//===- UnsafeBufferUsage.cpp - Replace pointers with modern C++ -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/Analysis/Analyses/UnsafeBufferUsage.h" #include "clang/AST/Decl.h" #include "clang/AST/Expr.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/SmallVector.h" #include #include #include #include using namespace llvm; using namespace clang; using namespace ast_matchers; #ifndef NDEBUG namespace { class StmtDebugPrinter : public ConstStmtVisitor { public: std::string VisitStmt(const Stmt *S) { return S->getStmtClassName(); } std::string VisitBinaryOperator(const BinaryOperator *BO) { return "BinaryOperator(" + BO->getOpcodeStr().str() + ")"; } std::string VisitUnaryOperator(const UnaryOperator *UO) { return "UnaryOperator(" + UO->getOpcodeStr(UO->getOpcode()).str() + ")"; } std::string VisitImplicitCastExpr(const ImplicitCastExpr *ICE) { return "ImplicitCastExpr(" + std::string(ICE->getCastKindName()) + ")"; } }; // Returns a string of ancestor `Stmt`s of the given `DRE` in such a form: // "DRE ==> parent-of-DRE ==> grandparent-of-DRE ==> ...". static std::string getDREAncestorString(const DeclRefExpr *DRE, ASTContext &Ctx) { std::stringstream SS; const Stmt *St = DRE; StmtDebugPrinter StmtPriner; do { SS << StmtPriner.Visit(St); DynTypedNodeList StParents = Ctx.getParents(*St); if (StParents.size() > 1) return "unavailable due to multiple parents"; if (StParents.size() == 0) break; St = StParents.begin()->get(); if (St) SS << " ==> "; } while (St); return SS.str(); } } // namespace #endif /* NDEBUG */ namespace clang::ast_matchers { // A `RecursiveASTVisitor` that traverses all descendants of a given node "n" // except for those belonging to a different callable of "n". class MatchDescendantVisitor : public RecursiveASTVisitor { public: typedef RecursiveASTVisitor VisitorBase; // Creates an AST visitor that matches `Matcher` on all // descendants of a given node "n" except for the ones // belonging to a different callable of "n". MatchDescendantVisitor(const internal::DynTypedMatcher *Matcher, internal::ASTMatchFinder *Finder, internal::BoundNodesTreeBuilder *Builder, internal::ASTMatchFinder::BindKind Bind, const bool ignoreUnevaluatedContext) : Matcher(Matcher), Finder(Finder), Builder(Builder), Bind(Bind), Matches(false), ignoreUnevaluatedContext(ignoreUnevaluatedContext) {} // Returns true if a match is found in a subtree of `DynNode`, which belongs // to the same callable of `DynNode`. bool findMatch(const DynTypedNode &DynNode) { Matches = false; if (const Stmt *StmtNode = DynNode.get()) { TraverseStmt(const_cast(StmtNode)); *Builder = ResultBindings; return Matches; } return false; } // The following are overriding methods from the base visitor class. // They are public only to allow CRTP to work. They are *not *part // of the public API of this class. // For the matchers so far used in safe buffers, we only need to match // `Stmt`s. To override more as needed. bool TraverseDecl(Decl *Node) { if (!Node) return true; if (!match(*Node)) return false; // To skip callables: if (isa(Node)) return true; // Traverse descendants return VisitorBase::TraverseDecl(Node); } bool TraverseGenericSelectionExpr(GenericSelectionExpr *Node) { // These are unevaluated, except the result expression. if(ignoreUnevaluatedContext) return TraverseStmt(Node->getResultExpr()); return VisitorBase::TraverseGenericSelectionExpr(Node); } bool TraverseUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *Node) { // Unevaluated context. if(ignoreUnevaluatedContext) return true; return VisitorBase::TraverseUnaryExprOrTypeTraitExpr(Node); } bool TraverseTypeOfExprTypeLoc(TypeOfExprTypeLoc Node) { // Unevaluated context. if(ignoreUnevaluatedContext) return true; return VisitorBase::TraverseTypeOfExprTypeLoc(Node); } bool TraverseDecltypeTypeLoc(DecltypeTypeLoc Node) { // Unevaluated context. if(ignoreUnevaluatedContext) return true; return VisitorBase::TraverseDecltypeTypeLoc(Node); } bool TraverseCXXNoexceptExpr(CXXNoexceptExpr *Node) { // Unevaluated context. if(ignoreUnevaluatedContext) return true; return VisitorBase::TraverseCXXNoexceptExpr(Node); } bool TraverseCXXTypeidExpr(CXXTypeidExpr *Node) { // Unevaluated context. if(ignoreUnevaluatedContext) return true; return VisitorBase::TraverseCXXTypeidExpr(Node); } bool TraverseStmt(Stmt *Node, DataRecursionQueue *Queue = nullptr) { if (!Node) return true; if (!match(*Node)) return false; return VisitorBase::TraverseStmt(Node); } bool shouldVisitTemplateInstantiations() const { return true; } bool shouldVisitImplicitCode() const { // TODO: let's ignore implicit code for now return false; } private: // Sets 'Matched' to true if 'Matcher' matches 'Node' // // Returns 'true' if traversal should continue after this function // returns, i.e. if no match is found or 'Bind' is 'BK_All'. template bool match(const T &Node) { internal::BoundNodesTreeBuilder RecursiveBuilder(*Builder); if (Matcher->matches(DynTypedNode::create(Node), Finder, &RecursiveBuilder)) { ResultBindings.addMatch(RecursiveBuilder); Matches = true; if (Bind != internal::ASTMatchFinder::BK_All) return false; // Abort as soon as a match is found. } return true; } const internal::DynTypedMatcher *const Matcher; internal::ASTMatchFinder *const Finder; internal::BoundNodesTreeBuilder *const Builder; internal::BoundNodesTreeBuilder ResultBindings; const internal::ASTMatchFinder::BindKind Bind; bool Matches; bool ignoreUnevaluatedContext; }; // Because we're dealing with raw pointers, let's define what we mean by that. static auto hasPointerType() { return hasType(hasCanonicalType(pointerType())); } static auto hasArrayType() { return hasType(hasCanonicalType(arrayType())); } AST_MATCHER_P(Stmt, forEachDescendantEvaluatedStmt, internal::Matcher, innerMatcher) { const DynTypedMatcher &DTM = static_cast(innerMatcher); MatchDescendantVisitor Visitor(&DTM, Finder, Builder, ASTMatchFinder::BK_All, true); return Visitor.findMatch(DynTypedNode::create(Node)); } AST_MATCHER_P(Stmt, forEachDescendantStmt, internal::Matcher, innerMatcher) { const DynTypedMatcher &DTM = static_cast(innerMatcher); MatchDescendantVisitor Visitor(&DTM, Finder, Builder, ASTMatchFinder::BK_All, false); return Visitor.findMatch(DynTypedNode::create(Node)); } // Matches a `Stmt` node