList &Result, DeclContext *DC) { return Result.hasExternalDecls() && DC->hasNeedToReconcileExternalVisibleStorage(); } bool ASTWriter::isLookupResultEntirelyExternal(StoredDeclsList &Result, DeclContext *DC) { for (auto *D : Result.getLookupResult()) if (!getDeclForLocalLookup(getLangOpts(), D)->isFromASTFile()) return false; return true; } void ASTWriter::GenerateNameLookupTable(const DeclContext *ConstDC, llvm::SmallVectorImpl &LookupTable) { assert(!ConstDC->hasLazyLocalLexicalLookups() && !ConstDC->hasLazyExternalLexicalLookups() && "must call buildLookups first"); // FIXME: We need to build the lookups table, which is logically const. auto *DC = const_cast(ConstDC); assert(DC == DC->getPrimaryContext() && "only primary DC has lookup table"); // Create the on-disk hash table representation. MultiOnDiskHashTableGenerator Generator; ASTDeclContextNameLookupTrait Trait(*this); // The first step is to collect the declaration names which we need to // serialize into the name lookup table, and to collect them in a stable // order. SmallVector Names; // We also build up small sets of the constructor and conversion function // names which are visible. llvm::SmallPtrSet ConstructorNameSet, ConversionNameSet; for (auto &Lookup : *DC->buildLookup()) { auto &Name = Lookup.first; auto &Result = Lookup.second; // If there are no local declarations in our lookup result, we // don't need to write an entry for the name at all. If we can't // write out a lookup set without performing more deserialization, // just skip this entry. if (isLookupResultExternal(Result, DC) && isLookupResultEntirelyExternal(Result, DC)) continue; // We also skip empty results. If any of the results could be external and // the currently available results are empty, then all of the results are // external and we skip it above. So the only way we get here with an empty // results is when no results could have been external *and* we have // external results. // // FIXME: While we might want to start emitting on-disk entries for negative // lookups into a decl context as an optimization, today we *have* to skip // them because there are names with empty lookup results in decl contexts // which we can't emit in any stable ordering: we lookup constructors and // conversion functions in the enclosing namespace scope creating empty // results for them. This in almost certainly a bug in Clang's name lookup, // but that is likely to be hard or impossible to fix and so we tolerate it // here by omitting lookups with empty results. if (Lookup.second.getLookupResult().empty()) continue; switch (Lookup.first.getNameKind()) { default: Names.push_back(Lookup.first); break; case DeclarationName::CXXConstructorName: assert(isa(DC) && "Cannot have a constructor name outside of a class!"); ConstructorNameSet.insert(Name); break; case DeclarationName::CXXConversionFunctionName: assert(isa(DC) && "Cannot have a conversion function name outside of a class!"); ConversionNameSet.insert(Name); break; } } // Sort the names into a stable order. llvm::sort(Names); if (auto *D = dyn_cast(DC)) { // We need to establish an ordering of constructor and conversion function // names, and they don't have an intrinsic ordering. // First we try the easy case by forming the current context's constructor // name and adding that name first. This is a very useful optimization to // avoid walking the lexical declarations in many cases, and it also // handles the only case where a constructor name can come from some other // lexical context -- when that name is an implicit constructor merged from // another declaration in the redecl chain. Any non-implicit constructor or // conversion function which doesn't occur in all the lexical contexts // would be an ODR violation. auto ImplicitCtorName = Context->DeclarationNames.getCXXConstructorName( Context->getCanonicalType(Context->getRecordType(D))); if (ConstructorNameSet.erase(ImplicitCtorName)) Names.push_back(ImplicitCtorName); // If we still have constructors or conversion functions, we walk all the // names in the decl and add the constructors and conversion functions // which are visible in the order they lexically occur within the context. if (!ConstructorNameSet.empty() || !ConversionNameSet.empty()) for (Decl *ChildD : cast(DC)->decls()) if (auto *ChildND = dyn_cast(ChildD)) { auto Name = ChildND->getDeclName(); switch (Name.getNameKind()) { default: continue; case DeclarationName::CXXConstructorName: if (ConstructorNameSet.erase(Name)) Names.push_back(Name); break; case DeclarationName::CXXConversionFunctionName: if (ConversionNameSet.erase(Name)) Names.push_back(Name); break; } if (ConstructorNameSet.empty() && ConversionNameSet.empty()) break; } assert(ConstructorNameSet.empty() && "Failed to find all of the visible " "constructors by walking all the " "lexical members of the context."); assert(ConversionNameSet.empty() && "Failed to find all of the visible " "conversion functions by walking all " "the lexical members of the context."); } // Next we need to do a lookup with each name into this decl context to fully // populate any results from external sources. We don't actually use the // results of these lookups because we only want to use the results after all // results have been loaded and the pointers into them will be stable. for (auto &Name : Names) DC->lookup(Name); // Now we need to insert the results for each name into the hash table. For // constructor names and conversion function names, we actually need to merge // all of the results for them into one list of results each and insert // those. SmallVector ConstructorDecls; SmallVector ConversionDecls; // Now loop over the names, either inserting them or appending for the two // special cases. for (auto &Name : Names) { DeclContext::lookup_result Result = DC->noload_lookup(Name); switch (Name.getNameKind()) { default: Generator.insert(Name, Trait.getData(Result), Trait); break; case DeclarationName::CXXConstructorName: ConstructorDecls.append(Result.begin(), Result.end()); break; case DeclarationName::CXXConversionFunctionName: ConversionDecls.append(Result.begin(), Result.end()); break; } } // Handle our two special cases if we ended up having any. We arbitrarily use // the first declaration's name here because the name itself isn't part of // the key, only the kind of name is used. if (!ConstructorDecls.empty()) Generator.insert(ConstructorDecls.front()->getDeclName(), Trait.getData(ConstructorDecls), Trait); if (!ConversionDecls.empty()) Generator.insert(ConversionDecls.front()->getDeclName(), Trait.getData(ConversionDecls), Trait); // Create the on-disk hash table. Also emit the existing imported and // merged table if there is one. auto *Lookups = Chain ? Chain->getLoadedLookupTables(DC) : nullptr; Generator.emit(LookupTable, Trait, Lookups ? &Lookups->Table : nullptr); } /// Write the block containing all of the declaration IDs /// visible from the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_VISIBLE block within the /// bitstream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context, DeclContext *DC) { // If we imported a key declaration of this namespace, write the visible // lookup results as an update record for it rather than including them // on this declaration. We will only look at key declarations on reload. if (isa(DC) && Chain && Chain->getKeyDeclaration(cast(DC))->isFromASTFile()) { // Only do this once, for the first local declaration of the namespace. for (auto *Prev = cast(DC)->getPreviousDecl(); Prev; Prev = Prev->getPreviousDecl()) if (!Prev->isFromASTFile()) return 0; // Note that we need to emit an update record for the primary context. UpdatedDeclContexts.insert(DC->getPrimaryContext()); // Make sure all visible decls are written. They will be recorded later. We // do this using a side data structure so we can sort the names into // a deterministic order. StoredDeclsMap *Map = DC->getPrimaryContext()->buildLookup(); SmallVector, 16> LookupResults; if (Map) { LookupResults.reserve(Map->size()); for (auto &Entry : *Map) LookupResults.push_back( std::make_pair(Entry.first, Entry.second.getLookupResult())); } llvm::sort(LookupResults, llvm::less_first()); for (auto &NameAndResult : LookupResults) { DeclarationName Name = NameAndResult.first; DeclContext::lookup_result Result = NameAndResult.second; if (Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { // We have to work around a name lookup bug here where negative lookup // results for these names get cached in namespace lookup tables (these // names should never be looked up in a namespace). assert(Result.empty() && "Cannot have a constructor or conversion " "function name in a namespace!"); continue; } for (NamedDecl *ND : Result) if (!ND->isFromASTFile()) GetDeclRef(ND); } return 0; } if (DC->getPrimaryContext() != DC) return 0; // Skip contexts which don't support name lookup. if (!DC->isLookupContext()) return 0; // If not in C++, we perform name lookup for the translation unit via the // IdentifierInfo chains, don't bother to build a visible-declarations table. if (DC->isTranslationUnit() && !Context.getLangOpts().CPlusPlus) return 0; // Serialize the contents of the mapping used for lookup. Note that, // although we have two very different code paths, the serialized // representation is the same for both cases: a declaration name, // followed by a size, followed by references to the visible // declarations that have that name. uint64_t Offset = Stream.GetCurrentBitNo(); StoredDeclsMap *Map = DC->buildLookup(); if (!Map || Map->empty()) return 0; // Create the on-disk hash table in a buffer. SmallString<4096> LookupTable; GenerateNameLookupTable(DC, LookupTable); // Write the lookup table RecordData::value_type Record[] = {DECL_CONTEXT_VISIBLE}; Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record, LookupTable); ++NumVisibleDeclContexts; return Offset; } /// Write an UPDATE_VISIBLE block for the given context. /// /// UPDATE_VISIBLE blocks contain the declarations that are added to an existing /// DeclContext in a dependent AST file. As such, they only exist for the TU /// (in C++), for namespaces, and for classes with forward-declared unscoped /// enumeration members (in C++11). void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) { StoredDeclsMap *Map = DC->getLookupPtr(); if (!Map || Map->empty()) return; // Create the on-disk hash table in a buffer. SmallString<4096> LookupTable; GenerateNameLookupTable(DC, LookupTable); // If we're updating a namespace, select a key declaration as the key for the // update record; those are the only ones that will be checked on reload. if (isa(DC)) DC = cast(Chain->getKeyDeclaration(cast(DC))); // Write the lookup table RecordData::value_type Record[] = {UPDATE_VISIBLE, getDeclID(cast(DC))}; Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable); } /// Write an FP_PRAGMA_OPTIONS block for the given FPOptions. void ASTWriter::WriteFPPragmaOptions(const FPOptionsOverride &Opts) { RecordData::value_type Record[] = {Opts.getAsOpaqueInt()}; Stream.EmitRecord(FP_PRAGMA_OPTIONS, Record); } /// Write an OPENCL_EXTENSIONS block for the given OpenCLOptions. void ASTWriter::WriteOpenCLExtensions(Sema &SemaRef) { if (!SemaRef.Context.getLangOpts().OpenCL) return; const OpenCLOptions &Opts = SemaRef.getOpenCLOptions(); RecordData Record; for (const auto &I:Opts.OptMap) { AddString(I.getKey(), Record); auto V = I.getValue(); Record.push_back(V.Supported ? 1 : 0); Record.push_back(V.Enabled ? 1 : 0); Record.push_back(V.WithPragma ? 