//===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Cuda.h" #include "CommonArgs.h" #include "clang/Basic/Cuda.h" #include "clang/Config/config.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/Distro.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/InputInfo.h" #include "clang/Driver/Options.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FormatAdapters.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/TargetParser/Host.h" #include "llvm/TargetParser/TargetParser.h" #include using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang::driver::tools; using namespace clang; using namespace llvm::opt; namespace { CudaVersion getCudaVersion(uint32_t raw_version) { if (raw_version < 7050) return CudaVersion::CUDA_70; if (raw_version < 8000) return CudaVersion::CUDA_75; if (raw_version < 9000) return CudaVersion::CUDA_80; if (raw_version < 9010) return CudaVersion::CUDA_90; if (raw_version < 9020) return CudaVersion::CUDA_91; if (raw_version < 10000) return CudaVersion::CUDA_92; if (raw_version < 10010) return CudaVersion::CUDA_100; if (raw_version < 10020) return CudaVersion::CUDA_101; if (raw_version < 11000) return CudaVersion::CUDA_102; if (raw_version < 11010) return CudaVersion::CUDA_110; if (raw_version < 11020) return CudaVersion::CUDA_111; if (raw_version < 11030) return CudaVersion::CUDA_112; if (raw_version < 11040) return CudaVersion::CUDA_113; if (raw_version < 11050) return CudaVersion::CUDA_114; if (raw_version < 11060) return CudaVersion::CUDA_115; if (raw_version < 11070) return CudaVersion::CUDA_116; if (raw_version < 11080) return CudaVersion::CUDA_117; if (raw_version < 11090) return CudaVersion::CUDA_118; if (raw_version < 12010) return CudaVersion::CUDA_120; if (raw_version < 12020) return CudaVersion::CUDA_121; if (raw_version < 12030) return CudaVersion::CUDA_122; if (raw_version < 12040) return CudaVersion::CUDA_123; return CudaVersion::NEW; } CudaVersion parseCudaHFile(llvm::StringRef Input) { // Helper lambda which skips the words if the line starts with them or returns // std::nullopt otherwise. auto StartsWithWords = [](llvm::StringRef Line, const SmallVector words) -> std::optional { for (StringRef word : words) { if (!Line.consume_front(word)) return {}; Line = Line.ltrim(); } return Line; }; Input = Input.ltrim(); while (!Input.empty()) { if (auto Line = StartsWithWords(Input.ltrim(), {"#", "define", "CUDA_VERSION"})) { uint32_t RawVersion; Line->consumeInteger(10, RawVersion); return getCudaVersion(RawVersion); } // Find next non-empty line. Input = Input.drop_front(Input.find_first_of("\n\r")).ltrim(); } return CudaVersion::UNKNOWN; } } // namespace void CudaInstallationDetector::WarnIfUnsupportedVersion() { if (Version > CudaVersion::PARTIALLY_SUPPORTED) { std::string VersionString = CudaVersionToString(Version); if (!VersionString.empty()) VersionString.insert(0, " "); D.Diag(diag::warn_drv_new_cuda_version) << VersionString << (CudaVersion::PARTIALLY_SUPPORTED != CudaVersion::FULLY_SUPPORTED) << CudaVersionToString(CudaVersion::PARTIALLY_SUPPORTED); } else if (Version > CudaVersion::FULLY_SUPPORTED) D.Diag(diag::warn_drv_partially_supported_cuda_version) << CudaVersionToString(Version); } CudaInstallationDetector::CudaInstallationDetector( const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args) : D(D) { struct Candidate { std::string Path; bool StrictChecking; Candidate(std::string Path, bool StrictChecking = false) : Path(Path), StrictChecking(StrictChecking) {} }; SmallVector Candidates; // In decreasing order so we prefer newer versions to older versions. std::initializer_list Versions = {"8.0", "7.5", "7.0"}; auto &FS = D.getVFS(); if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { Candidates.emplace_back( Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str()); } else if (HostTriple.isOSWindows()) { for (const char *Ver : Versions) Candidates.emplace_back( D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + Ver); } else { if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) { // Try to find ptxas binary. If the executable is located in a