//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/CodeGen/BackendUtil.h" #include "BackendConsumer.h" #include "LinkInModulesPass.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/TargetOptions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/Utils.h" #include "clang/Lex/HeaderSearchOptions.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/Bitcode/BitcodeWriterPass.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Frontend/Driver/CodeGenOptions.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/IRPrinter/IRPrintingPasses.h" #include "llvm/LTO/LTOBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/OffloadBinary.h" #include "llvm/Passes/PassBuilder.h" #include "llvm/Passes/PassPlugin.h" #include "llvm/Passes/StandardInstrumentations.h" #include "llvm/ProfileData/InstrProfCorrelator.h" #include "llvm/Support/BuryPointer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/Timer.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/TargetParser/SubtargetFeature.h" #include "llvm/TargetParser/Triple.h" #include "llvm/Transforms/HipStdPar/HipStdPar.h" #include "llvm/Transforms/IPO/EmbedBitcodePass.h" #include "llvm/Transforms/IPO/LowerTypeTests.h" #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" #include "llvm/Transforms/InstCombine/InstCombine.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" #include "llvm/Transforms/Instrumentation/BoundsChecking.h" #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" #include "llvm/Transforms/Instrumentation/InstrProfiling.h" #include "llvm/Transforms/Instrumentation/KCFI.h" #include "llvm/Transforms/Instrumentation/MemProfiler.h" #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" #include "llvm/Transforms/ObjCARC.h" #include "llvm/Transforms/Scalar/EarlyCSE.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Scalar/JumpThreading.h" #include "llvm/Transforms/Utils/Debugify.h" #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include using namespace clang; using namespace llvm; #define HANDLE_EXTENSION(Ext) \ llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); #include "llvm/Support/Extension.def" namespace llvm { extern cl::opt PrintPipelinePasses; // Experiment to move sanitizers earlier. static cl::opt ClSanitizeOnOptimizerEarlyEP( "sanitizer-early-opt-ep", cl::Optional, cl::desc("Insert sanitizers on OptimizerEarlyEP."), cl::init(false)); extern cl::opt ProfileCorrelate; // Re-link builtin bitcodes after optimization cl::opt ClRelinkBuiltinBitcodePostop( "relink-builtin-bitcode-postop", cl::Optional, cl::desc("Re-link builtin bitcodes after optimization."), cl::init(false)); } // namespace llvm namespace { // Default filename used for profile generation. std::string getDefaultProfileGenName() { return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE ? "default_%m.proflite" : "default_%m.profraw"; } class EmitAssemblyHelper { DiagnosticsEngine &Diags; const HeaderSearchOptions &HSOpts; const CodeGenOptions &CodeGenOpts; const clang::TargetOptions &TargetOpts; const LangOptions &LangOpts; llvm::Module *TheModule; IntrusiveRefCntPtr VFS; Timer CodeGenerationTime; std::unique_ptr OS; Triple TargetTriple; TargetIRAnalysis getTargetIRAnalysis() const { if (TM) return TM->getTargetIRAnalysis(); return TargetIRAnalysis(); } /// Generates the TargetMachine. /// Leaves TM unchanged if it is unable to create the target machine. /// Some of our clang tests specify triples which are not built /// into clang. This is okay because these tests check the generated /// IR, and they require DataLayout which depends on the triple. /// In this case, we allow this method to fail and not report an error. /// When MustCreateTM is used, we print an error if we are unable to load /// the requested target. void CreateTargetMachine(bool MustCreateTM); /// Add passes necessary to emit assembly or LLVM IR. /// /// \return True on success. bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); std::unique_ptr openOutputFile(StringRef Path) { std::error_code EC; auto F = std::make_unique(Path, EC, llvm::sys::fs::OF_None); if (EC) { Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); F.reset(); } return F; } void RunOptimizationPipeline( BackendAction Action, std::unique_ptr &OS, std::unique_ptr &ThinLinkOS, BackendConsumer *BC); void RunCodegenPipeline(BackendAction Action, std::unique_ptr &OS, std::unique_ptr &DwoOS); /// Check whether we should emit a module summary for regular LTO. /// The module summary should be emitted by default for regular LTO /// except for ld64 targets. /// /// \return True if the module summary should be emitted. bool shouldEmitRegularLTOSummary() const { return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && TargetTriple.getVendor() != llvm::Triple::Apple; } /// Check whether we should emit a flag for UnifiedLTO. /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for /// ThinLTO or Full LTO with module summaries. bool shouldEmitUnifiedLTOModueFlag() const { return CodeGenOpts.UnifiedLTO && (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary()); } public: EmitAssemblyHelper(DiagnosticsEngine &_Diags, const