//===--- FrontendActions.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/Frontend/FrontendActions.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/Decl.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/LangStandard.h" #include "clang/Basic/Module.h" #include "clang/Basic/TargetInfo.h" #include "clang/Frontend/ASTConsumers.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/MultiplexConsumer.h" #include "clang/Frontend/Utils.h" #include "clang/Lex/DependencyDirectivesScanner.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Sema/TemplateInstCallback.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/ASTWriter.h" #include "clang/Serialization/ModuleFile.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace clang; namespace { CodeCompleteConsumer *GetCodeCompletionConsumer(CompilerInstance &CI) { return CI.hasCodeCompletionConsumer() ? &CI.getCodeCompletionConsumer() : nullptr; } void EnsureSemaIsCreated(CompilerInstance &CI, FrontendAction &Action) { if (Action.hasCodeCompletionSupport() && !CI.getFrontendOpts().CodeCompletionAt.FileName.empty()) CI.createCodeCompletionConsumer(); if (!CI.hasSema()) CI.createSema(Action.getTranslationUnitKind(), GetCodeCompletionConsumer(CI)); } } // namespace //===----------------------------------------------------------------------===// // Custom Actions //===----------------------------------------------------------------------===// std::unique_ptr InitOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return std::make_unique(); } void InitOnlyAction::ExecuteAction() { } // Basically PreprocessOnlyAction::ExecuteAction. void ReadPCHAndPreprocessAction::ExecuteAction() { Preprocessor &PP = getCompilerInstance().getPreprocessor(); // Ignore unknown pragmas. PP.IgnorePragmas(); Token Tok; // Start parsing the specified input file. PP.EnterMainSourceFile(); do { PP.Lex(Tok); } while (Tok.isNot(tok::eof)); } std::unique_ptr ReadPCHAndPreprocessAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return std::make_unique(); } //===----------------------------------------------------------------------===// // AST Consumer Actions //===----------------------------------------------------------------------===// std::unique_ptr ASTPrintAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { if (std::unique_ptr OS = CI.createDefaultOutputFile(false, InFile)) return CreateASTPrinter(std::move(OS), CI.getFrontendOpts().ASTDumpFilter); return nullptr; } std::unique_ptr ASTDumpAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { const FrontendOptions &Opts = CI.getFrontendOpts(); return CreateASTDumper(nullptr /*Dump to stdout.*/, Opts.ASTDumpFilter, Opts.ASTDumpDecls, Opts.ASTDumpAll, Opts.ASTDumpLookups, Opts.ASTDumpDeclTypes, Opts.ASTDumpFormat); } std::unique_ptr ASTDeclListAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return CreateASTDeclNodeLister(); } std::unique_ptr ASTViewAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return CreateASTViewer(); } std::unique_ptr GeneratePCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { std::string Sysroot; if (!ComputeASTConsumerArguments(CI, /*ref*/ Sysroot)) return nullptr; std::string OutputFile; std::unique_ptr OS = CreateOutputFile(CI, InFile, /*ref*/ OutputFile); if (!OS) return nullptr; if (!CI.getFrontendOpts().RelocatablePCH) Sysroot.clear(); const auto &FrontendOpts = CI.getFrontendOpts(); auto Buffer = std::make_shared(); std::vector> Consumers; Consumers.push_back(std::make_unique( CI.getPreprocessor(), CI.getModuleCache(), OutputFile, Sysroot, Buffer, FrontendOpts.ModuleFileExtensions, CI.getPreprocessorOpts().AllowPCHWithCompilerErrors, FrontendOpts.IncludeTimestamps, FrontendOpts.BuildingImplicitModule, +CI.getLangOpts().CacheGeneratedPCH)); Consumers.push_back(CI.getPCHContainerWriter().CreatePCHContainerGenerator( CI, std::string(InFile), OutputFile, std::move(OS), Buffer)); return std::make_unique(std::move(Consumers)); } bool GeneratePCHAction::ComputeASTConsumerArguments(CompilerInstance &CI, std::string &Sysroot) { Sysroot = CI.getHeaderSearchOpts().Sysroot; if (CI.getFrontendOpts().RelocatablePCH && Sysroot.empty()) { CI.getDiagnostics().Report(diag::err_relocatable_without_isysroot); return false; } return true; } std::unique_ptr GeneratePCHAction::CreateOutputFile(CompilerInstance &CI, StringRef InFile, std::string &OutputFile) { // Because this is exposed via libclang we must disable RemoveFileOnSignal. std::unique_ptr OS = CI.createDefaultOutputFile( /*Binary=*/true, InFile, /*Extension=*/"", /*RemoveFileOnSignal=*/false); if (!OS) return nullptr; OutputFile = CI.getFrontendOpts().OutputFile; return OS; } bool GeneratePCHAction::shouldEraseOutputFiles() { if (getCompilerInstance().getPreprocessorOpts().AllowPCHWithCompilerErrors) return false; return ASTFrontendAction::shouldEraseOutputFiles(); } bool GeneratePCHAction::BeginSourceFileAction(CompilerInstance &CI) { CI.getLangOpts().CompilingPCH = true; return true; } std::unique_ptr GenerateModuleAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { std::unique_ptr OS = CreateOutputFile(CI, InFile); if (!OS) return nullptr; std::string OutputFile = CI.getFrontendOpts().OutputFile; std::string Sysroot; auto Buffer = std::make_shared(); std::vector> Consumers; Consumers.push_back(std::make_unique( CI.getPreprocessor(), CI.getModuleCache(), OutputFile, Sysroot, Buffer, CI.getFrontendOpts().ModuleFileExtensions, /*AllowASTWithErrors=*/ +CI.getFrontendOpts().AllowPCMWithCompilerErrors, /*IncludeTimestamps=*/ +CI.getFrontendOpts().BuildingImplicitModule && +CI.getFrontendOpts().IncludeTimestamps, /*BuildingImplicitModule=*/+CI.getFrontendOpts().BuildingImplicitModule, /*ShouldCacheASTInMemory=*/ +CI.getFrontendOpts().BuildingImplicitModule)); Consumers.push_back(CI.getPCHContainerWriter().CreatePCHContainerGenerator( CI, std::string(InFile), OutputFile, std::move(OS), Buffer)); return std::make_unique(std::move(Consumers)); } bool GenerateModuleAction::shouldEraseOutputFiles() { return !getCompilerInstance().getFrontendOpts().AllowPCMWithCompilerErrors && ASTFrontendAction::shouldEraseOutputFiles(); } bool GenerateModuleFromModuleMapAction::BeginSourceFileAction( CompilerInstance &CI) { if (!CI.getLangOpts().Modules) { CI.getDiagnostics().Report(diag::err_module_build_requires_fmodules); return false; } return GenerateModuleAction::BeginSourceFileAction(CI); } std::unique_ptr GenerateModuleFromModuleMapAction::CreateOutputFile(CompilerInstance &CI, StringRef InFile) { // If no output file was provided, figure out where this module would go // in the module cache. if (CI.getFrontendOpts().OutputFile.empty()) { StringRef ModuleMapFile = CI.getFrontendOpts().OriginalModuleMap; if (ModuleMapFile.empty()) ModuleMapFile = InFile; HeaderSearch &HS = CI.getPreprocessor().getHeaderSearchInfo(); CI.getFrontendOpts().OutputFile = HS.getCachedModuleFileName(CI.getLangOpts().CurrentModule, ModuleMapFile); } // Because this is exposed via libclang we must disable RemoveFileOnSignal. return CI.createDefaultOutputFile(/*Binary=*/true, InFile, /*Extension=*/"", /*RemoveFileOnSignal=*/false, /*CreateMissingDirectories=*/true, /*ForceUseTemporary=*/true); } bool GenerateModuleInterfaceAction::BeginSourceFileAction( CompilerInstance &CI) { CI.getLangOpts().setCompilingModule(LangOptions::CMK_ModuleInterface); return GenerateModuleAction::BeginSourceFileAction(CI); } std::unique_ptr GenerateModuleInterfaceAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { CI.getHeaderSearchOpts().ModulesSkipDiagnosticOptions = true; CI.getHeaderSearchOpts().ModulesSkipHeaderSearchPaths = true; CI.getHeaderSearchOpts().ModulesSkipPragmaDiagnosticMappings = true; return GenerateModuleAction::CreateASTConsumer(CI, InFile); } std::unique_ptr GenerateModuleInterfaceAction::CreateOutputFile(CompilerInstance &CI, StringRef InFile) { return CI.createDefaultOutputFile(/*Binary=*/true, InFile, "pcm"); } bool GenerateHeaderUnitAction::BeginSourceFileAction(CompilerInstance &CI) { if (!CI.getLangOpts().CPlusPlusModules) { CI.getDiagnostics().Report(diag::err_module_interface_requires_cpp_modules); return false; } CI.getLangOpts().setCompilingModule(LangOptions::CMK_HeaderUnit); return GenerateModuleAction::BeginSourceFileAction(CI); } std::unique_ptr GenerateHeaderUnitAction::CreateOutputFile(CompilerInstance &CI, StringRef InFile) { return CI.createDefaultOutputFile(/*Binary=*/true, InFile, "pcm"); } SyntaxOnlyAction::~SyntaxOnlyAction() { } std::unique_ptr SyntaxOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return std::make_unique(); } std::unique_ptr DumpModuleInfoAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return std::make_unique(); } std::unique_ptr VerifyPCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return std::make_unique(); } void VerifyPCHAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); bool Preamble = CI.getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; const std::string &Sysroot = CI.getHeaderSearchOpts().Sysroot; std::unique_ptr Reader(new