directory // called 'bin/', its parent directory might be a good guess for a valid // CUDA installation. // However, some distributions might installs 'ptxas' to /usr/bin. In that // case the candidate would be '/usr' which passes the following checks // because '/usr/include' exists as well. To avoid this case, we always // check for the directory potentially containing files for libdevice, // even if the user passes -nocudalib. if (llvm::ErrorOr ptxas = llvm::sys::findProgramByName("ptxas")) { SmallString<256> ptxasAbsolutePath; llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath); StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath); if (llvm::sys::path::filename(ptxasDir) == "bin") Candidates.emplace_back( std::string(llvm::sys::path::parent_path(ptxasDir)), /*StrictChecking=*/true); } } Candidates.emplace_back(D.SysRoot + "/usr/local/cuda"); for (const char *Ver : Versions) Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver); Distro Dist(FS, llvm::Triple(llvm::sys::getProcessTriple())); if (Dist.IsDebian() || Dist.IsUbuntu()) // Special case for Debian to have nvidia-cuda-toolkit work // out of the box. More info on http://bugs.debian.org/882505 Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda"); } bool NoCudaLib = Args.hasArg(options::OPT_nogpulib); for (const auto &Candidate : Candidates) { InstallPath = Candidate.Path; if (InstallPath.empty() || !FS.exists(InstallPath)) continue; BinPath = InstallPath + "/bin"; IncludePath = InstallPath + "/include"; LibDevicePath = InstallPath + "/nvvm/libdevice"; if (!(FS.exists(IncludePath) && FS.exists(BinPath))) continue; bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking); if (CheckLibDevice && !FS.exists(LibDevicePath)) continue; Version = CudaVersion::UNKNOWN; if (auto CudaHFile = FS.getBufferForFile(InstallPath + "/include/cuda.h")) Version = parseCudaHFile((*CudaHFile)->getBuffer()); // As the last resort, make an educated guess between CUDA-7.0, which had // old-style libdevice bitcode, and an unknown recent CUDA version. if (Version == CudaVersion::UNKNOWN) { Version = FS.exists(LibDevicePath + "/libdevice.10.bc") ? CudaVersion::NEW : CudaVersion::CUDA_70; } if (Version >= CudaVersion::CUDA_90) { // CUDA-9+ uses single libdevice file for all GPU variants. std::string FilePath = LibDevicePath + "/libdevice.10.bc"; if (FS.exists(FilePath)) { for (int Arch = (int)CudaArch::SM_30, E = (int)CudaArch::LAST; Arch < E; ++Arch) { CudaArch GpuArch = static_cast(Arch); if (!IsNVIDIAGpuArch(GpuArch)) continue; std::string GpuArchName(CudaArchToString(GpuArch)); LibDeviceMap[GpuArchName] = FilePath; } } } else { std::error_code EC; for (llvm::vfs::directory_iterator LI = FS.dir_begin(LibDevicePath, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef FilePath = LI->path(); StringRef FileName = llvm::sys::path::filename(FilePath); // Process all bitcode filenames that look like // libdevice.compute_XX.YY.bc const StringRef LibDeviceName = "libdevice."; if (!(FileName.starts_with(LibDeviceName) && FileName.ends_with(".bc"))) continue; StringRef GpuArch = FileName.slice( LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); LibDeviceMap[GpuArch] = FilePath.str(); // Insert map entries for specific devices with this compute // capability. NVCC's choice of the libdevice library version is // rather peculiar and depends on the CUDA version. if (GpuArch == "compute_20") { LibDeviceMap["sm_20"] = std::string(FilePath); LibDeviceMap["sm_21"] = std::string(FilePath); LibDeviceMap["sm_32"] = std::string(FilePath); } else if (GpuArch == "compute_30") { LibDeviceMap["sm_30"] = std::string(FilePath); if (Version < CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = std::string(FilePath); LibDeviceMap["sm_52"] = std::string(FilePath); LibDeviceMap["sm_53"] = std::string(FilePath); } LibDeviceMap["sm_60"] = std::string(FilePath); LibDeviceMap["sm_61"] = std::string(FilePath); LibDeviceMap["sm_62"] = std::string(FilePath); } else if (GpuArch == "compute_35") { LibDeviceMap["sm_35"] = std::string(FilePath); LibDeviceMap["sm_37"] = std::string(FilePath); } else if (GpuArch == "compute_50") { if (Version >= CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = std::string(FilePath); LibDeviceMap["sm_52"] = std::string(FilePath); LibDeviceMap["sm_53"] = std::string(FilePath); } } } } // Check that we have found at least one libdevice that we can link in if // -nocudalib hasn't been specified. if (LibDeviceMap.empty() && !NoCudaLib) continue; IsValid = true; break; } } void CudaInstallationDetector::AddCudaIncludeArgs( const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { // Add cuda_wrappers/* to our system include path. This lets us wrap // standard library headers. SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); llvm::sys::path::append(P, "cuda_wrappers"); CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(P)); } if (DriverArgs.hasArg(options::OPT_nogpuinc)) return; if (!isValid()) { D.Diag(diag::err_drv_no_cuda_installation); return; } CC1Args.push_back("-include"); CC1Args.push_back("__clang_cuda_runtime_wrapper.h"); } void CudaInstallationDetector::CheckCudaVersionSupportsArch( CudaArch Arch) const { if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN || ArchsWithBadVersion[(int)Arch]) return; auto MinVersion = MinVersionForCudaArch(Arch); auto MaxVersion = MaxVersionForCudaArch(Arch); if (Version < MinVersion || Version > MaxVersion) { ArchsWithBadVersion[(int)Arch] = true; D.Diag(diag::err_drv_cuda_version_unsupported) << CudaArchToString(Arch) << CudaVersionToString(MinVersion) << CudaVersionToString(MaxVersion) << InstallPath << CudaVersionToString(Version); } } void CudaInstallationDetector::print(raw_ostream &OS) const { if (isValid()) OS << "Found CUDA installation: " << InstallPath << ", version " << CudaVersionToString(Version) << "\n"; } namespace { /// Debug info level for the NVPTX devices. We may need to emit different debug /// info level for the host and for the device itselfi. This type controls /// emission of the debug info for the devices. It either prohibits disable info /// emission completely, or emits debug directives only, or emits same debug /// info as for the host. enum DeviceDebugInfoLevel { DisableDebugInfo, /// Do not emit debug info for the devices. DebugDirectivesOnly, /// Emit only debug directives. EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the /// host. }; } // anonymous namespace /// Define debug info level for the NVPTX devices. If the debug info for both /// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If /// only debug directives are requested for the both host and device /// (-gline-directvies-only), or the debug info only for the device is disabled /// (optimization is on and --cuda-noopt-device-debug was not specified), the /// debug directves only must be emitted for the device. Otherwise, use the same /// debug info level just like for the host (with the limitations of only /// supported DWARF2 standard). static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) { const Arg *A = Args.getLastArg(options::OPT_O_Group); bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0) || Args.hasFlag(options::OPT_cuda_noopt_device_debug, options::OPT_no_cuda_noopt_device_debug, /*Default=*/false); if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) { const Option &Opt = A->getOption(); if (Opt.matches(options::OPT_gN_Group)) { if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0)) return DisableDebugInfo; if (Opt.matches(options::OPT_gline_directives_only)) return DebugDirectivesOnly; } return IsDebugEnabled ? EmitSameDebugInfoAsHost : DebugDirectivesOnly; } return willEmitRemarks(Args) ? DebugDirectivesOnly : DisableDebugInfo; } void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); assert(TC.getTriple().isNVPTX() && "Wrong platform"); StringRef GPUArchName; // If this is a CUDA action we need to extract the device architecture // from the Job's associated architecture, otherwise use the -march=arch // option. This option may come from -Xopenmp-target flag or the default // value. if (JA.isDeviceOffloading(Action::OFK_Cuda)) { GPUArchName = JA.getOffloadingArch(); } else { GPUArchName = Args.getLastArgValue(options::OPT_march_EQ); assert(!GPUArchName.empty() && "Must have an architecture passed in."); } // Obtain architecture from the action. CudaArch gpu_arch = StringToCudaArch(GPUArchName); assert(gpu_arch != CudaArch::UNKNOWN && "Device action expected to have an architecture."); // Check that our installation's ptxas supports gpu_arch. if (!Args.hasArg(options::OPT_no_cuda_version_check)) { TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch); } ArgStringList CmdArgs; CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32"); DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args); if (DIKind == EmitSameDebugInfoAsHost) { // ptxas does not accept -g option if optimization is enabled, so // we ignore the compiler's -O* options if we want debug info. CmdArgs.push_back("-g"); CmdArgs.push_back("--dont-merge-basicblocks"); CmdArgs.push_back("--return-at-end"); } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) { // Map the -O we received to -O{0,1,2,3}. // // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's // default, so it may correspond more closely to the spirit of clang -O2. // -O3 seems like the least-bad option when -Osomething is specified to // clang but it isn't handled below. StringRef OOpt = "3"; if (A->getOption().matches(options::OPT_O4) || A->getOption().matches(options::OPT_Ofast)) OOpt = "3"; else if (A->getOption().matches(options::OPT_O0)) OOpt = "0"; else if (A->getOption().matches(options::OPT_O)) { // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options. OOpt = llvm::StringSwitch(A->getValue()) .Case("1", "1") .Case("2", "2") .Case("3", "3") .Case("s", "2") .Case("z", "2") .Default("2"); } CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt)); } else { // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond // to no optimizations, but ptxas's default is -O3. CmdArgs.push_back("-O0"); } if (DIKind == DebugDirectivesOnly) CmdArgs.push_back("-lineinfo"); // Pass -v to ptxas if it was passed to the driver. if (Args.hasArg(options::OPT_v)) CmdArgs.push_back("-v"); CmdArgs.push_back("--gpu-name"); CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch))); CmdArgs.push_back("--output-file"); std::string OutputFileName = TC.getInputFilename(Output); // If we are invoking `nvlink` internally we need to output a `.cubin` file. // FIXME: This should hopefully be removed if NVIDIA updates their tooling. if (!C.getInputArgs().getLastArg(options::OPT_c)) { SmallString<256> Filename(Output.getFilename()); llvm::sys::path::replace_extension(Filename, "cubin"); OutputFileName = Filename.str(); } if (Output.isFilename() && OutputFileName != Output.getFilename()) C.addTempFile(Args.MakeArgString(OutputFileName)); CmdArgs.push_back(Args.MakeArgString(OutputFileName)); for (const auto &II : Inputs) CmdArgs.push_back(Args.MakeArgString(II.getFilename())); for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_ptxas)) CmdArgs.push_back(Args.MakeArgString(A)); bool Relocatable; if (JA.isOffloading(Action::OFK_OpenMP)) // In OpenMP we need to generate relocatable code. Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target, options::OPT_fnoopenmp_relocatable_target, /*Default=*/true); else if (JA.isOffloading(Action::OFK_Cuda)) // In CUDA we generate relocatable code by default. Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, /*Default=*/false); else // Otherwise, we are compiling directly and should create linkable output. Relocatable = true; if (Relocatable) CmdArgs.push_back("-c"); const char *Exec; if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ)) Exec = A->getValue(); else Exec = Args.MakeArgString(TC.GetProgramPath("ptxas")); C.addCommand(std::make_unique( JA, *this, ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, "--options-file"}, Exec, CmdArgs, Inputs, Output)); } static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) { bool includePTX = true; for (Arg *A : Args) { if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) || A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ))) continue; A->claim(); const StringRef ArchStr = A->getValue(); if (ArchStr == "all" || ArchStr == gpu_arch) { includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ); continue; } } return includePTX; } // All inputs to this linker must be from CudaDeviceActions, as we need to look // at the Inputs' Actions in order to figure out which GPU architecture they // correspond to. void NVPTX::FatBinary::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); assert(TC.getTriple().isNVPTX() && "Wrong platform"); ArgStringList CmdArgs; if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100) CmdArgs.push_back("--cuda"); CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32"); CmdArgs.push_back(Args.MakeArgString("--create")); CmdArgs.push_back(Args.MakeArgString(Output.getFilename())); if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) CmdArgs.push_back("-g"); for (const auto &II : Inputs) { auto *A = II.getAction(); assert(A->getInputs().size() == 1 && "Device offload action is expected to have a single input"); const char *gpu_arch_str = A->getOffloadingArch(); assert(gpu_arch_str && "Device action expected to have associated a GPU architecture!"); CudaArch gpu_arch = StringToCudaArch(gpu_arch_str); if (II.getType() == types::TY_PP_Asm && !shouldIncludePTX(Args, gpu_arch_str)) continue; // We need to pass an Arch of the form "sm_XX" for cubin files and // "compute_XX" for ptx. const char *Arch = (II.getType() == types::TY_PP_Asm) ? CudaArchToVirtualArchString(gpu_arch) : gpu_arch_str; CmdArgs.push_back( Args.MakeArgString(llvm::Twine("--image=profile=") + Arch + ",file=" + getToolChain().getInputFilename(II))); } for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary)) CmdArgs.push_back(Args.MakeArgString(A)); const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary")); C.addCommand(std::make_unique( JA, *this, ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, "--options-file"}, Exec, CmdArgs, Inputs, Output)); } void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); ArgStringList CmdArgs; assert(TC.getTriple().isNVPTX() && "Wrong platform"); assert((Output.isFilename() || Output.isNothing()) && "Invalid output."); if (Output.isFilename()) { CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); } if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) CmdArgs.push_back("-g"); if (Args.hasArg(options::OPT_v)) CmdArgs.push_back("-v"); StringRef GPUArch = Args.getLastArgValue(options::OPT_march_EQ); assert(!GPUArch.empty() && "At least one GPU Arch required for nvlink."); CmdArgs.push_back("-arch"); CmdArgs.push_back(Args.MakeArgString(GPUArch)); // Add paths specified in LIBRARY_PATH environment variable as -L options. addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH"); // Add paths for the default clang library path. SmallString<256> DefaultLibPath = llvm::sys::path::parent_path(TC.getDriver().Dir); llvm::sys::path::append(DefaultLibPath, CLANG_INSTALL_LIBDIR_BASENAME); CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath)); for (const auto &II : Inputs) { if (II.getType() == types::TY_LLVM_IR || II.getType() == types::TY_LTO_IR || II.getType() == types::TY_LTO_BC || II.getType() == types::TY_LLVM_BC) { C.getDriver().Diag(diag::err_drv_no_linker_llvm_support) << getToolChain().getTripleString(); continue; } // Currently, we only pass the input files to the linker, we do not pass // any libraries that may be valid only for the host. if (!II.isFilename()) continue; // The 'nvlink' application performs RDC-mode linking when given a '.o' // file and device linking when given a '.cubin' file. We always want to // perform device linking, so just rename any '.o' files. // FIXME: This should hopefully be removed if NVIDIA updates their tooling. auto InputFile = getToolChain().getInputFilename(II); if (llvm::sys::path::extension(InputFile) != ".cubin") { // If there are no actions above this one then this is direct input and we // can copy it. Otherwise the input is internal so a `.cubin` file should // exist. if (II.getAction() && II.getAction()->getInputs().size() == 0) { const char *CubinF = Args.MakeArgString(getToolChain().getDriver().GetTemporaryPath( llvm::sys::path::stem(InputFile), "cubin")); if (llvm::sys::fs::copy_file(InputFile, C.addTempFile(CubinF))) continue; CmdArgs.push_back(CubinF); } else { SmallString<256> Filename(InputFile); llvm::sys::path::replace_extension(Filename, "cubin"); CmdArgs.push_back(Args.MakeArgString(Filename)); } } else { CmdArgs.push_back(Args.MakeArgString(InputFile)); } } C.addCommand(std::make_unique( JA, *this, ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, "--options-file"}, Args.MakeArgString(getToolChain().GetProgramPath("nvlink")), CmdArgs, Inputs, Output)); } void NVPTX::getNVPTXTargetFeatures(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args, std::vector &Features) { if (Args.hasArg(options::OPT_cuda_feature_EQ)) { StringRef PtxFeature = Args.getLastArgValue(options::OPT_cuda_feature_EQ, "+ptx42"); Features.push_back(Args.MakeArgString(PtxFeature)); return; } CudaInstallationDetector CudaInstallation(D, Triple, Args); // New CUDA versions often introduce new instructions that are only supported // by new PTX version, so we need to raise PTX level to enable them in NVPTX // back-end. const char *PtxFeature = nullptr; switch (CudaInstallation.version()) { #define CASE_CUDA_VERSION(CUDA_VER, PTX_VER) \ case CudaVersion::CUDA_##CUDA_VER: \ PtxFeature = "+ptx" #PTX_VER; \ break; CASE_CUDA_VERSION(123, 83); CASE_CUDA_VERSION(122, 82); CASE_CUDA_VERSION(121, 81); CASE_CUDA_VERSION(120, 80); CASE_CUDA_VERSION(118, 78); CASE_CUDA_VERSION(117, 77); CASE_CUDA_VERSION(116, 76); CASE_CUDA_VERSION(115, 75); CASE_CUDA_VERSION(114, 74); CASE_CUDA_VERSION(113, 73); CASE_CUDA_VERSION(112, 72); CASE_CUDA_VERSION(111, 71); CASE_CUDA_VERSION(110, 70); CASE_CUDA_VERSION(102, 65); CASE_CUDA_VERSION(101, 64); CASE_CUDA_VERSION(100, 63); CASE_CUDA_VERSION(92, 61); CASE_CUDA_VERSION(91, 61); CASE_CUDA_VERSION(90, 60); #undef CASE_CUDA_VERSION default: PtxFeature = "+ptx42"; } Features.push_back(PtxFeature); } /// NVPTX toolchain. Our assembler is ptxas, and our linker is nvlink. This /// operates as a stand-alone version of the NVPTX tools without the host /// toolchain. NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::Triple &HostTriple, const ArgList &Args, bool Freestanding = false) : ToolChain(D, Triple, Args), CudaInstallation(D, HostTriple, Args), Freestanding(Freestanding) { if (CudaInstallation.isValid()) getProgramPaths().push_back(std::string(CudaInstallation.getBinPath())); // Lookup binaries into the driver directory, this is used to // discover the 'nvptx-arch' executable. getProgramPaths().push_back(getDriver().Dir); } /// We only need the host triple to locate the CUDA binary utilities, use the /// system's default triple if not provided. NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : NVPTXToolChain(D, Triple, llvm::Triple(LLVM_HOST_TRIPLE), Args, /*Freestanding=*/true) {} llvm::opt::DerivedArgList * NVPTXToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { DerivedArgList *DAL = ToolChain::TranslateArgs(Args, BoundArch, DeviceOffloadKind); if (!DAL) DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); for (Arg *A : Args) if (!llvm::is_contained(*DAL, A)) DAL->append(A); if (!DAL->hasArg(options::OPT_march_EQ)) DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), CudaArchToString(CudaArch::CudaDefault)); return DAL; } void NVPTXToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { // If we are compiling with a standalone NVPTX toolchain we want to try to // mimic a standard environment as much as possible. So we enable lowering // ctor / dtor functions to global symbols that can be registered. if (Freestanding) CC1Args.append({"-mllvm", "--nvptx-lower-global-ctor-dtor"}); } bool NVPTXToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const { const Option &O = A->getOption(); return (O.matches(options::OPT_gN_Group) && !O.matches(options::OPT_gmodules)) || O.matches(options::OPT_g_Flag) || O.matches(options::OPT_ggdbN_Group) || O.matches(options::OPT_ggdb) || O.matches(options::OPT_gdwarf) || O.matches(options::OPT_gdwarf_2) || O.matches(options::OPT_gdwarf_3) || O.matches(options::OPT_gdwarf_4) || O.matches(options::OPT_gdwarf_5) || O.matches(options::OPT_gcolumn_info); } void