1 : 0); Record.push_back(V.Avail); Record.push_back(V.Core); Record.push_back(V.Opt); } Stream.EmitRecord(OPENCL_EXTENSIONS, Record); } void ASTWriter::WriteCUDAPragmas(Sema &SemaRef) { if (SemaRef.ForceCUDAHostDeviceDepth > 0) { RecordData::value_type Record[] = {SemaRef.ForceCUDAHostDeviceDepth}; Stream.EmitRecord(CUDA_PRAGMA_FORCE_HOST_DEVICE_DEPTH, Record); } } void ASTWriter::WriteObjCCategories() { SmallVector CategoriesMap; RecordData Categories; for (unsigned I = 0, N = ObjCClassesWithCategories.size(); I != N; ++I) { unsigned Size = 0; unsigned StartIndex = Categories.size(); ObjCInterfaceDecl *Class = ObjCClassesWithCategories[I]; // Allocate space for the size. Categories.push_back(0); // Add the categories. for (ObjCInterfaceDecl::known_categories_iterator Cat = Class->known_categories_begin(), CatEnd = Class->known_categories_end(); Cat != CatEnd; ++Cat, ++Size) { assert(getDeclID(*Cat) != 0 && "Bogus category"); AddDeclRef(*Cat, Categories); } // Update the size. Categories[StartIndex] = Size; // Record this interface -> category map. ObjCCategoriesInfo CatInfo = { getDeclID(Class), StartIndex }; CategoriesMap.push_back(CatInfo); } // Sort the categories map by the definition ID, since the reader will be // performing binary searches on this information. llvm::array_pod_sort(CategoriesMap.begin(), CategoriesMap.end()); // Emit the categories map. using namespace llvm; auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(OBJC_CATEGORIES_MAP)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned AbbrevID = Stream.EmitAbbrev(std::move(Abbrev)); RecordData::value_type Record[] = {OBJC_CATEGORIES_MAP, CategoriesMap.size()}; Stream.EmitRecordWithBlob(AbbrevID, Record, reinterpret_cast(CategoriesMap.data()), CategoriesMap.size() * sizeof(ObjCCategoriesInfo)); // Emit the category lists. Stream.EmitRecord(OBJC_CATEGORIES, Categories); } void ASTWriter::WriteLateParsedTemplates(Sema &SemaRef) { Sema::LateParsedTemplateMapT &LPTMap = SemaRef.LateParsedTemplateMap; if (LPTMap.empty()) return; RecordData Record; for (auto &LPTMapEntry : LPTMap) { const FunctionDecl *FD = LPTMapEntry.first; LateParsedTemplate &LPT = *LPTMapEntry.second; AddDeclRef(FD, Record); AddDeclRef(LPT.D, Record); Record.push_back(LPT.FPO.getAsOpaqueInt()); Record.push_back(LPT.Toks.size()); for (const auto &Tok : LPT.Toks) { AddToken(Tok, Record); } } Stream.EmitRecord(LATE_PARSED_TEMPLATE, Record); } /// Write the state of 'pragma clang optimize' at the end of the module. void ASTWriter::WriteOptimizePragmaOptions(Sema &SemaRef) { RecordData Record; SourceLocation PragmaLoc = SemaRef.getOptimizeOffPragmaLocation(); AddSourceLocation(PragmaLoc, Record); Stream.EmitRecord(OPTIMIZE_PRAGMA_OPTIONS, Record); } /// Write the state of 'pragma ms_struct' at the end of the module. void ASTWriter::WriteMSStructPragmaOptions(Sema &SemaRef) { RecordData Record; Record.push_back(SemaRef.MSStructPragmaOn ? PMSST_ON : PMSST_OFF); Stream.EmitRecord(MSSTRUCT_PRAGMA_OPTIONS, Record); } /// Write the state of 'pragma pointers_to_members' at the end of the //module. void ASTWriter::WriteMSPointersToMembersPragmaOptions(Sema &SemaRef) { RecordData Record; Record.push_back(SemaRef.MSPointerToMemberRepresentationMethod); AddSourceLocation(SemaRef.ImplicitMSInheritanceAttrLoc, Record); Stream.EmitRecord(POINTERS_TO_MEMBERS_PRAGMA_OPTIONS, Record); } /// Write the state of 'pragma align/pack' at the end of the module. void ASTWriter::WritePackPragmaOptions(Sema &SemaRef) { // Don't serialize pragma align/pack state for modules, since it should only // take effect on a per-submodule basis. if (WritingModule) return; RecordData Record; AddAlignPackInfo(SemaRef.AlignPackStack.CurrentValue, Record); AddSourceLocation(SemaRef.AlignPackStack.CurrentPragmaLocation, Record); Record.push_back(SemaRef.AlignPackStack.Stack.size()); for (const auto &StackEntry : SemaRef.AlignPackStack.Stack) { AddAlignPackInfo(StackEntry.Value, Record); AddSourceLocation(StackEntry.PragmaLocation, Record); AddSourceLocation(StackEntry.PragmaPushLocation, Record); AddString(StackEntry.StackSlotLabel, Record); } Stream.EmitRecord(ALIGN_PACK_PRAGMA_OPTIONS, Record); } /// Write the state of 'pragma float_control' at the end of the module. void ASTWriter::WriteFloatControlPragmaOptions(Sema &SemaRef) { // Don't serialize pragma float_control state for modules, // since it should only take effect on a per-submodule basis. if (WritingModule) return; RecordData Record; Record.push_back(SemaRef.FpPragmaStack.CurrentValue.getAsOpaqueInt()); AddSourceLocation(SemaRef.FpPragmaStack.CurrentPragmaLocation, Record); Record.push_back(SemaRef.FpPragmaStack.Stack.size()); for (const auto &StackEntry : SemaRef.FpPragmaStack.Stack) { Record.push_back(StackEntry.Value.getAsOpaqueInt()); AddSourceLocation(StackEntry.PragmaLocation, Record); AddSourceLocation(StackEntry.PragmaPushLocation, Record); AddString(StackEntry.StackSlotLabel, Record); } Stream.EmitRecord(FLOAT_CONTROL_PRAGMA_OPTIONS, Record); } void ASTWriter::WriteModuleFileExtension(Sema &SemaRef, ModuleFileExtensionWriter &Writer) { // Enter the extension block. Stream.EnterSubblock(EXTENSION_BLOCK_ID, 4); // Emit the metadata record abbreviation. auto Abv = std::make_shared(); Abv->Add(llvm::BitCodeAbbrevOp(EXTENSION_METADATA)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); unsigned Abbrev = Stream.EmitAbbrev(std::move(Abv)); // Emit the metadata record. RecordData Record; auto Metadata = Writer.getExtension()->getExtensionMetadata(); Record.push_back(EXTENSION_METADATA); Record.push_back(Metadata.MajorVersion); Record.push_back(Metadata.MinorVersion); Record.push_back(Metadata.BlockName.size()); Record.push_back(Metadata.UserInfo.size()); SmallString<64> Buffer; Buffer += Metadata.BlockName; Buffer += Metadata.UserInfo; Stream.EmitRecordWithBlob(Abbrev, Record, Buffer); // Emit the contents of the extension block. Writer.writeExtensionContents(SemaRef, Stream); // Exit the extension block. Stream.ExitBlock(); } //===----------------------------------------------------------------------===// // General Serialization Routines //===----------------------------------------------------------------------===// void ASTRecordWriter::AddAttr(const Attr *A) { auto &Record = *this; // FIXME: Clang can't handle the serialization/deserialization of // preferred_name properly now. See // https://github.com/llvm/llvm-project/issues/56490 for example. if (!A || (isa(A) && Writer->isWritingStdCXXNamedModules())) return Record.push_back(0); Record.push_back(A->getKind() + 1); // FIXME: stable encoding, target attrs Record.AddIdentifierRef(A->getAttrName()); Record.AddIdentifierRef(A->getScopeName()); Record.AddSourceRange(A->getRange()); Record.AddSourceLocation(A->getScopeLoc()); Record.push_back(A->getParsedKind()); Record.push_back(A->getSyntax()); Record.push_back(A->getAttributeSpellingListIndexRaw()); Record.push_back(A->isRegularKeywordAttribute()); #include "clang/Serialization/AttrPCHWrite.inc" } /// Emit the list of attributes to the specified record. void ASTRecordWriter::AddAttributes(ArrayRef Attrs) { push_back(Attrs.size()); for (const auto *A : Attrs) AddAttr(A); } void ASTWriter::AddToken(const Token &Tok, RecordDataImpl &Record) { AddSourceLocation(Tok.getLocation(), Record); // FIXME: Should translate token kind to a stable encoding. Record.push_back(Tok.getKind()); // FIXME: Should translate token flags to a stable encoding. Record.push_back(Tok.getFlags()); if (Tok.isAnnotation()) { AddSourceLocation(Tok.getAnnotationEndLoc(), Record); switch (Tok.getKind()) { case tok::annot_pragma_loop_hint: { auto *Info = static_cast(Tok.getAnnotationValue()); AddToken(Info->PragmaName, Record); AddToken(Info->Option, Record); Record.push_back(Info->Toks.size()); for (const auto &T : Info->Toks) AddToken(T, Record); break; } case tok::annot_pragma_pack: { auto *Info = static_cast(Tok.getAnnotationValue()); Record.push_back(static_cast(Info->Action)); AddString(Info->SlotLabel, Record); AddToken(Info->Alignment, Record); break; } // Some annotation tokens do not use the PtrData field. case tok::annot_pragma_openmp: case tok::annot_pragma_openmp_end: case tok::annot_pragma_unused: case tok::annot_pragma_openacc: case tok::annot_pragma_openacc_end: break; default: llvm_unreachable("missing serialization code for annotation token"); } } else { Record.push_back(Tok.getLength()); // FIXME: When reading literal tokens, reconstruct the literal pointer if it // is needed. AddIdentifierRef(Tok.getIdentifierInfo(), Record); } } void ASTWriter::AddString(StringRef Str, RecordDataImpl &Record) { Record.push_back(Str.size()); Record.insert(Record.end(), Str.begin(), Str.end()); } bool ASTWriter::PreparePathForOutput(SmallVectorImpl &Path) { assert(Context && "should have context when outputting path"); // Leave special file names as they are. StringRef PathStr(Path.data(), Path.size()); if (PathStr == "" || PathStr == "") return false; bool Changed = cleanPathForOutput(Context->getSourceManager().getFileManager(), Path); // Remove a prefix to make the path relative, if relevant. const char *PathBegin = Path.data(); const char *PathPtr = adjustFilenameForRelocatableAST(PathBegin, BaseDirectory); if (PathPtr != PathBegin) { Path.erase(Path.begin(), Path.begin() + (PathPtr - PathBegin)); Changed = true; } return Changed; } void ASTWriter::AddPath(StringRef Path, RecordDataImpl &Record) { SmallString<128> FilePath(Path); PreparePathForOutput(FilePath); AddString(FilePath, Record); } void ASTWriter::EmitRecordWithPath(unsigned Abbrev, RecordDataRef Record, StringRef Path) { SmallString<128> FilePath(Path); PreparePathForOutput(FilePath); Stream.EmitRecordWithBlob(Abbrev, Record, FilePath); } void ASTWriter::AddVersionTuple(const VersionTuple &Version, RecordDataImpl &Record) { Record.push_back(Version.getMajor()); if (std::optional Minor = Version.getMinor()) Record.push_back(*Minor + 1); else Record.push_back(0); if (std::optional Subminor = Version.getSubminor()) Record.push_back(*Subminor + 1); else Record.push_back(0); } /// Note that the identifier II occurs at the given offset /// within the identifier table. void ASTWriter::SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset) { IdentID ID = IdentifierIDs[II]; // Only store offsets new to this AST file. Other identifier names are looked // up earlier in the chain and thus don't need an offset. if (ID >= FirstIdentID) IdentifierOffsets[ID - FirstIdentID] = Offset; } /// Note that the selector Sel occurs at the given offset /// within the method pool/selector table. void ASTWriter::SetSelectorOffset(Selector Sel, uint32_t Offset) { unsigned ID = SelectorIDs[Sel]; assert(ID && "Unknown selector"); // Don't record offsets for selectors that are also available in a different // file. if (ID < FirstSelectorID) return; SelectorOffsets[ID - FirstSelectorID] = Offset; } ASTWriter::ASTWriter(llvm::BitstreamWriter &Stream, SmallVectorImpl &Buffer, InMemoryModuleCache &ModuleCache, ArrayRef> Extensions, bool IncludeTimestamps, bool BuildingImplicitModule) : Stream(Stream), Buffer(Buffer), ModuleCache(ModuleCache), IncludeTimestamps(IncludeTimestamps), BuildingImplicitModule(BuildingImplicitModule) { for (const auto &Ext : Extensions) { if (auto Writer = Ext->createExtensionWriter(*this)) ModuleFileExtensionWriters.push_back(std::move(Writer)); } } ASTWriter::~ASTWriter() = default; const LangOptions &ASTWriter::getLangOpts() const { assert(WritingAST && "can't determine lang opts when not writing AST"); return Context->getLangOpts(); } time_t ASTWriter::getTimestampForOutput(const FileEntry *E) const { return IncludeTimestamps ? E->getModificationTime() : 0; } ASTFileSignature ASTWriter::WriteAST(Sema &SemaRef, StringRef OutputFile, Module *WritingModule, StringRef isysroot, bool ShouldCacheASTInMemory) { llvm::TimeTraceScope scope("WriteAST", OutputFile); WritingAST = true; ASTHasCompilerErrors = SemaRef.PP.getDiagnostics().hasUncompilableErrorOccurred(); // Emit the file header. Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'P', 8); Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'H', 8); WriteBlockInfoBlock(); Context = &SemaRef.Context; PP = &SemaRef.PP; this->WritingModule = WritingModule; ASTFileSignature Signature = WriteASTCore(SemaRef, isysroot, WritingModule); Context = nullptr; PP = nullptr; this->WritingModule = nullptr; this->BaseDirectory.clear(); WritingAST = false; if (ShouldCacheASTInMemory) { // Construct MemoryBuffer and update buffer manager. ModuleCache.addBuiltPCM(OutputFile, llvm::MemoryBuffer::getMemBufferCopy( StringRef(Buffer.begin(), Buffer.size()))); } return Signature; } template static void AddLazyVectorDecls(ASTWriter &Writer, Vector &Vec, ASTWriter::RecordData &Record) { for (typename Vector::iterator I = Vec.begin(nullptr, true), E = Vec.end(); I != E; ++I) { Writer.AddDeclRef(*I, Record); } } void ASTWriter::collectNonAffectingInputFiles() { SourceManager &SrcMgr = PP->getSourceManager(); unsigned N = SrcMgr.local_sloc_entry_size(); IsSLocAffecting.resize(N, true); if (!WritingModule) return; auto AffectingModuleMaps = GetAffectingModuleMaps(*PP, WritingModule); unsigned FileIDAdjustment = 0; unsigned OffsetAdjustment = 0; NonAffectingFileIDAdjustments.reserve(N); NonAffectingOffsetAdjustments.reserve(N); NonAffectingFileIDAdjustments.push_back(FileIDAdjustment); NonAffectingOffsetAdjustments.push_back(OffsetAdjustment); for (unsigned I = 1; I != N; ++I) { const SrcMgr::SLocEntry *SLoc = &SrcMgr.getLocalSLocEntry(I); FileID FID = FileID::get(I); assert(&SrcMgr.getSLocEntry(FID) == SLoc); if (!SLoc->isFile()) continue; const SrcMgr::FileInfo &File = SLoc->getFile(); const SrcMgr::ContentCache *Cache = &File.getContentCache(); if (!Cache->OrigEntry) continue; if (!isModuleMap(File.getFileCharacteristic()) || AffectingModuleMaps.empty() || llvm::is_contained(AffectingModuleMaps, *Cache->OrigEntry)) continue; IsSLocAffecting[I] = false; FileIDAdjustment += 1; // Even empty files take up one element in the offset table. OffsetAdjustment += SrcMgr.getFileIDSize(FID) + 1; // If the previous file was non-affecting as well, just extend its entry // with our information. if (!NonAffectingFileIDs.empty() && NonAffectingFileIDs.back().ID == FID.ID - 1) { NonAffectingFileIDs.back() = FID; NonAffectingRanges.back().setEnd(SrcMgr.getLocForEndOfFile(FID)); NonAffectingFileIDAdjustments.back() = FileIDAdjustment; NonAffectingOffsetAdjustments.back() = OffsetAdjustment; continue; } NonAffectingFileIDs.push_back(FID); NonAffectingRanges.emplace_back(SrcMgr.getLocForStartOfFile(FID), SrcMgr.getLocForEndOfFile(FID)); NonAffectingFileIDAdjustments.push_back(FileIDAdjustment); NonAffectingOffsetAdjustments.push_back(OffsetAdjustment); } } ASTFileSignature