iff the node is in a safe-buffer opt-out region AST_MATCHER_P(Stmt, notInSafeBufferOptOut, const UnsafeBufferUsageHandler *, Handler) { return !Handler->isSafeBufferOptOut(Node.getBeginLoc()); } AST_MATCHER_P(CastExpr, castSubExpr, internal::Matcher, innerMatcher) { return innerMatcher.matches(*Node.getSubExpr(), Finder, Builder); } // Matches a `UnaryOperator` whose operator is pre-increment: AST_MATCHER(UnaryOperator, isPreInc) { return Node.getOpcode() == UnaryOperator::Opcode::UO_PreInc; } // Returns a matcher that matches any expression 'e' such that `innerMatcher` // matches 'e' and 'e' is in an Unspecified Lvalue Context. static auto isInUnspecifiedLvalueContext(internal::Matcher innerMatcher) { // clang-format off return expr(anyOf( implicitCastExpr( hasCastKind(CastKind::CK_LValueToRValue), castSubExpr(innerMatcher)), binaryOperator( hasAnyOperatorName("="), hasLHS(innerMatcher) ) )); // clang-format on } // Returns a matcher that matches any expression `e` such that `InnerMatcher` // matches `e` and `e` is in an Unspecified Pointer Context (UPC). static internal::Matcher isInUnspecifiedPointerContext(internal::Matcher InnerMatcher) { // A UPC can be // 1. an argument of a function call (except the callee has [[unsafe_...]] // attribute), or // 2. the operand of a pointer-to-(integer or bool) cast operation; or // 3. the operand of a comparator operation; or // 4. the operand of a pointer subtraction operation // (i.e., computing the distance between two pointers); or ... auto CallArgMatcher = callExpr(forEachArgumentWithParam(InnerMatcher, hasPointerType() /* array also decays to pointer type*/), unless(callee(functionDecl(hasAttr(attr::UnsafeBufferUsage))))); auto CastOperandMatcher = castExpr(anyOf(hasCastKind(CastKind::CK_PointerToIntegral), hasCastKind(CastKind::CK_PointerToBoolean)), castSubExpr(allOf(hasPointerType(), InnerMatcher))); auto CompOperandMatcher = binaryOperator(hasAnyOperatorName("!=", "==", "<", "<=", ">", ">="), eachOf(hasLHS(allOf(hasPointerType(), InnerMatcher)), hasRHS(allOf(hasPointerType(), InnerMatcher)))); // A matcher that matches pointer subtractions: auto PtrSubtractionMatcher = binaryOperator(hasOperatorName("-"), // Note that here we need both LHS and RHS to be // pointer. Then the inner matcher can match any of // them: allOf(hasLHS(hasPointerType()), hasRHS(hasPointerType())), eachOf(hasLHS(InnerMatcher), hasRHS(InnerMatcher))); return stmt(anyOf(CallArgMatcher, CastOperandMatcher, CompOperandMatcher, PtrSubtractionMatcher)); // FIXME: any more cases? (UPC excludes the RHS of an assignment. For now we // don't have to check that.) } // Returns a matcher that matches any expression 'e' such that `innerMatcher` // matches 'e' and 'e' is in an unspecified untyped context (i.e the expression // 'e' isn't evaluated to an RValue). For example, consider the following code: // int *p = new int[4]; // int *q = new int[4]; // if ((p = q)) {} // p = q; // The expression `p = q` in the conditional of the `if` statement // `if ((p = q))` is evaluated as an RValue, whereas the expression `p = q;` // in the assignment statement is in an untyped context. static internal::Matcher isInUnspecifiedUntypedContext(internal::Matcher InnerMatcher) { // An unspecified context can be // 1. A compound statement, // 2. The body of an if statement // 3. Body of a loop auto CompStmt = compoundStmt(forEach(InnerMatcher)); auto IfStmtThen = ifStmt(hasThen(InnerMatcher)); auto IfStmtElse = ifStmt(hasElse(InnerMatcher)); // FIXME: Handle loop bodies. return stmt(anyOf(CompStmt, IfStmtThen, IfStmtElse)); } } // namespace clang::ast_matchers namespace { // Because the analysis revolves around variables and their types, we'll need to // track uses of variables (aka DeclRefExprs). using DeclUseList = SmallVector; // Convenience typedef. using FixItList = SmallVector; // Defined below. class Strategy; } // namespace namespace { /// Gadget is an individual operation in the code that may be of interest to /// this analysis. Each (non-abstract) subclass corresponds to a specific /// rigid AST structure that constitutes an operation on a pointer-type object. /// Discovery of a gadget in the code corresponds to claiming that we understand /// what this part of code is doing well enough to potentially improve it. /// Gadgets can be warning (immediately deserving a warning) or fixable (not /// always deserving a warning per se, but requires our attention to identify /// it warrants a fixit). class Gadget { public: enum class Kind { #define GADGET(x) x, #include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def" }; /// Common type of ASTMatchers used for discovering gadgets. /// Useful for implementing the static matcher() methods /// that are expected from all non-abstract subclasses. using Matcher = decltype(stmt()); Gadget(Kind K) : K(K) {} Kind getKind() const { return K; } #ifndef NDEBUG StringRef getDebugName() const { switch (K) { #define GADGET(x) case Kind::x: return #x; #include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def" } llvm_unreachable("Unhandled Gadget::Kind enum"); } #endif virtual bool isWarningGadget() const = 0; virtual const Stmt *getBaseStmt() const = 0; /// Returns the list of pointer-type variables on which this gadget performs /// its operation. Typically, there's only one variable. This isn't a list /// of all DeclRefExprs in the gadget's AST! virtual DeclUseList getClaimedVarUseSites() const = 0; virtual ~Gadget() = default; private: Kind K; }; /// Warning gadgets correspond to unsafe code patterns that warrants /// an immediate warning. class WarningGadget : public Gadget { public: WarningGadget(Kind K) : Gadget(K) {} static bool classof(const Gadget *G) { return G->isWarningGadget(); } bool isWarningGadget() const final { return true; } }; /// Fixable gadgets correspond to code patterns that aren't always unsafe but need to be /// properly recognized in order to emit fixes. For example, if a raw pointer-type /// variable is replaced by a safe C++ container, every use of such variable must be /// carefully considered and possibly updated. class FixableGadget : public Gadget { public: FixableGadget(Kind K) : Gadget(K) {} static bool classof(const Gadget *G) { return !G->isWarningGadget(); } bool