NVPTXToolChain::adjustDebugInfoKind( llvm::codegenoptions::DebugInfoKind &DebugInfoKind, const ArgList &Args) const { switch (mustEmitDebugInfo(Args)) { case DisableDebugInfo: DebugInfoKind = llvm::codegenoptions::NoDebugInfo; break; case DebugDirectivesOnly: DebugInfoKind = llvm::codegenoptions::DebugDirectivesOnly; break; case EmitSameDebugInfoAsHost: // Use same debug info level as the host. break; } } /// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary, /// which isn't properly a linker but nonetheless performs the step of stitching /// together object files from the assembler into a single blob. CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple, const ToolChain &HostTC, const ArgList &Args) : NVPTXToolChain(D, Triple, HostTC.getTriple(), Args), HostTC(HostTC) {} void CudaToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!GpuArch.empty() && "Must have an explicit GPU arch."); assert((DeviceOffloadingKind == Action::OFK_OpenMP || DeviceOffloadingKind == Action::OFK_Cuda) && "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs."); if (DeviceOffloadingKind == Action::OFK_Cuda) { CC1Args.append( {"-fcuda-is-device", "-mllvm", "-enable-memcpyopt-without-libcalls"}); // Unsized function arguments used for variadics were introduced in CUDA-9.0 // We still do not support generating code that actually uses variadic // arguments yet, but we do need to allow parsing them as recent CUDA // headers rely on that. https://github.com/llvm/llvm-project/issues/58410 if (CudaInstallation.version() >= CudaVersion::CUDA_90) CC1Args.push_back("-fcuda-allow-variadic-functions"); } if (DriverArgs.hasArg(options::OPT_nogpulib)) return; if (DeviceOffloadingKind == Action::OFK_OpenMP && DriverArgs.hasArg(options::OPT_S)) return; std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); if (LibDeviceFile.empty()) { getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; return; } CC1Args.push_back("-mlink-builtin-bitcode"); CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); clang::CudaVersion CudaInstallationVersion = CudaInstallation.version(); if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr, options::OPT_fno_cuda_short_ptr, false)) CC1Args.append({"-mllvm", "--nvptx-short-ptr"}); if (CudaInstallationVersion >= CudaVersion::UNKNOWN) CC1Args.push_back( DriverArgs.MakeArgString(Twine("-target-sdk-version=") + CudaVersionToString(CudaInstallationVersion))); if (DeviceOffloadingKind == Action::OFK_OpenMP) { if (CudaInstallationVersion < CudaVersion::CUDA_92) { getDriver().Diag( diag::err_drv_omp_offload_target_cuda_version_not_support) << CudaVersionToString(CudaInstallationVersion); return; } // Link the bitcode library late if we're using device LTO. if (getDriver().isUsingLTO(/* IsOffload */ true)) return; addOpenMPDeviceRTL(getDriver(), DriverArgs, CC1Args, GpuArch.str(), getTriple()); } } llvm::DenormalMode CudaToolChain::getDefaultDenormalModeForType( const llvm::opt::ArgList &DriverArgs, const JobAction &JA, const llvm::fltSemantics *FPType) const { if (JA.getOffloadingDeviceKind() == Action::OFK_Cuda) { if (FPType && FPType == &llvm::APFloat::IEEEsingle() && DriverArgs.hasFlag(options::OPT_fgpu_flush_denormals_to_zero, options::OPT_fno_gpu_flush_denormals_to_zero, false)) return llvm::DenormalMode::getPreserveSign(); } assert(JA.getOffloadingDeviceKind() != Action::OFK_Host); return llvm::DenormalMode::getIEEE(); } void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { // Check our CUDA version if we're going to include the CUDA headers. if (!DriverArgs.hasArg(options::OPT_nogpuinc) && !