//===--- Linux.h - Linux ToolChain Implementations --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Linux.h" #include "Arch/ARM.h" #include "Arch/LoongArch.h" #include "Arch/Mips.h" #include "Arch/PPC.h" #include "Arch/RISCV.h" #include "CommonArgs.h" #include "clang/Config/config.h" #include "clang/Driver/Distro.h" #include "clang/Driver/Driver.h" #include "clang/Driver/Options.h" #include "clang/Driver/SanitizerArgs.h" #include "llvm/Option/ArgList.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/Support/Path.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/VirtualFileSystem.h" #include using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang; using namespace llvm::opt; using tools::addPathIfExists; /// Get our best guess at the multiarch triple for a target. /// /// Debian-based systems are starting to use a multiarch setup where they use /// a target-triple directory in the library and header search paths. /// Unfortunately, this triple does not align with the vanilla target triple, /// so we provide a rough mapping here. std::string Linux::getMultiarchTriple(const Driver &D, const llvm::Triple &TargetTriple, StringRef SysRoot) const { llvm::Triple::EnvironmentType TargetEnvironment = TargetTriple.getEnvironment(); bool IsAndroid = TargetTriple.isAndroid(); bool IsMipsR6 = TargetTriple.getSubArch() == llvm::Triple::MipsSubArch_r6; bool IsMipsN32Abi = TargetTriple.getEnvironment() == llvm::Triple::GNUABIN32; // For most architectures, just use whatever we have rather than trying to be // clever. switch (TargetTriple.getArch()) { default: break; // We use the existence of '/lib/' as a directory to detect some // common linux triples that don't quite match the Clang triple for both // 32-bit and 64-bit targets. Multiarch fixes its install triples to these // regardless of what the actual target triple is. case llvm::Triple::arm: case llvm::Triple::thumb: if (IsAndroid) return "arm-linux-androideabi"; if (TargetEnvironment == llvm::Triple::GNUEABIHF || TargetEnvironment == llvm::Triple::MuslEABIHF || TargetEnvironment == llvm::Triple::EABIHF) return "arm-linux-gnueabihf"; return "arm-linux-gnueabi"; case llvm::Triple::armeb: case llvm::Triple::thumbeb: if (TargetEnvironment == llvm::Triple::GNUEABIHF || TargetEnvironment == llvm::Triple::MuslEABIHF || TargetEnvironment == llvm::Triple::EABIHF) return "armeb-linux-gnueabihf"; return "armeb-linux-gnueabi"; case llvm::Triple::x86: if (IsAndroid) return "i686-linux-android"; return "i386-linux-gnu"; case llvm::Triple::x86_64: if (IsAndroid) return "x86_64-linux-android"; if (TargetEnvironment == llvm::Triple::GNUX32) return "x86_64-linux-gnux32"; return "x86_64-linux-gnu"; case llvm::Triple::aarch64: if (IsAndroid) return "aarch64-linux-android"; return "aarch64-linux-gnu"; case llvm::Triple::aarch64_be: return "aarch64_be-linux-gnu"; case llvm::Triple::loongarch64: { const char *Libc; const char *FPFlavor; if (TargetTriple.isGNUEnvironment()) { Libc = "gnu"; } else if (TargetTriple.isMusl()) { Libc = "musl"; } else { return TargetTriple.str(); } switch (TargetEnvironment) { default: return TargetTriple.str(); case llvm::Triple::GNUSF: FPFlavor = "sf"; break; case llvm::Triple::GNUF32: FPFlavor = "f32"; break; case llvm::Triple::GNU: case llvm::Triple::GNUF64: // This was going to be "f64" in an earlier Toolchain Conventions // revision, but starting from Feb 2023 the F64 ABI variants