//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This provides Objective-C code generation targeting the GNU runtime. The // class in this file generates structures used by the GNU Objective-C runtime // library. These structures are defined in objc/objc.h and objc/objc-api.h in // the GNU runtime distribution. // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGObjCRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CodeGenTypes.h" #include "SanitizerMetadata.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtObjC.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ConvertUTF.h" #include using namespace clang; using namespace CodeGen; namespace { /// Class that lazily initialises the runtime function. Avoids inserting the /// types and the function declaration into a module if they're not used, and /// avoids constructing the type more than once if it's used more than once. class LazyRuntimeFunction { CodeGenModule *CGM = nullptr; llvm::FunctionType *FTy = nullptr; const char *FunctionName = nullptr; llvm::FunctionCallee Function = nullptr; public: LazyRuntimeFunction() = default; /// Initialises the lazy function with the name, return type, and the types /// of the arguments. template void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, Tys *... Types) { CGM = Mod; FunctionName = name; Function = nullptr; if(sizeof...(Tys)) { SmallVector ArgTys({Types...}); FTy = llvm::FunctionType::get(RetTy, ArgTys, false); } else { FTy = llvm::FunctionType::get(RetTy, std::nullopt, false); } } llvm::FunctionType *getType() { return FTy; } /// Overloaded cast operator, allows the class to be implicitly cast to an /// LLVM constant. operator llvm::FunctionCallee() { if (!Function) { if (!FunctionName) return nullptr; Function = CGM->CreateRuntimeFunction(FTy, FunctionName); } return Function; } }; /// GNU Objective-C runtime code generation. This class implements the parts of /// Objective-C support that are specific to the GNU family of runtimes (GCC, /// GNUstep and ObjFW). class CGObjCGNU : public CGObjCRuntime { protected: /// The LLVM module into which output is inserted llvm::Module &TheModule; /// strut objc_super. Used for sending messages to super. This structure /// contains the receiver (object) and the expected class. llvm::StructType *ObjCSuperTy; /// struct objc_super*. The type of the argument to the superclass message /// lookup functions. llvm::PointerType *PtrToObjCSuperTy; /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring /// SEL is included in a header somewhere, in which case it will be whatever /// type is declared in that header, most likely {i8*, i8*}. llvm::PointerType *SelectorTy; /// Element type of SelectorTy. llvm::Type *SelectorElemTy; /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the /// places where it's used llvm::IntegerType *Int8Ty; /// Pointer to i8 - LLVM type of char*, for all of the places where the /// runtime needs to deal with C strings. llvm::PointerType *PtrToInt8Ty; /// struct objc_protocol type llvm::StructType *ProtocolTy; /// Protocol * type. llvm::PointerType *ProtocolPtrTy; /// Instance Method Pointer type. This is a pointer to a function that takes, /// at a minimum, an object and a selector, and is the generic type for /// Objective-C methods. Due to differences between variadic / non-variadic /// calling conventions, it must always be cast to the correct type before /// actually being used. llvm::PointerType *IMPTy; /// Type of an untyped Objective-C object. Clang treats id as a built-in type /// when compiling Objective-C code, so this may be an opaque pointer (i8*), /// but if the runtime header declaring it is included then it may be a /// pointer to a structure. llvm::PointerType *IdTy; /// Element type of IdTy. llvm::Type *IdElemTy; /// Pointer to a pointer to an Objective-C object. Used in the new ABI /// message lookup function and some GC-related functions. llvm::PointerType *PtrToIdTy; /// The clang type of id. Used when using the clang CGCall infrastructure to /// call Objective-C methods. CanQualType ASTIdTy; /// LLVM type for C int type. llvm::IntegerType *IntTy; /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is /// used in the code to document the difference between i8* meaning a pointer /// to a C string and i8* meaning a pointer to some opaque type. llvm::PointerType *PtrTy; /// LLVM type for C long type. The runtime uses this in a lot of places where /// it should be using intptr_t, but we can't fix this without breaking /// compatibility with GCC... llvm::IntegerType *LongTy; /// LLVM type for C size_t. Used in various runtime data structures. llvm::IntegerType *SizeTy; /// LLVM type for C intptr_t. llvm::IntegerType *IntPtrTy; /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. llvm::IntegerType *PtrDiffTy; /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance /// variables. llvm::PointerType *PtrToIntTy; /// LLVM type for Objective-C BOOL type. llvm::Type *BoolTy; /// 32-bit integer type, to save us needing to look it up every time it's used. llvm::IntegerType *Int32Ty; /// 64-bit integer type, to save us needing to look it up every time it's used. llvm::IntegerType *Int64Ty; /// The type of struct objc_property. llvm::StructType *PropertyMetadataTy; /// Metadata kind used to tie method lookups to message sends. The GNUstep /// runtime provides some LLVM passes that can use this to do things like /// automatic IMP caching and speculative inlining. unsigned msgSendMDKind; /// Does the current target use SEH-based exceptions? False implies /// Itanium-style DWARF unwinding. bool usesSEHExceptions; /// Does the current target uses C++-based exceptions? bool usesCxxExceptions; /// Helper to check if we are targeting a specific runtime version or later. bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; return (R.getKind() == kind) && (R.getVersion() >= VersionTuple(major, minor)); } std::string ManglePublicSymbol(StringRef Name) { return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); } std::string SymbolForProtocol(Twine Name) { return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); } std::string SymbolForProtocolRef(StringRef Name) { return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); } /// Helper function that generates a constant string and returns a pointer to /// the start of the string. The result of this function can be used anywhere /// where the C code specifies const char*. llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { ConstantAddress Array = CGM.GetAddrOfConstantCString(std::string(Str), Name); return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(), Array.getPointer(), Zeros); } /// Emits a linkonce_odr string, whose name is the prefix followed by the /// string value. This allows the linker to combine the strings between /// different modules. Used for EH typeinfo names, selector strings, and a /// few other things. llvm::Constant *ExportUniqueString(const std::string &Str, const std::string &prefix, bool Private=false) { std::string name = prefix + Str; auto *ConstStr = TheModule.getGlobalVariable(name); if (!ConstStr) { llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, llvm::GlobalValue::LinkOnceODRLinkage, value, name); GV->setComdat(TheModule.getOrInsertComdat(name)); if (Private) GV->setVisibility(llvm::GlobalValue::HiddenVisibility); ConstStr = GV; } return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(), ConstStr, Zeros); } /// Returns a property name and encoding string. llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, const Decl *Container) { assert(!isRuntime(ObjCRuntime::GNUstep, 2)); if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { std::string NameAndAttributes; std::string TypeStr = CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); NameAndAttributes += '\0'; NameAndAttributes += TypeStr.length() + 3; NameAndAttributes += TypeStr; NameAndAttributes += '\0'; NameAndAttributes += PD->getNameAsString(); return MakeConstantString(NameAndAttributes); } return MakeConstantString(PD->getNameAsString()); } /// Push the property attributes into two structure fields. void PushPropertyAttributes(ConstantStructBuilder &Fields, const ObjCPropertyDecl *property, bool isSynthesized=true, bool isDynamic=true) { int attrs = property->getPropertyAttributes(); // For read-only properties, clear the copy and retain flags if (attrs & ObjCPropertyAttribute::kind_readonly) { attrs &= ~ObjCPropertyAttribute::kind_copy; attrs &= ~ObjCPropertyAttribute::kind_retain; attrs &= ~ObjCPropertyAttribute::kind_weak; attrs &= ~ObjCPropertyAttribute::kind_strong; } // The first flags field has the same attribute values as clang uses internally Fields.addInt(Int8Ty, attrs & 0xff); attrs >>= 8; attrs <<= 2; // For protocol properties, synthesized and dynamic have no meaning, so we // reuse these flags to indicate that this is a protocol property (both set // has no meaning, as a property can't be both synthesized and dynamic) attrs |= isSynthesized ? (1<<0) : 0; attrs |= isDynamic ? (1<<1) : 0; // The second field is the next four fields left shifted by two, with the // low bit set to indicate whether the field is synthesized or dynamic. Fields.addInt(Int8Ty, attrs & 0xff); // Two padding fields Fields.addInt(Int8Ty, 0); Fields.addInt(Int8Ty, 0); } virtual llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD); virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, int count) { // int count; Fields.addInt(IntTy, count); // int size; (only in GNUstep v2 ABI. if (isRuntime(ObjCRuntime::GNUstep, 2)) { llvm::DataLayout td(&TheModule); Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / CGM.getContext().getCharWidth()); } // struct objc_property_list *next; Fields.add(NULLPtr); // struct objc_property properties[] return Fields.beginArray(PropertyMetadataTy); } virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, const ObjCPropertyDecl *property, const Decl *OCD, bool isSynthesized=true, bool isDynamic=true) { auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); ASTContext &Context = CGM.getContext(); Fields.add(MakePropertyEncodingString(property, OCD)); PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { if (accessor) { std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); Fields.add(MakeConstantString(accessor->getSelector().getAsString())); Fields.add(TypeEncoding); } else { Fields.add(NULLPtr); Fields.add(NULLPtr); } }; addPropertyMethod(property->getGetterMethodDecl()); addPropertyMethod(property->getSetterMethodDecl()); Fields.finishAndAddTo(PropertiesArray); } /// Ensures that the value has the required type, by inserting a bitcast if /// required. This function lets us avoid inserting bitcasts that are /// redundant. llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { if (V->getType() == Ty) return V; return B.CreateBitCast(V, Ty); } // Some zeros used for GEPs in lots of places. llvm::Constant *Zeros[2]; /// Null pointer value. Mainly used as a terminator in various arrays. llvm::Constant *NULLPtr; /// LLVM context. llvm::LLVMContext &VMContext; protected: /// Placeholder for the class. Lots of things refer to the class before we've /// actually emitted it. We use this alias as a placeholder, and then replace /// it with a pointer to the class structure before finally emitting the /// module. llvm::GlobalAlias *ClassPtrAlias; /// Placeholder for the metaclass. Lots of things refer to the class before /// we've / actually emitted it. We use this alias as a placeholder, and then /// replace / it with a pointer to the metaclass structure before finally /// emitting the / module. llvm::GlobalAlias *MetaClassPtrAlias; /// All of the classes that have been generated for this compilation units. std::vector Classes; /// All of the categories that have been generated for this compilation units. std::vector Categories; /// All of the Objective-C constant strings that have been generated for this /// compilation units. std::vector ConstantStrings; /// Map from string values to Objective-C constant strings in the output. /// Used to prevent emitting Objective-C strings more than once. This should /// not be required at all - CodeGenModule should manage this list. llvm::StringMap ObjCStrings; /// All of the protocols that have been declared. llvm::StringMap ExistingProtocols; /// For each variant of a selector, we store the type encoding and a /// placeholder value. For an untyped selector, the type will be the empty /// string. Selector references are all done via the module's selector table, /// so we create an alias as a placeholder and then replace it with the real /// value later. typedef std::pair TypedSelector; /// Type of the selector map. This is roughly equivalent to the structure /// used in the GNUstep runtime, which maintains a list of all of the valid /// types for a selector in a table. typedef llvm::DenseMap > SelectorMap; /// A map from selectors to selector types. This allows us to emit all /// selectors of the same name and type together. SelectorMap SelectorTable; /// Selectors related to memory management. When compiling in GC mode, we /// omit these. Selector RetainSel, ReleaseSel, AutoreleaseSel; /// Runtime functions used for memory management in GC mode. Note that clang /// supports code generation for calling these functions, but neither GNU /// runtime actually supports this API properly yet. LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, WeakAssignFn, GlobalAssignFn; typedef std::pair ClassAliasPair; /// All classes that have aliases set for them. std::vector ClassAliases; protected: /// Function used for throwing Objective-C exceptions. LazyRuntimeFunction ExceptionThrowFn; /// Function used for rethrowing exceptions, used at the end of \@finally or /// \@synchronize blocks. LazyRuntimeFunction ExceptionReThrowFn; /// Function called when entering a catch function. This is required for /// differentiating Objective-C exceptions and foreign exceptions. LazyRuntimeFunction EnterCatchFn; /// Function called when exiting from a catch block. Used to do exception /// cleanup. LazyRuntimeFunction ExitCatchFn; /// Function called when entering an \@synchronize block. Acquires the lock. LazyRuntimeFunction SyncEnterFn; /// Function called when exiting an \@synchronize block. Releases the lock. LazyRuntimeFunction SyncExitFn; private: /// Function called if fast enumeration detects that the collection is /// modified during the update. LazyRuntimeFunction EnumerationMutationFn; /// Function for implementing synthesized property getters that return an /// object. LazyRuntimeFunction GetPropertyFn; /// Function for implementing synthesized property setters that return an /// object. LazyRuntimeFunction SetPropertyFn; /// Function used for non-object declared property getters. LazyRuntimeFunction GetStructPropertyFn; /// Function used for non-object declared property setters. LazyRuntimeFunction SetStructPropertyFn; protected: /// The version of the runtime that this class targets. Must match the /// version in the runtime. int RuntimeVersion; /// The version of the protocol class. Used to differentiate between ObjC1 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional /// components and can not contain declared properties. We always emit /// Objective-C 2 property structures, but we have to pretend that they're /// Objective-C 1 property structures when targeting the GCC runtime or it /// will abort. const int ProtocolVersion; /// The version of the class ABI. This value is used in the class structure /// and indicates how various fields should be interpreted. const int ClassABIVersion; /// Generates an instance variable list structure. This is a structure /// containing a size and an array of structures containing instance variable /// metadata. This is used purely for introspection in the fragile ABI. In /// the non-fragile ABI, it's used for instance variable fixup. virtual llvm::Constant *GenerateIvarList(ArrayRef IvarNames, ArrayRef IvarTypes, ArrayRef IvarOffsets, ArrayRef IvarAlign, ArrayRef IvarOwnership); /// Generates a method list structure. This is a structure containing a size /// and an array of structures containing method metadata. /// /// This structure is used by both classes and categories, and contains a next /// pointer allowing them to be chained together in a linked list. llvm::Constant *GenerateMethodList(StringRef ClassName, StringRef CategoryName, ArrayRef Methods, bool isClassMethodList); /// Emits an empty protocol. This is used for \@protocol() where no protocol /// is found. The runtime will (hopefully) fix up the pointer to refer to the /// real protocol. virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); /// Generates a list of property metadata structures. This follows the same /// pattern as method and instance variable metadata lists. llvm::Constant *GeneratePropertyList(const Decl *Container, const ObjCContainerDecl *OCD, bool isClassProperty=false, bool protocolOptionalProperties=false); /// Generates a list of referenced protocols. Classes, categories, and /// protocols all use this structure. llvm::Constant *GenerateProtocolList(ArrayRef Protocols); /// To ensure that all protocols are seen by the runtime, we add a category on /// a class defined in the runtime, declaring no methods, but adopting the /// protocols. This is a horribly ugly hack, but it allows us to collect all /// of the protocols without changing the ABI. void GenerateProtocolHolderCategory(); /// Generates a class structure. llvm::Constant *GenerateClassStructure( llvm::Constant *MetaClass, llvm::Constant *SuperClass, unsigned info, const char *Name, llvm::Constant *Version, llvm::Constant *InstanceSize, llvm::Constant *IVars, llvm::Constant *Methods, llvm::Constant *Protocols, llvm::Constant *IvarOffsets, llvm::Constant *Properties, llvm::Constant *StrongIvarBitmap, llvm::Constant *WeakIvarBitmap, bool isMeta=false); /// Generates a method list. This is used by protocols to define the required /// and optional methods. virtual llvm::Constant *GenerateProtocolMethodList( ArrayRef Methods); /// Emits optional and required method lists. template void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, llvm::Constant *&Optional) { SmallVector RequiredMethods; SmallVector OptionalMethods; for (const auto *I : Methods) if (I->isOptional()) OptionalMethods.push_back(I); else RequiredMethods.push_back(I); Required = GenerateProtocolMethodList(RequiredMethods); Optional = GenerateProtocolMethodList(OptionalMethods); } /// Returns a selector with the specified type encoding. An empty string is /// used to return an untyped selector (with the types field set to NULL). virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, const std::string &TypeEncoding); /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this /// contains the class and ivar names, in the v2 ABI this contains the type /// encoding as well. virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, const ObjCIvarDecl *Ivar) { const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() + '.' + Ivar->getNameAsString(); return Name; } /// Returns the variable used to store the offset of an instance variable. llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, const ObjCIvarDecl *Ivar); /// Emits a reference to a class. This allows the linker to object if there /// is no class of the matching name. void EmitClassRef(const std::string &className); /// Emits a pointer to the named class virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, bool isWeak); /// Looks up the method for sending a message to the specified object. This /// mechanism differs between the GCC and GNU runtimes, so this method must be /// overridden in subclasses. virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, llvm::Value *cmd, llvm::MDNode *node, MessageSendInfo &MSI) = 0; /// Looks up the method for sending a message to a superclass. This /// mechanism differs between the GCC and GNU runtimes, so this method must /// be overridden in subclasses. virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, llvm::Value *cmd, MessageSendInfo &MSI) = 0; /// Libobjc2 uses a bitfield representation where small(ish) bitfields are /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 /// bits set to their values, LSB first, while larger ones are stored in a /// structure of this / form: /// /// struct { int32_t length; int32_t values[length]; }; /// /// The values in the array are stored in host-endian format, with the least /// significant bit being assumed to come first in the bitfield. Therefore, /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, /// while a bitfield / with the 63rd bit set will be 1<<64. llvm::Constant *MakeBitField(ArrayRef bits); public: CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, unsigned protocolClassVersion, unsigned classABI=1); ConstantAddress GenerateConstantString(const StringLiteral *) override; RValue GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class, const ObjCMethodDecl *Method) override; RValue GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Receiver, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method) override; llvm::Value *GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID) override; llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; llvm::Value *GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl *Method) override; virtual llvm::Constant *GetConstantSelector(Selector Sel, const std::string &TypeEncoding) { llvm_unreachable("Runtime unable to generate constant selector"); } llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { return GetConstantSelector(M->getSelector(), CGM.getContext().getObjCEncodingForMethodDecl(M)); } llvm::Constant *GetEHType(QualType T) override; llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD) override; // Map to unify direct method definitions. llvm::DenseMap DirectMethodDefinitions; void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD) override; void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *PD) override; void GenerateProtocol(const ObjCProtocolDecl *PD) override; virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { return GenerateProtocolRef(PD); } llvm::Function *ModuleInitFunction() override; llvm::FunctionCallee GetPropertyGetFunction() override; llvm::FunctionCallee GetPropertySetFunction() override; llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy) override; llvm::FunctionCallee GetSetStructFunction() override; llvm::FunctionCallee GetGetStructFunction() override; llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; llvm::FunctionCallee EnumerationMutationFunction() override; void EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) override; void EmitSynchronizedStmt(CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S) override; void EmitThrowStmt(CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true) override; llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, Address AddrWeakObj) override; void EmitObjCWeakAssign(CodeGenFunction &CGF, llvm::Value *src, Address dst) override; void EmitObjCGlobalAssign(CodeGenFunction &CGF, llvm::Value *src, Address dest, bool threadlocal=false) override; void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, Address dest, llvm::Value *ivarOffset) override; void EmitObjCStrongCastAssign(CodeGenFunction &CGF, llvm::Value *src, Address dest) override; void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, llvm::Value *Size) override; LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers) override; llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar) override; llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, const CGBlockInfo &blockInfo) override { return NULLPtr; } llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, const CGBlockInfo &blockInfo) override { return NULLPtr; } llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { return NULLPtr; } }; /// Class representing the legacy GCC Objective-C ABI. This is the default when /// -fobjc-nonfragile-abi is not specified. /// /// The GCC ABI target actually generates code that is approximately compatible /// with the new GNUstep runtime ABI, but refrains from using any features that /// would not work with the GCC runtime. For example, clang always generates /// the extended form of the class structure, and the extra fields are simply /// ignored by GCC libobjc. class CGObjCGCC : public CGObjCGNU { /// The GCC ABI message lookup function. Returns an IMP pointing to the /// method implementation for this message. LazyRuntimeFunction MsgLookupFn; /// The GCC ABI superclass message lookup function. Takes a pointer to a /// structure describing the receiver and the class, and a selector as /// arguments. Returns the IMP for the corresponding method. LazyRuntimeFunction MsgLookupSuperFn; protected: llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, llvm::Value *cmd, llvm::MDNode *node, MessageSendInfo &MSI) override { CGBuilderTy &Builder = CGF.Builder; llvm::Value *args[] = { EnforceType(Builder, Receiver, IdTy), EnforceType(Builder, cmd, SelectorTy) }; llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); imp->setMetadata(msgSendMDKind, node); return imp; } llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, llvm::Value *cmd, MessageSendInfo &MSI) override { CGBuilderTy &Builder = CGF.Builder; llvm::Value *lookupArgs[] = { EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd}; return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); } public: CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { // IMP objc_msg_lookup(id, SEL); MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); // IMP objc_msg_lookup_super(struct objc_super*, SEL); MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, PtrToObjCSuperTy, SelectorTy); } }; /// Class used when targeting the new GNUstep runtime ABI. class CGObjCGNUstep : public CGObjCGNU { /// The slot lookup function. Returns a pointer to a cacheable structure /// that contains (among other things) the IMP. LazyRuntimeFunction SlotLookupFn; /// The GNUstep ABI superclass message lookup function. Takes a pointer to /// a structure describing the receiver and the class, and a selector as /// arguments. Returns the slot for the corresponding method. Superclass /// message lookup rarely changes, so this is a good caching opportunity. LazyRuntimeFunction SlotLookupSuperFn; /// Specialised function for setting atomic retain properties LazyRuntimeFunction SetPropertyAtomic; /// Specialised function for setting atomic copy properties LazyRuntimeFunction SetPropertyAtomicCopy; /// Specialised function for setting nonatomic retain properties LazyRuntimeFunction SetPropertyNonAtomic; /// Specialised function for setting nonatomic copy properties LazyRuntimeFunction SetPropertyNonAtomicCopy; /// Function to perform atomic copies of C++ objects with nontrivial copy /// constructors from Objective-C ivars. LazyRuntimeFunction CxxAtomicObjectGetFn; /// Function to perform atomic copies of C++ objects with nontrivial copy /// constructors to Objective-C ivars. LazyRuntimeFunction CxxAtomicObjectSetFn; /// Type of a slot structure pointer. This is returned by the various /// lookup functions. llvm::Type *SlotTy; /// Type of a slot structure. llvm::Type *SlotStructTy; public: llvm::Constant *GetEHType(QualType T) override; protected: llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, llvm::Value *cmd, llvm::MDNode *node, MessageSendInfo &MSI) override { CGBuilderTy &Builder = CGF.Builder; llvm::FunctionCallee LookupFn = SlotLookupFn; // Store the receiver on the stack so that we can reload it later Address ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); Builder.CreateStore(Receiver, ReceiverPtr); llvm::Value *self; if (isa(CGF.CurCodeDecl)) { self = CGF.LoadObjCSelf(); } else { self = llvm::ConstantPointerNull::get(IdTy); } // The lookup function is guaranteed not to capture the receiver pointer. if (auto *LookupFn2 = dyn_cast(LookupFn.getCallee())) LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); llvm::Value *args[] = { EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), EnforceType(Builder, cmd, SelectorTy), EnforceType(Builder, self, IdTy) }; llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); slot->setOnlyReadsMemory(); slot->setMetadata(msgSendMDKind, node); // Load the imp from the slot llvm::Value *imp = Builder.CreateAlignedLoad( IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), CGF.getPointerAlign()); // The lookup function may have changed the receiver, so make sure we use // the new one. Receiver = Builder.CreateLoad(ReceiverPtr, true); return imp; } llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, llvm::Value *cmd, MessageSendInfo &MSI) override { CGBuilderTy &Builder = CGF.Builder; llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd}; llvm::CallInst *slot = CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); slot->setOnlyReadsMemory(); return Builder.CreateAlignedLoad( IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), CGF.getPointerAlign()); } public: CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, unsigned ClassABI) : CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); SlotTy = llvm::PointerType::getUnqual(SlotStructTy); // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, SelectorTy, IdTy); // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, PtrToObjCSuperTy, SelectorTy); // If we're in ObjC++ mode, then we want to make llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); if (usesCxxExceptions) { // void *__cxa_begin_catch(void *e) EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); // void __cxa_end_catch(void) ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); // void objc_exception_rethrow(void*) ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy); } else if (usesSEHExceptions) { // void objc_exception_rethrow(void) ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); } else if (CGM.getLangOpts().CPlusPlus) { // void *__cxa_begin_catch(void *e) EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); // void __cxa_end_catch(void) ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); // void _Unwind_Resume_or_Rethrow(void*) ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, PtrTy); } else if (R.getVersion() >= VersionTuple(1, 7)) { // id objc_begin_catch(void *e) EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); // void objc_end_catch(void) ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); // void _Unwind_Resume_or_Rethrow(void*) ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); } SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); // void objc_setCppObjectAtomic(void *dest, const void *src, void // *helper); CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, PtrTy, PtrTy); // void objc_getCppObjectAtomic(void *dest, const void *src, void // *helper); CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, PtrTy, PtrTy); } llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { // The optimised functions were added in version 1.7 of the GNUstep // runtime. assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)); return CxxAtomicObjectGetFn; } llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { // The optimised functions were added in version 1.7 of the GNUstep // runtime. assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)); return CxxAtomicObjectSetFn; } llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy) override { // The optimised property functions omit the GC check, and so are not // safe to use in GC mode. The standard functions are fast in GC mode, // so there is less advantage in using them. assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); // The optimised functions were added in version 1.7 of the GNUstep // runtime. assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)); if (atomic) { if (copy) return SetPropertyAtomicCopy; return SetPropertyAtomic; } return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; } }; /// GNUstep Objective-C ABI version 2 implementation. /// This is the ABI that provides a clean break with the legacy GCC ABI and /// cleans up a number of things that were added to work around 1980s linkers. class CGObjCGNUstep2 : public CGObjCGNUstep { enum SectionKind { SelectorSection = 0, ClassSection, ClassReferenceSection, CategorySection, ProtocolSection, ProtocolReferenceSection, ClassAliasSection, ConstantStringSection }; /// The subset of `objc_class_flags` used at compile time. enum ClassFlags { /// This is a metaclass ClassFlagMeta = (1 << 0), /// This class has been initialised by the runtime (+initialize has been /// sent if necessary). ClassFlagInitialized = (1 << 8), }; static const char *const SectionsBaseNames[8]; static const char *const PECOFFSectionsBaseNames[8]; template std::string sectionName() { if (CGM.getTriple().isOSBinFormatCOFF()) { std::string name(PECOFFSectionsBaseNames[K]); name += "$m"; return name; } return SectionsBaseNames[K]; } /// The GCC ABI superclass message lookup function. Takes a pointer to a /// structure describing the receiver and the class, and a selector as /// arguments. Returns the IMP for the corresponding method. LazyRuntimeFunction MsgLookupSuperFn; /// Function to ensure that +initialize is sent to a class. LazyRuntimeFunction SentInitializeFn; /// A flag indicating if we've emitted at least one protocol. /// If we haven't, then we need to emit an empty protocol, to ensure that the /// __start__objc_protocols and __stop__objc_protocols sections exist. bool EmittedProtocol = false; /// A flag indicating if we've emitted at least one protocol reference. /// If we haven't, then we need to emit an empty protocol, to ensure that the /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections /// exist. bool EmittedProtocolRef = false; /// A flag indicating if we've emitted at least one class. /// If we haven't, then we need to emit an empty protocol, to ensure that the /// __start__objc_classes and __stop__objc_classes sections / exist. bool EmittedClass = false; /// Generate the name of a symbol for a reference to a class. Accesses to /// classes should be indirected via this. typedef std::pair> EarlyInitPair; std::vector EarlyInitList; std::string SymbolForClassRef(StringRef Name, bool isWeak) { if (isWeak) return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); else return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); } /// Generate the name of a class symbol. std::string SymbolForClass(StringRef Name) { return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); } void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, ArrayRef Args) { SmallVector Types; for (auto *Arg : Args) Types.push_back(Arg->getType()); llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, false); llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); B.CreateCall(Fn, Args); } ConstantAddress GenerateConstantString(const StringLiteral *SL) override { auto Str = SL->getString(); CharUnits Align = CGM.getPointerAlign(); // Look for an existing one llvm::StringMap::iterator old = ObjCStrings.find(Str); if (old != ObjCStrings.end()) return ConstantAddress(old->getValue(), IdElemTy, Align); bool isNonASCII = SL->containsNonAscii(); auto LiteralLength = SL->getLength(); if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) && (LiteralLength < 9) && !isNonASCII) { // Tiny strings are only used on 64-bit platforms. They store 8 7-bit // ASCII characters in the high 56 bits, followed by a 4-bit length and a // 3-bit tag (which is always 4). uint64_t str = 0; // Fill in the characters for (unsigned i=0 ; igetCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); // Fill in the length str |= LiteralLength << 3; // Set the tag str |= 4; auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( llvm::ConstantInt::get(Int64Ty, str), IdTy); ObjCStrings[Str] = ObjCStr; return ConstantAddress(ObjCStr, IdElemTy, Align); } StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; if (StringClass.empty()) StringClass = "NSConstantString"; std::string Sym = SymbolForClass(StringClass); llvm::Constant *isa = TheModule.getNamedGlobal(Sym); if (!isa) { isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, llvm::GlobalValue::ExternalLinkage, nullptr, Sym); if (CGM.getTriple().isOSBinFormatCOFF()) { cast(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); } } // struct // { // Class isa; // uint32_t flags; // uint32_t length; // Number of codepoints // uint32_t size; // Number of bytes // uint32_t hash; // const char *data; // }; ConstantInitBuilder Builder(CGM); auto Fields = Builder.beginStruct(); if (!CGM.getTriple().isOSBinFormatCOFF()) { Fields.add(isa); } else { Fields.addNullPointer(PtrTy); } // For now, all non-ASCII strings are represented as UTF-16. As such, the // number of bytes is simply double the number of UTF-16 codepoints. In // ASCII strings, the number of bytes is equal to the number of non-ASCII // codepoints. if (isNonASCII) { unsigned NumU8CodeUnits = Str.size(); // A UTF-16 representation of a unicode string contains at most the same // number of code units as a UTF-8 representation. Allocate that much // space, plus one for the final null character. SmallVector ToBuf(NumU8CodeUnits + 1); const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); llvm::UTF16 *ToPtr = &ToBuf[0]; (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); uint32_t StringLength = ToPtr - &ToBuf[0]; // Add null terminator *ToPtr = 0; // Flags: 2 indicates UTF-16 encoding Fields.addInt(Int32Ty, 2); // Number of UTF-16 codepoints Fields.addInt(Int32Ty, StringLength); // Number of bytes Fields.addInt(Int32Ty, StringLength * 2); // Hash. Not currently initialised by the compiler. Fields.addInt(Int32Ty, 0); // pointer to the data string. auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1); auto *C = llvm::ConstantDataArray::get(VMContext, Arr); auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); Fields.add(Buffer); } else { // Flags: 0 indicates ASCII encoding Fields.addInt(Int32Ty, 0); // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint Fields.addInt(Int32Ty, Str.size()); // Number of bytes Fields.addInt(Int32Ty, Str.size()); // Hash. Not currently initialised by the compiler. Fields.addInt(Int32Ty, 0); // Data pointer Fields.add(MakeConstantString(Str)); } std::string StringName; bool isNamed = !isNonASCII; if (isNamed) { StringName = ".objc_str_"; for (int i=0,e=Str.size() ; isetSection(sectionName()); if (isNamed) { ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); } if (CGM.getTriple().isOSBinFormatCOFF()) { std::pair v{ObjCStrGV, 0}; EarlyInitList.emplace_back(Sym, v); } ObjCStrings[Str] = ObjCStrGV; ConstantStrings.push_back(ObjCStrGV); return ConstantAddress(ObjCStrGV, IdElemTy, Align); } void PushProperty(ConstantArrayBuilder &PropertiesArray, const ObjCPropertyDecl *property, const Decl *OCD, bool isSynthesized=true, bool isDynamic=true) override { // struct objc_property // { // const char *name; // const char *attributes; // const char *type; // SEL getter; // SEL setter; // }; auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); ASTContext &Context = CGM.getContext(); Fields.add(MakeConstantString(property->getNameAsString())); std::string TypeStr = CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); Fields.add(MakeConstantString(TypeStr)); std::string typeStr; Context.getObjCEncodingForType(property->getType(), typeStr); Fields.add(MakeConstantString(typeStr)); auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { if (accessor) { std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); } else { Fields.add(NULLPtr); } }; addPropertyMethod(property->getGetterMethodDecl()); addPropertyMethod(property->getSetterMethodDecl()); Fields.finishAndAddTo(PropertiesArray); } llvm::Constant * GenerateProtocolMethodList(ArrayRef Methods) override { // struct objc_protocol_method_description // { // SEL selector; // const char *types; // }; llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); ASTContext &Context = CGM.getContext(); ConstantInitBuilder Builder(CGM); // struct objc_protocol_method_description_list // { // int count; // int size; // struct objc_protocol_method_description methods[]; // }; auto MethodList = Builder.beginStruct(); // int count; MethodList.addInt(IntTy, Methods.size()); // int size; // sizeof(struct objc_method_description) llvm::DataLayout td(&TheModule); MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / CGM.getContext().getCharWidth()); // struct objc_method_description[] auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); for (auto *M : Methods) { auto Method = MethodArray.beginStruct(ObjCMethodDescTy); Method.add(CGObjCGNU::GetConstantSelector(M)); Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); Method.finishAndAddTo(MethodArray); } MethodArray.finishAndAddTo(MethodList); return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", CGM.getPointerAlign()); } llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) override { const auto &ReferencedProtocols = OCD->getReferencedProtocols(); auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), ReferencedProtocols.end()); SmallVector Protocols; for (const auto *PI : RuntimeProtocols) Protocols.push_back(GenerateProtocolRef(PI)); return GenerateProtocolList(Protocols); } llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, llvm::Value *cmd, MessageSendInfo &MSI) override { // Don't access the slot unless we're trying to cache the result. CGBuilderTy &Builder = CGF.Builder; llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd}; return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); } llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { std::string SymbolName = SymbolForClassRef(Name, isWeak); auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); if (ClassSymbol) return ClassSymbol; ClassSymbol = new llvm::GlobalVariable(TheModule, IdTy, false, llvm::GlobalValue::ExternalLinkage, nullptr, SymbolName); // If this is a weak symbol, then we are creating a valid definition for // the symbol, pointing to a weak definition of the real class pointer. If // this is not a weak reference, then we are expecting another compilation // unit to provide the real indirection symbol. if (isWeak) ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, nullptr, SymbolForClass(Name))); else { if (CGM.getTriple().isOSBinFormatCOFF()) { IdentifierInfo &II = CGM.getContext().Idents.get(Name); TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); const ObjCInterfaceDecl *OID = nullptr; for (const auto *Result : DC->lookup(&II)) if ((OID = dyn_cast(Result))) break; // The first Interface we find may be a @class, // which should only be treated as the source of // truth in the absence of a true declaration. assert(OID && "Failed to find ObjCInterfaceDecl"); const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); if (OIDDef != nullptr) OID = OIDDef; auto Storage = llvm::GlobalValue::DefaultStorageClass; if (OID->hasAttr()) Storage = llvm::GlobalValue::DLLImportStorageClass; else if (OID->hasAttr()) Storage = llvm::GlobalValue::DLLExportStorageClass; cast(ClassSymbol)->setDLLStorageClass(Storage); } } assert(ClassSymbol->getName() == SymbolName); return ClassSymbol; } llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, bool isWeak) override { return CGF.Builder.CreateLoad( Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign())); } int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { // typedef enum { // ownership_invalid = 0, // ownership_strong = 1, // ownership_weak = 2, // ownership_unsafe = 3 // } ivar_ownership; int Flag; switch (Ownership) { case Qualifiers::OCL_Strong: Flag = 1; break; case Qualifiers::OCL_Weak: Flag = 2; break; case Qualifiers::OCL_ExplicitNone: Flag = 3; break; case Qualifiers::OCL_None: case Qualifiers::OCL_Autoreleasing: assert(Ownership != Qualifiers::OCL_Autoreleasing); Flag = 0; } return Flag; } llvm::Constant *GenerateIvarList(ArrayRef IvarNames, ArrayRef IvarTypes, ArrayRef IvarOffsets, ArrayRef IvarAlign, ArrayRef IvarOwnership) override { llvm_unreachable("Method should not be called!"); } llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { std::string Name = SymbolForProtocol(ProtocolName); auto *GV = TheModule.getGlobalVariable(Name); if (!GV) { // Emit a placeholder symbol. GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, llvm::GlobalValue::ExternalLinkage, nullptr, Name); GV->setAlignment(CGM.getPointerAlign().getAsAlign()); } return GV; } /// Existing protocol references. llvm::StringMap ExistingProtocolRefs; llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *PD) override { auto Name = PD->getNameAsString(); auto *&Ref = ExistingProtocolRefs[Name]; if (!Ref) { auto *&Protocol = ExistingProtocols[Name]; if (!Protocol) Protocol = GenerateProtocolRef(PD); std::string RefName = SymbolForProtocolRef(Name); assert(!TheModule.getGlobalVariable(RefName)); // Emit a reference symbol. auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false, llvm::GlobalValue::LinkOnceODRLinkage, Protocol, RefName); GV->setComdat(TheModule.getOrInsertComdat(RefName)); GV->setSection(sectionName()); GV->setAlignment(CGM.getPointerAlign().getAsAlign()); Ref = GV; } EmittedProtocolRef = true; return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, CGM.getPointerAlign()); } llvm::Constant *GenerateProtocolList(ArrayRef Protocols) { llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, Protocols.size()); llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, Protocols); ConstantInitBuilder builder(CGM); auto ProtocolBuilder = builder.beginStruct(); ProtocolBuilder.addNullPointer(PtrTy); ProtocolBuilder.addInt(SizeTy, Protocols.size()); ProtocolBuilder.add(ProtocolArray); return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); } void GenerateProtocol(const ObjCProtocolDecl *PD) override { // Do nothing - we only emit referenced protocols. } llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { std::string ProtocolName = PD->getNameAsString(); auto *&Protocol = ExistingProtocols[ProtocolName]; if (Protocol) return Protocol; EmittedProtocol = true; auto SymName = SymbolForProtocol(ProtocolName); auto *OldGV = TheModule.getGlobalVariable(SymName); // Use the protocol definition, if there is one. if (const ObjCProtocolDecl *Def = PD->getDefinition()) PD = Def; else { // If there is no definition, then create an external linkage symbol and // hope that someone else fills it in for us (and fail to link if they // don't). assert(!OldGV); Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, /*isConstant*/false, llvm::GlobalValue::ExternalLinkage, nullptr, SymName); return Protocol; } SmallVector Protocols; auto RuntimeProtocols = GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); for (const auto *PI : RuntimeProtocols) Protocols.push_back(GenerateProtocolRef(PI)); llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); // Collect information about methods llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; llvm::Constant *ClassMethodList, *OptionalClassMethodList; EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, OptionalInstanceMethodList); EmitProtocolMethodList(PD->class_methods(), ClassMethodList, OptionalClassMethodList); // The isa pointer must be set to a magic number so the runtime knows it's // the correct layout. ConstantInitBuilder builder(CGM); auto ProtocolBuilder = builder.beginStruct(); ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); ProtocolBuilder.add(MakeConstantString(ProtocolName)); ProtocolBuilder.add(ProtocolList); ProtocolBuilder.add(InstanceMethodList); ProtocolBuilder.add(ClassMethodList); ProtocolBuilder.add(OptionalInstanceMethodList); ProtocolBuilder.add(OptionalClassMethodList); // Required instance properties ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); // Optional instance properties ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); // Required class properties ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); // Optional class properties ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); GV->setSection(sectionName()); GV->setComdat(TheModule.getOrInsertComdat(SymName)); if (OldGV) { OldGV->replaceAllUsesWith(GV); OldGV->removeFromParent(); GV->setName(SymName); } Protocol = GV; return GV; } llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, const std::string &TypeEncoding) override { return GetConstantSelector(Sel, TypeEncoding); } std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) { std::string MangledTypes = std::string(TypeEncoding); // @ is used as a special character in ELF symbol names (used for symbol // versioning), so mangle the name to not include it. Replace it with a // character that is not a valid type encoding character (and, being // non-printable, never will be!) if (CGM.getTriple().isOSBinFormatELF()) std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1'); // = in dll exported names causes lld to fail when linking on Windows. if (CGM.getTriple().isOSWindows()) std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2'); return MangledTypes; } llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { if (TypeEncoding.empty()) return NULLPtr; std::string MangledTypes = GetSymbolNameForTypeEncoding(std::string(TypeEncoding)); std::string TypesVarName = ".objc_sel_types_" + MangledTypes; auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); if (!TypesGlobal) { llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, TypeEncoding); auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); GV->setVisibility(llvm::GlobalValue::HiddenVisibility); TypesGlobal = GV; } return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(), TypesGlobal, Zeros); } llvm::Constant *GetConstantSelector(Selector Sel, const std::string &TypeEncoding) override { std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding); auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + MangledTypes).str(); if (auto *GV = TheModule.getNamedGlobal(SelVarName)) return GV; ConstantInitBuilder builder(CGM); auto SelBuilder = builder.beginStruct(); SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", true)); SelBuilder.add(GetTypeString(TypeEncoding)); auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); GV->setVisibility(llvm::GlobalValue::HiddenVisibility); GV->setSection(sectionName()); return GV; } llvm::StructType *emptyStruct = nullptr; /// Return pointers to the start and end of a section. On ELF platforms, we /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set /// to the start and end of section names, as long as those section names are /// valid identifiers and the symbols are referenced but not defined. On /// Windows, we use the fact that MSVC-compatible linkers will lexically sort /// by subsections and place everything that we want to reference in a middle /// subsection and then insert zero-sized symbols in subsections a and z. std::pair GetSectionBounds(StringRef Section) { if (CGM.getTriple().isOSBinFormatCOFF()) { if (emptyStruct == nullptr) { emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); emptyStruct->setBody({}, /*isPacked*/true); } auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, /*isConstant*/false, llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + Section); Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); Sym->setSection((Section + SecSuffix).str()); Sym->setComdat(TheModule.getOrInsertComdat((Prefix + Section).str())); Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); return Sym; }; return { Sym("__start_", "$a"), Sym("__stop", "$z") }; } auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, /*isConstant*/false, llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + Section); Start->setVisibility(llvm::GlobalValue::HiddenVisibility); auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, /*isConstant*/false, llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + Section); Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); return { Start, Stop }; } CatchTypeInfo getCatchAllTypeInfo() override { return