isWarningGadget() const final { return false; } /// Returns a fixit that would fix the current gadget according to /// the current strategy. Returns std::nullopt if the fix cannot be produced; /// returns an empty list if no fixes are necessary. virtual std::optional getFixits(const Strategy &) const { return std::nullopt; } /// Returns a list of two elements where the first element is the LHS of a pointer assignment /// statement and the second element is the RHS. This two-element list represents the fact that /// the LHS buffer gets its bounds information from the RHS buffer. This information will be used /// later to group all those variables whose types must be modified together to prevent type /// mismatches. virtual std::optional> getStrategyImplications() const { return std::nullopt; } }; static auto toSupportedVariable() { return to(varDecl()); } using FixableGadgetList = std::vector>; using WarningGadgetList = std::vector>; /// An increment of a pointer-type value is unsafe as it may run the pointer /// out of bounds. class IncrementGadget : public WarningGadget { static constexpr const char *const OpTag = "op"; const UnaryOperator *Op; public: IncrementGadget(const MatchFinder::MatchResult &Result) : WarningGadget(Kind::Increment), Op(Result.Nodes.getNodeAs(OpTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::Increment; } static Matcher matcher() { return stmt(unaryOperator( hasOperatorName("++"), hasUnaryOperand(ignoringParenImpCasts(hasPointerType())) ).bind(OpTag)); } const UnaryOperator *getBaseStmt() const override { return Op; } DeclUseList getClaimedVarUseSites() const override { SmallVector Uses; if (const auto *DRE = dyn_cast(Op->getSubExpr()->IgnoreParenImpCasts())) { Uses.push_back(DRE); } return std::move(Uses); } }; /// A decrement of a pointer-type value is unsafe as it may run the pointer /// out of bounds. class DecrementGadget : public WarningGadget { static constexpr const char *const OpTag = "op"; const UnaryOperator *Op; public: DecrementGadget(const MatchFinder::MatchResult &Result) : WarningGadget(Kind::Decrement), Op(Result.Nodes.getNodeAs(OpTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::Decrement; } static Matcher matcher() { return stmt(unaryOperator( hasOperatorName("--"), hasUnaryOperand(ignoringParenImpCasts(hasPointerType())) ).bind(OpTag)); } const UnaryOperator *getBaseStmt() const override { return Op; } DeclUseList getClaimedVarUseSites() const override { if (const auto *DRE = dyn_cast(Op->getSubExpr()->IgnoreParenImpCasts())) { return {DRE}; } return {}; } }; /// Array subscript expressions on raw pointers as if they're arrays. Unsafe as /// it doesn't have any bounds checks for the array. class ArraySubscriptGadget : public WarningGadget { static constexpr const char *const ArraySubscrTag = "ArraySubscript"; const ArraySubscriptExpr *ASE; public: ArraySubscriptGadget(const MatchFinder::MatchResult &Result) : WarningGadget(Kind::ArraySubscript), ASE(Result.Nodes.getNodeAs(ArraySubscrTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::ArraySubscript; } static Matcher matcher() { // FIXME: What if the index is integer literal 0? Should this be // a safe gadget in this case? // clang-format off return stmt(arraySubscriptExpr( hasBase(ignoringParenImpCasts( anyOf(hasPointerType(), hasArrayType()))), unless(hasIndex( anyOf(integerLiteral(equals(0)), arrayInitIndexExpr()) ))) .bind(ArraySubscrTag)); // clang-format on } const ArraySubscriptExpr *getBaseStmt() const override { return ASE; } DeclUseList getClaimedVarUseSites() const override { if (const auto *DRE = dyn_cast(ASE->getBase()->IgnoreParenImpCasts())) { return {DRE}; } return {}; } }; /// A pointer arithmetic expression of one of the forms: /// \code /// ptr + n | n + ptr | ptr - n | ptr += n | ptr -= n /// \endcode class PointerArithmeticGadget : public WarningGadget { static constexpr const char *const PointerArithmeticTag = "ptrAdd"; static constexpr const char *const PointerArithmeticPointerTag = "ptrAddPtr"; const BinaryOperator *PA; // pointer arithmetic expression const Expr *Ptr; // the pointer expression in `PA` public: PointerArithmeticGadget(const MatchFinder::MatchResult &Result) : WarningGadget(Kind::PointerArithmetic), PA(Result.Nodes.getNodeAs(PointerArithmeticTag)), Ptr(Result.Nodes.getNodeAs(PointerArithmeticPointerTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::PointerArithmetic; } static Matcher matcher() { auto HasIntegerType = anyOf(hasType(isInteger()), hasType(enumType())); auto PtrAtRight = allOf(hasOperatorName("+"), hasRHS(expr(hasPointerType()).bind(PointerArithmeticPointerTag)), hasLHS(HasIntegerType)); auto PtrAtLeft = allOf(anyOf(hasOperatorName("+"), hasOperatorName("-"), hasOperatorName("+="), hasOperatorName("-=")), hasLHS(expr(hasPointerType()).bind(PointerArithmeticPointerTag)), hasRHS(HasIntegerType)); return stmt(binaryOperator(anyOf(PtrAtLeft, PtrAtRight)) .bind(PointerArithmeticTag)); } const Stmt *getBaseStmt() const override { return PA; } DeclUseList getClaimedVarUseSites() const override { if (const auto *DRE = dyn_cast(Ptr->IgnoreParenImpCasts())) { return {DRE}; } return {}; } // FIXME: pointer adding zero should be fine // FIXME: this gadge will need a fix-it }; /// A pointer initialization expression of the form: /// \code /// int *p = q; /// \endcode class PointerInitGadget : public FixableGadget { private: static constexpr const char *const PointerInitLHSTag = "ptrInitLHS"; static constexpr const char *const PointerInitRHSTag = "ptrInitRHS"; const VarDecl * PtrInitLHS; // the LHS pointer expression in `PI` const DeclRefExpr * PtrInitRHS; // the RHS pointer expression in `PI` public: PointerInitGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::PointerInit), PtrInitLHS(Result.Nodes.getNodeAs(PointerInitLHSTag)), PtrInitRHS(Result.Nodes.getNodeAs(PointerInitRHSTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::PointerInit; } static Matcher matcher() { auto PtrInitStmt = declStmt(hasSingleDecl(varDecl( hasInitializer(ignoringImpCasts(declRefExpr( hasPointerType(), toSupportedVariable()). bind(PointerInitRHSTag)))). bind(PointerInitLHSTag))); return stmt(PtrInitStmt); } virtual std::optional getFixits(const Strategy &S) const override; virtual const Stmt *getBaseStmt() const override { // FIXME: This needs to be the entire DeclStmt, assuming that this method // makes sense at all on a FixableGadget. return PtrInitRHS; } virtual DeclUseList getClaimedVarUseSites() const override { return DeclUseList{PtrInitRHS}; } virtual std::optional> getStrategyImplications() const override { return std::make_pair(PtrInitLHS, cast(PtrInitRHS->getDecl())); } }; /// A pointer assignment expression of the form: /// \code /// p = q; /// \endcode class PointerAssignmentGadget : public FixableGadget { private: static constexpr const char *const PointerAssignLHSTag = "ptrLHS"; static constexpr const char *const PointerAssignRHSTag = "ptrRHS"; const DeclRefExpr * PtrLHS; // the LHS pointer expression in `PA` const DeclRefExpr * PtrRHS; // the RHS pointer expression in `PA` public: PointerAssignmentGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::PointerAssignment), PtrLHS(Result.Nodes.getNodeAs(PointerAssignLHSTag)), PtrRHS(Result.Nodes.getNodeAs(PointerAssignRHSTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::PointerAssignment; } static Matcher matcher() { auto PtrAssignExpr = binaryOperator(allOf(hasOperatorName("="), hasRHS(ignoringParenImpCasts(declRefExpr(hasPointerType(), toSupportedVariable()). bind(PointerAssignRHSTag))), hasLHS(declRefExpr(hasPointerType(), toSupportedVariable()). bind(PointerAssignLHSTag)))); return stmt(isInUnspecifiedUntypedContext(PtrAssignExpr)); } virtual std::optional getFixits(const Strategy &S) const override; virtual const Stmt *getBaseStmt() const override { // FIXME: This should be the binary operator, assuming that this method // makes sense at all on a FixableGadget. return PtrLHS; } virtual DeclUseList getClaimedVarUseSites() const override { return DeclUseList{PtrLHS, PtrRHS}; } virtual std::optional> getStrategyImplications() const override { return std::make_pair(cast(PtrLHS->getDecl()), cast(PtrRHS->getDecl())); } }; /// A call of a function or method that performs unchecked buffer operations /// over one of its pointer parameters. class UnsafeBufferUsageAttrGadget : public WarningGadget { constexpr static const char *const OpTag = "call_expr"; const CallExpr *Op; public: UnsafeBufferUsageAttrGadget(const MatchFinder::MatchResult &Result) : WarningGadget(Kind::UnsafeBufferUsageAttr), Op(Result.Nodes.getNodeAs(OpTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::UnsafeBufferUsageAttr; } static Matcher matcher() { return stmt(callExpr(callee(functionDecl(hasAttr(attr::UnsafeBufferUsage)))) .bind(OpTag)); } const Stmt *getBaseStmt() const override { return Op; } DeclUseList getClaimedVarUseSites() const override { return {}; } }; // Warning gadget for unsafe invocation of span::data method. // Triggers when the pointer returned by the invocation is immediately // cast to a larger type. class DataInvocationGadget : public WarningGadget { constexpr static const char *const OpTag = "data_invocation_expr"; const ExplicitCastExpr *Op; public: DataInvocationGadget(const MatchFinder::MatchResult &Result) : WarningGadget(Kind::DataInvocation), Op(Result.Nodes.getNodeAs(OpTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::DataInvocation; } static Matcher matcher() { Matcher callExpr = cxxMemberCallExpr( callee(cxxMethodDecl(hasName("data"), ofClass(hasName("std::span"))))); return stmt( explicitCastExpr(anyOf(has(callExpr), has(parenExpr(has(callExpr))))) .bind(OpTag)); } const Stmt *getBaseStmt() const override { return Op; } DeclUseList getClaimedVarUseSites() const override { return {}; } }; // Represents expressions of the form `DRE[*]` in the Unspecified Lvalue // Context (see `isInUnspecifiedLvalueContext`). // Note here `[]` is the built-in subscript operator. class ULCArraySubscriptGadget : public FixableGadget { private: static constexpr const char *const ULCArraySubscriptTag = "ArraySubscriptUnderULC"; const ArraySubscriptExpr *Node; public: ULCArraySubscriptGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::ULCArraySubscript), Node(Result.Nodes.getNodeAs(ULCArraySubscriptTag)) { assert(Node != nullptr && "Expecting a non-null matching result"); } static bool classof(const Gadget *G) { return G->getKind() == Kind::ULCArraySubscript; } static Matcher matcher() { auto ArrayOrPtr = anyOf(hasPointerType(), hasArrayType()); auto BaseIsArrayOrPtrDRE = hasBase(ignoringParenImpCasts(declRefExpr(ArrayOrPtr, toSupportedVariable()))); auto Target = arraySubscriptExpr(BaseIsArrayOrPtrDRE).bind(ULCArraySubscriptTag); return expr(isInUnspecifiedLvalueContext(Target)); } virtual std::optional getFixits(const Strategy &S) const override; virtual const Stmt *getBaseStmt() const override { return Node; } virtual DeclUseList getClaimedVarUseSites() const override { if (const auto *DRE = dyn_cast(Node->getBase()->IgnoreImpCasts())) { return {DRE}; } return {}; } }; // Fixable gadget to handle stand alone pointers of the form `UPC(DRE)` in the // unspecified pointer context (isInUnspecifiedPointerContext). The gadget emits // fixit of the form `UPC(DRE.data())`. class UPCStandalonePointerGadget : public FixableGadget { private: static constexpr const char *const DeclRefExprTag = "StandalonePointer"; const DeclRefExpr *Node; public: UPCStandalonePointerGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::UPCStandalonePointer), Node(Result.Nodes.getNodeAs(DeclRefExprTag)) { assert(Node != nullptr && "Expecting a non-null matching result"); } static bool classof(const Gadget *G) { return G->getKind() == Kind::UPCStandalonePointer; } static Matcher matcher() { auto ArrayOrPtr = anyOf(hasPointerType(), hasArrayType()); auto target = expr( ignoringParenImpCasts(declRefExpr(allOf(ArrayOrPtr, toSupportedVariable())).bind(DeclRefExprTag))); return stmt(isInUnspecifiedPointerContext(target)); } virtual std::optional getFixits(const Strategy &S) const override; virtual const Stmt *getBaseStmt() const override { return Node; } virtual DeclUseList getClaimedVarUseSites() const override { return {Node}; } }; class PointerDereferenceGadget : public FixableGadget { static constexpr const char *const BaseDeclRefExprTag = "BaseDRE"; static constexpr const char *const OperatorTag = "op"; const DeclRefExpr *BaseDeclRefExpr = nullptr; const UnaryOperator *Op = nullptr; public: PointerDereferenceGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::PointerDereference), BaseDeclRefExpr( Result.Nodes.getNodeAs(BaseDeclRefExprTag)), Op(Result.Nodes.getNodeAs(OperatorTag)) {} static bool classof(const Gadget *G) { return G->getKind() == Kind::PointerDereference; } static Matcher matcher() { auto Target = unaryOperator( hasOperatorName("*"), has(expr(ignoringParenImpCasts( declRefExpr(toSupportedVariable()).bind(BaseDeclRefExprTag))))) .bind(OperatorTag); return expr(isInUnspecifiedLvalueContext(Target)); } DeclUseList getClaimedVarUseSites() const override { return {BaseDeclRefExpr}; } virtual const Stmt *getBaseStmt() const final { return Op; } virtual std::optional getFixits(const Strategy &S) const override; }; // Represents expressions of the form `&DRE[any]` in the Unspecified Pointer // Context (see `isInUnspecifiedPointerContext`). // Note here `[]` is the built-in subscript operator. class UPCAddressofArraySubscriptGadget : public FixableGadget { private: static constexpr const char *const UPCAddressofArraySubscriptTag = "AddressofArraySubscriptUnderUPC"; const UnaryOperator *Node; // the `&DRE[any]` node public: UPCAddressofArraySubscriptGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::ULCArraySubscript), Node(Result.Nodes.getNodeAs( UPCAddressofArraySubscriptTag)) { assert(Node != nullptr && "Expecting a non-null matching result"); } static bool classof(const Gadget *G) { return G->getKind() == Kind::UPCAddressofArraySubscript; } static Matcher matcher() { return expr(isInUnspecifiedPointerContext(expr(ignoringImpCasts( unaryOperator(hasOperatorName("&"), hasUnaryOperand(arraySubscriptExpr( hasBase(ignoringParenImpCasts(declRefExpr( toSupportedVariable())))))) .bind(UPCAddressofArraySubscriptTag))))); } virtual std::optional getFixits(const Strategy &) const override; virtual const Stmt *getBaseStmt() const override { return Node; } virtual DeclUseList getClaimedVarUseSites() const override { const auto *ArraySubst = cast(Node->getSubExpr()); const auto *DRE = cast(ArraySubst->getBase()->IgnoreImpCasts()); return {DRE}; } }; } // namespace namespace { // An auxiliary tracking facility for the fixit analysis. It helps connect // declarations to its uses and make sure we've covered all uses with our // analysis before we try to fix the declaration. class DeclUseTracker { using UseSetTy = SmallSet; using DefMapTy = DenseMap; // Allocate on the heap for easier move. std::unique_ptr Uses{std::make_unique()}; DefMapTy Defs{}; public: DeclUseTracker() = default; DeclUseTracker(const DeclUseTracker &) = delete; // Let's avoid copies. DeclUseTracker &operator=(const DeclUseTracker &) = delete; DeclUseTracker(DeclUseTracker &&) = default; DeclUseTracker &operator=(DeclUseTracker &&) = default; // Start tracking a freshly discovered DRE. void discoverUse(const DeclRefExpr *DRE) { Uses->insert(DRE); } // Stop tracking the DRE as it's been fully figured out. void claimUse(const DeclRefExpr *DRE) { assert(Uses->count(DRE) && "DRE not found or claimed by multiple matchers!"); Uses->erase(DRE); } // A variable is unclaimed if at least one use is unclaimed. bool hasUnclaimedUses(const VarDecl *VD) const { // FIXME: Can this be less linear? Maybe maintain a map from VDs to DREs? return any_of(*Uses, [VD](const DeclRefExpr *DRE) { return DRE->getDecl()->getCanonicalDecl() == VD->getCanonicalDecl(); }); } UseSetTy getUnclaimedUses(const VarDecl *VD) const { UseSetTy ReturnSet; for (auto use : *Uses) { if (use->getDecl()->getCanonicalDecl() == VD->getCanonicalDecl()) { ReturnSet.insert(use); } } return ReturnSet; } void discoverDecl(const DeclStmt *DS) { for (const Decl *D : DS->decls()) { if (const auto *VD = dyn_cast(D)) { // FIXME: Assertion temporarily disabled due to a bug in // ASTMatcher internal behavior in presence of GNU // statement-expressions. We need to properly investigate this // because it can screw up our algorithm in other ways. // assert(Defs.count(VD) == 0 && "Definition already discovered!"); Defs[VD] = DS; } } } const DeclStmt *lookupDecl(const VarDecl *VD) const { return Defs.lookup(VD); } }; } // namespace namespace { // Strategy is a map from variables to the way we plan to emit fixes for // these variables. It is figured out gradually by trying different fixes // for different variables depending on gadgets in which these variables // participate. class Strategy { public: enum class Kind { Wontfix, // We don't plan to emit a fixit for this variable. Span, // We recommend replacing the variable with std::span. Iterator, // We recommend replacing the variable with std::span::iterator. Array, // We recommend replacing the variable with std::array. Vector // We recommend replacing the variable with std::vector. }; private: using MapTy = llvm::DenseMap; MapTy Map; public: Strategy() = default; Strategy(const Strategy &) = delete; // Let's avoid copies. Strategy &operator=(const Strategy &) = delete; Strategy(Strategy &&) = default; Strategy &operator=(Strategy &&) = default; void set(const VarDecl *VD, Kind K) { Map[VD] = K; } Kind lookup(const VarDecl *VD) const { auto I = Map.find(VD); if (I == Map.end()) return Kind::Wontfix; return I->second; } }; } // namespace // Representing a pointer type expression of the form `++Ptr` in an Unspecified // Pointer Context (UPC): class UPCPreIncrementGadget : public FixableGadget { private: static constexpr const char *const UPCPreIncrementTag = "PointerPreIncrementUnderUPC"; const UnaryOperator *Node; // the `++Ptr` node public: UPCPreIncrementGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::UPCPreIncrement), Node(Result.Nodes.getNodeAs(UPCPreIncrementTag)) { assert(Node != nullptr && "Expecting a non-null matching result"); } static bool classof(const Gadget *G) { return G->getKind() == Kind::UPCPreIncrement; } static Matcher matcher() { // Note here we match `++Ptr` for any expression `Ptr` of pointer type. // Although currently we can only provide fix-its when `Ptr` is a DRE, we // can have the matcher be general, so long as `getClaimedVarUseSites` does // things right. return stmt(isInUnspecifiedPointerContext(expr(ignoringImpCasts( unaryOperator(isPreInc(), hasUnaryOperand(declRefExpr( toSupportedVariable())) ).bind(UPCPreIncrementTag))))); } virtual std::optional getFixits(const Strategy &S) const override; virtual const Stmt *getBaseStmt() const override { return Node; } virtual DeclUseList getClaimedVarUseSites() const override { return {dyn_cast(Node->getSubExpr())}; } }; // Representing a pointer type expression of the form `Ptr += n` in an // Unspecified Untyped Context (UUC): class UUCAddAssignGadget : public FixableGadget { private: static constexpr const char *const UUCAddAssignTag = "PointerAddAssignUnderUUC"; static constexpr const char *const OffsetTag = "Offset"; const BinaryOperator *Node; // the `Ptr += n` node const Expr *Offset = nullptr; public: UUCAddAssignGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::UUCAddAssign), Node(Result.Nodes.getNodeAs(UUCAddAssignTag)), Offset(Result.Nodes.getNodeAs(OffsetTag)) { assert(Node != nullptr && "Expecting a non-null matching result"); } static bool classof(const Gadget *G) { return G->getKind() == Kind::UUCAddAssign; } static Matcher matcher() { return stmt(isInUnspecifiedUntypedContext(expr(ignoringImpCasts( binaryOperator(hasOperatorName("+="), hasLHS(declRefExpr(toSupportedVariable())), hasRHS(expr().bind(OffsetTag))) .bind(UUCAddAssignTag))))); } virtual std::optional getFixits(const Strategy &S) const override; virtual const Stmt *getBaseStmt() const override { return Node; } virtual DeclUseList getClaimedVarUseSites() const override { return {dyn_cast(Node->getLHS())}; } }; // Representing a fixable expression of the form `*(ptr + 123)` or `*(123 + // ptr)`: class DerefSimplePtrArithFixableGadget : public FixableGadget { static constexpr const char *const BaseDeclRefExprTag = "BaseDRE"; static constexpr const char *const DerefOpTag = "DerefOp"; static constexpr const char *const AddOpTag = "AddOp"; static constexpr const char *const OffsetTag = "Offset"; const DeclRefExpr *BaseDeclRefExpr = nullptr; const UnaryOperator *DerefOp = nullptr; const BinaryOperator *AddOp = nullptr; const IntegerLiteral *Offset = nullptr; public: DerefSimplePtrArithFixableGadget(const MatchFinder::MatchResult &Result) : FixableGadget(Kind::DerefSimplePtrArithFixable), BaseDeclRefExpr( Result.Nodes.getNodeAs(BaseDeclRefExprTag)), DerefOp(Result.Nodes.getNodeAs(DerefOpTag)), AddOp(Result.Nodes.getNodeAs(AddOpTag)), Offset(Result.Nodes.getNodeAs(OffsetTag)) {} static Matcher matcher() { // clang-format off auto ThePtr = expr(hasPointerType(), ignoringImpCasts(declRefExpr(toSupportedVariable()). bind(BaseDeclRefExprTag))); auto PlusOverPtrAndInteger = expr(anyOf( binaryOperator(hasOperatorName("+"), hasLHS(ThePtr), hasRHS(integerLiteral().bind(OffsetTag))) .bind(AddOpTag), binaryOperator(hasOperatorName("+"), hasRHS(ThePtr), hasLHS(integerLiteral().bind(OffsetTag))) .bind(AddOpTag))); return isInUnspecifiedLvalueContext(unaryOperator( hasOperatorName("*"), hasUnaryOperand(ignoringParens(PlusOverPtrAndInteger))) .bind(DerefOpTag)); // clang-format on } virtual std::optional getFixits(const Strategy &s) const final; // TODO remove this method from FixableGadget interface virtual const Stmt *getBaseStmt() const final { return nullptr; } virtual DeclUseList getClaimedVarUseSites() const final { return {BaseDeclRefExpr}; } }; /// Scan the function and return a list of gadgets found with provided kits. static std::tuple findGadgets(const Decl *D, const UnsafeBufferUsageHandler &Handler, bool EmitSuggestions) { struct GadgetFinderCallback : MatchFinder::MatchCallback { FixableGadgetList FixableGadgets; WarningGadgetList WarningGadgets; DeclUseTracker Tracker; void run(const MatchFinder::MatchResult &Result) override { // In debug mode, assert that we've found exactly one gadget. // This helps us avoid conflicts in .bind() tags. #if NDEBUG #define NEXT return #else [[maybe_unused]] int numFound = 0; #define NEXT ++numFound #endif if (const auto *DRE = Result.Nodes.getNodeAs("any_dre")) { Tracker.discoverUse(DRE); NEXT; } if (const auto *DS = Result.Nodes.getNodeAs("any_ds")) { Tracker.discoverDecl(DS); NEXT; } // Figure out which matcher we've found, and call the appropriate // subclass constructor. // FIXME: Can we do this more logarithmically? #define FIXABLE_GADGET(name) \ if (Result.Nodes.getNodeAs(#name)) { \ FixableGadgets.push_back(std::make_unique(Result)); \ NEXT; \ } #include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def" #define WARNING_GADGET(name) \ if (Result.Nodes.getNodeAs(#name)) { \ WarningGadgets.push_back(std::make_unique(Result)); \ NEXT; \ } #include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def" assert(numFound >= 1 && "Gadgets not found in match result!"); assert(numFound <= 1 && "Conflicting bind tags in gadgets!"); } }; MatchFinder M; GadgetFinderCallback CB; // clang-format off M.addMatcher( stmt( forEachDescendantEvaluatedStmt(stmt(anyOf( // Add Gadget::matcher() for every gadget in the registry. #define WARNING_GADGET(x) \ allOf(x ## Gadget::matcher().bind(#x), \ notInSafeBufferOptOut(&Handler)), #include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def" // Avoid a hanging comma. unless(stmt()) ))) ), &CB ); // clang-format on if (EmitSuggestions) { // clang-format off M.addMatcher( stmt( forEachDescendantStmt(stmt(eachOf( #define FIXABLE_GADGET(x) \ x ## Gadget::matcher().bind(#x), #include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def" // In parallel, match all DeclRefExprs so that to find out // whether there are any uncovered by gadgets. declRefExpr(anyOf(hasPointerType(), hasArrayType()), to(anyOf(varDecl(), bindingDecl()))).bind("any_dre"), // Also match DeclStmts because we'll need them when fixing // their underlying VarDecls that otherwise don't have // any backreferences to DeclStmts. declStmt().bind("any_ds") ))) ), &CB ); // clang-format on } M.match(*D->getBody(), D->getASTContext()); return {std::move(CB.FixableGadgets), std::move(CB.WarningGadgets), std::move(CB.Tracker)}; } // Compares AST nodes by source locations. template struct CompareNode { bool operator()(const NodeTy *N1, const NodeTy *N2) const { return N1->getBeginLoc().getRawEncoding() < N2->getBeginLoc().getRawEncoding(); } }; struct WarningGadgetSets { std::map, // To keep keys sorted by their locations in the map so that the // order is deterministic: CompareNode> byVar; // These Gadgets are not related to pointer variables (e. g. temporaries). llvm::SmallVector