are // unmarked in their canonical forms. FPFlavor = ""; break; } return (Twine("loongarch64-linux-") + Libc + FPFlavor).str(); } case llvm::Triple::m68k: return "m68k-linux-gnu"; case llvm::Triple::mips: return IsMipsR6 ? "mipsisa32r6-linux-gnu" : "mips-linux-gnu"; case llvm::Triple::mipsel: return IsMipsR6 ? "mipsisa32r6el-linux-gnu" : "mipsel-linux-gnu"; case llvm::Triple::mips64: { std::string MT = std::string(IsMipsR6 ? "mipsisa64r6" : "mips64") + "-linux-" + (IsMipsN32Abi ? "gnuabin32" : "gnuabi64"); if (D.getVFS().exists(concat(SysRoot, "/lib", MT))) return MT; if (D.getVFS().exists(concat(SysRoot, "/lib/mips64-linux-gnu"))) return "mips64-linux-gnu"; break; } case llvm::Triple::mips64el: { std::string MT = std::string(IsMipsR6 ? "mipsisa64r6el" : "mips64el") + "-linux-" + (IsMipsN32Abi ? "gnuabin32" : "gnuabi64"); if (D.getVFS().exists(concat(SysRoot, "/lib", MT))) return MT; if (D.getVFS().exists(concat(SysRoot, "/lib/mips64el-linux-gnu"))) return "mips64el-linux-gnu"; break; } case llvm::Triple::ppc: if (D.getVFS().exists(concat(SysRoot, "/lib/powerpc-linux-gnuspe"))) return "powerpc-linux-gnuspe"; return "powerpc-linux-gnu"; case llvm::Triple::ppcle: return "powerpcle-linux-gnu"; case llvm::Triple::ppc64: return "powerpc64-linux-gnu"; case llvm::Triple::ppc64le: return "powerpc64le-linux-gnu"; case llvm::Triple::riscv64: if (IsAndroid) return "riscv64-linux-android"; return "riscv64-linux-gnu"; case llvm::Triple::sparc: return "sparc-linux-gnu"; case llvm::Triple::sparcv9: return "sparc64-linux-gnu"; case llvm::Triple::systemz: return "s390x-linux-gnu"; } return TargetTriple.str(); } static StringRef getOSLibDir(const llvm::Triple &Triple, const ArgList &Args) { if (Triple.isMIPS()) { if (Triple.isAndroid()) { StringRef CPUName; StringRef ABIName; tools::mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName); if (CPUName == "mips32r6") return "libr6"; if (CPUName == "mips32r2") return "libr2"; } // lib32 directory has a special meaning on MIPS targets. // It contains N32 ABI binaries. Use this folder if produce // code for N32 ABI only. if (tools::mips::hasMipsAbiArg(Args, "n32")) return "lib32"; return Triple.isArch32Bit() ? "lib" : "lib64"; } // It happens that only x86, PPC and SPARC use the 'lib32' variant of // oslibdir, and using that variant while targeting other architectures causes // problems because the libraries are laid out in shared system roots that // can't cope with a 'lib32' library search path being considered. So we only // enable them when we know we may need it. // // FIXME: This is a bit of a hack. We should really unify this code for // reasoning about oslibdir spellings with the lib dir spellings in the // GCCInstallationDetector, but that is a more significant refactoring. if (Triple.getArch() == llvm::Triple::x86 || Triple.isPPC32() || Triple.getArch() == llvm::Triple::sparc) return "lib32"; if (Triple.getArch() == llvm::Triple::x86_64 && Triple.isX32()) return "libx32"; if (Triple.getArch() == llvm::Triple::riscv32) return "lib32"; return Triple.isArch32Bit() ? "lib" : "lib64"; } Linux::Linux(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { GCCInstallation.init(Triple, Args); Multilibs = GCCInstallation.getMultilibs(); SelectedMultilibs.assign({GCCInstallation.getMultilib()}); llvm::Triple::ArchType Arch = Triple.getArch(); std::string SysRoot = computeSysRoot(); ToolChain::path_list &PPaths = getProgramPaths(); Generic_GCC::PushPPaths(PPaths); Distro Distro(D.getVFS(), Triple); if (Distro.IsAlpineLinux() || Triple.isAndroid()) { ExtraOpts.push_back("-z"); ExtraOpts.push_back("now"); } if (Distro.IsOpenSUSE() || Distro.IsUbuntu() || Distro.IsAlpineLinux() || Triple.isAndroid()) { ExtraOpts.push_back("-z"); ExtraOpts.push_back("relro"); } // Android ARM/AArch64 use max-page-size=4096 to reduce VMA usage. Note, lld // from 11 onwards default max-page-size to 65536 for both ARM and AArch64. if ((Triple.isARM() || Triple.isAArch64()) && Triple.isAndroid()) { ExtraOpts.push_back("-z"); ExtraOpts.push_back("max-page-size=4096"); } if (GCCInstallation.getParentLibPath().contains("opt/rh/")) // With devtoolset on RHEL, we want to add a bin directory that is relative // to the detected gcc install, because if we are using devtoolset gcc then // we want to use other tools from devtoolset (e.g. ld) instead of the // standard system tools. PPaths.push_back(Twine(GCCInstallation.getParentLibPath() + "/../bin").str()); if (Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb) ExtraOpts.push_back("-X"); const bool IsAndroid = Triple.isAndroid(); const bool IsMips = Triple.isMIPS(); const bool IsHexagon = Arch == llvm::Triple::hexagon; const bool IsRISCV = Triple.isRISCV(); const bool IsCSKY = Triple.isCSKY(); if (IsCSKY && !SelectedMultilibs.empty()) SysRoot = SysRoot + SelectedMultilibs.back().osSuffix(); if ((IsMips || IsCSKY) && !SysRoot.empty()) ExtraOpts.push_back("--sysroot=" + SysRoot); // Do not use 'gnu' hash style for Mips targets because .gnu.hash // and the MIPS ABI require .dynsym to be sorted in different ways. // .gnu.hash needs symbols to be grouped by hash code whereas the MIPS // ABI requires a mapping between the GOT and the symbol table. // Android loader does not support .gnu.hash until API 23. // Hexagon linker/loader does not support .gnu.hash if (!IsMips && !IsHexagon) { if (Distro.IsOpenSUSE() || Distro == Distro::UbuntuLucid || Distro == Distro::UbuntuJaunty || Distro == Distro::UbuntuKarmic || (IsAndroid && Triple.isAndroidVersionLT(23))) ExtraOpts.push_back("--hash-style=both"); else ExtraOpts.push_back("--hash-style=gnu"); } #ifdef ENABLE_LINKER_BUILD_ID ExtraOpts.push_back("--build-id"); #endif // The selection of paths to try here is designed to match the patterns which // the GCC driver itself uses, as this is part of the GCC-compatible driver. // This was determined by running GCC in a fake filesystem, creating all // possible permutations of these directories, and seeing which ones it added // to the link paths. path_list &Paths = getFilePaths(); const std::string OSLibDir = std::string(getOSLibDir(Triple, Args)); const std::string MultiarchTriple = getMultiarchTriple(D, Triple, SysRoot); // mips32: Debian multilib, we use /libo32, while in other case, /lib is // used. We need add both libo32 and /lib. if (Arch == llvm::Triple::mips || Arch == llvm::Triple::mipsel) { Generic_GCC::AddMultilibPaths(D, SysRoot, "libo32", MultiarchTriple, Paths); addPathIfExists(D, concat(SysRoot, "/libo32"), Paths); addPathIfExists(D, concat(SysRoot, "/usr/libo32"), Paths); } Generic_GCC::AddMultilibPaths(D, SysRoot, OSLibDir, MultiarchTriple, Paths); addPathIfExists(D, concat(SysRoot, "/lib", MultiarchTriple), Paths); addPathIfExists(D, concat(SysRoot, "/lib/..", OSLibDir), Paths); if (IsAndroid) { // Android sysroots contain a library directory