CGM.getCXXABI().getCatchAllTypeInfo(); } llvm::Function *ModuleInitFunction() override { llvm::Function *LoadFunction = llvm::Function::Create( llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", &TheModule); LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); llvm::BasicBlock *EntryBB = llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); CGBuilderTy B(CGM, VMContext); B.SetInsertPoint(EntryBB); ConstantInitBuilder builder(CGM); auto InitStructBuilder = builder.beginStruct(); InitStructBuilder.addInt(Int64Ty, 0); auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; for (auto *s : sectionVec) { auto bounds = GetSectionBounds(s); InitStructBuilder.add(bounds.first); InitStructBuilder.add(bounds.second); } auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); CallRuntimeFunction(B, "__objc_load", {InitStruct});; B.CreateRetVoid(); // Make sure that the optimisers don't delete this function. CGM.addCompilerUsedGlobal(LoadFunction); // FIXME: Currently ELF only! // We have to do this by hand, rather than with @llvm.ctors, so that the // linker can remove the duplicate invocations. auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, LoadFunction, ".objc_ctor"); // Check that this hasn't been renamed. This shouldn't happen, because // this function should be called precisely once. assert(InitVar->getName() == ".objc_ctor"); // In Windows, initialisers are sorted by the suffix. XCL is for library // initialisers, which run before user initialisers. We are running // Objective-C loads at the end of library load. This means +load methods // will run before any other static constructors, but that static // constructors can see a fully initialised Objective-C state. if (CGM.getTriple().isOSBinFormatCOFF()) InitVar->setSection(".CRT$XCLz"); else { if (CGM.getCodeGenOpts().UseInitArray) InitVar->setSection(".init_array"); else InitVar->setSection(".ctors"); } InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); CGM.addUsedGlobal(InitVar); for (auto *C : Categories) { auto *Cat = cast(C->stripPointerCasts()); Cat->setSection(sectionName()); CGM.addUsedGlobal(Cat); } auto createNullGlobal = [&](StringRef Name, ArrayRef Init, StringRef Section) { auto nullBuilder = builder.beginStruct(); for (auto *F : Init) nullBuilder.add(F); auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); GV->setSection(Section); GV->setComdat(TheModule.getOrInsertComdat(Name)); GV->setVisibility(llvm::GlobalValue::HiddenVisibility); CGM.addUsedGlobal(GV); return GV; }; for (auto clsAlias : ClassAliases) createNullGlobal(std::string(".objc_class_alias") + clsAlias.second, { MakeConstantString(clsAlias.second), GetClassVar(clsAlias.first) }, sectionName()); // On ELF platforms, add a null value for each special section so that we // can always guarantee that the _start and _stop symbols will exist and be // meaningful. This is not required on COFF platforms, where our start and // stop symbols will create the section. if (!CGM.getTriple().isOSBinFormatCOFF()) { createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, sectionName()); if (Categories.empty()) createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, sectionName()); if (!EmittedClass) { createNullGlobal(".objc_null_cls_init_ref", NULLPtr, sectionName()); createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, sectionName()); } if (!EmittedProtocol) createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, sectionName()); if (!EmittedProtocolRef) createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, sectionName()); if (ClassAliases.empty()) createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, sectionName()); if (ConstantStrings.empty()) { auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, i32Zero, i32Zero, i32Zero, NULLPtr }, sectionName()); } } ConstantStrings.clear(); Categories.clear(); Classes.clear(); if (EarlyInitList.size() > 0) { auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", &CGM.getModule()); llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", Init)); for (const auto &lateInit : EarlyInitList) { auto *global = TheModule.getGlobalVariable(lateInit.first); if (global) { llvm::GlobalVariable *GV = lateInit.second.first; b.CreateAlignedStore( global, b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), CGM.getPointerAlign().getAsAlign()); } } b.CreateRetVoid(); // We can't use the normal LLVM global initialisation array, because we // need to specify that this runs early in library initialisation. auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), /*isConstant*/true, llvm::GlobalValue::InternalLinkage, Init, ".objc_early_init_ptr"); InitVar->setSection(".CRT$XCLb"); CGM.addUsedGlobal(InitVar); } return nullptr; } /// In the v2 ABI, ivar offset variables use the type encoding in their name /// to trigger linker failures if the types don't match. std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, const ObjCIvarDecl *Ivar) override { std::string TypeEncoding; CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding); const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; return Name; } llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar) override { const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); if (!IvarOffsetPointer) IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, llvm::GlobalValue::ExternalLinkage, nullptr, Name); CharUnits Align = CGM.getIntAlign(); llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); if (Offset->getType() != PtrDiffTy) Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); return Offset; } void GenerateClass(const ObjCImplementationDecl *OID) override { ASTContext &Context = CGM.getContext(); bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); // Get the class name ObjCInterfaceDecl *classDecl = const_cast(OID->getClassInterface()); std::string className = classDecl->getNameAsString(); auto *classNameConstant = MakeConstantString(className); ConstantInitBuilder builder(CGM); auto metaclassFields = builder.beginStruct(); // struct objc_class *isa; metaclassFields.addNullPointer(PtrTy); // struct objc_class *super_class; metaclassFields.addNullPointer(PtrTy); // const char *name; metaclassFields.add(classNameConstant); // long version; metaclassFields.addInt(LongTy, 0); // unsigned long info; // objc_class_flag_meta metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta); // long instance_size; // Setting this to zero is consistent with the older ABI, but it might be // more sensible to set this to sizeof(struct objc_class) metaclassFields.addInt(LongTy, 0); // struct objc_ivar_list *ivars; metaclassFields.addNullPointer(PtrTy); // struct objc_method_list *methods // FIXME: Almost identical code is copied and pasted below for the // class, but refactoring it cleanly requires C++14 generic lambdas. if (OID->classmeth_begin() == OID->classmeth_end()) metaclassFields.addNullPointer(PtrTy); else { SmallVector ClassMethods; ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), OID->classmeth_end()); metaclassFields.add( GenerateMethodList(className, "", ClassMethods, true)); } // void *dtable; metaclassFields.addNullPointer(PtrTy); // IMP cxx_construct; metaclassFields.addNullPointer(PtrTy); // IMP cxx_destruct; metaclassFields.addNullPointer(PtrTy); // struct objc_class *subclass_list metaclassFields.addNullPointer(PtrTy); // struct objc_class *sibling_class metaclassFields.addNullPointer(PtrTy); // struct objc_protocol_list *protocols; metaclassFields.addNullPointer(PtrTy); // struct reference_list *extra_data; metaclassFields.addNullPointer(PtrTy); // long abi_version; metaclassFields.addInt(LongTy, 0); // struct objc_property_list *properties metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); auto *metaclass = metaclassFields.finishAndCreateGlobal( ManglePublicSymbol("OBJC_METACLASS_") + className, CGM.getPointerAlign()); auto classFields = builder.beginStruct(); // struct objc_class *isa; classFields.add(metaclass); // struct objc_class *super_class; // Get the superclass name. const ObjCInterfaceDecl * SuperClassDecl = OID->getClassInterface()->getSuperClass(); llvm::Constant *SuperClass = nullptr; if (SuperClassDecl) { auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); SuperClass = TheModule.getNamedGlobal(SuperClassName); if (!SuperClass) { SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); if (IsCOFF) { auto Storage = llvm::GlobalValue::DefaultStorageClass; if (SuperClassDecl->hasAttr()) Storage = llvm::GlobalValue::DLLImportStorageClass; else if (SuperClassDecl->hasAttr()) Storage = llvm::GlobalValue::DLLExportStorageClass; cast(SuperClass)->setDLLStorageClass(Storage); } } if (!IsCOFF) classFields.add(SuperClass); else classFields.addNullPointer(PtrTy); } else classFields.addNullPointer(PtrTy); // const char *name; classFields.add(classNameConstant); // long version; classFields.addInt(LongTy, 0); // unsigned long info; // !objc_class_flag_meta classFields.addInt(LongTy, 0); // long instance_size; int superInstanceSize = !SuperClassDecl ? 0 : Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); // Instance size is negative for classes that have not yet had their ivar // layout calculated. classFields.addInt(LongTy, 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - superInstanceSize)); if (classDecl->all_declared_ivar_begin() == nullptr) classFields.addNullPointer(PtrTy); else { int ivar_count = 0; for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; IVD = IVD->getNextIvar()) ivar_count++; llvm::DataLayout td(&TheModule); // struct objc_ivar_list *ivars; ConstantInitBuilder b(CGM); auto ivarListBuilder = b.beginStruct(); // int count; ivarListBuilder.addInt(IntTy, ivar_count); // size_t size; llvm::StructType *ObjCIvarTy = llvm::StructType::get( PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, Int32Ty, Int32Ty); ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / CGM.getContext().getCharWidth()); // struct objc_ivar ivars[] auto ivarArrayBuilder = ivarListBuilder.beginArray(); for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; IVD = IVD->getNextIvar()) { auto ivarTy = IVD->getType(); auto ivarBuilder = ivarArrayBuilder.beginStruct(); // const char *name; ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); // const char *type; std::string TypeStr; //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); ivarBuilder.add(MakeConstantString(TypeStr)); // int *offset; uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); uint64_t Offset = BaseOffset - superInstanceSize; llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); if (OffsetVar) OffsetVar->setInitializer(OffsetValue); else OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, false, llvm::GlobalValue::ExternalLinkage, OffsetValue, OffsetName); auto ivarVisibility = (IVD->getAccessControl() == ObjCIvarDecl::Private || IVD->getAccessControl() == ObjCIvarDecl::Package || classDecl->getVisibility() == HiddenVisibility) ? llvm::GlobalValue::HiddenVisibility : llvm::GlobalValue::DefaultVisibility; OffsetVar->setVisibility(ivarVisibility); if (ivarVisibility != llvm::GlobalValue::HiddenVisibility) CGM.setGVProperties(OffsetVar, OID->getClassInterface()); ivarBuilder.add(OffsetVar); // Ivar size ivarBuilder.addInt(Int32Ty, CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); // Alignment will be stored as a base-2 log of the alignment. unsigned align = llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); // Objects that require more than 2^64-byte alignment should be impossible! assert(align < 64); // uint32_t flags; // Bits 0-1 are ownership. // Bit 2 indicates an extended type encoding // Bits 3-8 contain log2(aligment) ivarBuilder.addInt(Int32Ty, (align << 3) | (1<<2) | FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); ivarBuilder.finishAndAddTo(ivarArrayBuilder); } ivarArrayBuilder.finishAndAddTo(ivarListBuilder); auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", CGM.getPointerAlign(), /*constant*/ false, llvm::GlobalValue::PrivateLinkage); classFields.add(ivarList); } // struct objc_method_list *methods SmallVector InstanceMethods; InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), OID->instmeth_end()); for (auto *propImpl : OID->property_impls()) if (propImpl->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { auto addIfExists = [&](const ObjCMethodDecl *OMD) { if (OMD && OMD->hasBody()) InstanceMethods.push_back(OMD); }; addIfExists(propImpl->getGetterMethodDecl()); addIfExists(propImpl->getSetterMethodDecl()); } if (InstanceMethods.size() == 0) classFields.addNullPointer(PtrTy); else classFields.add( GenerateMethodList(className, "", InstanceMethods, false)); // void *dtable; classFields.addNullPointer(PtrTy); // IMP cxx_construct; classFields.addNullPointer(PtrTy); // IMP cxx_destruct; classFields.addNullPointer(PtrTy); // struct objc_class *subclass_list classFields.addNullPointer(PtrTy); // struct objc_class *sibling_class classFields.addNullPointer(PtrTy); // struct objc_protocol_list *protocols; auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), classDecl->protocol_end()); SmallVector Protocols; for (const auto *I : RuntimeProtocols) Protocols.push_back(GenerateProtocolRef(I)); if (Protocols.empty()) classFields.addNullPointer(PtrTy); else classFields.add(GenerateProtocolList(Protocols)); // struct reference_list *extra_data; classFields.addNullPointer(PtrTy); // long abi_version; classFields.addInt(LongTy, 0); // struct objc_property_list *properties classFields.add(GeneratePropertyList(OID, classDecl)); llvm::GlobalVariable *classStruct = classFields.finishAndCreateGlobal(SymbolForClass(className), CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); auto *classRefSymbol = GetClassVar(className); classRefSymbol->setSection(sectionName()); classRefSymbol->setInitializer(classStruct); if (IsCOFF) { // we can't import a class struct. if (OID->getClassInterface()->hasAttr()) { classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); cast(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); } if (SuperClass) { std::pair v{classStruct, 1}; EarlyInitList.emplace_back(std::string(SuperClass->getName()), std::move(v)); } } // Resolve the class aliases, if they exist. // FIXME: Class pointer aliases shouldn't exist! if (ClassPtrAlias) { ClassPtrAlias->replaceAllUsesWith(classStruct); ClassPtrAlias->eraseFromParent(); ClassPtrAlias = nullptr; } if (auto Placeholder = TheModule.getNamedGlobal(SymbolForClass(className))) if (Placeholder != classStruct) { Placeholder->replaceAllUsesWith(classStruct); Placeholder->eraseFromParent(); classStruct->setName(SymbolForClass(className)); } if (MetaClassPtrAlias) { MetaClassPtrAlias->replaceAllUsesWith(metaclass); MetaClassPtrAlias->eraseFromParent(); MetaClassPtrAlias = nullptr; } assert(classStruct->getName() == SymbolForClass(className)); auto classInitRef = new llvm::GlobalVariable(TheModule, classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); classInitRef->setSection(sectionName()); CGM.addUsedGlobal(classInitRef); EmittedClass = true; } public: CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, PtrToObjCSuperTy, SelectorTy); SentInitializeFn.init(&CGM, "objc_send_initialize", llvm::Type::getVoidTy(VMContext), IdTy); // struct objc_property // { // const char *name; // const char *attributes; // const char *type; // SEL getter; // SEL setter; // } PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); } void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD) override { auto &Builder = CGF.Builder; bool ReceiverCanBeNull = true; auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); auto selfValue = Builder.CreateLoad(selfAddr); // Generate: // // /* unless the receiver is never NULL */ // if (self == nil) { // return (ReturnType){ }; // } // // /* for class methods only to force class lazy initialization */ // if (!