ASTReader( CI.getPreprocessor(), CI.getModuleCache(), &CI.getASTContext(), CI.getPCHContainerReader(), CI.getFrontendOpts().ModuleFileExtensions, Sysroot.empty() ? "" : Sysroot.c_str(), DisableValidationForModuleKind::None, /*AllowASTWithCompilerErrors*/ false, /*AllowConfigurationMismatch*/ true, /*ValidateSystemInputs*/ true)); Reader->ReadAST(getCurrentFile(), Preamble ? serialization::MK_Preamble : serialization::MK_PCH, SourceLocation(), ASTReader::ARR_ConfigurationMismatch); } namespace { struct TemplightEntry { std::string Name; std::string Kind; std::string Event; std::string DefinitionLocation; std::string PointOfInstantiation; }; } // namespace namespace llvm { namespace yaml { template <> struct MappingTraits { static void mapping(IO &io, TemplightEntry &fields) { io.mapRequired("name", fields.Name); io.mapRequired("kind", fields.Kind); io.mapRequired("event", fields.Event); io.mapRequired("orig", fields.DefinitionLocation); io.mapRequired("poi", fields.PointOfInstantiation); } }; } // namespace yaml } // namespace llvm namespace { class DefaultTemplateInstCallback : public TemplateInstantiationCallback { using CodeSynthesisContext = Sema::CodeSynthesisContext; public: void initialize(const Sema &) override {} void finalize(const Sema &) override {} void atTemplateBegin(const Sema &TheSema, const CodeSynthesisContext &Inst) override { displayTemplightEntry(llvm::outs(), TheSema, Inst); } void atTemplateEnd(const Sema &TheSema, const CodeSynthesisContext &Inst) override { displayTemplightEntry(llvm::outs(), TheSema, Inst); } private: static std::string toString(CodeSynthesisContext::SynthesisKind Kind) { switch (Kind) { case CodeSynthesisContext::TemplateInstantiation: return "TemplateInstantiation"; case CodeSynthesisContext::DefaultTemplateArgumentInstantiation: return "DefaultTemplateArgumentInstantiation"; case CodeSynthesisContext::DefaultFunctionArgumentInstantiation: return "DefaultFunctionArgumentInstantiation"; case CodeSynthesisContext::ExplicitTemplateArgumentSubstitution: return "ExplicitTemplateArgumentSubstitution"; case CodeSynthesisContext::DeducedTemplateArgumentSubstitution: return "DeducedTemplateArgumentSubstitution"; case CodeSynthesisContext::LambdaExpressionSubstitution: return "LambdaExpressionSubstitution"; case CodeSynthesisContext::PriorTemplateArgumentSubstitution: return "PriorTemplateArgumentSubstitution"; case CodeSynthesisContext::DefaultTemplateArgumentChecking: return "DefaultTemplateArgumentChecking"; case CodeSynthesisContext::ExceptionSpecEvaluation: return "ExceptionSpecEvaluation"; case CodeSynthesisContext::ExceptionSpecInstantiation: return "ExceptionSpecInstantiation"; case CodeSynthesisContext::DeclaringSpecialMember: return "DeclaringSpecialMember"; case CodeSynthesisContext::DeclaringImplicitEqualityComparison: return "DeclaringImplicitEqualityComparison"; case CodeSynthesisContext::DefiningSynthesizedFunction: return "DefiningSynthesizedFunction"; case CodeSynthesisContext::RewritingOperatorAsSpaceship: return "RewritingOperatorAsSpaceship"; case CodeSynthesisContext::Memoization: return "Memoization"; case CodeSynthesisContext::ConstraintsCheck: return "ConstraintsCheck"; case CodeSynthesisContext::ConstraintSubstitution: return "ConstraintSubstitution"; case CodeSynthesisContext::ConstraintNormalization: return "ConstraintNormalization"; case CodeSynthesisContext::RequirementParameterInstantiation: return "RequirementParameterInstantiation"; case CodeSynthesisContext::ParameterMappingSubstitution: return "ParameterMappingSubstitution"; case CodeSynthesisContext::RequirementInstantiation: return "RequirementInstantiation"; case CodeSynthesisContext::NestedRequirementConstraintsCheck: return "NestedRequirementConstraintsCheck"; case CodeSynthesisContext::InitializingStructuredBinding: return "InitializingStructuredBinding"; case CodeSynthesisContext::MarkingClassDllexported: return "MarkingClassDllexported"; case CodeSynthesisContext::BuildingBuiltinDumpStructCall: return "BuildingBuiltinDumpStructCall"; case CodeSynthesisContext::BuildingDeductionGuides: return "BuildingDeductionGuides"; } return ""; } template static void displayTemplightEntry(llvm::raw_ostream &Out, const Sema &TheSema, const CodeSynthesisContext &Inst) { std::string YAML; { llvm::raw_string_ostream OS(YAML); llvm::yaml::Output YO(OS); TemplightEntry Entry = getTemplightEntry(TheSema, Inst); llvm::yaml::EmptyContext Context; llvm::yaml::yamlize(YO, Entry, true, Context); } Out << "---" << YAML << "\n"; } static void printEntryName(const Sema &TheSema, const Decl *Entity, llvm::raw_string_ostream &OS) { auto *NamedTemplate = cast(Entity); PrintingPolicy Policy = TheSema.Context.getPrintingPolicy(); // FIXME: Also ask for FullyQualifiedNames? Policy.SuppressDefaultTemplateArgs = false; NamedTemplate->getNameForDiagnostic(OS, Policy, true); if (!OS.str().empty()) return; Decl *Ctx = Decl::castFromDeclContext(NamedTemplate->getDeclContext()); NamedDecl *NamedCtx = dyn_cast_or_null(Ctx); if (const auto *Decl = dyn_cast(NamedTemplate)) { if (const auto *R = dyn_cast(Decl)) { if (R->isLambda()) { OS << "lambda at "; Decl->getLocation().print(OS, TheSema.getSourceManager()); return; } } OS << "unnamed " << Decl->getKindName(); return; } assert(NamedCtx && "NamedCtx cannot be null"); if (const auto *Decl = dyn_cast(NamedTemplate)) { OS << "unnamed function parameter " << Decl->getFunctionScopeIndex() << " "; if (Decl->getFunctionScopeDepth() > 0) OS << "(at depth " << Decl->getFunctionScopeDepth() << ") "; OS << "of "; NamedCtx->getNameForDiagnostic(OS, TheSema.getLangOpts(), true); return; } if (const auto *Decl = dyn_cast(NamedTemplate)) { if (const Type *Ty = Decl->getTypeForDecl()) { if (const auto *TTPT = dyn_cast_or_null(Ty)) { OS << "unnamed template type parameter " << TTPT->getIndex() << " "; if (TTPT->getDepth() > 0) OS << "(at depth " << TTPT->getDepth() << ") "; OS << "of "; NamedCtx->getNameForDiagnostic(OS, TheSema.getLangOpts(), true); return; } } } if (const auto *Decl = dyn_cast(NamedTemplate)) { OS << "unnamed template non-type parameter " << Decl->getIndex() << " "; if (Decl->getDepth() > 0) OS << "(at depth " << Decl->getDepth() << ") "; OS << "of "; NamedCtx->getNameForDiagnostic(OS, TheSema.getLangOpts(), true); return; } if (const auto *Decl = dyn_cast(NamedTemplate)) { OS << "unnamed template template parameter " << Decl->getIndex() << " "; if (Decl->getDepth() > 0) OS << "(at depth " << Decl->getDepth() << ") "; OS << "of "; NamedCtx->getNameForDiagnostic(OS, TheSema.getLangOpts(), true); return; } llvm_unreachable("Failed to retrieve a name for this entry!"); OS << "unnamed identifier"; } template static TemplightEntry getTemplightEntry(const Sema &TheSema, const CodeSynthesisContext &Inst) { TemplightEntry Entry; Entry.Kind = toString(Inst.Kind); Entry.Event = BeginInstantiation ? "Begin" : "End"; llvm::raw_string_ostream OS(Entry.Name); printEntryName(TheSema, Inst.Entity, OS); const PresumedLoc DefLoc = TheSema.getSourceManager().getPresumedLoc(Inst.Entity->getLocation()); if (!DefLoc.isInvalid()) Entry.DefinitionLocation = std::string(DefLoc.getFilename()) + ":" + std::to_string(DefLoc.getLine()) + ":" + std::to_string(DefLoc.getColumn()); const PresumedLoc PoiLoc = TheSema.getSourceManager().getPresumedLoc(Inst.PointOfInstantiation); if (!PoiLoc.isInvalid()) { Entry.PointOfInstantiation = std::string(PoiLoc.getFilename()) + ":" + std::to_string(PoiLoc.getLine()) + ":" + std::to_string(PoiLoc.getColumn()); } return Entry; } }; } // namespace std::unique_ptr TemplightDumpAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return std::make_unique(); } void TemplightDumpAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); // This part is normally done by ASTFrontEndAction, but needs to happen // before Templight observers can be created // FIXME: Move the truncation aspect of this into Sema, we delayed this till // here so the source manager would be initialized. EnsureSemaIsCreated(CI, *this); CI.getSema().TemplateInstCallbacks.push_back( std::make_unique()); ASTFrontendAction::ExecuteAction(); } namespace { /// AST reader listener that dumps module information for a module /// file. class DumpModuleInfoListener : public ASTReaderListener { llvm::raw_ostream &Out; public: DumpModuleInfoListener(llvm::raw_ostream &Out) : Out(Out) { } #define DUMP_BOOLEAN(Value, Text) \ Out.indent(4) << Text << ": " << (Value? "Yes" : "No") << "\n" bool ReadFullVersionInformation(StringRef FullVersion) override { Out.indent(2) << "Generated by " << (FullVersion == getClangFullRepositoryVersion()? "this" : "a different") << " Clang: " << FullVersion << "\n"; return ASTReaderListener::ReadFullVersionInformation(FullVersion); } void ReadModuleName(StringRef ModuleName) override { Out.indent(2) << "Module name: " << ModuleName << "\n"; } void ReadModuleMapFile(StringRef ModuleMapPath) override { Out.indent(2) << "Module map file: " << ModuleMapPath << "\n"; } bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain, bool AllowCompatibleDifferences) override { Out.indent(2) << "Language options:\n"; #define