noVar; }; static WarningGadgetSets groupWarningGadgetsByVar(const WarningGadgetList &AllUnsafeOperations) { WarningGadgetSets result; // If some gadgets cover more than one // variable, they'll appear more than once in the map. for (auto &G : AllUnsafeOperations) { DeclUseList ClaimedVarUseSites = G->getClaimedVarUseSites(); bool AssociatedWithVarDecl = false; for (const DeclRefExpr *DRE : ClaimedVarUseSites) { if (const auto *VD = dyn_cast(DRE->getDecl())) { result.byVar[VD].insert(G.get()); AssociatedWithVarDecl = true; } } if (!AssociatedWithVarDecl) { result.noVar.push_back(G.get()); continue; } } return result; } struct FixableGadgetSets { std::map, // To keep keys sorted by their locations in the map so that the // order is deterministic: CompareNode> byVar; }; static FixableGadgetSets groupFixablesByVar(FixableGadgetList &&AllFixableOperations) { FixableGadgetSets FixablesForUnsafeVars; for (auto &F : AllFixableOperations) { DeclUseList DREs = F->getClaimedVarUseSites(); for (const DeclRefExpr *DRE : DREs) { if (const auto *VD = dyn_cast(DRE->getDecl())) { FixablesForUnsafeVars.byVar[VD].insert(F.get()); } } } return FixablesForUnsafeVars; } bool clang::internal::anyConflict(const SmallVectorImpl &FixIts, const SourceManager &SM) { // A simple interval overlap detection algorithm. Sorts all ranges by their // begin location then finds the first overlap in one pass. std::vector All; // a copy of `FixIts` for (const FixItHint &H : FixIts) All.push_back(&H); std::sort(All.begin(), All.end(), [&SM](const FixItHint *H1, const FixItHint *H2) { return SM.isBeforeInTranslationUnit(H1->RemoveRange.getBegin(), H2->RemoveRange.getBegin()); }); const FixItHint *CurrHint = nullptr; for (const FixItHint *Hint : All) { if (!CurrHint || SM.isBeforeInTranslationUnit(CurrHint->RemoveRange.getEnd(), Hint->RemoveRange.getBegin())) { // Either to initialize `CurrHint` or `CurrHint` does not // overlap with `Hint`: CurrHint = Hint; } else // In case `Hint` overlaps the `CurrHint`, we found at least one // conflict: return true; } return false; } std::optional PointerAssignmentGadget::getFixits(const Strategy &S) const { const auto *LeftVD = cast(PtrLHS->getDecl()); const auto *RightVD = cast(PtrRHS->getDecl()); switch (S.lookup(LeftVD)) { case Strategy::Kind::Span: if (S.lookup(RightVD) == Strategy::Kind::Span) return FixItList{}; return std::nullopt; case Strategy::Kind::Wontfix: return std::nullopt; case Strategy::Kind::Iterator: case Strategy::Kind::Array: case Strategy::Kind::Vector: llvm_unreachable("unsupported strategies for FixableGadgets"); } return std::nullopt; } std::optional PointerInitGadget::getFixits(const Strategy &S) const { const auto *LeftVD = PtrInitLHS; const auto *RightVD = cast(PtrInitRHS->getDecl()); switch (S.lookup(LeftVD)) { case Strategy::Kind::Span: if (S.lookup(RightVD) == Strategy::Kind::Span) return FixItList{}; return std::nullopt; case Strategy::Kind::Wontfix: return std::nullopt; case Strategy::Kind::Iterator: case Strategy::Kind::Array: case Strategy::Kind::Vector: llvm_unreachable("unsupported strategies for FixableGadgets"); } return std::nullopt; } static bool isNonNegativeIntegerExpr(const Expr *Expr, const VarDecl *VD, const ASTContext &Ctx) { if (auto ConstVal = Expr->getIntegerConstantExpr(Ctx)) { if (ConstVal->isNegative()) return false; } else if (!Expr->getType()->isUnsignedIntegerType()) return false; return true; } std::optional ULCArraySubscriptGadget::getFixits(const Strategy &S) const { if (const auto *DRE = dyn_cast(Node->getBase()->IgnoreImpCasts())) if (const auto *VD = dyn_cast(DRE->getDecl())) { switch (S.lookup(VD)) { case Strategy::Kind::Span: { // If the index has a negative constant value, we give up as no valid // fix-it can be generated: const ASTContext &Ctx = // FIXME: we need ASTContext to be passed in! VD->getASTContext(); if (!isNonNegativeIntegerExpr(Node->getIdx(), VD, Ctx)) return std::nullopt; // no-op is a good fix-it, otherwise return FixItList{}; } case Strategy::Kind::Wontfix: case Strategy::Kind::Iterator: case Strategy::Kind::Array: case Strategy::Kind::Vector: llvm_unreachable("unsupported strategies for FixableGadgets"); } } return std::nullopt; } static std::optional // forward declaration fixUPCAddressofArraySubscriptWithSpan(const UnaryOperator *Node); std::optional UPCAddressofArraySubscriptGadget::getFixits(const Strategy &S) const { auto DREs = getClaimedVarUseSites(); const auto *VD = cast(DREs.front()->getDecl()); switch (S.lookup(VD)) { case Strategy::Kind::Span: return fixUPCAddressofArraySubscriptWithSpan(Node); case Strategy::Kind::Wontfix: case Strategy::Kind::Iterator: case Strategy::Kind::Array: case Strategy::Kind::Vector: llvm_unreachable("unsupported strategies for FixableGadgets"); } return std::nullopt; // something went wrong, no fix-it } // FIXME: this function should be customizable through format static StringRef getEndOfLine() { static const char *const EOL = "\n"; return EOL; } // Returns the text indicating that the user needs to provide input there: std::string getUserFillPlaceHolder(StringRef HintTextToUser = "placeholder") { std::string s = std::string("<# "); s += HintTextToUser; s += " #>"; return s; } // Return the text representation of the given `APInt Val`: static std::string getAPIntText(APInt Val) { SmallVector Txt; Val.toString(Txt, 10, true); // APInt::toString does not add '\0' to the end of the string for us: Txt.push_back('\0'); return Txt.data(); } // Return the source location of the last character of the AST `Node`. template static std::optional getEndCharLoc(const NodeTy *Node, const SourceManager &SM, const LangOptions &LangOpts) { unsigned TkLen = Lexer::MeasureTokenLength(Node->getEndLoc(), SM, LangOpts); SourceLocation Loc = Node->getEndLoc().getLocWithOffset(TkLen - 1); if (Loc.isValid()) return Loc; return std::nullopt; } // Return the source location just past the last character of the AST `Node`. template static std::optional getPastLoc(const NodeTy *Node, const SourceManager &SM, const LangOptions &LangOpts) { SourceLocation Loc = Lexer::getLocForEndOfToken(Node->getEndLoc(), 0, SM, LangOpts); if (Loc.isValid()) return Loc; return std::nullopt; } // Return text representation of an `Expr`. static std::optional getExprText(const