for each supported OS // version as well as some unversioned libraries in the usual multiarch // directory. addPathIfExists( D, concat(SysRoot, "/usr/lib", MultiarchTriple, llvm::to_string(Triple.getEnvironmentVersion().getMajor())), Paths); } addPathIfExists(D, concat(SysRoot, "/usr/lib", MultiarchTriple), Paths); // 64-bit OpenEmbedded sysroots may not have a /usr/lib dir. So they cannot // find /usr/lib64 as it is referenced as /usr/lib/../lib64. So we handle // this here. if (Triple.getVendor() == llvm::Triple::OpenEmbedded && Triple.isArch64Bit()) addPathIfExists(D, concat(SysRoot, "/usr", OSLibDir), Paths); else addPathIfExists(D, concat(SysRoot, "/usr/lib/..", OSLibDir), Paths); if (IsRISCV) { StringRef ABIName = tools::riscv::getRISCVABI(Args, Triple); addPathIfExists(D, concat(SysRoot, "/", OSLibDir, ABIName), Paths); addPathIfExists(D, concat(SysRoot, "/usr", OSLibDir, ABIName), Paths); } Generic_GCC::AddMultiarchPaths(D, SysRoot, OSLibDir, Paths); addPathIfExists(D, concat(SysRoot, "/lib"), Paths); addPathIfExists(D, concat(SysRoot, "/usr/lib"), Paths); } ToolChain::RuntimeLibType Linux::GetDefaultRuntimeLibType() const { if (getTriple().isAndroid()) return ToolChain::RLT_CompilerRT; return Generic_ELF::GetDefaultRuntimeLibType(); } unsigned Linux::GetDefaultDwarfVersion() const { if (getTriple().isAndroid()) return 4; return ToolChain::GetDefaultDwarfVersion(); } ToolChain::CXXStdlibType Linux::GetDefaultCXXStdlibType() const { if (getTriple().isAndroid()) return ToolChain::CST_Libcxx; return ToolChain::CST_Libstdcxx; } bool Linux::HasNativeLLVMSupport() const { return true; } Tool *Linux::buildLinker() const { return new tools::gnutools::Linker(*this); } Tool *Linux::buildStaticLibTool() const { return new tools::gnutools::StaticLibTool(*this); } Tool *Linux::buildAssembler() const { return new tools::gnutools::Assembler(*this); } std::string Linux::computeSysRoot() const { if (!getDriver().SysRoot.empty()) return getDriver().SysRoot; if (getTriple().isAndroid()) { // Android toolchains typically include a sysroot at ../sysroot relative to // the clang binary. const StringRef ClangDir = getDriver().getInstalledDir(); std::string AndroidSysRootPath = (ClangDir + "/../sysroot").str(); if (getVFS().exists(AndroidSysRootPath)) return AndroidSysRootPath; } if (getTriple().isCSKY()) { // CSKY toolchains use different names for sysroot folder. if (!GCCInstallation.isValid()) return std::string(); // GCCInstallation.getInstallPath() = // $GCCToolchainPath/lib/gcc/csky-linux-gnuabiv2/6.3.0 // Path = $GCCToolchainPath/csky-linux-gnuabiv2/libc std::string Path = (GCCInstallation.getInstallPath() + "/../../../../" + GCCInstallation.getTriple().str() + "/libc") .str(); if (getVFS().exists(Path)) return Path; return std::string(); } if (!GCCInstallation.isValid() || !getTriple().isMIPS()) return std::string(); // Standalone MIPS toolchains use different names for sysroot folder // and put it into different places. Here we try to check some known // variants. const StringRef InstallDir = GCCInstallation.getInstallPath(); const StringRef TripleStr = GCCInstallation.getTriple().str(); const Multilib &Multilib = GCCInstallation.getMultilib(); std::string Path = (InstallDir + "/../../../../" + TripleStr + "/libc" + Multilib.osSuffix()) .str(); if (getVFS().exists(Path)) return Path; Path = (InstallDir + "/../../../../sysroot" + Multilib.osSuffix()).str(); if (getVFS().exists(Path)) return Path; return std::string(); } std::string Linux::getDynamicLinker(const ArgList &Args) const { const llvm::Triple::ArchType Arch = getArch(); const llvm::Triple &Triple = getTriple(); const Distro Distro(getDriver().getVFS(), Triple); if (Triple.isAndroid()) { if (getSanitizerArgs(Args).needsHwasanRt() && !Triple.isAndroidVersionLT(34) && Triple.isArch64Bit()) { // On Android 14 and newer, there is a special linker_hwasan64 that // allows to run HWASan binaries on non-HWASan system images. This // is also available on HWASan system images, so we can just always // use that instead. return "/system/bin/linker_hwasan64"; } return Triple.isArch64Bit() ? "/system/bin/linker64" : "/system/bin/linker"; } if (Triple.isMusl()) { std::string ArchName; bool IsArm = false; switch (Arch) { case llvm::Triple::arm: case llvm::Triple::thumb: ArchName = "arm"; IsArm = true; break; case llvm::Triple::armeb: case llvm::Triple::thumbeb: ArchName = "armeb"; IsArm = true; break; case llvm::Triple::x86: ArchName = "i386"; break; case llvm::Triple::x86_64: ArchName = Triple.isX32() ? "x32" : Triple.getArchName().str(); break; default: ArchName = Triple.getArchName().str(); } if (IsArm && (Triple.getEnvironment() == llvm::Triple::MuslEABIHF || tools::arm::getARMFloatABI(*this, Args) == tools::arm::FloatABI::Hard)) ArchName += "hf"; if (Arch == llvm::Triple::ppc && Triple.getSubArch() == llvm::Triple::PPCSubArch_spe) ArchName = "powerpc-sf"; return "/lib/ld-musl-" + ArchName + ".so.1"; } std::string LibDir; std::string Loader; switch (Arch) { default: llvm_unreachable("unsupported architecture"); case llvm::Triple::aarch64: LibDir = "lib"; Loader = "ld-linux-aarch64.so.1"; break; case llvm::Triple::aarch64_be: LibDir = "lib"; Loader = "ld-linux-aarch64_be.so.1"; break; case llvm::Triple::arm: case llvm::Triple::thumb: case llvm::Triple::armeb: case llvm::Triple::thumbeb: { const bool HF = Triple.getEnvironment() == llvm::Triple::GNUEABIHF || tools::arm::getARMFloatABI(*this, Args) == tools::arm::FloatABI::Hard; LibDir = "lib"; Loader = HF ? "ld-linux-armhf.so.3" : "ld-linux.so.3"; break; } case llvm::Triple::loongarch32: { LibDir = "lib32"; Loader = ("ld-linux-loongarch-" + tools::loongarch::getLoongArchABI(getDriver(), Args, Triple) + ".so.1") .str(); break; } case llvm::Triple::loongarch64: { LibDir = "lib64"; Loader = ("ld-linux-loongarch-" + tools::loongarch::getLoongArchABI(getDriver(), Args, Triple) + ".so.1") .str(); break; } case llvm::Triple::m68k: LibDir = "lib"; Loader = "ld.so.1"; break; case llvm::Triple::mips: case llvm::Triple::mipsel: case llvm::Triple::mips64: case llvm::Triple::mips64el: { bool IsNaN2008 = tools::mips::isNaN2008(getDriver(), Args, Triple); LibDir = "lib" + tools::mips::getMipsABILibSuffix(Args, Triple); if (tools::mips::isUCLibc(Args)) Loader = IsNaN2008 ? "ld-uClibc-mipsn8.so.0" : "ld-uClibc.so.0"; else if (!Triple.hasEnvironment() && Triple.getVendor() == llvm::Triple::VendorType::MipsTechnologies) Loader = Triple.isLittleEndian() ? "ld-musl-mipsel.so.1" : "ld-musl-mips.so.1"; else Loader = IsNaN2008 ? "ld-linux-mipsn8.so.1" : "ld.so.1"; break; } case llvm::Triple::ppc: LibDir = "lib"; Loader = "ld.so.1"; break; case llvm::Triple::ppcle: LibDir = "lib"; Loader = "ld.so.1"; break; case llvm::Triple::ppc64: LibDir = "lib64"; Loader = (tools::ppc::hasPPCAbiArg(Args, "elfv2")) ? "ld64.so.2" : "ld64.so.1"; break; case