LANGOPT(Name, Bits, Default, Description) \ DUMP_BOOLEAN(LangOpts.Name, Description); #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ Out.indent(4) << Description << ": " \ << static_cast(LangOpts.get##Name()) << "\n"; #define VALUE_LANGOPT(Name, Bits, Default, Description) \ Out.indent(4) << Description << ": " << LangOpts.Name << "\n"; #define BENIGN_LANGOPT(Name, Bits, Default, Description) #define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description) #include "clang/Basic/LangOptions.def" if (!LangOpts.ModuleFeatures.empty()) { Out.indent(4) << "Module features:\n"; for (StringRef Feature : LangOpts.ModuleFeatures) Out.indent(6) << Feature << "\n"; } return false; } bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain, bool AllowCompatibleDifferences) override { Out.indent(2) << "Target options:\n"; Out.indent(4) << " Triple: " << TargetOpts.Triple << "\n"; Out.indent(4) << " CPU: " << TargetOpts.CPU << "\n"; Out.indent(4) << " TuneCPU: " << TargetOpts.TuneCPU << "\n"; Out.indent(4) << " ABI: " << TargetOpts.ABI << "\n"; if (!TargetOpts.FeaturesAsWritten.empty()) { Out.indent(4) << "Target features:\n"; for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) { Out.indent(6) << TargetOpts.FeaturesAsWritten[I] << "\n"; } } return false; } bool ReadDiagnosticOptions(IntrusiveRefCntPtr DiagOpts, bool Complain) override { Out.indent(2) << "Diagnostic options:\n"; #define DIAGOPT(Name, Bits, Default) DUMP_BOOLEAN(DiagOpts->Name, #Name); #define ENUM_DIAGOPT(Name, Type, Bits, Default) \ Out.indent(4) << #Name << ": " << DiagOpts->get##Name() << "\n"; #define VALUE_DIAGOPT(Name, Bits, Default) \ Out.indent(4) << #Name << ": " << DiagOpts->Name << "\n"; #include "clang/Basic/DiagnosticOptions.def" Out.indent(4) << "Diagnostic flags:\n"; for (const std::string &Warning : DiagOpts->Warnings) Out.indent(6) << "-W" << Warning << "\n"; for (const std::string &Remark : DiagOpts->Remarks) Out.indent(6) << "-R" << Remark << "\n"; return false; } bool ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath, bool Complain) override { Out.indent(2) << "Header search options:\n"; Out.indent(4) << "System root [-isysroot=]: '" << HSOpts.Sysroot << "'\n"; Out.indent(4) << "Resource dir [ -resource-dir=]: '" << HSOpts.ResourceDir << "'\n"; Out.indent(4) << "Module Cache: '" << SpecificModuleCachePath << "'\n"; DUMP_BOOLEAN(HSOpts.UseBuiltinIncludes, "Use builtin include directories [-nobuiltininc]"); DUMP_BOOLEAN(HSOpts.UseStandardSystemIncludes, "Use standard system include directories [-nostdinc]"); DUMP_BOOLEAN(HSOpts.UseStandardCXXIncludes, "Use standard C++ include directories [-nostdinc++]"); DUMP_BOOLEAN(HSOpts.UseLibcxx, "Use libc++ (rather than libstdc++) [-stdlib=]"); return false; } bool ReadHeaderSearchPaths(const HeaderSearchOptions &HSOpts, bool Complain) override { Out.indent(2) << "Header search paths:\n"; Out.indent(4) << "User entries:\n"; for (const auto &Entry : HSOpts.UserEntries) Out.indent(6) << Entry.Path << "\n"; Out.indent(4) << "System header prefixes:\n"; for (const auto &Prefix : HSOpts.SystemHeaderPrefixes) Out.indent(6) << Prefix.Prefix << "\n"; Out.indent(4) << "VFS overlay files:\n"; for (const auto &Overlay : HSOpts.VFSOverlayFiles) Out.indent(6) << Overlay << "\n"; return false; } bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts, bool ReadMacros, bool Complain, std::string &SuggestedPredefines) override { Out.indent(2) << "Preprocessor options:\n"; DUMP_BOOLEAN(PPOpts.UsePredefines, "Uses compiler/target-specific predefines [-undef]"); DUMP_BOOLEAN(PPOpts.DetailedRecord, "Uses detailed preprocessing record (for indexing)"); if (ReadMacros) { Out.indent(4) << "Predefined macros:\n"; } for (std::vector >::const_iterator I = PPOpts.Macros.begin(), IEnd = PPOpts.Macros.end(); I != IEnd; ++I) { Out.indent(6); if (I->second) Out << "-U"; else Out << "-D"; Out << I->first << "\n"; } return false; } /// Indicates that a particular module file extension has been read. void readModuleFileExtension( const ModuleFileExtensionMetadata &Metadata) override { Out.indent(2) << "Module file extension '" << Metadata.BlockName << "' " << Metadata.MajorVersion << "." << Metadata.MinorVersion; if (!Metadata.UserInfo.empty()) { Out << ": "; Out.write_escaped(Metadata.UserInfo); } Out << "\n"; } /// Tells the \c ASTReaderListener that we want to receive the /// input files of the AST file via \c visitInputFile. bool needsInputFileVisitation() override { return true; } /// Tells the \c ASTReaderListener that we want to receive the /// input files of the AST file via \c visitInputFile. bool needsSystemInputFileVisitation() override { return true; } /// Indicates that the AST file contains particular input file. /// /// \returns true to continue receiving the next input file, false to stop. bool visitInputFile(StringRef Filename, bool isSystem, bool isOverridden, bool isExplicitModule) override { Out.indent(2) << "Input file: " << Filename; if (isSystem || isOverridden || isExplicitModule) { Out << " ["; if (isSystem) { Out << "System"; if (isOverridden || isExplicitModule) Out << ", "; } if (isOverridden) { Out << "Overridden"; if (isExplicitModule) Out << ", "; } if (isExplicitModule) Out << "ExplicitModule"; Out << "]"; } Out << "\n"; return true; } /// Returns true if this \c ASTReaderListener wants to receive the /// imports of the AST file via \c visitImport, false otherwise. bool needsImportVisitation() const override { return true; } /// If needsImportVisitation returns \c true, this is called for each /// AST file imported by this AST file. void visitImport(StringRef ModuleName, StringRef Filename) override { Out.indent(2) << "Imports module '" << ModuleName << "': " << Filename.str() << "\n"; } #undef DUMP_BOOLEAN }; } bool DumpModuleInfoAction::BeginInvocation(CompilerInstance &CI) { // The Object file reader also supports raw ast files and there is no point in // being strict about the module file format in -module-file-info mode. CI.getHeaderSearchOpts().ModuleFormat = "obj"; return true; } static StringRef ModuleKindName(Module::ModuleKind MK) { switch (MK) { case Module::ModuleMapModule: return "Module Map Module"; case Module::ModuleInterfaceUnit: return "Interface Unit"; case Module::ModuleImplementationUnit: return "Implementation Unit"; case Module::ModulePartitionInterface: return "Partition Interface"; case Module::ModulePartitionImplementation: return "Partition Implementation"; case Module::ModuleHeaderUnit: return "Header Unit"; case Module::ExplicitGlobalModuleFragment: return "Global Module Fragment"; case Module::ImplicitGlobalModuleFragment: return "Implicit Module Fragment"; case Module::PrivateModuleFragment: return "Private Module Fragment"; } llvm_unreachable("unknown module kind!"); } void DumpModuleInfoAction::ExecuteAction() { assert(isCurrentFileAST() && "dumping non-AST?"); // Set up the output file. CompilerInstance &CI = getCompilerInstance(); StringRef OutputFileName = CI.getFrontendOpts().OutputFile; if (!OutputFileName.empty() && OutputFileName != "-") { std::error_code EC; OutputStream.reset(new llvm::raw_fd_ostream( OutputFileName.str(), EC, llvm::sys::fs::OF_TextWithCRLF)); } llvm::raw_ostream &Out = OutputStream ? *OutputStream : llvm::outs(); Out << "Information for module file '" << getCurrentFile() << "':\n"; auto &FileMgr = CI.getFileManager(); auto Buffer = FileMgr.getBufferForFile(getCurrentFile()); StringRef Magic = (*Buffer)->getMemBufferRef().getBuffer(); bool IsRaw = (Magic.size() >= 4 && Magic[0] == 'C' && Magic[1] == 'P' && Magic[2] == 'C' && Magic[3] == 'H'); Out << " Module format: " << (IsRaw ? "raw" : "obj") << "\n"; Preprocessor &PP = CI.getPreprocessor(); DumpModuleInfoListener Listener(Out); HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); // The FrontendAction::BeginSourceFile () method loads the AST so that much // of the information is already available and modules should have been // loaded. const LangOptions &LO = getCurrentASTUnit().getLangOpts(); if (LO.CPlusPlusModules && !LO.CurrentModule.empty()) { ASTReader *R = getCurrentASTUnit().getASTReader().get(); unsigned SubModuleCount = R->getTotalNumSubmodules(); serialization::ModuleFile &MF = R->getModuleManager().getPrimaryModule(); Out << " ====== C++20 Module structure ======\n"; if (MF.ModuleName != LO.CurrentModule) Out << " Mismatched module names : " << MF.ModuleName << " and " << LO.CurrentModule << "\n"; struct SubModInfo { unsigned Idx; Module *Mod; Module::ModuleKind Kind; std::string &Name; bool Seen; }; std::map SubModMap; auto PrintSubMapEntry = [&](std::string Name, Module::ModuleKind Kind) { Out << " " << ModuleKindName(Kind) << " '" << Name << "'"; auto I = SubModMap.find(Name); if (I == SubModMap.end()) Out << " was not found in the sub modules!