HeaderSearchOptions &HeaderSearchOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, llvm::Module *M, IntrusiveRefCntPtr VFS) : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)), CodeGenerationTime("codegen", "Code Generation Time"), TargetTriple(TheModule->getTargetTriple()) {} ~EmitAssemblyHelper() { if (CodeGenOpts.DisableFree) BuryPointer(std::move(TM)); } std::unique_ptr TM; // Emit output using the new pass manager for the optimization pipeline. void EmitAssembly(BackendAction Action, std::unique_ptr OS, BackendConsumer *BC); }; } // namespace static SanitizerCoverageOptions getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { SanitizerCoverageOptions Opts; Opts.CoverageType = static_cast(CGOpts.SanitizeCoverageType); Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; Opts.TracePC = CGOpts.SanitizeCoverageTracePC; Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; Opts.PCTable = CGOpts.SanitizeCoveragePCTable; Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; return Opts; } static SanitizerBinaryMetadataOptions getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { SanitizerBinaryMetadataOptions Opts; Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; return Opts; } // Check if ASan should use GC-friendly instrumentation for globals. // First of all, there is no point if -fdata-sections is off (expect for MachO, // where this is not a factor). Also, on ELF this feature requires an assembler // extension that only works with -integrated-as at the moment. static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { if (!CGOpts.SanitizeAddressGlobalsDeadStripping) return false; switch (T.getObjectFormat()) { case Triple::MachO: case Triple::COFF: return true; case Triple::ELF: return !CGOpts.DisableIntegratedAS; case Triple::GOFF: llvm::report_fatal_error("ASan not implemented for GOFF"); case Triple::XCOFF: llvm::report_fatal_error("ASan not implemented for XCOFF."); case Triple::Wasm: case Triple::DXContainer: case Triple::SPIRV: case Triple::UnknownObjectFormat: break; } return false; } static std::optional getCodeModel(const CodeGenOptions &CodeGenOpts) { unsigned CodeModel = llvm::StringSwitch(CodeGenOpts.CodeModel) .Case("tiny", llvm::CodeModel::Tiny) .Case("small", llvm::CodeModel::Small) .Case("kernel", llvm::CodeModel::Kernel) .Case("medium", llvm::CodeModel::Medium) .Case("large", llvm::CodeModel::Large) .Case("default", ~1u) .Default(~0u); assert(CodeModel != ~0u && "invalid code model!"); if (CodeModel == ~1u) return std::nullopt; return static_cast(CodeModel); } static CodeGenFileType getCodeGenFileType(BackendAction Action) { if (Action == Backend_EmitObj) return CodeGenFileType::ObjectFile; else if (Action == Backend_EmitMCNull) return CodeGenFileType::Null; else { assert(Action == Backend_EmitAssembly && "Invalid action!"); return CodeGenFileType::AssemblyFile; } } static bool actionRequiresCodeGen(BackendAction Action) { return Action != Backend_EmitNothing && Action != Backend_EmitBC && Action != Backend_EmitLL; } static bool initTargetOptions(DiagnosticsEngine &Diags, llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts) { switch (LangOpts.getThreadModel()) { case LangOptions::ThreadModelKind::POSIX: Options.ThreadModel = llvm::ThreadModel::POSIX; break; case LangOptions::ThreadModelKind::Single: Options.ThreadModel = llvm::ThreadModel::Single; break; } // Set float ABI type. assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && "Invalid Floating Point ABI!"); Options.FloatABIType = llvm::StringSwitch(CodeGenOpts.FloatABI) .Case("soft", llvm::FloatABI::Soft) .Case("softfp", llvm::FloatABI::Soft) .Case("hard", llvm::FloatABI::Hard) .Default(llvm::FloatABI::Default); // Set FP fusion mode. switch (LangOpts.getDefaultFPContractMode()) { case LangOptions::FPM_Off: // Preserve any contraction performed by the front-end. (Strict performs // splitting of the muladd intrinsic in the backend.) Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; break; case LangOptions::FPM_On: case LangOptions::FPM_FastHonorPragmas: Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; break; case LangOptions::FPM_Fast: Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; break; } Options.BinutilsVersion = llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); Options.UseInitArray = CodeGenOpts.UseInitArray; Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; // Set EABI version. Options.EABIVersion = TargetOpts.EABIVersion; if (LangOpts.hasSjLjExceptions()) Options.ExceptionModel = llvm::ExceptionHandling::SjLj; if (LangOpts.hasSEHExceptions()) Options.ExceptionModel = llvm::ExceptionHandling::WinEH; if (LangOpts.hasDWARFExceptions()) Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; if (LangOpts.hasWasmExceptions()) Options.ExceptionModel = llvm::ExceptionHandling::Wasm; Options.NoInfsFPMath = LangOpts.NoHonorInfs; Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && LangOpts.NoSignedZero && LangOpts.ApproxFunc && (LangOpts.getDefaultFPContractMode() == LangOptions::FPModeKind::FPM_Fast || LangOpts.getDefaultFPContractMode() == LangOptions::FPModeKind::FPM_FastHonorPragmas); Options.ApproxFuncFPMath = LangOpts.ApproxFunc; Options.BBSections = llvm::StringSwitch(CodeGenOpts.BBSections) .Case("all", llvm::BasicBlockSection::All) .Case("labels", llvm::BasicBlockSection::Labels) .StartsWith("list=", llvm::BasicBlockSection::List) .Case("none", llvm::BasicBlockSection::None) .Default(llvm::BasicBlockSection::None); if (Options.BBSections == llvm::BasicBlockSection::List) { ErrorOr> MBOrErr = MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); if (!MBOrErr) { Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) << MBOrErr.getError().message(); return false; } Options.BBSectionsFuncListBuf = std::move(*MBOrErr); } Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; Options.FunctionSections = CodeGenOpts.FunctionSections; Options.DataSections = CodeGenOpts.DataSections; Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; Options.UniqueBasicBlockSectionNames = CodeGenOpts.UniqueBasicBlockSectionNames; Options.TLSSize = CodeGenOpts.TLSSize; Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC; Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; Options.EmitAddrsig = CodeGenOpts.Addrsig; Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; Options.LoopAlignment = CodeGenOpts.LoopAlignment; Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; Options.Hotpatch = CodeGenOpts.HotPatch; Options.JMCInstrument = CodeGenOpts.JMCInstrument; Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; switch (CodeGenOpts.getSwiftAsyncFramePointer()) { case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::DeploymentBased; break; case CodeGenOptions::SwiftAsyncFramePointerKind::Always: Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; break; case CodeGenOptions::SwiftAsyncFramePointerKind::Never: Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; break; } Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); Options.MCOptions.EmitCompactUnwindNonCanonical = CodeGenOpts.EmitCompactUnwindNonCanonical; Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; Options.MCOptions.MCUseDwarfDirectory = CodeGenOpts.NoDwarfDirectoryAsm ? llvm::MCTargetOptions::DisableDwarfDirectory : llvm::MCTargetOptions::EnableDwarfDirectory; Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; Options.MCOptions.MCIncrementalLinkerCompatible = CodeGenOpts.IncrementalLinkerCompatible; Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; Options.MCOptions.ABIName = TargetOpts.ABI; for (const auto &Entry : HSOpts.UserEntries) if (!Entry.IsFramework && (Entry.Group == frontend::IncludeDirGroup::Quoted || Entry.Group == frontend::IncludeDirGroup::Angled || Entry.Group == frontend::IncludeDirGroup::System)) Options.MCOptions.IASSearchPaths.push_back( Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); Options.MCOptions.Argv0 = CodeGenOpts.Argv0; Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; Options.MCOptions.PPCUseFullRegisterNames = CodeGenOpts.PPCUseFullRegisterNames; Options.MisExpect = CodeGenOpts.MisExpect; return true; } static std::optional getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { if (CodeGenOpts.CoverageNotesFile.empty() && CodeGenOpts.CoverageDataFile.empty()) return std::nullopt; // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if // LLVM's -default-gcov-version flag is set to something invalid. GCOVOptions Options; Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); Options.NoRedZone = CodeGenOpts.DisableRedZone; Options.Filter = CodeGenOpts.ProfileFilterFiles; Options.Exclude = CodeGenOpts.ProfileExcludeFiles; Options.Atomic = CodeGenOpts.AtomicProfileUpdate; return Options; } static std::optional getInstrProfOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { if (!CodeGenOpts.hasProfileClangInstr()) return std::nullopt; InstrProfOptions Options; Options.NoRedZone = CodeGenOpts.DisableRedZone; Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; Options.Atomic = CodeGenOpts.AtomicProfileUpdate; return Options; } static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { SmallVector BackendArgs; BackendArgs.push_back("clang"); // Fake program name. if (!CodeGenOpts.DebugPass.empty()) { BackendArgs.push_back("-debug-pass"); BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); } if (!CodeGenOpts.LimitFloatPrecision.empty()) { BackendArgs.push_back("-limit-float-precision"); BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); } // Check for the default "clang" invocation that won't set any cl::opt values. // Skip trying to parse the command line invocation to avoid the issues // described below. if (BackendArgs.size() == 1) return; BackendArgs.push_back(nullptr); // FIXME: The command line parser below is not thread-safe and shares a global // state, so this call might crash or overwrite the options of another Clang // instance in the same process. llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, BackendArgs.data()); } void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { // Create the TargetMachine for generating code. std::string Error; std::string Triple = TheModule->getTargetTriple(); const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); if (!TheTarget) { if (MustCreateTM) Diags.Report(diag::err_fe_unable_to_create_target) << Error; return; } std::optional CM = getCodeModel(CodeGenOpts); std::string FeaturesStr = llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; std::optional OptLevelOrNone = CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); assert(OptLevelOrNone && "Invalid optimization level!"); CodeGenOptLevel OptLevel = *OptLevelOrNone; llvm::TargetOptions Options; if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts)) return; TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, Options, RM, CM, OptLevel)); TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold); } bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS) { // Add LibraryInfo. std::unique_ptr TLII( llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); // Normal mode, emit a .s or .o file by running the code generator. Note, // this also adds codegenerator level optimization passes. CodeGenFileType CGFT = getCodeGenFileType(Action); // Add ObjC ARC final-cleanup optimizations. This is done as part of the // "codegen" passes so that it isn't run multiple times when there is // inlining happening. if (CodeGenOpts.OptimizationLevel > 0) CodeGenPasses.add(createObjCARCContractPass()); if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { Diags.Report(diag::err_fe_unable_to_interface_with_target); return false; } return true; } static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { switch (Opts.OptimizationLevel) { default: llvm_unreachable("Invalid optimization level!"); case 0: return OptimizationLevel::O0; case 1: return OptimizationLevel::O1; case 2: switch (Opts.OptimizeSize) { default: llvm_unreachable("Invalid optimization level for size!"); case 0: return OptimizationLevel::O2; case 1: return OptimizationLevel::Os; case 2: return OptimizationLevel::Oz; } case 3: return OptimizationLevel::O3; } } static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, PassBuilder &PB) { // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. if (TargetTriple.getArch() == llvm::Triple::x86_64 || TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) return; // Ensure we lower KCFI operand bundles with -O0. PB.registerOptimizerLastEPCallback( [&](ModulePassManager &MPM, OptimizationLevel Level) { if (Level == OptimizationLevel::O0 && LangOpts.Sanitize.has(SanitizerKind::KCFI)) MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); }); // When optimizations are requested, run KCIFPass after InstCombine to // avoid unnecessary checks. PB.registerPeepholeEPCallback( [&](FunctionPassManager &FPM, OptimizationLevel Level) { if (Level != OptimizationLevel::O0 && LangOpts.Sanitize.has(SanitizerKind::KCFI)) FPM.addPass(KCFIPass()); }); } static void addSanitizers(const Triple &TargetTriple, const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts, PassBuilder &PB) { auto SanitizersCallback = [&](ModulePassManager &MPM, OptimizationLevel Level) { if (CodeGenOpts.hasSanitizeCoverage()) { auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); MPM.addPass(SanitizerCoveragePass( SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, CodeGenOpts.SanitizeCoverageIgnorelistFiles)); } if (CodeGenOpts.hasSanitizeBinaryMetadata()) { MPM.addPass(SanitizerBinaryMetadataPass( getSanitizerBinaryMetadataOptions(CodeGenOpts), CodeGenOpts.SanitizeMetadataIgnorelistFiles)); } auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { if (LangOpts.Sanitize.has(Mask)) { int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, CodeGenOpts.SanitizeMemoryParamRetval); MPM.addPass(MemorySanitizerPass(options)); if (Level != OptimizationLevel::O0) { // MemorySanitizer inserts complex instrumentation that mostly follows // the logic of the original code, but operates on "shadow" values. It // can benefit from re-running some general purpose optimization // passes. MPM.addPass(RequireAnalysisPass()); FunctionPassManager FPM; FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); FPM.addPass(InstCombinePass()); FPM.addPass(JumpThreadingPass()); FPM.addPass(GVNPass()); FPM.addPass(InstCombinePass()); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); } } }; MSanPass(SanitizerKind::Memory, false); MSanPass(SanitizerKind::KernelMemory, true); if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { MPM.addPass(ModuleThreadSanitizerPass()); MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); } auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { if (LangOpts.Sanitize.has(Mask)) { bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; llvm::AsanDtorKind DestructorKind = CodeGenOpts.getSanitizeAddressDtor(); AddressSanitizerOptions Opts; Opts.CompileKernel = CompileKernel; Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); } }; ASanPass(SanitizerKind::Address, false); ASanPass(SanitizerKind::KernelAddress, true); auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { if (LangOpts.Sanitize.has(Mask)) { bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); MPM.addPass(HWAddressSanitizerPass( {CompileKernel, Recover, /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); } }; HWASanPass(SanitizerKind::HWAddress, false); HWASanPass(SanitizerKind::KernelHWAddress, true); if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); } }; if (ClSanitizeOnOptimizerEarlyEP) { PB.registerOptimizerEarlyEPCallback( [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) { ModulePassManager NewMPM; SanitizersCallback(NewMPM, Level); if (!NewMPM.isEmpty()) { // Sanitizers can abandon. NewMPM.addPass(RequireAnalysisPass()); MPM.addPass(std::move(NewMPM)); } }); } else { // LastEP does not need GlobalsAA. PB.registerOptimizerLastEPCallback(SanitizersCallback); } } void EmitAssemblyHelper::RunOptimizationPipeline( BackendAction Action, std::unique_ptr &OS, std::unique_ptr &ThinLinkOS, BackendConsumer *BC) { std::optional PGOOpt; if (CodeGenOpts.hasProfileIRInstr()) // -fprofile-generate. PGOOpt = PGOOptions( CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() : CodeGenOpts.InstrProfileOutput, "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate); else if (CodeGenOpts.hasProfileIRUse()) { // -fprofile-use. auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse : PGOOptions::NoCSAction; PGOOpt = PGOOptions( CodeGenOpts.ProfileInstrumentUsePath, "", CodeGenOpts.ProfileRemappingFile, CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::IRUse, CSAction, CodeGenOpts.DebugInfoForProfiling); } else if (!CodeGenOpts.SampleProfileFile.empty()) // -fprofile-sample-use PGOOpt = PGOOptions( CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); else if (!CodeGenOpts.MemoryProfileUsePath.empty()) // -fmemory-profile-use (without any of the above options) PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::NoAction, PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); else if (CodeGenOpts.PseudoProbeForProfiling) // -fpseudo-probe-for-profiling PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction, PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, true); else if (CodeGenOpts.DebugInfoForProfiling) // -fdebug-info-for-profiling PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction, PGOOptions::NoCSAction, true); // Check to see if we want to generate a CS profile. if (CodeGenOpts.hasProfileCSIRInstr()) { assert(!CodeGenOpts.hasProfileCSIRUse() && "Cannot have both CSProfileUse pass and CSProfileGen pass at " "the same time"); if (PGOOpt) { assert(PGOOpt->Action != PGOOptions::IRInstr && PGOOpt->Action != PGOOptions::SampleUse && "Cannot run CSProfileGen pass with ProfileGen or SampleUse " " pass"); PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() : CodeGenOpts.InstrProfileOutput; PGOOpt->CSAction = PGOOptions::CSIRInstr; } else PGOOpt = PGOOptions("", CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() : CodeGenOpts.InstrProfileOutput, "", /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction, PGOOptions::CSIRInstr, CodeGenOpts.DebugInfoForProfiling); } if (TM) TM->setPGOOption(PGOOpt); PipelineTuningOptions PTO; PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; // For historical reasons, loop interleaving is set to mirror setting for loop // unrolling. PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; PTO.MergeFunctions = CodeGenOpts.MergeFunctions; // Only enable CGProfilePass when using integrated assembler, since // non-integrated assemblers don't recognize .cgprofile section. PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; LoopAnalysisManager LAM; FunctionAnalysisManager FAM; CGSCCAnalysisManager CGAM; ModuleAnalysisManager MAM; bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; PassInstrumentationCallbacks PIC; PrintPassOptions PrintPassOpts; PrintPassOpts.Indent = DebugPassStructure; PrintPassOpts.SkipAnalyses = DebugPassStructure; StandardInstrumentations SI( TheModule->getContext(), (CodeGenOpts.DebugPassManager || DebugPassStructure), CodeGenOpts.VerifyEach, PrintPassOpts); SI.registerCallbacks(PIC, &MAM); PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); // Handle the assignment tracking feature options. switch (CodeGenOpts.getAssignmentTrackingMode()) { case CodeGenOptions::AssignmentTrackingOpts::Forced: PB.registerPipelineStartEPCallback( [&](ModulePassManager &MPM, OptimizationLevel Level) { MPM.addPass(AssignmentTrackingPass()); }); break; case CodeGenOptions::AssignmentTrackingOpts::Enabled: // Disable assignment tracking in LTO builds for now as the performance // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { PB.registerPipelineStartEPCallback( [&](ModulePassManager &MPM, OptimizationLevel Level) { // Only use assignment tracking if optimisations are enabled. if (Level != OptimizationLevel::O0) MPM.addPass(AssignmentTrackingPass()); }); } break; case CodeGenOptions::AssignmentTrackingOpts::Disabled: break; } // Enable verify-debuginfo-preserve-each for new PM. DebugifyEachInstrumentation Debugify; DebugInfoPerPass DebugInfoBeforePass; if (CodeGenOpts.EnableDIPreservationVerify) { Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); if (!CodeGenOpts.DIBugsReportFilePath.empty()) Debugify.setOrigDIVerifyBugsReportFilePath( CodeGenOpts.DIBugsReportFilePath); Debugify.registerCallbacks(PIC, MAM); } // Attempt