llvm::Triple::ppc64le: LibDir = "lib64"; Loader = (tools::ppc::hasPPCAbiArg(Args, "elfv1")) ? "ld64.so.1" : "ld64.so.2"; break; case llvm::Triple::riscv32: { StringRef ABIName = tools::riscv::getRISCVABI(Args, Triple); LibDir = "lib"; Loader = ("ld-linux-riscv32-" + ABIName + ".so.1").str(); break; } case llvm::Triple::riscv64: { StringRef ABIName = tools::riscv::getRISCVABI(Args, Triple); LibDir = "lib"; Loader = ("ld-linux-riscv64-" + ABIName + ".so.1").str(); break; } case llvm::Triple::sparc: case llvm::Triple::sparcel: LibDir = "lib"; Loader = "ld-linux.so.2"; break; case llvm::Triple::sparcv9: LibDir = "lib64"; Loader = "ld-linux.so.2"; break; case llvm::Triple::systemz: LibDir = "lib"; Loader = "ld64.so.1"; break; case llvm::Triple::x86: LibDir = "lib"; Loader = "ld-linux.so.2"; break; case llvm::Triple::x86_64: { bool X32 = Triple.isX32(); LibDir = X32 ? "libx32" : "lib64"; Loader = X32 ? "ld-linux-x32.so.2" : "ld-linux-x86-64.so.2"; break; } case llvm::Triple::ve: return "/opt/nec/ve/lib/ld-linux-ve.so.1"; case llvm::Triple::csky: { LibDir = "lib"; Loader = "ld.so.1"; break; } } if (Distro == Distro::Exherbo && (Triple.getVendor() == llvm::Triple::UnknownVendor || Triple.getVendor() == llvm::Triple::PC)) return "/usr/" + Triple.str() + "/lib/" + Loader; return "/" + LibDir + "/" + Loader; } void Linux::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { const Driver &D = getDriver(); std::string SysRoot = computeSysRoot(); if (DriverArgs.hasArg(clang::driver::options::OPT_nostdinc)) return; // Add 'include' in the resource directory, which is similar to // GCC_INCLUDE_DIR (private headers) in GCC. Note: the include directory // contains some files conflicting with system /usr/include. musl systems // prefer the /usr/include copies which are more relevant. SmallString<128> ResourceDirInclude(D.ResourceDir); llvm::sys::path::append(ResourceDirInclude, "include"); if (!DriverArgs.hasArg(options::OPT_nobuiltininc) && (!getTriple().isMusl() || DriverArgs.hasArg(options::OPT_nostdlibinc))) addSystemInclude(DriverArgs, CC1Args, ResourceDirInclude); if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; // LOCAL_INCLUDE_DIR addSystemInclude(DriverArgs, CC1Args, concat(SysRoot, "/usr/local/include")); // TOOL_INCLUDE_DIR AddMultilibIncludeArgs(DriverArgs, CC1Args); // Check for configure-time C include directories. StringRef CIncludeDirs(C_INCLUDE_DIRS); if (CIncludeDirs != "") { SmallVector dirs; CIncludeDirs.split(dirs, ":"); for (StringRef dir : dirs) { StringRef Prefix = llvm::sys::path::is_absolute(dir) ? "" : StringRef(SysRoot); addExternCSystemInclude(DriverArgs, CC1Args, Prefix + dir); } return; } // On systems using multiarch and Android, add /usr/include/$triple before // /usr/include. std::string MultiarchIncludeDir = getMultiarchTriple(D, getTriple(), SysRoot); if (!MultiarchIncludeDir.empty() && D.getVFS().exists(concat(SysRoot, "/usr/include", MultiarchIncludeDir))) addExternCSystemInclude( DriverArgs, CC1Args, concat(SysRoot, "/usr/include", MultiarchIncludeDir)); if (getTriple().getOS() == llvm::Triple::RTEMS) return; // Add an include of '/include' directly. This isn't provided by default by // system GCCs, but is often used with cross-compiling GCCs, and harmless to // add even when Clang is acting as-if it were a system compiler. addExternCSystemInclude(DriverArgs, CC1Args, concat(SysRoot, "/include")); addExternCSystemInclude(DriverArgs, CC1Args, concat(SysRoot, "/usr/include")); if (!DriverArgs.hasArg(options::OPT_nobuiltininc) && getTriple().isMusl()) addSystemInclude(DriverArgs, CC1Args, ResourceDirInclude); } void Linux::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { // We need a detected GCC installation on Linux to provide libstdc++'s // headers in odd Linuxish places. if (!GCCInstallation.isValid()) return; // Detect Debian g++-multiarch-incdir.diff. StringRef TripleStr = GCCInstallation.getTriple().str(); StringRef DebianMultiarch = GCCInstallation.getTriple().getArch() == llvm::Triple::x86 ? "i386-linux-gnu" : TripleStr; // Try generic GCC detection first. if (Generic_GCC::addGCCLibStdCxxIncludePaths(DriverArgs, CC1Args, DebianMultiarch)) return; StringRef LibDir = GCCInstallation.getParentLibPath(); const Multilib &Multilib = GCCInstallation.getMultilib(); const GCCVersion &Version = GCCInstallation.getVersion(); const std::string LibStdCXXIncludePathCandidates[] = { // Android standalone toolchain has C++ headers in yet another place. LibDir.str() + "/../" + TripleStr.str() + "/include/c++/" + Version.Text, // Freescale SDK C++ headers are directly in /usr/include/c++, // without a subdirectory corresponding to the gcc version. LibDir.str() + "/../include/c++", // Cray's gcc installation puts headers under "g++" without a // version suffix. LibDir.str() + "/../include/g++", }; for (const auto &IncludePath : LibStdCXXIncludePathCandidates) { if (addLibStdCXXIncludePaths(IncludePath, TripleStr, Multilib.includeSuffix(), DriverArgs, CC1Args)) break; } } void Linux::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { CudaInstallation->AddCudaIncludeArgs(DriverArgs, CC1Args); } void Linux::AddHIPIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { RocmInstallation->AddHIPIncludeArgs(DriverArgs, CC1Args); } void Linux::AddHIPRuntimeLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { CmdArgs.push_back( Args.MakeArgString(StringRef("-L") + RocmInstallation->getLibPath())); if (Args.hasFlag(options::OPT_frtlib_add_rpath, options::OPT_fno_rtlib_add_rpath, false)) CmdArgs.append( {"-rpath", Args.MakeArgString(RocmInstallation->getLibPath())}); CmdArgs.push_back("-lamdhip64"); } void Linux::AddIAMCUIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (GCCInstallation.isValid()) { CC1Args.push_back("-isystem"); CC1Args.push_back(DriverArgs.MakeArgString( GCCInstallation.getParentLibPath() + "/../" + GCCInstallation.getTriple().str() + "/include")); } } bool Linux::isPIEDefault(const llvm::opt::ArgList &Args) const { return CLANG_DEFAULT_PIE_ON_LINUX || getTriple().isAndroid() || getTriple().isMusl() || getSanitizerArgs(Args).requiresPIE(); } bool Linux::IsAArch64OutlineAtomicsDefault(const ArgList &Args) const { // Outline atomics for AArch64 are supported by compiler-rt // and libgcc since 9.3.1 assert(getTriple().isAArch64() && "expected AArch64 target!"); ToolChain::RuntimeLibType RtLib = GetRuntimeLibType(Args); if (RtLib == ToolChain::RLT_CompilerRT) return true; assert(RtLib == ToolChain::RLT_Libgcc && "unexpected runtime library type!"); if (GCCInstallation.getVersion().isOlderThan(9, 3, 1)) return false; return true; } bool Linux::IsMathErrnoDefault() const { if (getTriple().isAndroid() || getTriple().isMusl()) return false; return Generic_ELF::IsMathErrnoDefault(); } SanitizerMask Linux::getSupportedSanitizers() const { const bool IsX86 = getTriple().getArch() == llvm::Triple::x86; const bool IsX86_64 = getTriple().getArch() == llvm::Triple::x86_64; const bool IsMIPS = getTriple().isMIPS32(); const bool IsMIPS64 = getTriple().isMIPS64(); const bool IsPowerPC64 = getTriple().getArch() == llvm::Triple::ppc64 || getTriple().getArch() == llvm::Triple::ppc64le; const bool IsAArch64 = getTriple().getArch() == llvm::Triple::aarch64 || getTriple().getArch() == llvm::Triple::aarch64_be; const bool IsArmArch = getTriple().getArch() == llvm::Triple::arm || getTriple().getArch() == llvm::Triple::thumb || getTriple().getArch() == llvm::Triple::armeb || getTriple().getArch() == llvm::Triple::thumbeb; const bool IsLoongArch64 = getTriple().getArch() == llvm::Triple::loongarch64; const bool IsRISCV64 = getTriple().getArch() == llvm::Triple::riscv64; const bool IsSystemZ = getTriple().getArch() == llvm::Triple::systemz; const bool IsHexagon = getTriple().getArch() == llvm::Triple::hexagon; SanitizerMask Res = ToolChain::getSupportedSanitizers(); Res |= SanitizerKind::Address; Res |= SanitizerKind::PointerCompare; Res |= SanitizerKind::PointerSubtract; Res |= SanitizerKind::Fuzzer; Res |= SanitizerKind::FuzzerNoLink; Res |= SanitizerKind::KernelAddress; Res |= SanitizerKind::Memory; Res |= SanitizerKind::Vptr; Res |= SanitizerKind::SafeStack; if (IsX86_64 || IsMIPS64 || IsAArch64 || IsLoongArch64) Res |= SanitizerKind::DataFlow; if (IsX86_64 || IsMIPS64 || IsAArch64 || IsX86 || IsArmArch || IsPowerPC64 || IsRISCV64 || IsSystemZ || IsHexagon || IsLoongArch64) Res |= SanitizerKind::Leak; if (IsX86_64 || IsMIPS64 || IsAArch64 || IsPowerPC64 || IsSystemZ || IsLoongArch64 || IsRISCV64) Res |= SanitizerKind::Thread; if (IsX86_64 || IsSystemZ) Res |= SanitizerKind::KernelMemory; if (IsX86_64 || IsMIPS64 || IsAArch64 || IsX86 || IsMIPS || IsArmArch || IsPowerPC64 || IsHexagon || IsLoongArch64 || IsRISCV64) Res |= SanitizerKind::Scudo; if (IsX86_64 || IsAArch64 || IsRISCV64) { Res |= SanitizerKind::HWAddress; } if (IsX86_64 || IsAArch64) { Res |= SanitizerKind::KernelHWAddress; } // Work around "Cannot represent a difference across sections". if (getTriple().getArch() == llvm::Triple::ppc64) Res &= ~SanitizerKind::Function; return Res; } void Linux::addProfileRTLibs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const { // Add linker option -u__llvm_profile_runtime to cause runtime // initialization module to be linked in. if (needsProfileRT(Args)) CmdArgs.push_back(Args.MakeArgString( Twine("-u", llvm::getInstrProfRuntimeHookVarName()))); ToolChain::addProfileRTLibs(Args, CmdArgs); } llvm::DenormalMode Linux::getDefaultDenormalModeForType(const llvm::opt::ArgList &DriverArgs, const JobAction &JA, const llvm::fltSemantics *FPType) const { switch (getTriple().getArch()) { case llvm::Triple::x86: case llvm::Triple::x86_64: { std::string Unused; // DAZ and FTZ are turned on in crtfastmath.o if (!DriverArgs.hasArg(options::OPT_nostdlib, options::OPT_nostartfiles) && isFastMathRuntimeAvailable(DriverArgs, Unused)) return llvm::DenormalMode::getPreserveSign(); return llvm::DenormalMode::getIEEE(); } default: return llvm::DenormalMode::getIEEE(); } } void Linux::addExtraOpts(llvm::opt::ArgStringList &CmdArgs) const { for (const auto &Opt : ExtraOpts) CmdArgs.push_back(Opt.c_str()); } const char *Linux::getDefaultLinker() const { if (getTriple().isAndroid()) return "ld.lld"; return Generic_ELF::getDefaultLinker(); }