ASTWriter::WriteASTCore(Sema &SemaRef, StringRef isysroot, Module *WritingModule) { using namespace llvm; bool isModule = WritingModule != nullptr; // Make sure that the AST reader knows to finalize itself. if (Chain) Chain->finalizeForWriting(); ASTContext &Context = SemaRef.Context; Preprocessor &PP = SemaRef.PP; // This needs to be done very early, since everything that writes // SourceLocations or FileIDs depends on it. collectNonAffectingInputFiles(); writeUnhashedControlBlock(PP, Context); // Set up predefined declaration IDs. auto RegisterPredefDecl = [&] (Decl *D, PredefinedDeclIDs ID) { if (D) { assert(D->isCanonicalDecl() && "predefined decl is not canonical"); DeclIDs[D] = ID; } }; RegisterPredefDecl(Context.getTranslationUnitDecl(), PREDEF_DECL_TRANSLATION_UNIT_ID); RegisterPredefDecl(Context.ObjCIdDecl, PREDEF_DECL_OBJC_ID_ID); RegisterPredefDecl(Context.ObjCSelDecl, PREDEF_DECL_OBJC_SEL_ID); RegisterPredefDecl(Context.ObjCClassDecl, PREDEF_DECL_OBJC_CLASS_ID); RegisterPredefDecl(Context.ObjCProtocolClassDecl, PREDEF_DECL_OBJC_PROTOCOL_ID); RegisterPredefDecl(Context.Int128Decl, PREDEF_DECL_INT_128_ID); RegisterPredefDecl(Context.UInt128Decl, PREDEF_DECL_UNSIGNED_INT_128_ID); RegisterPredefDecl(Context.ObjCInstanceTypeDecl, PREDEF_DECL_OBJC_INSTANCETYPE_ID); RegisterPredefDecl(Context.BuiltinVaListDecl, PREDEF_DECL_BUILTIN_VA_LIST_ID); RegisterPredefDecl(Context.VaListTagDecl, PREDEF_DECL_VA_LIST_TAG); RegisterPredefDecl(Context.BuiltinMSVaListDecl, PREDEF_DECL_BUILTIN_MS_VA_LIST_ID); RegisterPredefDecl(Context.MSGuidTagDecl, PREDEF_DECL_BUILTIN_MS_GUID_ID); RegisterPredefDecl(Context.ExternCContext, PREDEF_DECL_EXTERN_C_CONTEXT_ID); RegisterPredefDecl(Context.MakeIntegerSeqDecl, PREDEF_DECL_MAKE_INTEGER_SEQ_ID); RegisterPredefDecl(Context.CFConstantStringTypeDecl, PREDEF_DECL_CF_CONSTANT_STRING_ID); RegisterPredefDecl(Context.CFConstantStringTagDecl, PREDEF_DECL_CF_CONSTANT_STRING_TAG_ID); RegisterPredefDecl(Context.TypePackElementDecl, PREDEF_DECL_TYPE_PACK_ELEMENT_ID); // Build a record containing all of the tentative definitions in this file, in // TentativeDefinitions order. Generally, this record will be empty for // headers. RecordData TentativeDefinitions; AddLazyVectorDecls(*this, SemaRef.TentativeDefinitions, TentativeDefinitions); // Build a record containing all of the file scoped decls in this file. RecordData UnusedFileScopedDecls; if (!isModule) AddLazyVectorDecls(*this, SemaRef.UnusedFileScopedDecls, UnusedFileScopedDecls); // Build a record containing all of the delegating constructors we still need // to resolve. RecordData DelegatingCtorDecls; if (!isModule) AddLazyVectorDecls(*this, SemaRef.DelegatingCtorDecls, DelegatingCtorDecls); // Write the set of weak, undeclared identifiers. We always write the // entire table, since later PCH files in a PCH chain are only interested in // the results at the end of the chain. RecordData WeakUndeclaredIdentifiers; for (const auto &WeakUndeclaredIdentifierList : SemaRef.WeakUndeclaredIdentifiers) { const IdentifierInfo *const II = WeakUndeclaredIdentifierList.first; for (const auto &WI : WeakUndeclaredIdentifierList.second) { AddIdentifierRef(II, WeakUndeclaredIdentifiers); AddIdentifierRef(WI.getAlias(), WeakUndeclaredIdentifiers); AddSourceLocation(WI.getLocation(), WeakUndeclaredIdentifiers); } } // Build a record containing all of the ext_vector declarations. RecordData ExtVectorDecls; AddLazyVectorDecls(*this, SemaRef.ExtVectorDecls, ExtVectorDecls); // Build a record containing all of the VTable uses information. RecordData VTableUses; if (!SemaRef.VTableUses.empty()) { for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) { AddDeclRef(SemaRef.VTableUses[I].first, VTableUses); AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses); VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]); } } // Build a record containing all of the UnusedLocalTypedefNameCandidates. RecordData UnusedLocalTypedefNameCandidates; for (const TypedefNameDecl *TD : SemaRef.UnusedLocalTypedefNameCandidates) AddDeclRef(TD, UnusedLocalTypedefNameCandidates); // Build a record containing all of pending implicit instantiations. RecordData PendingInstantiations; for (const auto &I : SemaRef.PendingInstantiations) { AddDeclRef(I.first, PendingInstantiations); AddSourceLocation(I.second, PendingInstantiations); } assert(SemaRef.PendingLocalImplicitInstantiations.empty() && "There are local ones at end of translation unit!"); // Build a record containing some declaration references. RecordData SemaDeclRefs; if (SemaRef.StdNamespace || SemaRef.StdBadAlloc || SemaRef.StdAlignValT) { AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs); AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs); AddDeclRef(SemaRef.getStdAlignValT(), SemaDeclRefs); } RecordData CUDASpecialDeclRefs; if (Context.getcudaConfigureCallDecl()) { AddDeclRef(Context.getcudaConfigureCallDecl(), CUDASpecialDeclRefs); } // Build a record containing all of the known namespaces. RecordData KnownNamespaces; for (const auto &I : SemaRef.KnownNamespaces) { if (!I.second) AddDeclRef(I.first, KnownNamespaces); } // Build a record of all used, undefined objects that require definitions. RecordData UndefinedButUsed; SmallVector, 16> Undefined; SemaRef.getUndefinedButUsed(Undefined); for (const auto &I : Undefined) { AddDeclRef(I.first, UndefinedButUsed); AddSourceLocation(I.second, UndefinedButUsed); } // Build a record containing all delete-expressions that we would like to // analyze later in AST. RecordData DeleteExprsToAnalyze; if (!isModule) { for (const auto &DeleteExprsInfo : SemaRef.getMismatchingDeleteExpressions()) { AddDeclRef(DeleteExprsInfo.first, DeleteExprsToAnalyze); DeleteExprsToAnalyze.push_back(DeleteExprsInfo.second.size()); for (const auto &DeleteLoc : DeleteExprsInfo.second) { AddSourceLocation(DeleteLoc.first, DeleteExprsToAnalyze); DeleteExprsToAnalyze.push_back(DeleteLoc.second); } } } // Write the control block WriteControlBlock(PP, Context, isysroot); // Write the remaining AST contents. Stream.FlushToWord(); ASTBlockRange.first = Stream.GetCurrentBitNo() >> 3; Stream.EnterSubblock(AST_BLOCK_ID, 5); ASTBlockStartOffset = Stream.GetCurrentBitNo(); // This is so that older clang versions, before the introduction // of the control block, can read and reject the newer PCH format. { RecordData Record = {VERSION_MAJOR}; Stream.EmitRecord(METADATA_OLD_FORMAT, Record); } // Create a lexical update block containing all of the declarations in the // translation unit that do not come from other AST files. const TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); SmallVector NewGlobalKindDeclPairs; for (const auto *D : TU->noload_decls()) { if (!D->isFromASTFile()) { NewGlobalKindDeclPairs.push_back(D->getKind()); NewGlobalKindDeclPairs.push_back(GetDeclRef(D)); } } auto Abv = std::make_shared(); Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(std::move(Abv)); { RecordData::value_type Record[] = {TU_UPDATE_LEXICAL}; Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record, bytes(NewGlobalKindDeclPairs)); } // And a visible updates block for the translation unit. Abv = std::make_shared(); Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); UpdateVisibleAbbrev = Stream.EmitAbbrev(std::move(Abv)); WriteDeclContextVisibleUpdate(TU); // If we have any extern "C" names, write out a visible update for them. if (Context.ExternCContext) WriteDeclContextVisibleUpdate(Context.ExternCContext); // If the translation unit has an anonymous namespace, and we don't already // have an update block for it, write it as an update block. // FIXME: Why do we not do this if there's already an update block? if (NamespaceDecl *NS = TU->getAnonymousNamespace()) { ASTWriter::UpdateRecord &Record = DeclUpdates[TU]; if (Record.empty()) Record.push_back(DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, NS)); } // Add update records for all mangling numbers and static local numbers. // These aren't really update records, but this is a convenient way of // tagging this rare extra data onto the declarations. for (const auto &Number : Context.MangleNumbers) if (!Number.first->isFromASTFile()) DeclUpdates[Number.first].push_back(DeclUpdate(UPD_MANGLING_NUMBER, Number.second)); for (const auto &Number : Context.StaticLocalNumbers) if (!Number.first->isFromASTFile()) DeclUpdates[Number.first].push_back(DeclUpdate(UPD_STATIC_LOCAL_NUMBER, Number.second)); // Make sure visible decls, added to DeclContexts previously loaded from // an AST file, are registered for serialization. Likewise for template // specializations added to imported templates. for (const auto *I : DeclsToEmitEvenIfUnreferenced) { GetDeclRef(I); } // Make sure all decls associated with an identifier are registered for // serialization, if we're storing decls with identifiers. if (!WritingModule || !getLangOpts().CPlusPlus) { llvm::SmallVector IIs; for (const auto &ID : PP.getIdentifierTable()) { const IdentifierInfo *II = ID.second; if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization()) IIs.push_back(II); } // Sort the identifiers to visit based on their name. llvm::sort(IIs, llvm::deref>()); for (const IdentifierInfo *II : IIs) for (const Decl *D : SemaRef.IdResolver.decls(II)) GetDeclRef(D); } // For method pool in the module, if it contains an entry for a selector, // the entry should be complete, containing everything introduced by that // module and all modules it imports. It's possible that the entry is out of // date, so we need to pull in the new content here. // It's possible that updateOutOfDateSelector can update SelectorIDs. To be // safe, we copy all selectors out. llvm::SmallVector AllSelectors; for (auto &SelectorAndID : SelectorIDs) AllSelectors.push_back(SelectorAndID.first); for (auto &Selector : AllSelectors) SemaRef.updateOutOfDateSelector(Selector); // Form the record of special types. RecordData SpecialTypes; AddTypeRef(Context.getRawCFConstantStringType(), SpecialTypes); AddTypeRef(Context.getFILEType(), SpecialTypes); AddTypeRef(Context.getjmp_bufType(), SpecialTypes); AddTypeRef(Context.getsigjmp_bufType(), SpecialTypes); AddTypeRef(Context.ObjCIdRedefinitionType, SpecialTypes); AddTypeRef(Context.ObjCClassRedefinitionType, SpecialTypes); AddTypeRef(Context.ObjCSelRedefinitionType, SpecialTypes); AddTypeRef(Context.getucontext_tType(), SpecialTypes); if (Chain) { // Write the mapping information describing our module dependencies and how // each of those modules were mapped into our own offset/ID space, so that // the reader can build the appropriate mapping to its own offset/ID space. // The map consists solely of a blob with the following format: // *(module-kind:i8 // module-name-len:i16 module-name:len*i8 // source-location-offset:i32 // identifier-id:i32 // preprocessed-entity-id:i32 // macro-definition-id:i32 // submodule-id:i32 // selector-id:i32 // declaration-id:i32 // c++-base-specifiers-id:i32 // type-id:i32) // // module-kind is the ModuleKind enum value. If it is MK_PrebuiltModule, // MK_ExplicitModule or MK_ImplicitModule, then the module-name is the // module name. Otherwise, it is the module file name. auto Abbrev = std::make_shared(); Abbrev->Add(BitCodeAbbrevOp(MODULE_OFFSET_MAP)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned ModuleOffsetMapAbbrev = Stream.EmitAbbrev(std::move(Abbrev)); SmallString<2048> Buffer; { llvm::raw_svector_ostream Out(Buffer); for (ModuleFile &M : Chain->ModuleMgr) { using namespace llvm::support; endian::Writer LE(Out, llvm::endianness::little); LE.write(static_cast(M.Kind)); StringRef Name = M.isModule() ? M.ModuleName : M.FileName; LE.write(Name.size()); Out.write(Name.data(), Name.size()); // Note: if a base ID was uint max, it would not be possible to load // another module after it or have more than one entity inside it. uint32_t None = std::numeric_limits::max(); auto writeBaseIDOrNone = [&](auto BaseID, bool ShouldWrite) { assert(BaseID < std::numeric_limits::max() && "base id too high"); if (ShouldWrite) LE.write(BaseID); else LE.write(None); }; // These values should be unique within a chain, since they will be read // as keys into ContinuousRangeMaps. writeBaseIDOrNone(M.SLocEntryBaseOffset, M.LocalNumSLocEntries); writeBaseIDOrNone(M.BaseIdentifierID, M.LocalNumIdentifiers); writeBaseIDOrNone(M.BaseMacroID, M.LocalNumMacros); writeBaseIDOrNone(M.BasePreprocessedEntityID, M.NumPreprocessedEntities); writeBaseIDOrNone(M.BaseSubmoduleID, M.LocalNumSubmodules); writeBaseIDOrNone(M.BaseSelectorID, M.LocalNumSelectors); writeBaseIDOrNone(M.BaseDeclID, M.LocalNumDecls); writeBaseIDOrNone(M.BaseTypeIndex, M.LocalNumTypes); } } RecordData::value_type Record[] = {MODULE_OFFSET_MAP}; Stream.EmitRecordWithBlob(ModuleOffsetMapAbbrev, Record, Buffer.data(), Buffer.size()); } // Build a record containing all of the DeclsToCheckForDeferredDiags. SmallVector DeclsToCheckForDeferredDiags; for (auto *D : SemaRef.DeclsToCheckForDeferredDiags) DeclsToCheckForDeferredDiags.push_back(GetDeclRef(D)); RecordData