__objc_{class}_initialized) // { // objc_send_initialize(class); // __objc_{class}_initialized = 1; // } // // _cmd = @selector(...) // ... if (OMD->isClassMethod()) { const ObjCInterfaceDecl *OID = cast(CD); // Nullable `Class` expressions cannot be messaged with a direct method // so the only reason why the receive can be null would be because // of weak linking. ReceiverCanBeNull = isWeakLinkedClass(OID); } llvm::MDBuilder MDHelper(CGM.getLLVMContext()); if (ReceiverCanBeNull) { llvm::BasicBlock *SelfIsNilBlock = CGF.createBasicBlock("objc_direct_method.self_is_nil"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("objc_direct_method.cont"); // if (self == nil) { auto selfTy = cast(selfValue->getType()); auto Zero = llvm::ConstantPointerNull::get(selfTy); Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); CGF.EmitBlock(SelfIsNilBlock); // return (ReturnType){ }; auto retTy = OMD->getReturnType(); Builder.SetInsertPoint(SelfIsNilBlock); if (!retTy->isVoidType()) { CGF.EmitNullInitialization(CGF.ReturnValue, retTy); } CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); // } // rest of the body CGF.EmitBlock(ContBlock); Builder.SetInsertPoint(ContBlock); } if (OMD->isClassMethod()) { // Prefix of the class type. auto *classStart = llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy); auto &astContext = CGM.getContext(); auto flags = Builder.CreateLoad( Address{Builder.CreateStructGEP(classStart, selfValue, 4), LongTy, CharUnits::fromQuantity( astContext.getTypeAlign(astContext.UnsignedLongTy))}); auto isInitialized = Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized); llvm::BasicBlock *notInitializedBlock = CGF.createBasicBlock("objc_direct_method.class_uninitialized"); llvm::BasicBlock *initializedBlock = CGF.createBasicBlock("objc_direct_method.class_initialized"); Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]), notInitializedBlock, initializedBlock, MDHelper.createBranchWeights(1, 1 << 20)); CGF.EmitBlock(notInitializedBlock); Builder.SetInsertPoint(notInitializedBlock); CGF.EmitRuntimeCall(SentInitializeFn, selfValue); Builder.CreateBr(initializedBlock); CGF.EmitBlock(initializedBlock); Builder.SetInsertPoint(initializedBlock); } // only synthesize _cmd if it's referenced if (OMD->getCmdDecl()->isUsed()) { // `_cmd` is not a parameter to direct methods, so storage must be // explicitly declared for it. CGF.EmitVarDecl(*OMD->getCmdDecl()); Builder.CreateStore(GetSelector(CGF, OMD), CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); } } }; const char *const CGObjCGNUstep2::SectionsBaseNames[8] = { "__objc_selectors", "__objc_classes", "__objc_class_refs", "__objc_cats", "__objc_protocols", "__objc_protocol_refs", "__objc_class_aliases", "__objc_constant_string" }; const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = { ".objcrt$SEL", ".objcrt$CLS", ".objcrt$CLR", ".objcrt$CAT", ".objcrt$PCL", ".objcrt$PCR", ".objcrt$CAL", ".objcrt$STR" }; /// Support for the ObjFW runtime. class CGObjCObjFW: public CGObjCGNU { protected: /// The GCC ABI message lookup function. Returns an IMP pointing to the /// method implementation for this message. LazyRuntimeFunction MsgLookupFn; /// stret lookup function. While this does not seem to make sense at the /// first look, this is required to call the correct forwarding function. LazyRuntimeFunction MsgLookupFnSRet; /// The GCC ABI superclass message lookup function. Takes a pointer to a /// structure describing the receiver and the class, and a selector as /// arguments. Returns the IMP for the corresponding method. LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, llvm::Value *cmd, llvm::MDNode *node, MessageSendInfo &MSI) override { CGBuilderTy &Builder = CGF.Builder; llvm::Value *args[] = { EnforceType(Builder, Receiver, IdTy), EnforceType(Builder, cmd, SelectorTy) }; llvm::CallBase *imp; if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); else imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); imp->setMetadata(msgSendMDKind, node); return imp; } llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, llvm::Value *cmd, MessageSendInfo &MSI) override { CGBuilderTy &Builder = CGF.Builder; llvm::Value *lookupArgs[] = { EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd, }; if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); else return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); } llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, bool isWeak) override { if (isWeak) return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); EmitClassRef(Name); std::string SymbolName = "_OBJC_CLASS_" + Name; llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); if (!ClassSymbol) ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, llvm::GlobalValue::ExternalLinkage, nullptr, SymbolName); return ClassSymbol; } public: CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { // IMP objc_msg_lookup(id, SEL); MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, SelectorTy); // IMP objc_msg_lookup_super(struct objc_super*, SEL); MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, PtrToObjCSuperTy, SelectorTy); MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, PtrToObjCSuperTy, SelectorTy); } }; } // end anonymous namespace /// Emits a reference to a dummy variable which is emitted with each class. /// This ensures that a linker error will be generated when trying to link /// together modules where a referenced class is not defined. void CGObjCGNU::EmitClassRef(const std::string &className) { std::string symbolRef = "__objc_class_ref_" + className; // Don't emit two copies of the same symbol if (TheModule.getGlobalVariable(symbolRef)) return; std::string symbolName = "__objc_class_name_" + className; llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); if (!ClassSymbol) { ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, llvm::GlobalValue::ExternalLinkage, nullptr, symbolName); } new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); } CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, unsigned protocolClassVersion, unsigned classABI) : CGObjCRuntime(cgm), TheModule(CGM.getModule()), VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); usesSEHExceptions = cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); usesCxxExceptions = cgm.getContext().getTargetInfo().getTriple().isOSCygMing() && isRuntime(ObjCRuntime::GNUstep, 2); CodeGenTypes &Types = CGM.getTypes(); IntTy = cast( Types.ConvertType(CGM.getContext().IntTy)); LongTy = cast( Types.ConvertType(CGM.getContext().LongTy)); SizeTy = cast( Types.ConvertType(CGM.getContext().getSizeType())); PtrDiffTy = cast( Types.ConvertType(CGM.getContext().getPointerDiffType())); BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); Int8Ty = llvm::Type::getInt8Ty(VMContext); // C string type. Used in lots of places. PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); ProtocolPtrTy = llvm::PointerType::getUnqual( Types.ConvertType(CGM.getContext().getObjCProtoType())); Zeros[0] = llvm::ConstantInt::get(LongTy, 0); Zeros[1] = Zeros[0]; NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); // Get the selector Type. QualType selTy = CGM.getContext().getObjCSelType(); if (QualType() == selTy) { SelectorTy = PtrToInt8Ty; SelectorElemTy = Int8Ty; } else { SelectorTy = cast(CGM.getTypes().ConvertType(selTy)); SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType()); } PtrToIntTy = llvm::PointerType::getUnqual(IntTy); PtrTy = PtrToInt8Ty; Int32Ty = llvm::Type::getInt32Ty(VMContext); Int64Ty = llvm::Type::getInt64Ty(VMContext); IntPtrTy = CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; // Object type QualType UnqualIdTy = CGM.getContext().getObjCIdType(); ASTIdTy = CanQualType(); if (UnqualIdTy != QualType()) { ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); IdTy = cast(CGM.getTypes().ConvertType(ASTIdTy)); IdElemTy = CGM.getTypes().ConvertTypeForMem( ASTIdTy.getTypePtr()->getPointeeType()); } else { IdTy = PtrToInt8Ty; IdElemTy = Int8Ty; } PtrToIdTy = llvm::PointerType::getUnqual(IdTy); ProtocolTy = llvm::StructType::get(IdTy, PtrToInt8Ty, // name PtrToInt8Ty, // protocols PtrToInt8Ty, // instance methods PtrToInt8Ty, // class methods PtrToInt8Ty, // optional instance methods PtrToInt8Ty, // optional class methods PtrToInt8Ty, // properties PtrToInt8Ty);// optional properties // struct objc_property_gsv1 // { // const char *name; // char attributes; // char attributes2; // char unused1; // char unused2; // const char *getter_name; // const char *getter_types; // const char *setter_name; // const char *setter_types; // } PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); // void objc_exception_throw(id); ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); ExceptionReThrowFn.init(&CGM, usesCxxExceptions ? "objc_exception_rethrow" : "objc_exception_throw", VoidTy, IdTy); // int objc_sync_enter(id); SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); // int objc_sync_exit(id); SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); // void objc_enumerationMutation (id) EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, PtrDiffTy, BoolTy); // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, PtrDiffTy, IdTy, BoolTy, BoolTy); // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, PtrDiffTy, BoolTy, BoolTy); // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, PtrDiffTy, BoolTy, BoolTy); // IMP type llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, true)); const LangOptions &Opts = CGM.getLangOpts(); if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) RuntimeVersion = 10; // Don't bother initialising the GC stuff unless we're compiling in GC mode if (Opts.getGC() != LangOptions::NonGC) { // This is a bit of an hack. We should sort this out by having a proper // CGObjCGNUstep subclass for GC, but we may want to really support the old // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now // Get selectors needed in GC mode RetainSel = GetNullarySelector("retain", CGM.getContext()); ReleaseSel = GetNullarySelector("release", CGM.getContext()); AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); // Get functions needed in GC mode // id objc_assign_ivar(id, id, ptrdiff_t); IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); // id objc_assign_strongCast (id, id*) StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, PtrToIdTy); // id objc_assign_global(id, id*); GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); // id objc_assign_weak(id, id*); WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); // id objc_read_weak(id*); WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); // void *objc_memmove_collectable(void*, void *, size_t); MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, SizeTy); } } llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, const std::string &Name, bool isWeak) { llvm::Constant *ClassName = MakeConstantString(Name); // With the incompatible ABI, this will need to be replaced with a direct // reference to the class symbol. For the compatible nonfragile ABI we are // still performing this lookup at run time but emitting the symbol for the // class externally so that we can make the switch later. // // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class // with memoized versions or with static references if it's safe to do so. if (!isWeak) EmitClassRef(Name); llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); } // This has to perform the lookup every time, since posing and related // techniques can modify the name -> class mapping. llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID) { auto *Value = GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); if (auto *ClassSymbol = dyn_cast(Value)) CGM.setGVProperties(ClassSymbol, OID); return Value; } llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); if (CGM.getTriple().isOSBinFormatCOFF()) { if (auto *ClassSymbol = dyn_cast(Value)) { IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); const VarDecl *VD = nullptr; for (const auto *Result : DC->lookup(&II)) if ((VD = dyn_cast(Result))) break; CGM.setGVProperties(ClassSymbol, VD); } } return Value; } llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, const std::string &TypeEncoding) { SmallVectorImpl &Types = SelectorTable[Sel]; llvm::GlobalAlias *SelValue = nullptr; for (SmallVectorImpl::iterator i = Types.begin(), e = Types.end() ; i!=e ; i++) { if (i->first == TypeEncoding) { SelValue = i->second; break; } } if (!SelValue) { SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0, llvm::GlobalValue::PrivateLinkage, ".objc_selector_" + Sel.getAsString(), &TheModule); Types.emplace_back(TypeEncoding, SelValue); } return SelValue; } Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { llvm::Value *SelValue = GetSelector(CGF, Sel); // Store it to a temporary. Does this satisfy the semantics of // GetAddrOfSelector? Hopefully. Address tmp = CGF.CreateTempAlloca(SelValue->getType(), CGF.getPointerAlign()); CGF.Builder.CreateStore(SelValue, tmp); return tmp; } llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { return GetTypedSelector(CGF, Sel, std::string()); } llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl *Method) { std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); return GetTypedSelector(CGF, Method->getSelector(), SelTypes); } llvm::Constant *CGObjCGNU::GetEHType(QualType T) { if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { // With the old ABI, there was only one kind of catchall, which broke // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as // a pointer indicating object catchalls, and NULL to indicate real // catchalls if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { return MakeConstantString("@id"); } else { return nullptr; } } // All other types should be Objective-C interface pointer types. const ObjCObjectPointerType *OPT = T->getAs(); assert(OPT && "Invalid @catch type."); const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); assert(IDecl && "Invalid @catch type."); return MakeConstantString(IDecl->getIdentifier()->getName()); } llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { if (usesSEHExceptions) return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions) return CGObjCGNU::GetEHType(T); // For Objective-C++, we want to provide the ability to catch both C++ and // Objective-C objects in the same function. // There's a particular fixed type info for 'id'. if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { llvm::Constant *IDEHType = CGM.getModule().getGlobalVariable("__objc_id_type_info"); if (!IDEHType) IDEHType = new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, "__objc_id_type_info"); return IDEHType; } const ObjCObjectPointerType *PT = T->getAs(); assert(PT && "Invalid @catch type."); const ObjCInterfaceType *IT = PT->getInterfaceType(); assert(IT && "Invalid @catch type."); std::string className = std::string(IT->getDecl()->getIdentifier()->getName()); std::string typeinfoName = "__objc_eh_typeinfo_" + className; // Return the existing typeinfo if it exists if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName)) return typeinfo; // Otherwise create it. // vtable for gnustep::libobjc::__objc_class_type_info // It's quite ugly hard-coding this. Ideally we'd generate it using the host // platform's name mangling. const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; auto *Vtable = TheModule.getGlobalVariable(vtableName); if (!Vtable) { Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, llvm::GlobalValue::ExternalLinkage, nullptr, vtableName); } llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); auto *BVtable = llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two); llvm::Constant *typeName = ExportUniqueString(className, "__objc_eh_typename_"); ConstantInitBuilder builder(CGM); auto fields = builder.beginStruct(); fields.add(BVtable); fields.add(typeName); llvm::Constant *TI = fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, CGM.getPointerAlign(), /*constant*/ false, llvm::GlobalValue::LinkOnceODRLinkage); return TI; } /// Generate an NSConstantString object. ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { std::string Str = SL->getString().str(); CharUnits Align = CGM.getPointerAlign(); // Look for an existing one llvm::StringMap::iterator old = ObjCStrings.find(Str); if (old != ObjCStrings.end()) return ConstantAddress(old->getValue(), Int8Ty, Align); StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; if (StringClass.empty()) StringClass = "NSConstantString"; std::string Sym = "_OBJC_CLASS_"; Sym += StringClass; llvm::Constant *isa = TheModule.getNamedGlobal(Sym); if (!isa) isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false, llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym); ConstantInitBuilder Builder(CGM); auto Fields = Builder.beginStruct(); Fields.add(isa); Fields.add(MakeConstantString(Str)); Fields.addInt(IntTy, Str.size()); llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align); ObjCStrings[Str] = ObjCStr; ConstantStrings.push_back(ObjCStr); return ConstantAddress(ObjCStr, Int8Ty, Align); } ///Generates a message send where the super is the receiver. This is a message ///send to self with special delivery semantics indicating which class's method ///should be called. RValue CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Receiver, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method) { CGBuilderTy &Builder = CGF.Builder; if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { if (Sel == RetainSel || Sel == AutoreleaseSel) { return RValue::get(EnforceType(Builder, Receiver, CGM.getTypes().ConvertType(ResultType))); } if (Sel == ReleaseSel) { return RValue::get(nullptr); } } llvm::Value *cmd = GetSelector(CGF, Sel); CallArgList ActualArgs; ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); ActualArgs.addFrom(CallArgs); MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); llvm::Value *ReceiverClass = nullptr; bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); if (isV2ABI) { ReceiverClass = GetClassNamed(CGF, Class->getSuperClass()->getNameAsString(), /*isWeak*/false); if (IsClassMessage) { // Load the isa pointer of the superclass is this is a class method. ReceiverClass = Builder.CreateBitCast(ReceiverClass, llvm::PointerType::getUnqual(IdTy)); ReceiverClass = Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); } ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); } else { if (isCategoryImpl) { llvm::FunctionCallee classLookupFunction = nullptr; if (IsClassMessage) { classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( IdTy, PtrTy, true), "objc_get_meta_class"); } else { classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( IdTy, PtrTy, true), "objc_get_class"); } ReceiverClass = Builder.CreateCall(classLookupFunction, MakeConstantString(Class->getNameAsString())); } else { // Set up global aliases for the metaclass or class