to load pass plugins and register their callbacks with PB. for (auto &PluginFN : CodeGenOpts.PassPlugins) { auto PassPlugin = PassPlugin::Load(PluginFN); if (PassPlugin) { PassPlugin->registerPassBuilderCallbacks(PB); } else { Diags.Report(diag::err_fe_unable_to_load_plugin) << PluginFN << toString(PassPlugin.takeError()); } } for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks) PassCallback(PB); #define HANDLE_EXTENSION(Ext) \ get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); #include "llvm/Support/Extension.def" // Register the target library analysis directly and give it a customized // preset TLI. std::unique_ptr TLII( llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); // Register all the basic analyses with the managers. PB.registerModuleAnalyses(MAM); PB.registerCGSCCAnalyses(CGAM); PB.registerFunctionAnalyses(FAM); PB.registerLoopAnalyses(LAM); PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); ModulePassManager MPM; // Add a verifier pass, before any other passes, to catch CodeGen issues. if (CodeGenOpts.VerifyModule) MPM.addPass(VerifierPass()); if (!CodeGenOpts.DisableLLVMPasses) { // Map our optimization levels into one of the distinct levels used to // configure the pipeline. OptimizationLevel Level = mapToLevel(CodeGenOpts); const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; const bool PrepareForLTO = CodeGenOpts.PrepareForLTO; if (LangOpts.ObjCAutoRefCount) { PB.registerPipelineStartEPCallback( [](ModulePassManager &MPM, OptimizationLevel Level) { if (Level != OptimizationLevel::O0) MPM.addPass( createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); }); PB.registerPipelineEarlySimplificationEPCallback( [](ModulePassManager &MPM, OptimizationLevel Level) { if (Level != OptimizationLevel::O0) MPM.addPass(ObjCARCAPElimPass()); }); PB.registerScalarOptimizerLateEPCallback( [](FunctionPassManager &FPM, OptimizationLevel Level) { if (Level != OptimizationLevel::O0) FPM.addPass(ObjCARCOptPass()); }); } // If we reached here with a non-empty index file name, then the index // file was empty and we are not performing ThinLTO backend compilation // (used in testing in a distributed build environment). bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); // If so drop any the type test assume sequences inserted for whole program // vtables so that codegen doesn't complain. if (IsThinLTOPostLink) PB.registerPipelineStartEPCallback( [](ModulePassManager &MPM, OptimizationLevel Level) { MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, /*ImportSummary=*/nullptr, /*DropTypeTests=*/true)); }); if (CodeGenOpts.InstrumentFunctions || CodeGenOpts.InstrumentFunctionEntryBare || CodeGenOpts.InstrumentFunctionsAfterInlining || CodeGenOpts.InstrumentForProfiling) { PB.registerPipelineStartEPCallback( [](ModulePassManager &MPM, OptimizationLevel Level) { MPM.addPass(createModuleToFunctionPassAdaptor( EntryExitInstrumenterPass(/*PostInlining=*/false))); }); PB.registerOptimizerLastEPCallback( [](ModulePassManager &MPM, OptimizationLevel Level) { MPM.addPass(createModuleToFunctionPassAdaptor( EntryExitInstrumenterPass(/*PostInlining=*/true))); }); } // Register callbacks to schedule sanitizer passes at the appropriate part // of the pipeline. if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) PB.registerScalarOptimizerLateEPCallback( [](FunctionPassManager &FPM, OptimizationLevel Level) { FPM.addPass(BoundsCheckingPass()); }); // Don't add sanitizers if we are here from ThinLTO PostLink. That already // done on PreLink stage. if (!IsThinLTOPostLink) { addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); addKCFIPass(TargetTriple, LangOpts, PB); } if (std::optional Options = getGCOVOptions(CodeGenOpts, LangOpts)) PB.registerPipelineStartEPCallback( [Options](ModulePassManager &MPM, OptimizationLevel Level) { MPM.addPass(GCOVProfilerPass(*Options)); }); if (std::optional Options = getInstrProfOptions(CodeGenOpts, LangOpts)) PB.registerPipelineStartEPCallback( [Options](ModulePassManager &MPM, OptimizationLevel Level) { MPM.addPass(InstrProfilingLoweringPass(*Options, false)); }); // TODO: Consider passing the MemoryProfileOutput to the pass builder via // the PGOOptions, and set this up there. if (!CodeGenOpts.MemoryProfileOutput.empty()) { PB.registerOptimizerLastEPCallback( [](ModulePassManager &MPM, OptimizationLevel Level) { MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); MPM.addPass(ModuleMemProfilerPass()); }); } if (CodeGenOpts.FatLTO) { MPM.addPass(PB.buildFatLTODefaultPipeline( Level, PrepareForThinLTO, PrepareForThinLTO || shouldEmitRegularLTOSummary())); } else if (PrepareForThinLTO) { MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level)); } else if (PrepareForLTO) { MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level)); } else { MPM.addPass(PB.buildPerModuleDefaultPipeline(Level)); } } // Re-link against any bitcodes supplied via the -mlink-builtin-bitcode option // Some optimizations may generate new function calls that would not have // been linked pre-optimization (i.e. fused sincos calls generated by // AMDGPULibCalls::fold_sincos.) if (ClRelinkBuiltinBitcodePostop) MPM.addPass(LinkInModulesPass(BC, false)); // Add a verifier pass if requested. We don't have to do this if the action // requires code generation because there will already be a verifier pass in // the code-generation pipeline. // Since we already added a verifier pass above, this // might even not run the analysis, if previous passes caused no changes. if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) MPM.addPass(VerifierPass()); if (Action == Backend_EmitBC || Action == Backend_EmitLL || CodeGenOpts.FatLTO) { if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", CodeGenOpts.EnableSplitLTOUnit); if (Action == Backend_EmitBC) { if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); if (!ThinLinkOS) return; } MPM.addPass(ThinLTOBitcodeWriterPass( *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); } else if (Action == Backend_EmitLL) { MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, /*EmitLTOSummary=*/true)); } } else { // Emit a module summary by default for Regular LTO except for ld64 // targets bool EmitLTOSummary = shouldEmitRegularLTOSummary(); if (EmitLTOSummary) { if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0)); if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", uint32_t(1)); } if (Action == Backend_EmitBC) { MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); } else if (Action == Backend_EmitLL) { MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); } } if (shouldEmitUnifiedLTOModueFlag()) TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); } // Print a textual, '-passes=' compatible, representation of pipeline if // requested. if (PrintPipelinePasses) { MPM.printPipeline(outs(), [&PIC](StringRef ClassName) { auto PassName = PIC.getPassNameForClassName(ClassName); return PassName.empty() ? ClassName : PassName; }); outs() << "\n"; return; } if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice && LangOpts.HIPStdParInterposeAlloc) MPM.addPass(HipStdParAllocationInterpositionPass()); // Now that we have all of the passes ready, run them. { PrettyStackTraceString CrashInfo("Optimizer"); llvm::TimeTraceScope TimeScope("Optimizer"); MPM.run(*TheModule, MAM); } } void EmitAssemblyHelper::RunCodegenPipeline( BackendAction Action, std::unique_ptr &OS, std::unique_ptr &DwoOS) { // We still use the legacy PM to run the codegen pipeline since the new PM // does not work with the codegen pipeline. // FIXME: make the new PM work with the codegen pipeline. legacy::PassManager CodeGenPasses; // Append any output we need to the pass manager. switch (Action) { case Backend_EmitAssembly: case Backend_EmitMCNull: case Backend_EmitObj: CodeGenPasses.add( createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); if (!CodeGenOpts.SplitDwarfOutput.empty()) { DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); if (!DwoOS) return; } if (!AddEmitPasses(CodeGenPasses, Action, *OS, DwoOS ? &DwoOS->os() : nullptr)) // FIXME: Should we handle this error differently? return; break; default: return; } // If -print-pipeline-passes is requested, don't run the legacy pass manager. // FIXME: when codegen is switched to use the new pass manager, it should also // emit pass names here. if (PrintPipelinePasses) { return; } { PrettyStackTraceString CrashInfo("Code generation"); llvm::TimeTraceScope TimeScope("CodeGenPasses"); CodeGenPasses.run(*TheModule); } } void EmitAssemblyHelper::EmitAssembly(BackendAction Action, std::unique_ptr OS, BackendConsumer *BC) { TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); setCommandLineOpts(CodeGenOpts); bool RequiresCodeGen = actionRequiresCodeGen(Action); CreateTargetMachine(RequiresCodeGen); if (RequiresCodeGen && !TM) return; if (TM) TheModule->setDataLayout(TM->createDataLayout()); // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); std::unique_ptr ThinLinkOS, DwoOS; RunOptimizationPipeline(Action, OS, ThinLinkOS, BC); RunCodegenPipeline(Action, OS, DwoOS); if (ThinLinkOS) ThinLinkOS->keep(); if (DwoOS) DwoOS->keep(); } static void runThinLTOBackend( DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, llvm::Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr OS, std::string SampleProfile, std::string ProfileRemapping, BackendAction Action) { DenseMap> ModuleToDefinedGVSummaries; CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); setCommandLineOpts(CGOpts); // We can simply import the values mentioned in the combined index, since // we should only invoke this using the individual indexes written out // via a WriteIndexesThinBackend. FunctionImporter::ImportMapTy ImportList; if (!lto::initImportList(*M, *CombinedIndex, ImportList)) return; auto AddStream = [&](size_t Task, const Twine &ModuleName) { return std::make_unique(std::move(OS), CGOpts.ObjectFilenameForDebug); }; lto::Config Conf; if (CGOpts.SaveTempsFilePrefix != "") { if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", /* UseInputModulePath */ false)) { handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { errs() << "Error setting up ThinLTO save-temps: " << EIB.message() << '\n'; }); } } Conf.CPU = TOpts.CPU; Conf.CodeModel = getCodeModel(CGOpts); Conf.MAttrs = TOpts.Features; Conf.RelocModel = CGOpts.RelocationModel; std::optional OptLevelOrNone = CodeGenOpt::getLevel(CGOpts.OptimizationLevel); assert(OptLevelOrNone && "Invalid optimization level!"); Conf.CGOptLevel = *OptLevelOrNone; Conf.OptLevel = CGOpts.OptimizationLevel; initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); Conf.SampleProfile = std::move(SampleProfile); Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; // For historical reasons, loop interleaving is set to mirror setting for loop // unrolling. Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; // Only enable CGProfilePass when using integrated assembler, since // non-integrated assemblers don't recognize .cgprofile section. Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; // Context sensitive profile. if (CGOpts.hasProfileCSIRInstr()) { Conf.RunCSIRInstr = true; Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); } else if (CGOpts.hasProfileCSIRUse()) { Conf.RunCSIRInstr = false; Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); } Conf.ProfileRemapping = std::move(ProfileRemapping); Conf.DebugPassManager = CGOpts.DebugPassManager; Conf.VerifyEach = CGOpts.VerifyEach; Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; Conf.RemarksFilename = CGOpts.OptRecordFile; Conf.RemarksPasses = CGOpts.OptRecordPasses; Conf.RemarksFormat = CGOpts.OptRecordFormat; Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; switch (Action) { case Backend_EmitNothing: Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) { return false; }; break; case Backend_EmitLL: Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); return false; }; break; case Backend_EmitBC: Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); return false; }; break; default: Conf.CGFileType = getCodeGenFileType(Action); break; } if (Error E = thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, ModuleToDefinedGVSummaries[M->getModuleIdentifier()], /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; }); } } void clang::EmitBackendOutput( DiagnosticsEngine &Diags, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, StringRef TDesc, llvm::Module *M, BackendAction Action, IntrusiveRefCntPtr VFS, std::unique_ptr OS, BackendConsumer *BC) { llvm::TimeTraceScope TimeScope("Backend"); std::unique_ptr EmptyModule; if (!CGOpts.ThinLTOIndexFile.empty()) { // If we are performing a ThinLTO importing compile, load the function index // into memory and pass it into runThinLTOBackend, which will run the // function importer and invoke LTO passes. std::unique_ptr CombinedIndex; if (Error E = llvm::getModuleSummaryIndexForFile( CGOpts.ThinLTOIndexFile, /*IgnoreEmptyThinLTOIndexFile*/ true) .moveInto(CombinedIndex)) { logAllUnhandledErrors(std::move(E), errs(), "Error loading index file '" + CGOpts.ThinLTOIndexFile + "': "); return; } // A null CombinedIndex means we should skip ThinLTO compilation // (LLVM will optionally ignore empty index files, returning null instead // of an error). if (CombinedIndex) { if (!CombinedIndex->skipModuleByDistributedBackend()) { runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, CGOpts.ProfileRemappingFile, Action); return; } // Distributed indexing detected that nothing from the module is needed // for the final linking. So we can skip the compilation. We sill need to // output an empty object file to make sure that a linker does not fail // trying to read it. Also for some features, like CFI, we must skip // the compilation as CombinedIndex does not contain all required // information. EmptyModule = std::make_unique("empty", M->getContext()); EmptyModule->setTargetTriple(M->getTargetTriple()); M = EmptyModule.get(); } } EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS); AsmHelper.EmitAssembly(Action, std::move(OS), BC); // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's // DataLayout. if (AsmHelper.TM) { std::string DLDesc = M->getDataLayout().getStringRepresentation(); if (DLDesc != TDesc) { unsigned DiagID = Diags.getCustomDiagID( DiagnosticsEngine::Error, "backend data layout '%0' does not match " "expected target description '%1'"); Diags.Report(DiagID) << DLDesc << TDesc; } } } // With -fembed-bitcode, save a copy of the llvm IR as data in the // __LLVM,__bitcode section. void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf) { if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) return; llvm::embedBitcodeInModule( *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, CGOpts.CmdArgs); } void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, DiagnosticsEngine &Diags) { if (CGOpts.OffloadObjects.empty()) return; for (StringRef OffloadObject : CGOpts.OffloadObjects) { llvm::ErrorOr> ObjectOrErr = llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); if (ObjectOrErr.getError()) { auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, "could not open '%0' for embedding"); Diags.Report(DiagID) << OffloadObject; return; } llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", Align(object::OffloadBinary::getAlignment())); } }