DeclUpdatesOffsetsRecord; // Keep writing types, declarations, and declaration update records // until we've emitted all of them. Stream.EnterSubblock(DECLTYPES_BLOCK_ID, /*bits for abbreviations*/5); DeclTypesBlockStartOffset = Stream.GetCurrentBitNo(); WriteTypeAbbrevs(); WriteDeclAbbrevs(); do { WriteDeclUpdatesBlocks(DeclUpdatesOffsetsRecord); while (!DeclTypesToEmit.empty()) { DeclOrType DOT = DeclTypesToEmit.front(); DeclTypesToEmit.pop(); if (DOT.isType()) WriteType(DOT.getType()); else WriteDecl(Context, DOT.getDecl()); } } while (!DeclUpdates.empty()); Stream.ExitBlock(); DoneWritingDeclsAndTypes = true; // These things can only be done once we've written out decls and types. WriteTypeDeclOffsets(); if (!DeclUpdatesOffsetsRecord.empty()) Stream.EmitRecord(DECL_UPDATE_OFFSETS, DeclUpdatesOffsetsRecord); WriteFileDeclIDsMap(); WriteSourceManagerBlock(Context.getSourceManager(), PP); WriteComments(); WritePreprocessor(PP, isModule); WriteHeaderSearch(PP.getHeaderSearchInfo()); WriteSelectors(SemaRef); WriteReferencedSelectorsPool(SemaRef); WriteLateParsedTemplates(SemaRef); WriteIdentifierTable(PP, SemaRef.IdResolver, isModule); WriteFPPragmaOptions(SemaRef.CurFPFeatureOverrides()); WriteOpenCLExtensions(SemaRef); WriteCUDAPragmas(SemaRef); // If we're emitting a module, write out the submodule information. if (WritingModule) WriteSubmodules(WritingModule); Stream.EmitRecord(SPECIAL_TYPES, SpecialTypes); // Write the record containing external, unnamed definitions. if (!EagerlyDeserializedDecls.empty()) Stream.EmitRecord(EAGERLY_DESERIALIZED_DECLS, EagerlyDeserializedDecls); if (!ModularCodegenDecls.empty()) Stream.EmitRecord(MODULAR_CODEGEN_DECLS, ModularCodegenDecls); // Write the record containing tentative definitions. if (!TentativeDefinitions.empty()) Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions); // Write the record containing unused file scoped decls. if (!UnusedFileScopedDecls.empty()) Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls); // Write the record containing weak undeclared identifiers. if (!WeakUndeclaredIdentifiers.empty()) Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS, WeakUndeclaredIdentifiers); // Write the record containing ext_vector type names. if (!ExtVectorDecls.empty()) Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls); // Write the record containing VTable uses information. if (!VTableUses.empty()) Stream.EmitRecord(VTABLE_USES, VTableUses); // Write the record containing potentially unused local typedefs. if (!UnusedLocalTypedefNameCandidates.empty()) Stream.EmitRecord(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES, UnusedLocalTypedefNameCandidates); // Write the record containing pending implicit instantiations. if (!PendingInstantiations.empty()) Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations); // Write the record containing declaration references of Sema. if (!SemaDeclRefs.empty()) Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs); // Write the record containing decls to be checked for deferred diags. if (!DeclsToCheckForDeferredDiags.empty()) Stream.EmitRecord(DECLS_TO_CHECK_FOR_DEFERRED_DIAGS, DeclsToCheckForDeferredDiags); // Write the record containing CUDA-specific declaration references. if (!CUDASpecialDeclRefs.empty()) Stream.EmitRecord(CUDA_SPECIAL_DECL_REFS, CUDASpecialDeclRefs); // Write the delegating constructors. if (!DelegatingCtorDecls.empty()) Stream.EmitRecord(DELEGATING_CTORS, DelegatingCtorDecls); // Write the known namespaces. if (!KnownNamespaces.empty()) Stream.EmitRecord(KNOWN_NAMESPACES, KnownNamespaces); // Write the undefined internal functions and variables, and inline functions. if (!UndefinedButUsed.empty()) Stream.EmitRecord(UNDEFINED_BUT_USED, UndefinedButUsed); if (!DeleteExprsToAnalyze.empty()) Stream.EmitRecord(DELETE_EXPRS_TO_ANALYZE, DeleteExprsToAnalyze); // Write the visible updates to DeclContexts. for (auto *DC : UpdatedDeclContexts) WriteDeclContextVisibleUpdate(DC); if (!WritingModule) { // Write the submodules that were imported, if any. struct ModuleInfo { uint64_t ID; Module *M; ModuleInfo(uint64_t ID, Module *M) : ID(ID), M(M) {} }; llvm::SmallVector Imports; for (const auto *I : Context.local_imports()) { assert(SubmoduleIDs.contains(I->getImportedModule())); Imports.push_back(ModuleInfo(SubmoduleIDs[I->getImportedModule()], I->getImportedModule())); } if (!Imports.empty()) { auto Cmp = [](const ModuleInfo &A, const ModuleInfo &B) { return A.ID < B.ID; }; auto Eq = [](const ModuleInfo &A, const ModuleInfo &B) { return A.ID == B.ID; }; // Sort and deduplicate module IDs. llvm::sort(Imports, Cmp); Imports.erase(std::unique(Imports.begin(), Imports.end(), Eq), Imports.end()); RecordData ImportedModules; for (const auto &Import : Imports) { ImportedModules.push_back(Import.ID); // FIXME: If the module has macros imported then later has declarations // imported, this location won't be the right one as a location for the // declaration imports. AddSourceLocation(PP.getModuleImportLoc(Import.M), ImportedModules); } Stream.EmitRecord(IMPORTED_MODULES, ImportedModules); } } WriteObjCCategories(); if(!WritingModule) { WriteOptimizePragmaOptions(SemaRef); WriteMSStructPragmaOptions(SemaRef); WriteMSPointersToMembersPragmaOptions(SemaRef); } WritePackPragmaOptions(SemaRef); WriteFloatControlPragmaOptions(SemaRef); // Some simple statistics RecordData::value_type Record[] = { NumStatements, NumMacros, NumLexicalDeclContexts, NumVisibleDeclContexts}; Stream.EmitRecord(STATISTICS, Record); Stream.ExitBlock(); Stream.FlushToWord(); ASTBlockRange.second = Stream.GetCurrentBitNo() >> 3; // Write the module file extension blocks. for (const auto &ExtWriter : ModuleFileExtensionWriters) WriteModuleFileExtension(SemaRef, *ExtWriter); return backpatchSignature(); } void ASTWriter::WriteDeclUpdatesBlocks(RecordDataImpl &OffsetsRecord) { if (DeclUpdates.empty()) return; DeclUpdateMap LocalUpdates; LocalUpdates.swap(DeclUpdates); for (auto &DeclUpdate : LocalUpdates) { const Decl *D = DeclUpdate.first; bool HasUpdatedBody = false; bool HasAddedVarDefinition = false; RecordData RecordData; ASTRecordWriter Record(*this, RecordData); for (auto &Update : DeclUpdate.second) { DeclUpdateKind Kind = (DeclUpdateKind)Update.getKind(); // An updated body is emitted last, so that the reader doesn't need // to skip over the lazy body to reach statements for other records. if (Kind == UPD_CXX_ADDED_FUNCTION_DEFINITION) HasUpdatedBody = true; else if (Kind == UPD_CXX_ADDED_VAR_DEFINITION) HasAddedVarDefinition = true; else Record.push_back(Kind); switch (Kind) { case UPD_CXX_ADDED_IMPLICIT_MEMBER: case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION: case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: assert(Update.getDecl() && "no decl to add?"); Record.push_back(GetDeclRef(Update.getDecl())); break; case UPD_CXX_ADDED_FUNCTION_DEFINITION: case UPD_CXX_ADDED_VAR_DEFINITION: break; case UPD_CXX_POINT_OF_INSTANTIATION: // FIXME: Do we need to also save the template specialization kind here? Record.AddSourceLocation(Update.getLoc()); break; case UPD_CXX_INSTANTIATED_DEFAULT_ARGUMENT: Record.AddStmt(const_cast( cast(Update.getDecl())->getDefaultArg())); break; case UPD_CXX_INSTANTIATED_DEFAULT_MEMBER_INITIALIZER: Record.AddStmt( cast(Update.getDecl())->getInClassInitializer()); break; case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: { auto *RD = cast(D); UpdatedDeclContexts.insert(RD->getPrimaryContext()); Record.push_back(RD->isParamDestroyedInCallee()); Record.push_back(llvm::to_underlying(RD->getArgPassingRestrictions())); Record.AddCXXDefinitionData(RD); Record.AddOffset(WriteDeclContextLexicalBlock( *Context, const_cast(RD))); // This state is sometimes updated by template instantiation, when we // switch from the specialization referring to the template declaration // to it referring to the template definition. if (auto *MSInfo = RD->getMemberSpecializationInfo()) { Record.push_back(MSInfo->getTemplateSpecializationKind()); Record.AddSourceLocation(MSInfo->getPointOfInstantiation()); } else { auto *Spec = cast(RD); Record.push_back(Spec->getTemplateSpecializationKind()); Record.AddSourceLocation(Spec->getPointOfInstantiation()); // The instantiation might have been resolved to a partial // specialization. If so, record which one. auto From = Spec->getInstantiatedFrom(); if (auto PartialSpec = From.dyn_cast()) { Record.push_back(true); Record.AddDeclRef(PartialSpec); Record.AddTemplateArgumentList( &Spec->getTemplateInstantiationArgs()); } else { Record.push_back(false); } } Record.push_back(llvm::to_underlying(RD->getTagKind())); Record.AddSourceLocation(RD->getLocation()); Record.AddSourceLocation(RD->getBeginLoc()); Record.AddSourceRange(RD->getBraceRange()); // Instantiation may change attributes; write them all out afresh. Record.push_back(D->hasAttrs()); if (D->hasAttrs()) Record.AddAttributes(D->getAttrs()); // FIXME: Ensure we don't get here for explicit instantiations. break; } case UPD_CXX_RESOLVED_DTOR_DELETE: Record.AddDeclRef(Update.getDecl()); Record.AddStmt(cast(D)->getOperatorDeleteThisArg()); break; case UPD_CXX_RESOLVED_EXCEPTION_SPEC: { auto prototype = cast(D)->getType()->castAs(); Record.writeExceptionSpecInfo(prototype->getExceptionSpecInfo()); break; } case UPD_CXX_DEDUCED_RETURN_TYPE: Record.push_back(GetOrCreateTypeID(Update.getType())); break; case UPD_DECL_MARKED_USED: break; case UPD_MANGLING_NUMBER: case UPD_STATIC_LOCAL_NUMBER: Record.push_back(Update.getNumber()); break; case UPD_DECL_MARKED_OPENMP_THREADPRIVATE: Record.AddSourceRange( D->getAttr()->getRange()); break; case UPD_DECL_MARKED_OPENMP_ALLOCATE: { auto *A = D->getAttr(); Record.push_back(A->getAllocatorType()); Record.AddStmt(A->getAllocator()); Record.AddStmt(A->getAlignment()); Record.AddSourceRange(A->getRange()); break; } case UPD_DECL_MARKED_OPENMP_DECLARETARGET: Record.push_back(D->getAttr()->getMapType()); Record.AddSourceRange( D->getAttr()->getRange()); break; case UPD_DECL_EXPORTED: Record.push_back(getSubmoduleID(Update.getModule())); break; case UPD_ADDED_ATTR_TO_RECORD: Record.AddAttributes(llvm::ArrayRef(Update.getAttr())); break; } } // Add a trailing update record, if any. These must go last because we // lazily load their attached statement. if (HasUpdatedBody) { const auto *Def = cast(D); Record.push_back(UPD_CXX_ADDED_FUNCTION_DEFINITION); Record.push_back(Def->isInlined()); Record.AddSourceLocation(Def->getInnerLocStart()); Record.AddFunctionDefinition(Def); } else if (HasAddedVarDefinition) { const auto *VD = cast(D); Record.push_back(UPD_CXX_ADDED_VAR_DEFINITION); Record.push_back(VD->isInline()); Record.push_back(VD->isInlineSpecified()); Record.AddVarDeclInit(VD); } OffsetsRecord.push_back(GetDeclRef(D)); OffsetsRecord.push_back(Record.Emit(DECL_UPDATES)); } } void ASTWriter::AddAlignPackInfo(const Sema::AlignPackInfo &Info, RecordDataImpl &Record) { uint32_t Raw = Sema::AlignPackInfo::getRawEncoding(Info); Record.push_back(Raw); } FileID ASTWriter::getAdjustedFileID(FileID FID) const { if (FID.isInvalid() || PP->getSourceManager().isLoadedFileID(FID) || NonAffectingFileIDs.empty()) return FID; auto It = llvm::lower_bound(NonAffectingFileIDs, FID); unsigned Idx = std::distance(NonAffectingFileIDs.begin(), It); unsigned Offset = NonAffectingFileIDAdjustments[Idx]; return FileID::get(FID.getOpaqueValue() - Offset); } unsigned ASTWriter::getAdjustedNumCreatedFIDs(FileID FID) const { unsigned NumCreatedFIDs = PP->getSourceManager() .getLocalSLocEntry(FID.ID) .getFile() .NumCreatedFIDs; unsigned AdjustedNumCreatedFIDs = 0; for (unsigned I = FID.ID, N = I + NumCreatedFIDs; I != N; ++I) if (IsSLocAffecting[I]) ++AdjustedNumCreatedFIDs; return AdjustedNumCreatedFIDs; } SourceLocation ASTWriter::getAdjustedLocation(SourceLocation Loc) const { if (Loc.isInvalid()) return Loc; return Loc.getLocWithOffset(-getAdjustment(Loc.getOffset())); } SourceRange ASTWriter::getAdjustedRange(SourceRange Range) const { return SourceRange(getAdjustedLocation(Range.getBegin()), getAdjustedLocation(Range.getEnd())); } SourceLocation::UIntTy ASTWriter::getAdjustedOffset(SourceLocation::UIntTy Offset) const { return Offset - getAdjustment(Offset); } SourceLocation::UIntTy ASTWriter::getAdjustment(SourceLocation::UIntTy Offset) const { if (NonAffectingRanges.empty()) return 0; if (PP->getSourceManager().isLoadedOffset(Offset)) return 0; if (Offset > NonAffectingRanges.back().getEnd().getOffset()) return NonAffectingOffsetAdjustments.back(); if (Offset < NonAffectingRanges.front().getBegin().getOffset()) return 0; auto Contains = [](const SourceRange &Range, SourceLocation::UIntTy Offset) { return Range.getEnd().getOffset() < Offset; }; auto It = llvm::lower_bound(NonAffectingRanges, Offset, Contains); unsigned Idx = std::distance(NonAffectingRanges.begin(), It); return NonAffectingOffsetAdjustments[Idx]; } void ASTWriter::AddFileID(FileID FID, RecordDataImpl &Record) { Record.push_back(getAdjustedFileID(FID).getOpaqueValue()); } void ASTWriter::AddSourceLocation(SourceLocation Loc, RecordDataImpl &Record, SourceLocationSequence *Seq) { Loc = getAdjustedLocation(Loc); Record.push_back(SourceLocationEncoding::encode(Loc, Seq)); } void ASTWriter::AddSourceRange(SourceRange Range, RecordDataImpl &Record, SourceLocationSequence *Seq) { AddSourceLocation(Range.getBegin(), Record, Seq); AddSourceLocation(Range.getEnd(), Record, Seq); } void ASTRecordWriter::AddAPFloat(const llvm::APFloat &Value) { AddAPInt(Value.bitcastToAPInt()); } void ASTWriter::AddIdentifierRef(const IdentifierInfo *II, RecordDataImpl &Record) { Record.push_back(getIdentifierRef(II)); } IdentID ASTWriter::getIdentifierRef(const IdentifierInfo *II) { if (!II) return 0; IdentID &ID = IdentifierIDs[II]; if (ID == 0) ID = NextIdentID++; return ID; } MacroID ASTWriter::getMacroRef(MacroInfo *MI, const IdentifierInfo *Name) { // Don't emit builtin macros like __LINE__ to the AST file unless they // have been redefined by the header (in which case they are not // isBuiltinMacro). if (!MI || MI->isBuiltinMacro()) return 0; MacroID &ID = MacroIDs[MI]; if (ID == 0) { ID = NextMacroID++; MacroInfoToEmitData Info = { Name, MI, ID }; MacroInfosToEmit.push_back(Info); } return ID; } MacroID ASTWriter::getMacroID(MacroInfo *MI) { if (!MI || MI->isBuiltinMacro()) return 0; assert(MacroIDs.contains(MI) && "Macro not emitted!"); return MacroIDs[MI]; } uint32_t ASTWriter::getMacroDirectivesOffset(const IdentifierInfo *Name) { return IdentMacroDirectivesOffsetMap.lookup(Name); } void ASTRecordWriter::AddSelectorRef(const Selector SelRef) { Record->push_back(Writer->getSelectorRef(SelRef)); } SelectorID ASTWriter::getSelectorRef(Selector Sel) { if (Sel.getAsOpaquePtr() == nullptr) { return 0; } SelectorID SID = SelectorIDs[Sel]; if (SID == 0 && Chain) { // This might trigger a ReadSelector callback, which will set the ID for // this selector. Chain->LoadSelector(Sel); SID = SelectorIDs[Sel]; } if (SID == 0) { SID = NextSelectorID++; SelectorIDs[Sel] = SID; } return SID; } void ASTRecordWriter::AddCXXTemporary(const CXXTemporary *Temp) { AddDeclRef(Temp->getDestructor()); } void ASTRecordWriter::AddTemplateArgumentLocInfo( TemplateArgument::ArgKind Kind, const TemplateArgumentLocInfo &Arg) { switch (Kind) { case TemplateArgument::Expression: AddStmt(Arg.getAsExpr()); break; case TemplateArgument::Type: AddTypeSourceInfo(Arg.getAsTypeSourceInfo()); break; case TemplateArgument::Template: AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc()); AddSourceLocation(Arg.getTemplateNameLoc()); break; case TemplateArgument::TemplateExpansion: AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc()); AddSourceLocation(Arg.getTemplateNameLoc()); AddSourceLocation(Arg.getTemplateEllipsisLoc()); break; case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::NullPtr: case TemplateArgument::StructuralValue: case TemplateArgument::Pack: // FIXME: Is this right? break; } } void ASTRecordWriter::AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg) { AddTemplateArgument(Arg.getArgument()); if (Arg.getArgument().getKind() == TemplateArgument::Expression) { bool InfoHasSameExpr = Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr(); Record->push_back(InfoHasSameExpr); if (InfoHasSameExpr) return; // Avoid storing the same expr twice. } AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo()); } void ASTRecordWriter::AddTypeSourceInfo(TypeSourceInfo *TInfo) { if (!TInfo) { AddTypeRef(QualType()); return; } AddTypeRef(TInfo->getType()); AddTypeLoc(TInfo->getTypeLoc()); } void ASTRecordWriter::AddTypeLoc(TypeLoc TL, LocSeq *OuterSeq) { LocSeq::State Seq(OuterSeq); TypeLocWriter TLW(*this, Seq); for (; !TL.isNull(); TL = TL.getNextTypeLoc()) TLW.Visit(TL); } void ASTWriter::AddTypeRef(QualType T, RecordDataImpl &Record) { Record.push_back(GetOrCreateTypeID(T)); } TypeID ASTWriter::GetOrCreateTypeID(QualType T) { assert(Context); return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdx &Idx = TypeIdxs[T]; if (Idx.getIndex() == 0) { if (DoneWritingDeclsAndTypes) { assert(0 && "New type seen after serializing all the types to emit!"); return TypeIdx(); } // We haven't seen this type before. Assign it a new ID and put it // into the queue of types to emit. Idx = TypeIdx(NextTypeID++); DeclTypesToEmit.push(T); } return Idx; }); } TypeID ASTWriter::getTypeID(QualType T) const { assert(Context); return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdxMap::const_iterator I = TypeIdxs.find(T); assert(I != TypeIdxs.end() && "Type not emitted!"); return I->second; }); } void ASTWriter::AddDeclRef(const Decl *D, RecordDataImpl &Record) { Record.push_back(GetDeclRef(D)); } DeclID ASTWriter::GetDeclRef(const Decl *D) { assert(WritingAST && "Cannot request a declaration ID before AST writing"); if (!D) { return 0; } // If D comes from an AST file, its declaration ID is already known and // fixed. if (D->isFromASTFile()) return D->getGlobalID(); assert(!(reinterpret_cast(D) & 0x01) && "Invalid decl pointer"); DeclID &ID = DeclIDs[D]; if (ID == 0) { if (DoneWritingDeclsAndTypes) { assert(0 && "New decl seen after serializing all the decls to emit!"); return 0; } // We haven't seen this declaration before. Give it a new ID and // enqueue it in the list of declarations to emit. ID = NextDeclID++; DeclTypesToEmit.push(const_cast(D)); } return ID; } DeclID ASTWriter::getDeclID(const Decl *D) { if (!D) return 0; // If D comes from an AST file, its declaration ID is already known and // fixed. if (D->isFromASTFile()) return D->getGlobalID(); assert(DeclIDs.contains(D) && "Declaration not emitted!"); return DeclIDs[D]; } void ASTWriter::associateDeclWithFile(const Decl *D, DeclID ID) { assert(ID); assert(D); SourceLocation Loc = D->getLocation(); if (Loc.isInvalid()) return; // We only keep track of the file-level declarations of each file. if (!D->getLexicalDeclContext()->isFileContext()) return; // FIXME: ParmVarDecls that are part of a function type of a parameter of // a function/objc method, should not have TU as lexical context. // TemplateTemplateParmDecls that are part of an alias template, should not // have TU as lexical context. if (isa(D)) return; SourceManager &SM = Context->getSourceManager(); SourceLocation FileLoc = SM.getFileLoc(Loc); assert(SM.isLocalSourceLocation(FileLoc)); FileID FID; unsigned Offset; std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc); if (FID.isInvalid()) return; assert(SM.getSLocEntry(FID).isFile()); assert(IsSLocAffecting[FID.ID]); std::unique_ptr &Info = FileDeclIDs[FID]; if (!Info) Info = std::make_unique(); std::pair LocDecl(Offset, ID); LocDeclIDsTy &Decls = Info->DeclIDs; Decls.push_back(LocDecl); } unsigned ASTWriter::getAnonymousDeclarationNumber(const NamedDecl *D) { assert(needsAnonymousDeclarationNumber(D) && "expected an anonymous declaration"); // Number the anonymous declarations within this context, if we've not // already done so. auto It = AnonymousDeclarationNumbers.find(D); if (It == AnonymousDeclarationNumbers.end()) { auto *DC = D->getLexicalDeclContext(); numberAnonymousDeclsWithin(DC, [&](const NamedDecl *ND, unsigned Number) { AnonymousDeclarationNumbers[ND] = Number; }); It = AnonymousDeclarationNumbers.find(D); assert(It != AnonymousDeclarationNumbers.end() && "declaration not found within its lexical context"); } return It->second; } void ASTRecordWriter::AddDeclarationNameLoc(const DeclarationNameLoc &DNLoc, DeclarationName Name) { switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: AddTypeSourceInfo(DNLoc.getNamedTypeInfo()); break; case DeclarationName::CXXOperatorName: AddSourceRange(DNLoc.getCXXOperatorNameRange()); break; case DeclarationName::CXXLiteralOperatorName: AddSourceLocation(DNLoc.getCXXLiteralOperatorNameLoc()); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: case DeclarationName::CXXDeductionGuideName: break; } } void ASTRecordWriter::AddDeclarationNameInfo( const DeclarationNameInfo &NameInfo) { AddDeclarationName(NameInfo.getName()); AddSourceLocation(NameInfo.getLoc()); AddDeclarationNameLoc(NameInfo.getInfo(), NameInfo.getName()); } void ASTRecordWriter::AddQualifierInfo(const QualifierInfo &Info) { AddNestedNameSpecifierLoc(Info.QualifierLoc); Record->push_back(Info.NumTemplParamLists); for (unsigned i = 0, e = Info.NumTemplParamLists; i != e; ++i) AddTemplateParameterList(Info.TemplParamLists[i]); } void ASTRecordWriter::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) { // Nested name specifiers usually aren't too long. I think that 8 would // typically accommodate the vast majority. SmallVector NestedNames; // Push each of the nested-name-specifiers's onto a stack for // serialization in reverse order. while (NNS) { NestedNames.push_back(NNS); NNS = NNS.getPrefix(); } Record->push_back(NestedNames.size()); while(!NestedNames.empty()) { NNS = NestedNames.pop_back_val(); NestedNameSpecifier::SpecifierKind Kind = NNS.getNestedNameSpecifier()->getKind(); Record->push_back(Kind); switch (Kind) { case NestedNameSpecifier::Identifier: AddIdentifierRef(NNS.getNestedNameSpecifier()->getAsIdentifier()); AddSourceRange(NNS.getLocalSourceRange()); break; case NestedNameSpecifier::Namespace: AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespace()); AddSourceRange(NNS.getLocalSourceRange()); break; case NestedNameSpecifier::NamespaceAlias: AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespaceAlias()); AddSourceRange(NNS.getLocalSourceRange()); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: Record->push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate); AddTypeRef(NNS.getTypeLoc().getType()); AddTypeLoc(NNS.getTypeLoc()); AddSourceLocation(NNS.getLocalSourceRange().getEnd()); break; case NestedNameSpecifier::Global: AddSourceLocation(NNS.getLocalSourceRange().getEnd()); break; case NestedNameSpecifier::Super: AddDeclRef(NNS.getNestedNameSpecifier()->getAsRecordDecl()); AddSourceRange(NNS.getLocalSourceRange()); break; } } } void ASTRecordWriter::AddTemplateParameterList( const TemplateParameterList *TemplateParams) { assert(TemplateParams && "No TemplateParams!"); AddSourceLocation(TemplateParams->getTemplateLoc()); AddSourceLocation(TemplateParams->getLAngleLoc()); AddSourceLocation(TemplateParams->getRAngleLoc()); Record->push_back(TemplateParams->size()); for (const auto &P : *TemplateParams) AddDeclRef(P); if (const Expr *RequiresClause = TemplateParams->getRequiresClause()) { Record->push_back(true); AddStmt(const_cast(RequiresClause)); } else { Record->push_back(false); } } /// Emit a template argument list. void ASTRecordWriter::AddTemplateArgumentList( const TemplateArgumentList *TemplateArgs) { assert(TemplateArgs && "No TemplateArgs!"); Record->push_back(TemplateArgs->size()); for (int i = 0, e = TemplateArgs->size(); i != e; ++i) AddTemplateArgument(TemplateArgs->get(i)); } void ASTRecordWriter::AddASTTemplateArgumentListInfo( const ASTTemplateArgumentListInfo *ASTTemplArgList) { assert(ASTTemplArgList && "No ASTTemplArgList!"); AddSourceLocation(ASTTemplArgList->LAngleLoc); AddSourceLocation(ASTTemplArgList->RAngleLoc); Record->push_back(ASTTemplArgList->NumTemplateArgs); const TemplateArgumentLoc *TemplArgs = ASTTemplArgList->getTemplateArgs(); for (int i = 0, e = ASTTemplArgList->NumTemplateArgs; i != e; ++i) AddTemplateArgumentLoc(TemplArgs[i]); } void ASTRecordWriter::AddUnresolvedSet(const ASTUnresolvedSet &Set) { Record->push_back(Set.size()); for (ASTUnresolvedSet::const_iterator I = Set.begin(), E = Set.end(); I != E; ++I) { AddDeclRef(I.getDecl()); Record->push_back(I.getAccess()); } } // FIXME: Move this out of the main ASTRecordWriter interface. void ASTRecordWriter::AddCXXBaseSpecifier(const CXXBaseSpecifier &Base) { Record->push_back(Base.isVirtual()); Record->push_back(Base.isBaseOfClass()); Record->push_back(Base.getAccessSpecifierAsWritten()); Record->push_back(Base.getInheritConstructors()); AddTypeSourceInfo(Base.getTypeSourceInfo()); AddSourceRange(Base.getSourceRange()); AddSourceLocation(Base.isPackExpansion()? Base.getEllipsisLoc() : SourceLocation()); } static uint64_t EmitCXXBaseSpecifiers(ASTWriter &W, ArrayRef Bases) { ASTWriter::RecordData Record; ASTRecordWriter Writer(W, Record); Writer.push_back(Bases.size()); for (auto &Base : Bases) Writer.AddCXXBaseSpecifier(Base); return Writer.Emit(serialization::DECL_CXX_BASE_SPECIFIERS); } // FIXME: Move this out of the main ASTRecordWriter interface. void ASTRecordWriter::AddCXXBaseSpecifiers(ArrayRef Bases) { AddOffset(EmitCXXBaseSpecifiers(*Writer, Bases)); } static uint64_t EmitCXXCtorInitializers(ASTWriter &W, ArrayRef CtorInits) { ASTWriter::RecordData Record; ASTRecordWriter Writer(W, Record); Writer.push_back(CtorInits.size()); for (auto *Init : CtorInits) { if (Init->isBaseInitializer()) { Writer.push_back(CTOR_INITIALIZER_BASE); Writer.AddTypeSourceInfo(Init->getTypeSourceInfo()); Writer.push_back(Init->isBaseVirtual()); } else if (Init->isDelegatingInitializer()) { Writer.push_back(CTOR_INITIALIZER_DELEGATING); Writer.AddTypeSourceInfo(Init->getTypeSourceInfo()); } else if (Init->isMemberInitializer()){ Writer.push_back(CTOR_INITIALIZER_MEMBER); Writer.AddDeclRef(Init->getMember()); } else { Writer.push_back(CTOR_INITIALIZER_INDIRECT_MEMBER); Writer.AddDeclRef(Init->getIndirectMember()); } Writer.AddSourceLocation(Init->getMemberLocation()); Writer.AddStmt(Init->getInit()); Writer.AddSourceLocation(Init->getLParenLoc()); Writer.AddSourceLocation(Init->getRParenLoc()); Writer.push_back(Init->isWritten()); if (Init->isWritten()) Writer.push_back(Init->getSourceOrder()); } return Writer.Emit(serialization::DECL_CXX_CTOR_INITIALIZERS); } // FIXME: Move this out of the main ASTRecordWriter interface. void ASTRecordWriter::AddCXXCtorInitializers( ArrayRef CtorInits) { AddOffset(EmitCXXCtorInitializers(*Writer, CtorInits)); } void ASTRecordWriter::AddCXXDefinitionData(const CXXRecordDecl *D) { auto &Data = D->data(); Record->push_back(Data.IsLambda); BitsPacker DefinitionBits; bool ShouldSkipCheckingODR = D->shouldSkipCheckingODR(); DefinitionBits.addBit(ShouldSkipCheckingODR); #define FIELD(Name, Width, Merge) \ if (!DefinitionBits.canWriteNextNBits(Width)) { \ Record->push_back(DefinitionBits); \ DefinitionBits.reset(0); \ } \ DefinitionBits.addBits(Data.Name, Width); #include "clang/AST/CXXRecordDeclDefinitionBits.def" #undef FIELD Record->push_back(DefinitionBits); // We only perform ODR checks for decls not in GMF. if (!ShouldSkipCheckingODR) // getODRHash will compute the ODRHash if it has not been previously // computed. Record->push_back(D->getODRHash()); bool ModulesDebugInfo = Writer->Context->getLangOpts().ModulesDebugInfo && !D->isDependentType(); Record->push_back(ModulesDebugInfo); if (ModulesDebugInfo) Writer->ModularCodegenDecls.push_back(Writer->GetDeclRef(D)); // IsLambda bit is already saved. AddUnresolvedSet(Data.Conversions.get(*Writer->Context)); Record->push_back(Data.ComputedVisibleConversions); if (Data.ComputedVisibleConversions) AddUnresolvedSet(Data.VisibleConversions.get(*Writer->Context)); // Data.Definition is the owning decl, no need to write it. if (!Data.IsLambda) { Record->push_back(Data.NumBases); if (Data.NumBases > 0) AddCXXBaseSpecifiers(Data.bases()); // FIXME: Make VBases lazily computed when needed to avoid storing them. Record->push_back(Data.NumVBases); if (Data.NumVBases > 0) AddCXXBaseSpecifiers(Data.vbases()); AddDeclRef(D->getFirstFriend()); } else { auto &Lambda = D->getLambdaData(); BitsPacker LambdaBits; LambdaBits.addBits(Lambda.DependencyKind, /*Width=*/2); LambdaBits.addBit(Lambda.IsGenericLambda); LambdaBits.addBits(Lambda.CaptureDefault, /*Width=*/2); LambdaBits.addBits(Lambda.NumCaptures, /*Width=*/15); LambdaBits.addBit(Lambda.HasKnownInternalLinkage); Record->push_back(LambdaBits); Record->push_back(Lambda.NumExplicitCaptures); Record->push_back(Lambda.ManglingNumber); Record->push_back(D->getDeviceLambdaManglingNumber()); // The lambda context declaration and index within the context are provided // separately, so that they can be used for merging. AddTypeSourceInfo(Lambda.MethodTyInfo); for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) { const LambdaCapture &Capture = Lambda.Captures.front()[I]; AddSourceLocation(Capture.getLocation()); BitsPacker CaptureBits; CaptureBits.addBit(Capture.isImplicit()); CaptureBits.addBits(Capture.getCaptureKind(), /*Width=*/3); Record->push_back(CaptureBits); switch (Capture.getCaptureKind()) { case LCK_StarThis: case LCK_This: case LCK_VLAType: break; case LCK_ByCopy: case LCK_ByRef: ValueDecl *Var = Capture.capturesVariable() ? Capture.getCapturedVar() : nullptr; AddDeclRef(Var); AddSourceLocation(Capture.isPackExpansion() ? Capture.getEllipsisLoc() : SourceLocation()); break; } } } } void ASTRecordWriter::AddVarDeclInit(const VarDecl *VD) { const Expr *Init = VD->getInit(); if (!Init) { push_back(0); return; } uint64_t Val = 1; if (EvaluatedStmt *ES = VD->getEvaluatedStmt()) { Val |= (ES->HasConstantInitialization ? 2 : 0); Val |= (ES->HasConstantDestruction ? 4 : 0); APValue *Evaluated = VD->getEvaluatedValue(); // If the evaluated result is constant, emit it. if (Evaluated && (Evaluated->isInt() || Evaluated->isFloat())) Val |= 8; } push_back(Val); if (Val & 8) { AddAPValue(*VD->getEvaluatedValue()); } writeStmtRef(Init); } void ASTWriter::ReaderInitialized(ASTReader *Reader) { assert(Reader && "Cannot remove chain"); assert((!Chain || Chain == Reader) && "Cannot replace chain"); assert(FirstDeclID == NextDeclID && FirstTypeID == NextTypeID && FirstIdentID == NextIdentID && FirstMacroID == NextMacroID && FirstSubmoduleID == NextSubmoduleID && FirstSelectorID == NextSelectorID && "Setting chain after writing has started."); Chain = Reader; // Note, this will get called multiple times, once one the reader starts up // and again each time it's done reading a PCH or module. FirstDeclID = NUM_PREDEF_DECL_IDS + Chain->getTotalNumDecls(); FirstTypeID = NUM_PREDEF_TYPE_IDS + Chain->getTotalNumTypes(); FirstIdentID = NUM_PREDEF_IDENT_IDS + Chain->getTotalNumIdentifiers(); FirstMacroID = NUM_PREDEF_MACRO_IDS + Chain->getTotalNumMacros(); FirstSubmoduleID = NUM_PREDEF_SUBMODULE_IDS + Chain->getTotalNumSubmodules(); FirstSelectorID = NUM_PREDEF_SELECTOR_IDS + Chain->getTotalNumSelectors(); NextDeclID = FirstDeclID; NextTypeID = FirstTypeID; NextIdentID = FirstIdentID; NextMacroID = FirstMacroID; NextSelectorID = FirstSelectorID; NextSubmoduleID = FirstSubmoduleID; } void ASTWriter::IdentifierRead(IdentID ID, IdentifierInfo *II) { // Always keep the highest ID. See \p TypeRead() for more information. IdentID &StoredID = IdentifierIDs[II]; if (ID > StoredID) StoredID = ID; } void ASTWriter::MacroRead(serialization::MacroID ID, MacroInfo *MI) { // Always keep the highest ID. See \p TypeRead() for more information. MacroID &StoredID = MacroIDs[MI]; if (ID > StoredID) StoredID = ID; } void ASTWriter::TypeRead(TypeIdx Idx, QualType T) { // Always take the highest-numbered type index. This copes with an interesting // case for chained AST writing where we schedule writing the type and then, // later, deserialize the type from another AST. In this case, we want to // keep the higher-numbered entry so that we can properly write it out to // the AST file. TypeIdx &StoredIdx = TypeIdxs[T]; if (Idx.getIndex() >= StoredIdx.getIndex()) StoredIdx = Idx; } void ASTWriter::SelectorRead(SelectorID ID, Selector S) { // Always keep the highest ID. See \p TypeRead() for more information. SelectorID &StoredID = SelectorIDs[S]; if (ID > StoredID) StoredID = ID; } void ASTWriter::MacroDefinitionRead(serialization::PreprocessedEntityID ID, MacroDefinitionRecord *MD) { assert(!MacroDefinitions.contains(MD)); MacroDefinitions[MD] = ID; } void ASTWriter::ModuleRead(serialization::SubmoduleID ID, Module *Mod) { assert(!SubmoduleIDs.contains(Mod)); SubmoduleIDs[Mod] = ID; } void ASTWriter::CompletedTagDefinition(const TagDecl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(D->isCompleteDefinition()); assert(!WritingAST && "Already writing the AST!"); if (auto *RD = dyn_cast(D)) { // We are interested when a PCH decl is modified. if (RD->isFromASTFile()) { // A forward reference was mutated into a definition. Rewrite it. // FIXME: This happens during template instantiation, should we // have created a new definition decl instead ? assert(isTemplateInstantiation(RD->getTemplateSpecializationKind()) && "completed a tag from another module but not by instantiation?"); DeclUpdates[RD].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_CLASS_DEFINITION)); } } } static bool isImportedDeclContext(ASTReader *Chain, const Decl *D) { if (D->isFromASTFile()) return true; // The predefined __va_list_tag struct is imported if we imported any decls. // FIXME: This is a gross hack. return D == D->getASTContext().getVaListTagDecl(); } void ASTWriter::AddedVisibleDecl(const DeclContext *DC, const Decl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(DC->isLookupContext() && "Should not add lookup results to non-lookup contexts!"); // TU is handled elsewhere. if (isa(DC)) return; // Namespaces are handled elsewhere, except for template instantiations of // FunctionTemplateDecls in namespaces. We are interested in cases where the // local instantiations are added to an imported context. Only happens when // adding ADL lookup candidates, for example templated friends. if (isa(DC) && D->getFriendObjectKind() == Decl::FOK_None && !isa(D)) return; // We're only interested in cases where a local declaration is added to an // imported context. if (D->isFromASTFile() || !isImportedDeclContext(Chain, cast(DC))) return; assert(DC == DC->getPrimaryContext() && "added to non-primary context"); assert(!getDefinitiveDeclContext(DC) && "DeclContext not definitive!"); assert(!WritingAST && "Already writing the AST!"); if (UpdatedDeclContexts.insert(DC) && !cast(DC)->isFromASTFile()) { // We're adding a visible declaration to a predefined decl context. Ensure // that we write out all of its lookup results so we don't get a nasty // surprise when we try to emit its lookup table. llvm::append_range(DeclsToEmitEvenIfUnreferenced, DC->decls()); } DeclsToEmitEvenIfUnreferenced.push_back(D); } void ASTWriter::AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(D->isImplicit()); // We're only interested in cases where a local declaration is added to an // imported context. if (D->isFromASTFile() || !isImportedDeclContext(Chain, RD)) return; if (!isa(D)) return; // A decl coming from PCH was modified. assert(RD->isCompleteDefinition()); assert(!WritingAST && "Already writing the AST!"); DeclUpdates[RD].push_back(DeclUpdate(UPD_CXX_ADDED_IMPLICIT_MEMBER, D)); } void ASTWriter::ResolvedExceptionSpec(const FunctionDecl *FD) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!DoneWritingDeclsAndTypes && "Already done writing updates!"); if (!Chain) return; Chain->forEachImportedKeyDecl(FD, [&](const Decl *D) { // If we don't already know the exception specification for this redecl // chain, add an update record for it. if (isUnresolvedExceptionSpec(cast(D) ->getType() ->castAs() ->getExceptionSpecType())) DeclUpdates[D].push_back(UPD_CXX_RESOLVED_EXCEPTION_SPEC); }); } void ASTWriter::DeducedReturnType(const FunctionDecl *FD, QualType ReturnType) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!Chain) return; Chain->forEachImportedKeyDecl(FD, [&](const Decl *D) { DeclUpdates[D].push_back( DeclUpdate(UPD_CXX_DEDUCED_RETURN_TYPE, ReturnType)); }); } void ASTWriter::ResolvedOperatorDelete(const CXXDestructorDecl *DD, const FunctionDecl *Delete, Expr *ThisArg) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); assert(Delete && "Not given an operator delete"); if (!Chain) return; Chain->forEachImportedKeyDecl(DD, [&](const Decl *D) { DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_RESOLVED_DTOR_DELETE, Delete)); }); } void ASTWriter::CompletedImplicitDefinition(const FunctionDecl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Declaration not imported from PCH. // Implicit function decl from a PCH was defined. DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION)); } void ASTWriter::VariableDefinitionInstantiated(const VarDecl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_VAR_DEFINITION)); } void ASTWriter::FunctionDefinitionInstantiated(const FunctionDecl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION)); } void ASTWriter::InstantiationRequested(const ValueDecl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Since the actual instantiation is delayed, this really means that we need // to update the instantiation location. SourceLocation POI; if (auto *VD = dyn_cast(D)) POI = VD->getPointOfInstantiation(); else POI = cast(D)->getPointOfInstantiation(); DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_POINT_OF_INSTANTIATION, POI)); } void ASTWriter::DefaultArgumentInstantiated(const ParmVarDecl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_DEFAULT_ARGUMENT, D)); } void ASTWriter::DefaultMemberInitializerInstantiated(const FieldDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_DEFAULT_MEMBER_INITIALIZER, D)); } void ASTWriter::AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD, const ObjCInterfaceDecl *IFD) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!IFD->isFromASTFile()) return; // Declaration not imported from PCH. assert(IFD->getDefinition() && "Category on a class without a definition?"); ObjCClassesWithCategories.insert( const_cast(IFD->getDefinition())); } void ASTWriter::DeclarationMarkedUsed(const Decl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); // If there is *any* declaration of the entity that's not from an AST file, // we can skip writing the update record. We make sure that isUsed() triggers // completion of the redeclaration chain of the entity. for (auto Prev = D->getMostRecentDecl(); Prev; Prev = Prev->getPreviousDecl()) if (IsLocalDecl(Prev)) return; DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_USED)); } void ASTWriter::DeclarationMarkedOpenMPThreadPrivate(const Decl *D) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_OPENMP_THREADPRIVATE)); } void ASTWriter::DeclarationMarkedOpenMPAllocate(const Decl *D, const Attr *A) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_OPENMP_ALLOCATE, A)); } void ASTWriter::DeclarationMarkedOpenMPDeclareTarget(const Decl *D, const Attr *Attr) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back( DeclUpdate(UPD_DECL_MARKED_OPENMP_DECLARETARGET, Attr)); } void ASTWriter::RedefinedHiddenDefinition(const NamedDecl *D, Module *M) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); assert(!D->isUnconditionallyVisible() && "expected a hidden declaration"); DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_EXPORTED, M)); } void ASTWriter::AddedAttributeToRecord(const Attr *Attr, const RecordDecl *Record) { if (Chain && Chain->isProcessingUpdateRecords()) return; assert(!WritingAST && "Already writing the AST!"); if (!Record->isFromASTFile()) return; DeclUpdates[Record].push_back(DeclUpdate(UPD_ADDED_ATTR_TO_RECORD, Attr)); } void ASTWriter::AddedCXXTemplateSpecialization( const ClassTemplateDecl *TD, const ClassTemplateSpecializationDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!TD->getFirstDecl()->isFromASTFile()) return; if (Chain && Chain->isProcessingUpdateRecords()) return; DeclsToEmitEvenIfUnreferenced.push_back(D); } void ASTWriter::AddedCXXTemplateSpecialization( const VarTemplateDecl *TD, const VarTemplateSpecializationDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!TD->getFirstDecl()->isFromASTFile()) return; if (Chain && Chain->isProcessingUpdateRecords()) return; DeclsToEmitEvenIfUnreferenced.push_back(D); } void ASTWriter::AddedCXXTemplateSpecialization(const FunctionTemplateDecl *TD, const FunctionDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!TD->getFirstDecl()->isFromASTFile()) return; if (Chain && Chain->isProcessingUpdateRecords()) return; DeclsToEmitEvenIfUnreferenced.push_back(D); } //===----------------------------------------------------------------------===// //// OMPClause Serialization ////===----------------------------------------------------------------------===// namespace { class OMPClauseWriter : public OMPClauseVisitor { ASTRecordWriter &Record; public: OMPClauseWriter(ASTRecordWriter &Record) : Record(Record) {} #define GEN_CLANG_CLAUSE_CLASS #define CLAUSE_CLASS(Enum, Str, Class) void Visit##Class(Class *S); #include "llvm/Frontend/OpenMP/OMP.inc" void writeClause(OMPClause *C); void VisitOMPClauseWithPreInit(OMPClauseWithPreInit *C); void VisitOMPClauseWithPostUpdate(OMPClauseWithPostUpdate *C); }; } void ASTRecordWriter::writeOMPClause(OMPClause *C) { OMPClauseWriter(*this).writeClause(C); } void OMPClauseWriter::writeClause(OMPClause *C) { Record.push_back(unsigned(C->getClauseKind())); Visit(C); Record.AddSourceLocation(C->getBeginLoc()); Record.AddSourceLocation(C->getEndLoc()); } void OMPClauseWriter::VisitOMPClauseWithPreInit(OMPClauseWithPreInit *C) { Record.push_back(uint64_t(C->getCaptureRegion())); Record.AddStmt(C->getPreInitStmt()); } void OMPClauseWriter::VisitOMPClauseWithPostUpdate(OMPClauseWithPostUpdate *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getPostUpdateExpr()); } void OMPClauseWriter::VisitOMPIfClause(OMPIfClause *C) { VisitOMPClauseWithPreInit(C); Record.push_back(uint64_t(C->getNameModifier())); Record.AddSourceLocation(C->getNameModifierLoc()); Record.AddSourceLocation(C->getColonLoc()); Record.AddStmt(C->getCondition()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPFinalClause(OMPFinalClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getCondition()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getNumThreads()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPSafelenClause(OMPSafelenClause *C) { Record.AddStmt(C->getSafelen()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPSimdlenClause(OMPSimdlenClause *C) { Record.AddStmt(C->getSimdlen()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPSizesClause(OMPSizesClause *C) { Record.push_back(C->getNumSizes()); for (Expr *Size : C->getSizesRefs()) Record.AddStmt(Size); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPFullClause(OMPFullClause *C) {} void OMPClauseWriter::VisitOMPPartialClause(OMPPartialClause *C) { Record.AddStmt(C->getFactor()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPAllocatorClause(OMPAllocatorClause *C) { Record.AddStmt(C->getAllocator()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPCollapseClause(OMPCollapseClause *C) { Record.AddStmt(C->getNumForLoops()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPDetachClause(OMPDetachClause *C) { Record.AddStmt(C->getEventHandler()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPDefaultClause(OMPDefaultClause *C) { Record.push_back(unsigned(C->getDefaultKind())); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getDefaultKindKwLoc()); } void OMPClauseWriter::VisitOMPProcBindClause(OMPProcBindClause *C) { Record.push_back(unsigned(C->getProcBindKind())); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getProcBindKindKwLoc()); } void OMPClauseWriter::VisitOMPScheduleClause(OMPScheduleClause *C) { VisitOMPClauseWithPreInit(C); Record.push_back(C->getScheduleKind()); Record.push_back(C->getFirstScheduleModifier()); Record.push_back(C->getSecondScheduleModifier()); Record.AddStmt(C->getChunkSize()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getFirstScheduleModifierLoc()); Record.AddSourceLocation(C->getSecondScheduleModifierLoc()); Record.AddSourceLocation(C->getScheduleKindLoc()); Record.AddSourceLocation(C->getCommaLoc()); } void OMPClauseWriter::VisitOMPOrderedClause(OMPOrderedClause *C) { Record.push_back(C->getLoopNumIterations().size()); Record.AddStmt(C->getNumForLoops()); for (Expr *NumIter : C->getLoopNumIterations()) Record.AddStmt(NumIter); for (unsigned I = 0, E = C->getLoopNumIterations().size(); I getLoopCounter(I)); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPNowaitClause(OMPNowaitClause *) {} void OMPClauseWriter::VisitOMPUntiedClause(OMPUntiedClause *) {} void OMPClauseWriter::VisitOMPMergeableClause(OMPMergeableClause *) {} void OMPClauseWriter::VisitOMPReadClause(OMPReadClause *) {} void OMPClauseWriter::VisitOMPWriteClause(OMPWriteClause *) {} void OMPClauseWriter::VisitOMPUpdateClause(OMPUpdateClause *C) { Record.push_back(C->isExtended() ? 1 : 0); if (C->isExtended()) { Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getArgumentLoc()); Record.writeEnum(C->getDependencyKind()); } } void OMPClauseWriter::VisitOMPCaptureClause(OMPCaptureClause *) {} void OMPClauseWriter::VisitOMPCompareClause(OMPCompareClause *) {} // Save the parameter of fail clause. void OMPClauseWriter::VisitOMPFailClause(OMPFailClause *C) { Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getFailParameterLoc()); Record.writeEnum(C->getFailParameter()); } void OMPClauseWriter::VisitOMPSeqCstClause(OMPSeqCstClause *) {} void OMPClauseWriter::VisitOMPAcqRelClause(OMPAcqRelClause *) {} void OMPClauseWriter::VisitOMPAcquireClause(OMPAcquireClause *) {} void OMPClauseWriter::VisitOMPReleaseClause(OMPReleaseClause *) {} void OMPClauseWriter::VisitOMPRelaxedClause(OMPRelaxedClause *) {} void OMPClauseWriter::VisitOMPThreadsClause(OMPThreadsClause *) {} void OMPClauseWriter::VisitOMPSIMDClause(OMPSIMDClause *) {} void OMPClauseWriter::VisitOMPNogroupClause(OMPNogroupClause *) {} void OMPClauseWriter::VisitOMPInitClause(OMPInitClause *C) { Record.push_back(C->varlist_size()); for (Expr *VE : C->varlists()) Record.AddStmt(VE); Record.writeBool(C->getIsTarget()); Record.writeBool(C->getIsTargetSync()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getVarLoc()); } void OMPClauseWriter::VisitOMPUseClause(OMPUseClause *C) { Record.AddStmt(C->getInteropVar()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getVarLoc()); } void OMPClauseWriter::VisitOMPDestroyClause(OMPDestroyClause *C) { Record.AddStmt(C->getInteropVar()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getVarLoc()); } void OMPClauseWriter::VisitOMPNovariantsClause(OMPNovariantsClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getCondition()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPNocontextClause(OMPNocontextClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getCondition()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPFilterClause(OMPFilterClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getThreadID()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPAlignClause(OMPAlignClause *C) { Record.AddStmt(C->getAlignment()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPPrivateClause(OMPPrivateClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) { Record.AddStmt(VE); } for (auto *VE : C->private_copies()) { Record.AddStmt(VE); } } void OMPClauseWriter::VisitOMPFirstprivateClause(OMPFirstprivateClause *C) { Record.push_back(C->varlist_size()); VisitOMPClauseWithPreInit(C); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) { Record.AddStmt(VE); } for (auto *VE : C->private_copies()) { Record.AddStmt(VE); } for (auto *VE : C->inits()) { Record.AddStmt(VE); } } void OMPClauseWriter::VisitOMPLastprivateClause(OMPLastprivateClause *C) { Record.push_back(C->varlist_size()); VisitOMPClauseWithPostUpdate(C); Record.AddSourceLocation(C->getLParenLoc()); Record.writeEnum(C->getKind()); Record.AddSourceLocation(C->getKindLoc()); Record.AddSourceLocation(C->getColonLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (auto *E : C->private_copies()) Record.AddStmt(E); for (auto *E : C->source_exprs()) Record.AddStmt(E); for (auto *E : C->destination_exprs()) Record.AddStmt(E); for (auto *E : C->assignment_ops()) Record.AddStmt(E); } void OMPClauseWriter::VisitOMPSharedClause(OMPSharedClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); } void OMPClauseWriter::VisitOMPReductionClause(OMPReductionClause *C) { Record.push_back(C->varlist_size()); Record.writeEnum(C->getModifier()); VisitOMPClauseWithPostUpdate(C); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getModifierLoc()); Record.AddSourceLocation(C->getColonLoc()); Record.AddNestedNameSpecifierLoc(C->getQualifierLoc()); Record.AddDeclarationNameInfo(C->getNameInfo()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (auto *VE : C->privates()) Record.AddStmt(VE); for (auto *E : C->lhs_exprs()) Record.AddStmt(E); for (auto *E : C->rhs_exprs()) Record.AddStmt(E); for (auto *E : C->reduction_ops()) Record.AddStmt(E); if (C->getModifier() == clang::OMPC_REDUCTION_inscan) { for (auto *E : C->copy_ops()) Record.AddStmt(E); for (auto *E : C->copy_array_temps()) Record.AddStmt(E); for (auto *E : C->copy_array_elems()) Record.AddStmt(E); } } void OMPClauseWriter::VisitOMPTaskReductionClause(OMPTaskReductionClause *C) { Record.push_back(C->varlist_size()); VisitOMPClauseWithPostUpdate(C); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getColonLoc()); Record.AddNestedNameSpecifierLoc(C->getQualifierLoc()); Record.AddDeclarationNameInfo(C->getNameInfo()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (auto *VE : C->privates()) Record.AddStmt(VE); for (auto *E : C->lhs_exprs()) Record.AddStmt(E); for (auto *E : C->rhs_exprs()) Record.AddStmt(E); for (auto *E : C->reduction_ops()) Record.AddStmt(E); } void OMPClauseWriter::VisitOMPInReductionClause(OMPInReductionClause *C) { Record.push_back(C->varlist_size()); VisitOMPClauseWithPostUpdate(C); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getColonLoc()); Record.AddNestedNameSpecifierLoc(C->getQualifierLoc()); Record.AddDeclarationNameInfo(C->getNameInfo()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (auto *VE : C->privates()) Record.AddStmt(VE); for (auto *E : C->lhs_exprs()) Record.AddStmt(E); for (auto *E : C->rhs_exprs()) Record.AddStmt(E); for (auto *E : C->reduction_ops()) Record.AddStmt(E); for (auto *E : C->taskgroup_descriptors()) Record.AddStmt(E); } void OMPClauseWriter::VisitOMPLinearClause(OMPLinearClause *C) { Record.push_back(C->varlist_size()); VisitOMPClauseWithPostUpdate(C); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getColonLoc()); Record.push_back(C->getModifier()); Record.AddSourceLocation(C->getModifierLoc()); for (auto *VE : C->varlists()) { Record.AddStmt(VE); } for (auto *VE : C->privates()) { Record.AddStmt(VE); } for (auto *VE : C->inits()) { Record.AddStmt(VE); } for (auto *VE : C->updates()) { Record.AddStmt(VE); } for (auto *VE : C->finals()) { Record.AddStmt(VE); } Record.AddStmt(C->getStep()); Record.AddStmt(C->getCalcStep()); for (auto *VE : C->used_expressions()) Record.AddStmt(VE); } void OMPClauseWriter::VisitOMPAlignedClause(OMPAlignedClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getColonLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); Record.AddStmt(C->getAlignment()); } void OMPClauseWriter::VisitOMPCopyinClause(OMPCopyinClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (auto *E : C->source_exprs()) Record.AddStmt(E); for (auto *E : C->destination_exprs()) Record.AddStmt(E); for (auto *E : C->assignment_ops()) Record.AddStmt(E); } void OMPClauseWriter::VisitOMPCopyprivateClause(OMPCopyprivateClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (auto *E : C->source_exprs()) Record.AddStmt(E); for (auto *E : C->destination_exprs()) Record.AddStmt(E); for (auto *E : C->assignment_ops()) Record.AddStmt(E); } void OMPClauseWriter::VisitOMPFlushClause(OMPFlushClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); } void