pointer if they do not // already exist. These will are forward-references which will be set to // pointers to the class and metaclass structure created for the runtime // load function. To send a message to super, we look up the value of the // super_class pointer from either the class or metaclass structure. if (IsClassMessage) { if (!MetaClassPtrAlias) { MetaClassPtrAlias = llvm::GlobalAlias::create( IdElemTy, 0, llvm::GlobalValue::InternalLinkage, ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); } ReceiverClass = MetaClassPtrAlias; } else { if (!ClassPtrAlias) { ClassPtrAlias = llvm::GlobalAlias::create( IdElemTy, 0, llvm::GlobalValue::InternalLinkage, ".objc_class_ref" + Class->getNameAsString(), &TheModule); } ReceiverClass = ClassPtrAlias; } } // Cast the pointer to a simplified version of the class structure llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); ReceiverClass = Builder.CreateBitCast(ReceiverClass, llvm::PointerType::getUnqual(CastTy)); // Get the superclass pointer ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); // Load the superclass pointer ReceiverClass = Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); } // Construct the structure used to look up the IMP llvm::StructType *ObjCSuperTy = llvm::StructType::get(Receiver->getType(), IdTy); Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, CGF.getPointerAlign()); Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); // Get the IMP llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); imp = EnforceType(Builder, imp, MSI.MessengerType); llvm::Metadata *impMD[] = { llvm::MDString::get(VMContext, Sel.getAsString()), llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); CGCallee callee(CGCalleeInfo(), imp); llvm::CallBase *call; RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); call->setMetadata(msgSendMDKind, node); return msgRet; } /// Generate code for a message send expression. RValue CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class, const ObjCMethodDecl *Method) { CGBuilderTy &Builder = CGF.Builder; // Strip out message sends to retain / release in GC mode if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { if (Sel == RetainSel || Sel == AutoreleaseSel) { return RValue::get(EnforceType(Builder, Receiver, CGM.getTypes().ConvertType(ResultType))); } if (Sel == ReleaseSel) { return RValue::get(nullptr); } } bool isDirect = Method && Method->isDirectMethod(); IdTy = cast(CGM.getTypes().ConvertType(ASTIdTy)); llvm::Value *cmd; if (!isDirect) { if (Method) cmd = GetSelector(CGF, Method); else cmd = GetSelector(CGF, Sel); cmd = EnforceType(Builder, cmd, SelectorTy); } Receiver = EnforceType(Builder, Receiver, IdTy); llvm::Metadata *impMD[] = { llvm::MDString::get(VMContext, Sel.getAsString()), llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); CallArgList ActualArgs; ActualArgs.add(RValue::get(Receiver), ASTIdTy); if (!isDirect) ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); ActualArgs.addFrom(CallArgs); MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); // Message sends are expected to return a zero value when the // receiver is nil. At one point, this was only guaranteed for // simple integer and pointer types, but expectations have grown // over time. // // Given a nil receiver, the GNU runtime's message lookup will // return a stub function that simply sets various return-value // registers to zero and then returns. That's good enough for us // if and only if (1) the calling conventions of that stub are // compatible with the signature we're using and (2) the registers // it sets are sufficient to produce a zero value of the return type. // Rather than doing a whole target-specific analysis, we assume it // only works for void, integer, and pointer types, and in all // other cases we do an explicit nil check is emitted code. In // addition to ensuring we produce a zero value for other types, this // sidesteps the few outright CC incompatibilities we know about that // could otherwise lead to crashes, like when a method is expected to // return on the x87 floating point stack or adjust the stack pointer // because of an indirect return. bool hasParamDestroyedInCallee = false; bool requiresExplicitZeroResult = false; bool requiresNilReceiverCheck = [&] { // We never need a check if we statically know the receiver isn't nil. if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, Class, Receiver)) return false; // If there's a consumed argument, we need a nil check. if (Method && Method->hasParamDestroyedInCallee()) { hasParamDestroyedInCallee = true; } // If the return value isn't flagged as unused, and the result // type isn't in our narrow set where we assume compatibility, // we need a nil check to ensure a nil value. if (!Return.isUnused()) { if (ResultType->isVoidType()) { // void results are definitely okay. } else if (ResultType->hasPointerRepresentation() && CGM.getTypes().isZeroInitializable(ResultType)) { // Pointer types should be fine as long as they have // bitwise-zero null pointers. But do we need to worry // about unusual address spaces? } else if (ResultType->isIntegralOrEnumerationType()) { // Bitwise zero should always be zero for integral types. // FIXME: we probably need a size limit here, but we've // never imposed one before } else { // Otherwise, use an explicit check just to be sure, unless we're // calling a direct method, where the implementation does this for us. requiresExplicitZeroResult = !isDirect; } } return hasParamDestroyedInCallee || requiresExplicitZeroResult; }(); // We will need to explicitly zero-initialize an aggregate result slot // if we generally require explicit zeroing and we have an aggregate // result. bool requiresExplicitAggZeroing = requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); // The block we're going to end up in after any message send or nil path. llvm::BasicBlock *continueBB = nullptr; // The block that eventually branched to continueBB along the nil path. llvm::BasicBlock *nilPathBB = nullptr; // The block to do explicit work in along the nil path, if necessary. llvm::BasicBlock *nilCleanupBB = nullptr; // Emit the nil-receiver check. if (requiresNilReceiverCheck) { llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); continueBB = CGF.createBasicBlock("continue"); // If we need to zero-initialize an aggregate result or destroy // consumed arguments, we'll need a separate cleanup block. // Otherwise we can just branch directly to the continuation block. if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); } else { nilPathBB = Builder.GetInsertBlock(); } llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, llvm::Constant::getNullValue(Receiver->getType())); Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, messageBB); CGF.EmitBlock(messageBB); } // Get the IMP to call llvm::Value *imp; // If this is a direct method, just emit it here. if (isDirect) imp = GenerateMethod(Method, Method->getClassInterface()); else // If we have non-legacy dispatch specified, we try using the // objc_msgSend() functions. These are not supported on all platforms // (or all runtimes on a given platform), so we switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { case CodeGenOptions::Legacy: imp = LookupIMP(CGF, Receiver, cmd, node, MSI); break; case CodeGenOptions::Mixed: case CodeGenOptions::NonLegacy: StringRef name = "objc_msgSend"; if (CGM.ReturnTypeUsesFPRet(ResultType)) { name = "objc_msgSend_fpret"; } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { name = "objc_msgSend_stret"; // The address of the memory block is be passed in x8 for POD type, // or in x0 for non-POD type (marked as inreg). bool shouldCheckForInReg = CGM.getContext() .getTargetInfo() .getTriple() .isWindowsMSVCEnvironment() && CGM.getContext().getTargetInfo().getTriple().isAArch64(); if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) { name = "objc_msgSend_stret2"; } } // The actual types here don't matter - we're going to bitcast the // function anyway imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), name) .getCallee(); } // Reset the receiver in case the lookup modified it ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); imp = EnforceType(Builder, imp, MSI.MessengerType); llvm::CallBase *call; CGCallee callee(CGCalleeInfo(), imp); RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); if (!isDirect) call->setMetadata(msgSendMDKind, node); if (requiresNilReceiverCheck) { llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); CGF.Builder.CreateBr(continueBB); // Emit the nil path if we decided it was necessary above. if (nilCleanupBB) { CGF.EmitBlock(nilCleanupBB); if (hasParamDestroyedInCallee) { destroyCalleeDestroyedArguments(CGF, Method, CallArgs); } if (requiresExplicitAggZeroing) { assert(msgRet.isAggregate()); Address addr = msgRet.getAggregateAddress(); CGF.EmitNullInitialization(addr, ResultType); } nilPathBB = CGF.Builder.GetInsertBlock(); CGF.Builder.CreateBr(continueBB); } // Enter the continuation block and emit a phi if required. CGF.EmitBlock(continueBB); if (msgRet.isScalar()) { // If the return type is void, do nothing if (llvm::Value *v = msgRet.getScalarVal()) { llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); phi->addIncoming(v, nonNilPathBB); phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); msgRet = RValue::get(phi); } } else if (msgRet.isAggregate()) { // Aggregate zeroing is handled in nilCleanupBB when it's required. } else /* isComplex() */ { std::pair v = msgRet.getComplexVal(); llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); phi->addIncoming(v.first, nonNilPathBB); phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), nilPathBB); llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); phi2->addIncoming(v.second, nonNilPathBB); phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), nilPathBB); msgRet = RValue::getComplex(phi, phi2); } } return msgRet; } /// Generates a MethodList. Used in construction of a objc_class and /// objc_category structures. llvm::Constant *CGObjCGNU:: GenerateMethodList(StringRef ClassName, StringRef CategoryName, ArrayRef Methods, bool isClassMethodList) { if (Methods.empty()) return NULLPtr; ConstantInitBuilder Builder(CGM); auto MethodList = Builder.beginStruct(); MethodList.addNullPointer(CGM.Int8PtrTy); MethodList.addInt(Int32Ty, Methods.size()); // Get the method structure type. llvm::StructType *ObjCMethodTy = llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, // Really a selector, but the runtime creates it us. PtrToInt8Ty, // Method types IMPTy // Method pointer }); bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); if (isV2ABI) { // size_t size; llvm::DataLayout td(&TheModule); MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / CGM.getContext().getCharWidth()); ObjCMethodTy = llvm::StructType::get(CGM.getLLVMContext(), { IMPTy, // Method pointer PtrToInt8Ty, // Selector PtrToInt8Ty // Extended type encoding }); } else { ObjCMethodTy = llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, // Really a selector, but the runtime creates it us. PtrToInt8Ty, // Method types IMPTy // Method pointer }); } auto MethodArray = MethodList.beginArray(); ASTContext &Context = CGM.getContext(); for (const auto *OMD : Methods) { llvm::Constant *FnPtr = TheModule.getFunction(getSymbolNameForMethod(OMD)); assert(FnPtr && "Can't generate metadata for method that doesn't exist"); auto Method = MethodArray.beginStruct(ObjCMethodTy); if (isV2ABI) { Method.add(FnPtr); Method.add(GetConstantSelector(OMD->getSelector(), Context.getObjCEncodingForMethodDecl(OMD))); Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); } else { Method.add(MakeConstantString(OMD->getSelector().getAsString())); Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); Method.add(FnPtr); } Method.finishAndAddTo(MethodArray); } MethodArray.finishAndAddTo(MethodList); // Create an instance of the structure return MethodList.finishAndCreateGlobal(".objc_method_list", CGM.getPointerAlign()); } /// Generates an IvarList. Used in construction of a objc_class. llvm::Constant *CGObjCGNU:: GenerateIvarList(ArrayRef IvarNames, ArrayRef IvarTypes, ArrayRef IvarOffsets, ArrayRef IvarAlign, ArrayRef IvarOwnership) { if (IvarNames.empty()) return NULLPtr; ConstantInitBuilder Builder(CGM); // Structure containing array count followed by array. auto IvarList = Builder.beginStruct(); IvarList.addInt(IntTy, (int)IvarNames.size()); // Get the ivar structure type. llvm::StructType *ObjCIvarTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); // Array of ivar structures. auto Ivars = IvarList.beginArray(ObjCIvarTy); for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { auto Ivar = Ivars.beginStruct(ObjCIvarTy); Ivar.add(IvarNames[i]); Ivar.add(IvarTypes[i]); Ivar.add(IvarOffsets[i]); Ivar.finishAndAddTo(Ivars); } Ivars.finishAndAddTo(IvarList); // Create an instance of the structure return IvarList.finishAndCreateGlobal(".objc_ivar_list", CGM.getPointerAlign()); } /// Generate a class structure llvm::Constant *CGObjCGNU::GenerateClassStructure( llvm::Constant *MetaClass, llvm::Constant *SuperClass, unsigned info, const char *Name, llvm::Constant *Version, llvm::Constant *InstanceSize, llvm::Constant *IVars, llvm::Constant *Methods, llvm::Constant *Protocols, llvm::Constant *IvarOffsets, llvm::Constant *Properties, llvm::Constant *StrongIvarBitmap, llvm::Constant *WeakIvarBitmap, bool isMeta) { // Set up the class structure // Note: Several of these are char*s when they should be ids. This is // because the runtime performs this translation on load. // // Fields marked New ABI are part of the GNUstep runtime. We emit them // anyway; the classes will still work with the GNU runtime, they will just // be ignored. llvm::StructType *ClassTy = llvm::StructType::get( PtrToInt8Ty, // isa PtrToInt8Ty, // super_class PtrToInt8Ty, // name LongTy, // version LongTy, // info LongTy, // instance_size IVars->getType(), // ivars Methods->getType(), // methods // These are all filled in by the runtime, so we pretend PtrTy, // dtable PtrTy, // subclass_list PtrTy, // sibling_class PtrTy, // protocols PtrTy, // gc_object_type // New ABI: LongTy, // abi_version IvarOffsets->getType(), // ivar_offsets Properties->getType(), // properties IntPtrTy, // strong_pointers IntPtrTy // weak_pointers ); ConstantInitBuilder Builder(CGM); auto Elements = Builder.beginStruct(ClassTy); // Fill in the structure // isa Elements.add(MetaClass); // super_class Elements.add(SuperClass); // name Elements.add(MakeConstantString(Name, ".class_name")); // version Elements.addInt(LongTy, 0); // info Elements.addInt(LongTy, info); // instance_size if (isMeta) { llvm::DataLayout td(&TheModule); Elements.addInt(LongTy, td.getTypeSizeInBits(ClassTy) / CGM.getContext().getCharWidth()); } else Elements.add(InstanceSize); // ivars Elements.add(IVars); // methods Elements.add(Methods); // These are all filled in by the runtime, so we pretend // dtable Elements.add(NULLPtr); // subclass_list Elements.add(NULLPtr); // sibling_class Elements.add(NULLPtr); // protocols Elements.add(Protocols); // gc_object_type Elements.add(NULLPtr); // abi_version Elements.addInt(LongTy, ClassABIVersion); // ivar_offsets Elements.add(IvarOffsets); // properties Elements.add(Properties); // strong_pointers Elements.add(StrongIvarBitmap); // weak_pointers Elements.add(WeakIvarBitmap); // Create an instance of the structure // This is now an externally visible symbol, so that we can speed up class // messages in the next ABI. We may already have some weak references to // this, so check and fix them properly. std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + std::string(Name)); llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); llvm::Constant *Class = Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); if (ClassRef) { ClassRef->replaceAllUsesWith(Class); ClassRef->removeFromParent(); Class->setName(ClassSym); } return Class; } llvm::Constant *CGObjCGNU:: GenerateProtocolMethodList(ArrayRef Methods) { // Get the method structure type. llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); ASTContext &Context = CGM.getContext(); ConstantInitBuilder Builder(CGM); auto MethodList = Builder.beginStruct(); MethodList.addInt(IntTy, Methods.size()); auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); for (auto *M : Methods) { auto Method = MethodArray.beginStruct(ObjCMethodDescTy); Method.add(MakeConstantString(M->getSelector().getAsString())); Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); Method.finishAndAddTo(MethodArray); } MethodArray.finishAndAddTo(MethodList); return MethodList.finishAndCreateGlobal(".objc_method_list", CGM.getPointerAlign()); } // Create the protocol list structure used in classes, categories and so on llvm::Constant * CGObjCGNU::GenerateProtocolList(ArrayRef Protocols) { ConstantInitBuilder Builder(CGM); auto ProtocolList = Builder.beginStruct(); ProtocolList.add(NULLPtr); ProtocolList.addInt(LongTy, Protocols.size()); auto Elements = ProtocolList.beginArray(PtrToInt8Ty); for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); iter != endIter ; iter++) { llvm::Constant *protocol = nullptr; llvm::StringMap::iterator value = ExistingProtocols.find(*iter); if (value == ExistingProtocols.end()) { protocol = GenerateEmptyProtocol(*iter); } else { protocol = value->getValue(); } Elements.add(protocol); } Elements.finishAndAddTo(ProtocolList); return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", CGM.getPointerAlign()); } llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *PD) { auto protocol = GenerateProtocolRef(PD); llvm::Type *T = CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); } llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; if (!protocol) GenerateProtocol(PD); assert(protocol && "Unknown protocol"); return protocol; } llvm::Constant * CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { llvm::Constant *ProtocolList = GenerateProtocolList({}); llvm::Constant *MethodList = GenerateProtocolMethodList({}); // Protocols are objects containing lists of the methods implemented and // protocols adopted. ConstantInitBuilder Builder(CGM); auto Elements = Builder.beginStruct(); // The isa pointer must be set to a magic number so the runtime knows it's // the correct layout. Elements.add(llvm::ConstantExpr::getIntToPtr( llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); Elements.add(ProtocolList); /* .protocol_list */ Elements.add(MethodList); /* .instance_methods */ Elements.add(MethodList); /* .class_methods */ Elements.add(MethodList); /* .optional_instance_methods */ Elements.add(MethodList); /* .optional_class_methods */ Elements.add(NULLPtr); /* .properties */ Elements.add(NULLPtr); /* .optional_properties */ return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), CGM.getPointerAlign()); } void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { if (PD->isNonRuntimeProtocol()) return; std::string ProtocolName = PD->getNameAsString(); // Use the protocol definition, if there is one. if (const ObjCProtocolDecl *Def = PD->getDefinition()) PD = Def; SmallVector Protocols; for (const auto *PI : PD->protocols()) Protocols.push_back(PI->getNameAsString()); SmallVector InstanceMethods; SmallVector OptionalInstanceMethods; for (const auto *I : PD->instance_methods()) if (I->isOptional()) OptionalInstanceMethods.push_back(I); else InstanceMethods.push_back(I); // Collect information about class methods: SmallVector ClassMethods; SmallVector OptionalClassMethods; for (const auto *I : PD->class_methods()) if (I->isOptional()) OptionalClassMethods.push_back(I); else ClassMethods.push_back(I); llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); llvm::Constant *InstanceMethodList = GenerateProtocolMethodList(InstanceMethods); llvm::Constant *ClassMethodList = GenerateProtocolMethodList(ClassMethods); llvm::Constant *OptionalInstanceMethodList = GenerateProtocolMethodList(OptionalInstanceMethods); llvm::Constant *OptionalClassMethodList = GenerateProtocolMethodList(OptionalClassMethods); // Property metadata: name, attributes, isSynthesized, setter name, setter // types, getter name, getter types. // The isSynthesized value is always set to 0 in a protocol. It exists to // simplify the runtime library by allowing it to use the same data // structures for protocol metadata everywhere. llvm::Constant *PropertyList = GeneratePropertyList(nullptr, PD, false, false); llvm::Constant *OptionalPropertyList = GeneratePropertyList(nullptr, PD, false, true); // Protocols are objects containing lists of the methods implemented and // protocols adopted. // The isa pointer must be set to a magic number so the runtime knows it's // the correct layout. ConstantInitBuilder Builder(CGM); auto Elements = Builder.beginStruct(); Elements.add( llvm::ConstantExpr::getIntToPtr( llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); Elements.add(MakeConstantString(ProtocolName)); Elements.add(ProtocolList); Elements.add(InstanceMethodList); Elements.add(ClassMethodList); Elements.add(OptionalInstanceMethodList); Elements.add(OptionalClassMethodList); Elements.add(PropertyList); Elements.add(OptionalPropertyList); ExistingProtocols[ProtocolName] = Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()); } void CGObjCGNU::GenerateProtocolHolderCategory() { // Collect information about instance methods ConstantInitBuilder Builder(CGM); auto Elements = Builder.beginStruct(); const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; const std::string CategoryName = "AnotherHack"; Elements.add(MakeConstantString(CategoryName)); Elements.add(MakeConstantString(ClassName)); // Instance method list Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false)); // Class method list Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true)); // Protocol list ConstantInitBuilder ProtocolListBuilder(CGM); auto ProtocolList = ProtocolListBuilder.beginStruct(); ProtocolList.add(NULLPtr); ProtocolList.addInt(LongTy, ExistingProtocols.size()); auto ProtocolElements = ProtocolList.beginArray(PtrTy); for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); iter != endIter ; iter++) { ProtocolElements.add(iter->getValue()); } ProtocolElements.finishAndAddTo(ProtocolList); Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list", CGM.getPointerAlign())); Categories.push_back( Elements.finishAndCreateGlobal("", CGM.getPointerAlign())); } /// Libobjc2 uses a bitfield representation where small(ish) bitfields are /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 /// bits set to their values, LSB first, while larger ones are stored in a /// structure of this / form: /// /// struct { int32_t length; int32_t values[length]; }; /// /// The values in the array are stored in host-endian format, with the least /// significant bit being assumed to come first in the bitfield. Therefore, a /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a /// bitfield / with the 63rd bit set will be 1<<64. llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef bits) { int bitCount = bits.size(); int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); if (bitCount < ptrBits) { uint64_t val = 1; for (int i=0 ; i values; int v=0; while (v < bitCount) { int32_t word = 0; for (int i=0 ; (i<32) && (vgetReferencedProtocols(); const auto RuntimeProtos = GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); SmallVector Protocols; for (const auto *PD : RuntimeProtos) Protocols.push_back(PD->getNameAsString()); return GenerateProtocolList(Protocols); } void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { const ObjCInterfaceDecl *Class = OCD->getClassInterface(); std::string ClassName = Class->getNameAsString(); std::string CategoryName = OCD->getNameAsString(); // Collect the names of referenced protocols const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); ConstantInitBuilder Builder(CGM); auto Elements = Builder.beginStruct(); Elements.add(MakeConstantString(CategoryName)); Elements.add(MakeConstantString(ClassName)); // Instance method list SmallVector InstanceMethods; InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), OCD->instmeth_end()); Elements.add( GenerateMethodList(ClassName, CategoryName, InstanceMethods, false)); // Class method list SmallVector ClassMethods; ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), OCD->classmeth_end()); Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true)); // Protocol list Elements.add(GenerateCategoryProtocolList(CatDecl)); if (isRuntime(ObjCRuntime::GNUstep, 2)) { const ObjCCategoryDecl *Category = Class->FindCategoryDeclaration(OCD->getIdentifier()); if (Category) { // Instance properties Elements.add(GeneratePropertyList(OCD, Category, false)); // Class properties Elements.add(GeneratePropertyList(OCD, Category, true)); } else { Elements.addNullPointer(PtrTy); Elements.addNullPointer(PtrTy); } } Categories.push_back(Elements.finishAndCreateGlobal( std::string(".objc_category_") + ClassName + CategoryName, CGM.getPointerAlign())); } llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, const ObjCContainerDecl *OCD, bool isClassProperty, bool protocolOptionalProperties) { SmallVector Properties; llvm::SmallPtrSet PropertySet; bool isProtocol = isa(OCD); ASTContext &Context = CGM.getContext(); std::function collectProtocolProperties = [&](const ObjCProtocolDecl *Proto) { for (const auto *P : Proto->protocols()) collectProtocolProperties(P); for (const auto *PD : Proto->properties()) { if (isClassProperty != PD->isClassProperty()) continue; // Skip any properties that are declared in protocols that this class // conforms to but are not actually implemented by this class. if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) continue; if (!PropertySet.insert(PD->getIdentifier()).second) continue; Properties.push_back(PD); } }; if (const ObjCInterfaceDecl *OID = dyn_cast(OCD)) for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) for (auto *PD : ClassExt->properties()) { if (isClassProperty != PD->isClassProperty()) continue; PropertySet.insert(PD->getIdentifier()); Properties.push_back(PD); } for (const auto *PD : OCD->properties()) { if (isClassProperty != PD->isClassProperty()) continue; // If we're generating a list for a protocol, skip optional / required ones // when generating the other list. if (isProtocol && (protocolOptionalProperties != PD->isOptional())) continue; // Don't emit duplicate metadata for properties that were already in a // class extension. if (!PropertySet.insert(PD->getIdentifier()).second) continue; Properties.push_back(PD); } if (const ObjCInterfaceDecl *OID = dyn_cast(OCD)) for (const auto *P : OID->all_referenced_protocols()) collectProtocolProperties(P); else if (const ObjCCategoryDecl *CD = dyn_cast(OCD)) for (const auto *P : CD->protocols()) collectProtocolProperties(P); auto numProperties = Properties.size(); if (numProperties == 0) return NULLPtr; ConstantInitBuilder builder(CGM); auto propertyList = builder.beginStruct(); auto properties = PushPropertyListHeader(propertyList, numProperties); // Add all of the property methods need adding to the method list and to the // property metadata list. for (auto *property : Properties) { bool isSynthesized = false; bool isDynamic = false; if (!isProtocol) { auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); if (propertyImpl) { isSynthesized = (propertyImpl->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize); isDynamic = (propertyImpl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); } } PushProperty(properties, property, Container, isSynthesized, isDynamic); } properties.finishAndAddTo(propertyList); return propertyList.finishAndCreateGlobal(".objc_property_list", CGM.getPointerAlign()); } void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { // Get the class declaration for which the alias is specified. ObjCInterfaceDecl *ClassDecl = const_cast(OAD->getClassInterface()); ClassAliases.emplace_back(ClassDecl->getNameAsString(), OAD->getNameAsString()); } void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { ASTContext &Context = CGM.getContext(); // Get the superclass name. const ObjCInterfaceDecl * SuperClassDecl = OID->getClassInterface()->getSuperClass(); std::string SuperClassName; if (SuperClassDecl) { SuperClassName = SuperClassDecl->getNameAsString(); EmitClassRef(SuperClassName); } // Get the class name ObjCInterfaceDecl *ClassDecl = const_cast(OID->getClassInterface()); std::string ClassName = ClassDecl->getNameAsString(); // Emit the symbol that is used to generate linker errors if this class is // referenced in other modules but not declared. std::string classSymbolName = "__objc_class_name_" + ClassName; if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); } else { new llvm::GlobalVariable(TheModule, LongTy, false, llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0), classSymbolName); } // Get the size of instances. int instanceSize = Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); // Collect information about instance variables. SmallVector IvarNames; SmallVector IvarTypes; SmallVector IvarOffsets; SmallVector IvarAligns; SmallVector IvarOwnership; ConstantInitBuilder IvarOffsetBuilder(CGM); auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); SmallVector WeakIvars; SmallVector StrongIvars; int superInstanceSize = !SuperClassDecl ? 0 : Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); // For non-fragile ivars, set the instance size to 0 - {the size of just this // class}. The runtime will then set this to the correct value on load. if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { instanceSize = 0 - (instanceSize - superInstanceSize); } for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; IVD = IVD->getNextIvar()) { // Store the name IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); // Get the type encoding for this ivar std::string TypeStr; Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); IvarTypes.push_back(MakeConstantString(TypeStr)); IvarAligns.push_back(llvm::ConstantInt::get(IntTy, Context.getTypeSize(IVD->getType()))); // Get the offset uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); uint64_t Offset = BaseOffset; if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { Offset = BaseOffset - superInstanceSize; } llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); // Create the direct offset value std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + IVD->getNameAsString(); llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); if (OffsetVar) { OffsetVar->setInitializer(OffsetValue); // If this is the real definition, change its linkage type so that // different modules will use this one, rather than their private // copy. OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); } else OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, false, llvm::GlobalValue::ExternalLinkage, OffsetValue, OffsetName); IvarOffsets.push_back(OffsetValue); IvarOffsetValues.add(OffsetVar); Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); IvarOwnership.push_back(lt); switch (lt) { case Qualifiers::OCL_Strong: StrongIvars.push_back(true); WeakIvars.push_back(false); break; case Qualifiers::OCL_Weak: StrongIvars.push_back(false); WeakIvars.push_back(true); break; default: StrongIvars.push_back(false); WeakIvars.push_back(false); } } llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); llvm::GlobalVariable *IvarOffsetArray = IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", CGM.getPointerAlign()); // Collect information about instance methods SmallVector InstanceMethods; InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), OID->instmeth_end()); SmallVector ClassMethods; ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), OID->classmeth_end()); llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); // Collect the names of referenced protocols auto RefProtocols = ClassDecl->protocols(); auto RuntimeProtocols = GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); SmallVector Protocols; for (const auto *I : RuntimeProtocols) Protocols.push_back(I->getNameAsString()); // Get the superclass pointer. llvm::Constant *SuperClass; if (!SuperClassName.empty()) { SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); } else { SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); } // Empty vector used to construct empty method lists SmallVector empty; // Generate the method and instance variable lists llvm::Constant *MethodList = GenerateMethodList(ClassName, "", InstanceMethods, false); llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", ClassMethods, true); llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, IvarOffsets, IvarAligns, IvarOwnership); // Irrespective of whether we are compiling for a fragile or non-fragile ABI, // we emit a symbol containing the offset for each ivar in the class. This // allows code compiled for the non-Fragile ABI to inherit from code compiled // for the legacy ABI, without causing problems. The converse is also // possible, but causes all ivar accesses to be fragile. // Offset pointer for getting at the correct field in the ivar list when // setting up the alias. These are: The base address for the global, the // ivar array (second field), the ivar in this list (set for each ivar), and // the offset (third field in ivar structure) llvm::Type *IndexTy = Int32Ty; llvm::Constant *offsetPointerIndexes[] = {Zeros[0], llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; unsigned ivarIndex = 0; for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; IVD = IVD->getNextIvar()) { const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); // Get the correct ivar field llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( cast(IvarList)->getValueType(), IvarList, offsetPointerIndexes); // Get the existing variable, if one exists. llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); if (offset) { offset->setInitializer(offsetValue); // If this is the real definition, change its linkage type so that // different modules will use this one, rather than their private // copy. offset->setLinkage(llvm::GlobalValue::ExternalLinkage); } else // Add a new alias if there isn't one already. new llvm::GlobalVariable(TheModule, offsetValue->getType(), false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); ++ivarIndex; } llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); //Generate metaclass for class methods llvm::Constant *MetaClassStruct = GenerateClassStructure( NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], NULLPtr, ClassMethodList, NULLPtr, NULLPtr, GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); CGM.setGVProperties(cast(MetaClassStruct), OID->getClassInterface()); // Generate the class structure llvm::Constant *ClassStruct = GenerateClassStructure( MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, GenerateProtocolList(Protocols), IvarOffsetArray, Properties, StrongIvarBitmap, WeakIvarBitmap); CGM.setGVProperties(cast(ClassStruct), OID->getClassInterface()); // Resolve the class aliases, if they exist. if (ClassPtrAlias) { ClassPtrAlias->replaceAllUsesWith(ClassStruct); ClassPtrAlias->eraseFromParent(); ClassPtrAlias = nullptr; } if (MetaClassPtrAlias) { MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct); MetaClassPtrAlias->eraseFromParent(); MetaClassPtrAlias = nullptr; } // Add class structure to list to be added to the symtab later Classes.push_back(ClassStruct); } llvm::Function *CGObjCGNU::ModuleInitFunction() { // Only emit an ObjC load function if no Objective-C stuff has been called if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && ExistingProtocols.empty() && SelectorTable.empty()) return nullptr; // Add all referenced protocols to a category. GenerateProtocolHolderCategory(); llvm::StructType *selStructTy = dyn_cast(SelectorElemTy); if (!selStructTy) { selStructTy = llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); } // Generate statics list: llvm::Constant *statics = NULLPtr; if (!ConstantStrings.empty()) { llvm::GlobalVariable *fileStatics = [&] { ConstantInitBuilder builder(CGM); auto staticsStruct = builder.beginStruct(); StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; if (stringClass.empty()) stringClass = "NXConstantString"; staticsStruct.add(MakeConstantString(stringClass, ".objc_static_class_name")); auto array = staticsStruct.beginArray(); array.addAll(ConstantStrings); array.add(NULLPtr); array.finishAndAddTo(staticsStruct); return staticsStruct.finishAndCreateGlobal(".objc_statics", CGM.getPointerAlign()); }(); ConstantInitBuilder builder(CGM); auto allStaticsArray = builder.beginArray(fileStatics->getType()); allStaticsArray.add(fileStatics); allStaticsArray.addNullPointer(fileStatics->getType()); statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", CGM.getPointerAlign()); } // Array of classes, categories, and constant objects. SmallVector selectorAliases; unsigned selectorCount; // Pointer to an array of selectors used in this module. llvm::GlobalVariable *selectorList = [&] { ConstantInitBuilder builder(CGM); auto selectors = builder.beginArray(selStructTy); auto &table = SelectorTable; // MSVC workaround std::vector allSelectors; for (auto &entry : table) allSelectors.push_back(entry.first); llvm::sort(allSelectors); for (auto &untypedSel : allSelectors) { std::string selNameStr = untypedSel.getAsString(); llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); for (TypedSelector &sel : table[untypedSel]) { llvm::Constant *selectorTypeEncoding = NULLPtr; if (!sel.first.empty()) selectorTypeEncoding = MakeConstantString(sel.first, ".objc_sel_types"); auto selStruct = selectors.beginStruct(selStructTy); selStruct.add(selName); selStruct.add(selectorTypeEncoding); selStruct.finishAndAddTo(selectors); // Store the selector alias for later replacement selectorAliases.push_back(sel.second); } } // Remember the number of entries in the selector table. selectorCount = selectors.size(); // NULL-terminate the selector list. This should not actually be required, // because the selector list has a length field. Unfortunately, the GCC // runtime decides to ignore the length field and expects a NULL terminator, // and GCC cooperates with this by always setting the length to 0. auto selStruct = selectors.beginStruct(selStructTy); selStruct.add(NULLPtr); selStruct.add(NULLPtr); selStruct.finishAndAddTo(selectors); return selectors.finishAndCreateGlobal(".objc_selector_list", CGM.getPointerAlign()); }(); // Now that all of the static selectors exist, create pointers to them. for (unsigned i = 0; i < selectorCount; ++i) { llvm::Constant *idxs[] = { Zeros[0], llvm::ConstantInt::get(Int32Ty, i) }; // FIXME: We're generating redundant loads and stores here! llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( selectorList->getValueType(), selectorList, idxs); selectorAliases[i]->replaceAllUsesWith(selPtr); selectorAliases[i]->eraseFromParent(); } llvm::GlobalVariable *symtab = [&] { ConstantInitBuilder builder(CGM); auto symtab = builder.beginStruct(); // Number of static selectors symtab.addInt(LongTy, selectorCount); symtab.add(selectorList); // Number of classes defined. symtab.addInt(CGM.Int16Ty, Classes.size()); // Number of categories defined symtab.addInt(CGM.Int16Ty, Categories.size()); // Create an array of classes, then categories, then static object instances auto classList = symtab.beginArray(PtrToInt8Ty); classList.addAll(Classes); classList.addAll(Categories); // NULL-terminated list of static object instances (mainly constant strings) classList.add(statics); classList.add(NULLPtr); classList.finishAndAddTo(symtab); // Construct the symbol table. return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); }(); // The symbol table is contained in a module which has some version-checking // constants llvm::Constant *module = [&] { llvm::Type *moduleEltTys[] = { LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy }; llvm::StructType *moduleTy = llvm::StructType::get( CGM.getLLVMContext(), ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); ConstantInitBuilder builder(CGM); auto module = builder.beginStruct(moduleTy); // Runtime version, used for ABI compatibility checking. module.addInt(LongTy, RuntimeVersion); // sizeof(ModuleTy) module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); // The path to the source file where this module was declared SourceManager &SM = CGM.getContext().getSourceManager(); OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID()); std::string path = (mainFile->getDir().getName() + "/" + mainFile->getName()).str(); module.add(MakeConstantString(path, ".objc_source_file_name")); module.add(symtab); if (RuntimeVersion >= 10) { switch (CGM.getLangOpts().getGC()) { case LangOptions::GCOnly: module.addInt(IntTy, 2); break; case LangOptions::NonGC: if (CGM.getLangOpts().ObjCAutoRefCount) module.addInt(IntTy, 1); else module.addInt(IntTy, 0); break; case LangOptions::HybridGC: module.addInt(IntTy, 1); break; } } return module.finishAndCreateGlobal("", CGM.getPointerAlign()); }(); // Create the load function calling the runtime entry point with the module // structure llvm::Function * LoadFunction = llvm::Function::Create( llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), llvm::GlobalValue::InternalLinkage, ".objc_load_function", &TheModule); llvm::BasicBlock *EntryBB = llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); CGBuilderTy Builder(CGM, VMContext); Builder.SetInsertPoint(EntryBB); llvm::FunctionType *FT = llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); llvm::FunctionCallee Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); Builder.CreateCall(Register, module); if (!ClassAliases.empty()) { llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; llvm::FunctionType *RegisterAliasTy = llvm::FunctionType::get(Builder.getVoidTy(), ArgTypes, false); llvm::Function *RegisterAlias = llvm::Function::Create( RegisterAliasTy, llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", &TheModule); llvm::BasicBlock *AliasBB = llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); llvm::BasicBlock *NoAliasBB = llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); // Branch based on whether the runtime provided class_registerAlias_np() llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, llvm::Constant::getNullValue(RegisterAlias->getType())); Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); // The true branch (has alias registration function): Builder.SetInsertPoint(AliasBB); // Emit alias registration calls: for (std::vector::iterator iter = ClassAliases.begin(); iter != ClassAliases.end(); ++iter) { llvm::Constant *TheClass = TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); if (TheClass) { Builder.CreateCall(RegisterAlias, {TheClass, MakeConstantString(iter->second)}); } } // Jump to end: Builder.CreateBr(NoAliasBB); // Missing alias registration function, just return from the function: Builder.SetInsertPoint(NoAliasBB); } Builder.CreateRetVoid(); return LoadFunction; } llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD) { CodeGenTypes &Types = CGM.getTypes(); llvm::FunctionType *MethodTy = Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); bool isDirect = OMD->isDirectMethod(); std::string FunctionName = getSymbolNameForMethod(OMD, /*include category*/ !isDirect); if (!isDirect) return llvm::Function::Create(MethodTy, llvm::GlobalVariable::InternalLinkage, FunctionName, &TheModule); auto *COMD = OMD->getCanonicalDecl(); auto I = DirectMethodDefinitions.find(COMD); llvm::Function *OldFn = nullptr, *Fn = nullptr; if (I == DirectMethodDefinitions.end()) { auto *F = llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage, FunctionName, &TheModule); DirectMethodDefinitions.insert(std::make_pair(COMD, F)); return F; } // Objective-C allows for the declaration and implementation types // to differ slightly. // // If we're being asked for the Function associated for a method // implementation, a previous value might have been cached // based on the type of the canonical declaration. // // If these do not match, then we'll replace this function with // a new one that has the proper type below. if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) return I->second; OldFn = I->second; Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "", &CGM.getModule()); Fn->takeName(OldFn); OldFn->replaceAllUsesWith(Fn); OldFn->eraseFromParent(); // Replace the cached function in the map. I->second = Fn; return Fn; } void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD) { // GNU runtime doesn't support direct calls at this time } llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { return GetPropertyFn; } llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { return SetPropertyFn; } llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, bool copy) { return nullptr; } llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { return GetStructPropertyFn; } llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { return SetStructPropertyFn; } llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { return nullptr; } llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { return nullptr; } llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { return EnumerationMutationFn; } void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S) { EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); } void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { // Unlike the Apple non-fragile runtimes, which also uses // unwind-based zero cost exceptions, the GNU Objective C runtime's // EH support isn't a veneer over C++ EH. Instead, exception // objects are created by objc_exception_throw and destroyed by // the personality function; this avoids the need for bracketing // catch handlers with calls to __blah_begin_catch/__blah_end_catch // (or even _Unwind_DeleteException), but probably doesn't // interoperate very well with foreign exceptions. // // In Objective-C++ mode, we actually emit something equivalent to the C++ // exception handler. EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); } void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint) { llvm::Value *ExceptionAsObject; bool isRethrow = false; if (const Expr *ThrowExpr = S.getThrowExpr()) { llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); ExceptionAsObject = Exception; } else { assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && "Unexpected rethrow outside @catch block."); ExceptionAsObject = CGF.ObjCEHValueStack.back(); isRethrow = true; } if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) { // For SEH, ExceptionAsObject may be undef, because the catch handler is // not passed it for catchalls and so it is not visible to the catch // funclet. The real thrown object will still be live on the stack at this // point and will be rethrown. If we are explicitly rethrowing the object // that was passed into the `@catch` block, then this code path is not // reached and we will instead call `objc_exception_throw` with an explicit // argument. llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); Throw->setDoesNotReturn(); } else { ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); Throw->setDoesNotReturn(); } CGF.Builder.CreateUnreachable(); if (ClearInsertionPoint) CGF.Builder.ClearInsertionPoint(); } llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, Address AddrWeakObj) { CGBuilderTy &B = CGF.Builder; return B.CreateCall(WeakReadFn, EnforceType(B, AddrWeakObj.getPointer(), PtrToIdTy)); } void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, llvm::Value *src, Address dst) { CGBuilderTy &B = CGF.Builder; src = EnforceType(B, src, IdTy); llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); B.CreateCall(WeakAssignFn, {src, dstVal}); } void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, llvm::Value *src, Address dst, bool threadlocal) { CGBuilderTy &B = CGF.Builder; src = EnforceType(B, src, IdTy); llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); // FIXME. Add threadloca assign API assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); B.CreateCall(GlobalAssignFn, {src, dstVal}); } void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, Address dst, llvm::Value *ivarOffset) { CGBuilderTy &B = CGF.Builder; src = EnforceType(B, src, IdTy); llvm::Value *dstVal = EnforceType(B, dst.getPointer(), IdTy); B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset}); } void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, llvm::Value *src, Address dst) { CGBuilderTy &B = CGF.Builder; src = EnforceType(B, src, IdTy); llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); B.CreateCall(StrongCastAssignFn, {src, dstVal}); } void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, llvm::Value *Size) { CGBuilderTy &B = CGF.Builder; llvm::Value *DestPtrVal = EnforceType(B, DestPtr.getPointer(), PtrTy); llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.getPointer(), PtrTy); B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size}); } llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( const ObjCInterfaceDecl *ID, const ObjCIvarDecl *Ivar) { const std::string Name = GetIVarOffsetVariableName(ID, Ivar); // Emit the variable and initialize it with what we think the correct value // is. This allows code compiled with non-fragile ivars to work correctly // when linked against code which isn't (most of the time). llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); if (!IvarOffsetPointer) IvarOffsetPointer = new llvm::GlobalVariable( TheModule, llvm::PointerType::getUnqual(VMContext), false, llvm::GlobalValue::ExternalLinkage, nullptr, Name); return IvarOffsetPointer; } LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers) { const ObjCInterfaceDecl *ID = ObjectTy->castAs()->getInterface(); return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, EmitIvarOffset(CGF, ID, Ivar)); } static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, const ObjCInterfaceDecl *OID, const ObjCIvarDecl *OIVD) { for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; next = next->getNextIvar()) { if (OIVD == next) return OID; } // Otherwise check in the super class. if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) return FindIvarInterface(Context, Super, OIVD); return nullptr; } llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar) { if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage // and ExternalLinkage, so create a reference to the ivar global and rely on // the definition being created as part of GenerateClass. if (RuntimeVersion < 10 || CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) return CGF.Builder.CreateZExtOrBitCast( CGF.Builder.CreateAlignedLoad( Int32Ty, CGF.Builder.CreateAlignedLoad( llvm::PointerType::getUnqual(VMContext), ObjCIvarOffsetVariable(Interface, Ivar), CGF.getPointerAlign(), "ivar"), CharUnits::fromQuantity(4)), PtrDiffTy); std::string name = "__objc_ivar_offset_value_" + Interface->getNameAsString() +"." + Ivar->getNameAsString(); CharUnits Align = CGM.getIntAlign(); llvm::Value *Offset = TheModule.getGlobalVariable(name); if (!Offset) { auto GV = new llvm::GlobalVariable(TheModule, IntTy, false, llvm::GlobalValue::LinkOnceAnyLinkage, llvm::Constant::getNullValue(IntTy), name); GV->setAlignment(Align.getAsAlign()); Offset = GV; } Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); if (Offset->getType() != PtrDiffTy) Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); return Offset; } uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); } CGObjCRuntime * clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { auto Runtime = CGM.getLangOpts().ObjCRuntime; switch (Runtime.getKind()) { case ObjCRuntime::GNUstep: if (Runtime.getVersion() >= VersionTuple(2, 0)) return new CGObjCGNUstep2(CGM); return new CGObjCGNUstep(CGM); case ObjCRuntime::GCC: return new CGObjCGCC(CGM); case ObjCRuntime::ObjFW: return new CGObjCObjFW(CGM); case ObjCRuntime::FragileMacOSX: case ObjCRuntime::MacOSX: case ObjCRuntime::iOS: case ObjCRuntime::WatchOS: llvm_unreachable("these runtimes are not GNU runtimes"); } llvm_unreachable("bad runtime"); }