\n"; else { I->second.Seen = true; Out << " is at index #" << I->second.Idx << "\n"; } }; Module *Primary = nullptr; for (unsigned Idx = 0; Idx <= SubModuleCount; ++Idx) { Module *M = R->getModule(Idx); if (!M) continue; if (M->Name == LO.CurrentModule) { Primary = M; Out << " " << ModuleKindName(M->Kind) << " '" << LO.CurrentModule << "' is the Primary Module at index #" << Idx << "\n"; SubModMap.insert({M->Name, {Idx, M, M->Kind, M->Name, true}}); } else SubModMap.insert({M->Name, {Idx, M, M->Kind, M->Name, false}}); } if (Primary) { if (!Primary->submodules().empty()) Out << " Sub Modules:\n"; for (auto *MI : Primary->submodules()) { PrintSubMapEntry(MI->Name, MI->Kind); } if (!Primary->Imports.empty()) Out << " Imports:\n"; for (auto *IMP : Primary->Imports) { PrintSubMapEntry(IMP->Name, IMP->Kind); } if (!Primary->Exports.empty()) Out << " Exports:\n"; for (unsigned MN = 0, N = Primary->Exports.size(); MN != N; ++MN) { if (Module *M = Primary->Exports[MN].getPointer()) { PrintSubMapEntry(M->Name, M->Kind); } } } // Emit the macro definitions in the module file so that we can know how // much definitions in the module file quickly. // TODO: Emit the macro definition bodies completely. if (auto FilteredMacros = llvm::make_filter_range( R->getPreprocessor().macros(), [](const auto &Macro) { return Macro.first->isFromAST(); }); !FilteredMacros.empty()) { Out << " Macro Definitions:\n"; for (/* pair*/ const auto &Macro : FilteredMacros) Out << " " << Macro.first->getName() << "\n"; } // Now let's print out any modules we did not see as part of the Primary. for (const auto &SM : SubModMap) { if (!SM.second.Seen && SM.second.Mod) { Out << " " << ModuleKindName(SM.second.Kind) << " '" << SM.first << "' at index #" << SM.second.Idx << " has no direct reference in the Primary\n"; } } Out << " ====== ======\n"; } // The reminder of the output is produced from the listener as the AST // FileCcontrolBlock is (re-)parsed. ASTReader::readASTFileControlBlock( getCurrentFile(), FileMgr, CI.getModuleCache(), CI.getPCHContainerReader(), /*FindModuleFileExtensions=*/true, Listener, HSOpts.ModulesValidateDiagnosticOptions); } //===----------------------------------------------------------------------===// // Preprocessor Actions //===----------------------------------------------------------------------===// void DumpRawTokensAction::ExecuteAction() { Preprocessor &PP = getCompilerInstance().getPreprocessor(); SourceManager &SM = PP.getSourceManager(); // Start lexing the specified input file. llvm::MemoryBufferRef FromFile = SM.getBufferOrFake(SM.getMainFileID()); Lexer RawLex(SM.getMainFileID(), FromFile, SM, PP.getLangOpts()); RawLex.SetKeepWhitespaceMode(true); Token RawTok; RawLex.LexFromRawLexer(RawTok); while (RawTok.isNot(tok::eof)) { PP.DumpToken(RawTok, true); llvm::errs() << "\n"; RawLex.LexFromRawLexer(RawTok); } } void DumpTokensAction::ExecuteAction() { Preprocessor &PP = getCompilerInstance().getPreprocessor(); // Start preprocessing the specified input file. Token Tok; PP.EnterMainSourceFile(); do { PP.Lex(Tok); PP.DumpToken(Tok, true); llvm::errs() << "\n"; } while (Tok.isNot(tok::eof)); } void PreprocessOnlyAction::ExecuteAction() { Preprocessor &PP = getCompilerInstance().getPreprocessor(); // Ignore unknown pragmas. PP.IgnorePragmas(); Token Tok; // Start parsing the specified input file. PP.EnterMainSourceFile(); do { PP.Lex(Tok); } while (Tok.isNot(tok::eof)); } void PrintPreprocessedAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); // Output file may need to be set to 'Binary', to avoid converting Unix style // line feeds () to Microsoft style line feeds () on Windows. // // Look to see what type of line endings the file uses. If there's a // CRLF, then we won't open the file up in binary mode. If there is // just an LF or CR, then we will open the file up in binary mode. // In this fashion, the output format should match the input format, unless // the input format has inconsistent line endings. // // This should be a relatively fast operation since most files won't have // all of their source code on a single line. However, that is still a // concern, so if we scan for too long, we'll just assume the file should // be opened in binary mode. bool BinaryMode = false; if (llvm::Triple(LLVM_HOST_TRIPLE).isOSWindows()) { BinaryMode = true; const SourceManager &SM = CI.getSourceManager(); if (std::optional Buffer = SM.getBufferOrNone(SM.getMainFileID())) { const char *cur = Buffer->getBufferStart(); const char *end = Buffer->getBufferEnd(); const char *next = (cur != end) ? cur + 1 : end; // Limit ourselves to only scanning 256 characters into the source // file. This is mostly a check in case the file has no // newlines whatsoever. if (end - cur > 256) end = cur + 256; while (next < end) { if (*cur == 0x0D) { // CR if (*next == 0x0A) // CRLF BinaryMode = false; break; } else if (*cur == 0x0A) // LF break; ++cur; ++next; } } } std::unique_ptr OS = CI.createDefaultOutputFile(BinaryMode, getCurrentFileOrBufferName()); if (!OS) return; // If we're preprocessing a module map, start by dumping the contents of the // module itself before switching to the input buffer. auto &Input = getCurrentInput(); if (Input.getKind().getFormat() == InputKind::ModuleMap) { if (Input.isFile()) { (*OS) << "# 1 \""; OS->write_escaped(Input.getFile()); (*OS) << "\"\n"; } getCurrentModule()->print(*OS); (*OS) << "#pragma clang module contents\n"; } DoPrintPreprocessedInput(CI.getPreprocessor(), OS.get(), CI.getPreprocessorOutputOpts()); } void PrintPreambleAction::ExecuteAction() { switch (getCurrentFileKind().getLanguage()) { case Language::C: case Language::CXX: case Language::ObjC: case Language::ObjCXX: case Language::OpenCL: case Language::OpenCLCXX: case Language::CUDA: case Language::HIP: case Language::HLSL: break; case Language::Unknown: case Language::Asm: case Language::LLVM_IR: case Language::RenderScript: // We can't do anything with these. return; } // We don't expect to find any #include directives in a preprocessed input. if (getCurrentFileKind().isPreprocessed()) return; CompilerInstance &CI = getCompilerInstance(); auto Buffer = CI.getFileManager().getBufferForFile(getCurrentFile()); if (Buffer) { unsigned Preamble = Lexer::ComputePreamble((*Buffer)->getBuffer(), CI.getLangOpts()).Size; llvm::outs().write((*Buffer)->getBufferStart(), Preamble); } } void DumpCompilerOptionsAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); std::unique_ptr OSP = CI.createDefaultOutputFile(false, getCurrentFile()); if (!OSP) return; raw_ostream &OS = *OSP; const Preprocessor &PP = CI.getPreprocessor(); const LangOptions &LangOpts = PP.getLangOpts(); // FIXME: Rather than manually format the JSON (which is awkward due to // needing to remove trailing commas), this should make use of a JSON library. // FIXME: Instead of printing enums as an integral value and specifying the // type as a separate field, use introspection to print the enumerator. OS << "{\n"; OS << "\n\"features\" : [\n"; { llvm::SmallString<128> Str; #define FEATURE(Name, Predicate) \ ("\t{\"" #Name "\" : " + llvm::Twine(Predicate ? "true" : "false") + "},\n") \ .toVector(Str); #include "clang/Basic/Features.def" #undef FEATURE // Remove the newline and comma from the last entry to ensure this remains // valid JSON. OS << Str.substr(0, Str.size() - 2); } OS << "\n],\n"; OS << "\n\"extensions\" : [\n"; { llvm::SmallString<128> Str; #define EXTENSION(Name, Predicate) \ ("\t{\"" #Name "\" : " + llvm::Twine(Predicate ? "true" : "false") + "},\n") \ .toVector(Str); #include "clang/Basic/Features.def" #undef EXTENSION // Remove the newline and comma from the last entry to ensure this remains // valid JSON. OS << Str.substr(0, Str.size() - 2); } OS << "\n]\n"; OS << "}"; } void PrintDependencyDirectivesSourceMinimizerAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); SourceManager &SM = CI.getPreprocessor().getSourceManager(); llvm::MemoryBufferRef FromFile = SM.getBufferOrFake(SM.getMainFileID()); llvm::SmallVector Tokens; llvm::SmallVector Directives; if (scanSourceForDependencyDirectives( FromFile.getBuffer(), Tokens, Directives, &CI.getDiagnostics(), SM.getLocForStartOfFile(SM.getMainFileID()))) { assert(CI.getDiagnostics().hasErrorOccurred() && "no errors reported for failure"); // Preprocess the source when verifying the diagnostics to capture the // 'expected' comments. if (CI.getDiagnosticOpts().VerifyDiagnostics) { // Make sure we don't emit new diagnostics! CI.getDiagnostics().setSuppressAllDiagnostics(true); Preprocessor &PP = getCompilerInstance().getPreprocessor(); PP.EnterMainSourceFile(); Token Tok; do { PP.Lex(Tok); } while (Tok.isNot(tok::eof)); } return; } printDependencyDirectivesAsSource(FromFile.getBuffer(), Directives, llvm::outs()); } void GetDependenciesByModuleNameAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); Preprocessor &PP = CI.getPreprocessor(); SourceManager &SM = PP.getSourceManager(); FileID MainFileID = SM.getMainFileID(); SourceLocation FileStart = SM.getLocForStartOfFile(MainFileID); SmallVector, 2> Path; IdentifierInfo *ModuleID = PP.getIdentifierInfo(ModuleName); Path.push_back(std::make_pair(ModuleID, FileStart)); auto ModResult = CI.loadModule(FileStart, Path, Module::Hidden, false); PPCallbacks *CB = PP.getPPCallbacks(); CB->moduleImport(SourceLocation(), Path, ModResult); }