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) { StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!Arch.empty() && "Must have an explicit GPU arch."); CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch)); } CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); } std::string CudaToolChain::getInputFilename(const InputInfo &Input) const { // Only object files are changed, for example assembly files keep their .s // extensions. If the user requested device-only compilation don't change it. if (Input.getType() != types::TY_Object || getDriver().offloadDeviceOnly()) return ToolChain::getInputFilename(Input); // Replace extension for object files with cubin because nvlink relies on // these particular file names. SmallString<256> Filename(ToolChain::getInputFilename(Input)); llvm::sys::path::replace_extension(Filename, "cubin"); return std::string(Filename); } llvm::opt::DerivedArgList * CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { DerivedArgList *DAL = HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); if (!DAL) DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // For OpenMP device offloading, append derived arguments. Make sure // flags are not duplicated. // Also append the compute capability. if (DeviceOffloadKind == Action::OFK_OpenMP) { for (Arg *A : Args) if (!llvm::is_contained(*DAL, A)) DAL->append(A); if (!DAL->hasArg(options::OPT_march_EQ)) { StringRef Arch = BoundArch; if (Arch.empty()) { auto ArchsOrErr = getSystemGPUArchs(Args); if (!ArchsOrErr) { std::string ErrMsg = llvm::formatv("{0}", llvm::fmt_consume(ArchsOrErr.takeError())); getDriver().Diag(diag::err_drv_undetermined_gpu_arch) << llvm::Triple::getArchTypeName(getArch()) << ErrMsg << "-march"; Arch = CudaArchToString(CudaArch::CudaDefault); } else { Arch = Args.MakeArgString(ArchsOrErr->front()); } } DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), Arch); } return DAL; } for (Arg *A : Args) { DAL->append(A); } if (!BoundArch.empty()) { DAL->eraseArg(options::OPT_march_EQ); DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch); } return DAL; } Expected> CudaToolChain::getSystemGPUArchs(const ArgList &Args) const { // Detect NVIDIA GPUs availible on the system. std::string Program; if (Arg *A = Args.getLastArg(options::OPT_nvptx_arch_tool_EQ)) Program = A->getValue(); else Program = GetProgramPath("nvptx-arch"); auto StdoutOrErr = executeToolChainProgram(Program); if (!StdoutOrErr) return StdoutOrErr.takeError(); SmallVector GPUArchs; for (StringRef Arch : llvm::split((*StdoutOrErr)->getBuffer(), "\n")) if (!Arch.empty()) GPUArchs.push_back(Arch.str()); if (GPUArchs.empty()) return llvm::createStringError(std::error_code(), "No NVIDIA GPU detected in the system"); return std::move(GPUArchs); } Tool *NVPTXToolChain::buildAssembler() const { return new tools::NVPTX::Assembler(*this); } Tool *NVPTXToolChain::buildLinker() const { return new tools::NVPTX::Linker(*this); } Tool *CudaToolChain::buildAssembler() const { return new tools::NVPTX::Assembler(*this); } Tool *CudaToolChain::buildLinker() const { return new tools::NVPTX::FatBinary(*this); } void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { HostTC.addClangWarningOptions(CC1Args); } ToolChain::CXXStdlibType CudaToolChain::GetCXXStdlibType(const ArgList &Args) const { return HostTC.GetCXXStdlibType(Args); } void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args); if (!DriverArgs.hasArg(options::OPT_nogpuinc) && CudaInstallation.isValid()) CC1Args.append( {"-internal-isystem", DriverArgs.MakeArgString(CudaInstallation.getIncludePath())}); } void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args); } void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddIAMCUIncludeArgs(Args, CC1Args); } SanitizerMask CudaToolChain::getSupportedSanitizers() const { // The CudaToolChain only supports sanitizers in the sense that it allows // sanitizer arguments on the command line if they are supported by the host // toolchain. The CudaToolChain will actually ignore any command line // arguments for any of these "supported" sanitizers. That means that no // sanitization of device code is actually supported at this time. // // This behavior is necessary because the host and device toolchains // invocations often share the command line, so the device toolchain must // tolerate flags meant only for the host toolchain. return HostTC.getSupportedSanitizers(); } VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D, const ArgList &Args) const { return HostTC.computeMSVCVersion(D, Args); }