OMPClauseWriter::VisitOMPDepobjClause(OMPDepobjClause *C) { Record.AddStmt(C->getDepobj()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPDependClause(OMPDependClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getNumLoops()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddStmt(C->getModifier()); Record.push_back(C->getDependencyKind()); Record.AddSourceLocation(C->getDependencyLoc()); Record.AddSourceLocation(C->getColonLoc()); Record.AddSourceLocation(C->getOmpAllMemoryLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) Record.AddStmt(C->getLoopData(I)); } void OMPClauseWriter::VisitOMPDeviceClause(OMPDeviceClause *C) { VisitOMPClauseWithPreInit(C); Record.writeEnum(C->getModifier()); Record.AddStmt(C->getDevice()); Record.AddSourceLocation(C->getModifierLoc()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPMapClause(OMPMapClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getUniqueDeclarationsNum()); Record.push_back(C->getTotalComponentListNum()); Record.push_back(C->getTotalComponentsNum()); Record.AddSourceLocation(C->getLParenLoc()); bool HasIteratorModifier = false; for (unsigned I = 0; I < NumberOfOMPMapClauseModifiers; ++I) { Record.push_back(C->getMapTypeModifier(I)); Record.AddSourceLocation(C->getMapTypeModifierLoc(I)); if (C->getMapTypeModifier(I) == OMPC_MAP_MODIFIER_iterator) HasIteratorModifier = true; } Record.AddNestedNameSpecifierLoc(C->getMapperQualifierLoc()); Record.AddDeclarationNameInfo(C->getMapperIdInfo()); Record.push_back(C->getMapType()); Record.AddSourceLocation(C->getMapLoc()); Record.AddSourceLocation(C->getColonLoc()); for (auto *E : C->varlists()) Record.AddStmt(E); for (auto *E : C->mapperlists()) Record.AddStmt(E); if (HasIteratorModifier) Record.AddStmt(C->getIteratorModifier()); for (auto *D : C->all_decls()) Record.AddDeclRef(D); for (auto N : C->all_num_lists()) Record.push_back(N); for (auto N : C->all_lists_sizes()) Record.push_back(N); for (auto &M : C->all_components()) { Record.AddStmt(M.getAssociatedExpression()); Record.AddDeclRef(M.getAssociatedDeclaration()); } } void OMPClauseWriter::VisitOMPAllocateClause(OMPAllocateClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getColonLoc()); Record.AddStmt(C->getAllocator()); for (auto *VE : C->varlists()) Record.AddStmt(VE); } void OMPClauseWriter::VisitOMPNumTeamsClause(OMPNumTeamsClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getNumTeams()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPThreadLimitClause(OMPThreadLimitClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getThreadLimit()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPPriorityClause(OMPPriorityClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getPriority()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPGrainsizeClause(OMPGrainsizeClause *C) { VisitOMPClauseWithPreInit(C); Record.writeEnum(C->getModifier()); Record.AddStmt(C->getGrainsize()); Record.AddSourceLocation(C->getModifierLoc()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPNumTasksClause(OMPNumTasksClause *C) { VisitOMPClauseWithPreInit(C); Record.writeEnum(C->getModifier()); Record.AddStmt(C->getNumTasks()); Record.AddSourceLocation(C->getModifierLoc()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPHintClause(OMPHintClause *C) { Record.AddStmt(C->getHint()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPDistScheduleClause(OMPDistScheduleClause *C) { VisitOMPClauseWithPreInit(C); Record.push_back(C->getDistScheduleKind()); Record.AddStmt(C->getChunkSize()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getDistScheduleKindLoc()); Record.AddSourceLocation(C->getCommaLoc()); } void OMPClauseWriter::VisitOMPDefaultmapClause(OMPDefaultmapClause *C) { Record.push_back(C->getDefaultmapKind()); Record.push_back(C->getDefaultmapModifier()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getDefaultmapModifierLoc()); Record.AddSourceLocation(C->getDefaultmapKindLoc()); } void OMPClauseWriter::VisitOMPToClause(OMPToClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getUniqueDeclarationsNum()); Record.push_back(C->getTotalComponentListNum()); Record.push_back(C->getTotalComponentsNum()); Record.AddSourceLocation(C->getLParenLoc()); for (unsigned I = 0; I < NumberOfOMPMotionModifiers; ++I) { Record.push_back(C->getMotionModifier(I)); Record.AddSourceLocation(C->getMotionModifierLoc(I)); } Record.AddNestedNameSpecifierLoc(C->getMapperQualifierLoc()); Record.AddDeclarationNameInfo(C->getMapperIdInfo()); Record.AddSourceLocation(C->getColonLoc()); for (auto *E : C->varlists()) Record.AddStmt(E); for (auto *E : C->mapperlists()) Record.AddStmt(E); for (auto *D : C->all_decls()) Record.AddDeclRef(D); for (auto N : C->all_num_lists()) Record.push_back(N); for (auto N : C->all_lists_sizes()) Record.push_back(N); for (auto &M : C->all_components()) { Record.AddStmt(M.getAssociatedExpression()); Record.writeBool(M.isNonContiguous()); Record.AddDeclRef(M.getAssociatedDeclaration()); } } void OMPClauseWriter::VisitOMPFromClause(OMPFromClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getUniqueDeclarationsNum()); Record.push_back(C->getTotalComponentListNum()); Record.push_back(C->getTotalComponentsNum()); Record.AddSourceLocation(C->getLParenLoc()); for (unsigned I = 0; I < NumberOfOMPMotionModifiers; ++I) { Record.push_back(C->getMotionModifier(I)); Record.AddSourceLocation(C->getMotionModifierLoc(I)); } Record.AddNestedNameSpecifierLoc(C->getMapperQualifierLoc()); Record.AddDeclarationNameInfo(C->getMapperIdInfo()); Record.AddSourceLocation(C->getColonLoc()); for (auto *E : C->varlists()) Record.AddStmt(E); for (auto *E : C->mapperlists()) Record.AddStmt(E); for (auto *D : C->all_decls()) Record.AddDeclRef(D); for (auto N : C->all_num_lists()) Record.push_back(N); for (auto N : C->all_lists_sizes()) Record.push_back(N); for (auto &M : C->all_components()) { Record.AddStmt(M.getAssociatedExpression()); Record.writeBool(M.isNonContiguous()); Record.AddDeclRef(M.getAssociatedDeclaration()); } } void OMPClauseWriter::VisitOMPUseDevicePtrClause(OMPUseDevicePtrClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getUniqueDeclarationsNum()); Record.push_back(C->getTotalComponentListNum()); Record.push_back(C->getTotalComponentsNum()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *E : C->varlists()) Record.AddStmt(E); for (auto *VE : C->private_copies()) Record.AddStmt(VE); for (auto *VE : C->inits()) Record.AddStmt(VE); for (auto *D : C->all_decls()) Record.AddDeclRef(D); for (auto N : C->all_num_lists()) Record.push_back(N); for (auto N : C->all_lists_sizes()) Record.push_back(N); for (auto &M : C->all_components()) { Record.AddStmt(M.getAssociatedExpression()); Record.AddDeclRef(M.getAssociatedDeclaration()); } } void OMPClauseWriter::VisitOMPUseDeviceAddrClause(OMPUseDeviceAddrClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getUniqueDeclarationsNum()); Record.push_back(C->getTotalComponentListNum()); Record.push_back(C->getTotalComponentsNum()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *E : C->varlists()) Record.AddStmt(E); for (auto *D : C->all_decls()) Record.AddDeclRef(D); for (auto N : C->all_num_lists()) Record.push_back(N); for (auto N : C->all_lists_sizes()) Record.push_back(N); for (auto &M : C->all_components()) { Record.AddStmt(M.getAssociatedExpression()); Record.AddDeclRef(M.getAssociatedDeclaration()); } } void OMPClauseWriter::VisitOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getUniqueDeclarationsNum()); Record.push_back(C->getTotalComponentListNum()); Record.push_back(C->getTotalComponentsNum()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *E : C->varlists()) Record.AddStmt(E); for (auto *D : C->all_decls()) Record.AddDeclRef(D); for (auto N : C->all_num_lists()) Record.push_back(N); for (auto N : C->all_lists_sizes()) Record.push_back(N); for (auto &M : C->all_components()) { Record.AddStmt(M.getAssociatedExpression()); Record.AddDeclRef(M.getAssociatedDeclaration()); } } void OMPClauseWriter::VisitOMPHasDeviceAddrClause(OMPHasDeviceAddrClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getUniqueDeclarationsNum()); Record.push_back(C->getTotalComponentListNum()); Record.push_back(C->getTotalComponentsNum()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *E : C->varlists()) Record.AddStmt(E); for (auto *D : C->all_decls()) Record.AddDeclRef(D); for (auto N : C->all_num_lists()) Record.push_back(N); for (auto N : C->all_lists_sizes()) Record.push_back(N); for (auto &M : C->all_components()) { Record.AddStmt(M.getAssociatedExpression()); Record.AddDeclRef(M.getAssociatedDeclaration()); } } void OMPClauseWriter::VisitOMPUnifiedAddressClause(OMPUnifiedAddressClause *) {} void OMPClauseWriter::VisitOMPUnifiedSharedMemoryClause( OMPUnifiedSharedMemoryClause *) {} void OMPClauseWriter::VisitOMPReverseOffloadClause(OMPReverseOffloadClause *) {} void OMPClauseWriter::VisitOMPDynamicAllocatorsClause(OMPDynamicAllocatorsClause *) { } void OMPClauseWriter::VisitOMPAtomicDefaultMemOrderClause( OMPAtomicDefaultMemOrderClause *C) { Record.push_back(C->getAtomicDefaultMemOrderKind()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getAtomicDefaultMemOrderKindKwLoc()); } void OMPClauseWriter::VisitOMPAtClause(OMPAtClause *C) { Record.push_back(C->getAtKind()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getAtKindKwLoc()); } void OMPClauseWriter::VisitOMPSeverityClause(OMPSeverityClause *C) { Record.push_back(C->getSeverityKind()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getSeverityKindKwLoc()); } void OMPClauseWriter::VisitOMPMessageClause(OMPMessageClause *C) { Record.AddStmt(C->getMessageString()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPNontemporalClause(OMPNontemporalClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (auto *E : C->private_refs()) Record.AddStmt(E); } void OMPClauseWriter::VisitOMPInclusiveClause(OMPInclusiveClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); } void OMPClauseWriter::VisitOMPExclusiveClause(OMPExclusiveClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); } void OMPClauseWriter::VisitOMPOrderClause(OMPOrderClause *C) { Record.writeEnum(C->getKind()); Record.writeEnum(C->getModifier()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getKindKwLoc()); Record.AddSourceLocation(C->getModifierKwLoc()); } void OMPClauseWriter::VisitOMPUsesAllocatorsClause(OMPUsesAllocatorsClause *C) { Record.push_back(C->getNumberOfAllocators()); Record.AddSourceLocation(C->getLParenLoc()); for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { OMPUsesAllocatorsClause::Data Data = C->getAllocatorData(I); Record.AddStmt(Data.Allocator); Record.AddStmt(Data.AllocatorTraits); Record.AddSourceLocation(Data.LParenLoc); Record.AddSourceLocation(Data.RParenLoc); } } void OMPClauseWriter::VisitOMPAffinityClause(OMPAffinityClause *C) { Record.push_back(C->varlist_size()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddStmt(C->getModifier()); Record.AddSourceLocation(C->getColonLoc()); for (Expr *E : C->varlists()) Record.AddStmt(E); } void OMPClauseWriter::VisitOMPBindClause(OMPBindClause *C) { Record.writeEnum(C->getBindKind()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getBindKindLoc()); } void OMPClauseWriter::VisitOMPXDynCGroupMemClause(OMPXDynCGroupMemClause *C) { VisitOMPClauseWithPreInit(C); Record.AddStmt(C->getSize()); Record.AddSourceLocation(C->getLParenLoc()); } void OMPClauseWriter::VisitOMPDoacrossClause(OMPDoacrossClause *C) { Record.push_back(C->varlist_size()); Record.push_back(C->getNumLoops()); Record.AddSourceLocation(C->getLParenLoc()); Record.push_back(C->getDependenceType()); Record.AddSourceLocation(C->getDependenceLoc()); Record.AddSourceLocation(C->getColonLoc()); for (auto *VE : C->varlists()) Record.AddStmt(VE); for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) Record.AddStmt(C->getLoopData(I)); } void OMPClauseWriter::VisitOMPXAttributeClause(OMPXAttributeClause *C) { Record.AddAttributes(C->getAttrs()); Record.AddSourceLocation(C->getBeginLoc()); Record.AddSourceLocation(C->getLParenLoc()); Record.AddSourceLocation(C->getEndLoc()); } void OMPClauseWriter::VisitOMPXBareClause(OMPXBareClause *C) {} void ASTRecordWriter::writeOMPTraitInfo(const OMPTraitInfo *TI) { writeUInt32(TI->Sets.size()); for (const auto &Set : TI->Sets) { writeEnum(Set.Kind); writeUInt32(Set.Selectors.size()); for (const auto &Selector : Set.Selectors) { writeEnum(Selector.Kind); writeBool(Selector.ScoreOrCondition); if (Selector.ScoreOrCondition) writeExprRef(Selector.ScoreOrCondition); writeUInt32(Selector.Properties.size()); for (const auto &Property : Selector.Properties) writeEnum(Property.Kind); } } } void ASTRecordWriter::writeOMPChildren(OMPChildren *Data) { if (!Data) return; writeUInt32(Data->getNumClauses()); writeUInt32(Data->getNumChildren()); writeBool(Data->hasAssociatedStmt()); for (unsigned I = 0, E = Data->getNumClauses(); I < E; ++I) writeOMPClause(Data->getClauses()[I]); if (Data->hasAssociatedStmt()) AddStmt(Data->getAssociatedStmt()); for (unsigned I = 0, E = Data->getNumChildren(); I < E; ++I) AddStmt(Data->getChildren()[I]); }