Expr *E, const SourceManager &SM, const LangOptions &LangOpts) { std::optional LastCharLoc = getPastLoc(E, SM, LangOpts); if (LastCharLoc) return Lexer::getSourceText( CharSourceRange::getCharRange(E->getBeginLoc(), *LastCharLoc), SM, LangOpts); return std::nullopt; } // Returns the literal text in `SourceRange SR`, if `SR` is a valid range. static std::optional getRangeText(SourceRange SR, const SourceManager &SM, const LangOptions &LangOpts) { bool Invalid = false; CharSourceRange CSR = CharSourceRange::getCharRange(SR); StringRef Text = Lexer::getSourceText(CSR, SM, LangOpts, &Invalid); if (!Invalid) return Text; return std::nullopt; } // Returns the begin location of the identifier of the given variable // declaration. static SourceLocation getVarDeclIdentifierLoc(const VarDecl *VD) { // According to the implementation of `VarDecl`, `VD->getLocation()` actually // returns the begin location of the identifier of the declaration: return VD->getLocation(); } // Returns the literal text of the identifier of the given variable declaration. static std::optional getVarDeclIdentifierText(const VarDecl *VD, const SourceManager &SM, const LangOptions &LangOpts) { SourceLocation ParmIdentBeginLoc = getVarDeclIdentifierLoc(VD); SourceLocation ParmIdentEndLoc = Lexer::getLocForEndOfToken(ParmIdentBeginLoc, 0, SM, LangOpts); if (ParmIdentEndLoc.isMacroID() && !Lexer::isAtEndOfMacroExpansion(ParmIdentEndLoc, SM, LangOpts)) return std::nullopt; return getRangeText({ParmIdentBeginLoc, ParmIdentEndLoc}, SM, LangOpts); } // We cannot fix a variable declaration if it has some other specifiers than the // type specifier. Because the source ranges of those specifiers could overlap // with the source range that is being replaced using fix-its. Especially when // we often cannot obtain accurate source ranges of cv-qualified type // specifiers. // FIXME: also deal with type attributes static bool hasUnsupportedSpecifiers(const VarDecl *VD, const SourceManager &SM) { // AttrRangeOverlapping: true if at least one attribute of `VD` overlaps the // source range of `VD`: bool AttrRangeOverlapping = llvm::any_of(VD->attrs(), [&](Attr *At) -> bool { return !(SM.isBeforeInTranslationUnit(At->getRange().getEnd(), VD->getBeginLoc())) && !(SM.isBeforeInTranslationUnit(VD->getEndLoc(), At->getRange().getBegin())); }); return VD->isInlineSpecified() || VD->isConstexpr() || VD->hasConstantInitialization() || !VD->hasLocalStorage() || AttrRangeOverlapping; } // Returns the `SourceRange` of `D`. The reason why this function exists is // that `D->getSourceRange()` may return a range where the end location is the // starting location of the last token. The end location of the source range // returned by this function is the last location of the last token. static SourceRange getSourceRangeToTokenEnd(const Decl *D, const SourceManager &SM, const LangOptions &LangOpts) { SourceLocation Begin = D->getBeginLoc(); SourceLocation End = // `D->getEndLoc` should always return the starting location of the // last token, so we should get the end of the token Lexer::getLocForEndOfToken(D->getEndLoc(), 0, SM, LangOpts); return SourceRange(Begin, End); } // Returns the text of the pointee type of `T` from a `VarDecl` of a pointer // type. The text is obtained through from `TypeLoc`s. Since `TypeLoc` does not // have source ranges of qualifiers ( The `QualifiedTypeLoc` looks hacky too me // :( ), `Qualifiers` of the pointee type is returned separately through the // output parameter `QualifiersToAppend`. static std::optional getPointeeTypeText(const VarDecl *VD, const SourceManager &SM, const LangOptions &LangOpts, std::optional *QualifiersToAppend) { QualType Ty = VD->getType(); QualType PteTy; assert(Ty->isPointerType() && !Ty->isFunctionPointerType() && "Expecting a VarDecl of type of pointer to object type"); PteTy = Ty->getPointeeType(); TypeLoc TyLoc = VD->getTypeSourceInfo()->getTypeLoc().getUnqualifiedLoc(); TypeLoc PteTyLoc; // We only deal with the cases that we know `TypeLoc::getNextTypeLoc` returns // the `TypeLoc` of the pointee type: switch (TyLoc.getTypeLocClass()) { case TypeLoc::ConstantArray: case TypeLoc::IncompleteArray: case TypeLoc::VariableArray: case TypeLoc::DependentSizedArray: case TypeLoc::Decayed: assert(isa(VD) && "An array type shall not be treated as a " "pointer type unless it decays."); PteTyLoc = TyLoc.getNextTypeLoc(); break; case TypeLoc::Pointer: PteTyLoc = TyLoc.castAs().getPointeeLoc(); break; default: return std::nullopt; } if (PteTyLoc.isNull()) // Sometimes we cannot get a useful `TypeLoc` for the pointee type, e.g., // when the pointer type is `auto`. return std::nullopt; SourceLocation IdentLoc = getVarDeclIdentifierLoc(VD); if (!(IdentLoc.isValid() && PteTyLoc.getSourceRange().isValid())) { // We are expecting these locations to be valid. But in some cases, they are // not all valid. It is a Clang bug to me and we are not responsible for // fixing it. So we will just give up for now when it happens. return std::nullopt; } // Note that TypeLoc.getEndLoc() returns the begin location of the last token: SourceLocation PteEndOfTokenLoc = Lexer::getLocForEndOfToken(PteTyLoc.getEndLoc(), 0, SM, LangOpts); if (!PteEndOfTokenLoc.isValid()) // Sometimes we cannot get the end location of the pointee type, e.g., when // there are macros involved. return std::nullopt; if (!SM.isBeforeInTranslationUnit(PteEndOfTokenLoc, IdentLoc)) { // We only deal with the cases where the source text of the pointee type // appears on the left-hand side of the variable identifier completely, // including the following forms: // `T ident`, // `T ident[]`, where `T` is any type. // Examples of excluded cases are `T (*ident)[]` or `T ident[][n]`. return std::nullopt; } if (PteTy.hasQualifiers()) { // TypeLoc does not provide source ranges for qualifiers (it says it's // intentional but seems fishy to me), so we cannot get the full text // `PteTy` via source ranges. *QualifiersToAppend = PteTy.getQualifiers(); } return getRangeText({PteTyLoc.getBeginLoc(), PteEndOfTokenLoc}, SM, LangOpts) ->str(); } // Returns the text of the name (with qualifiers) of a `FunctionDecl`. static std::optional getFunNameText(const FunctionDecl *FD, const SourceManager &SM, const LangOptions &LangOpts) { SourceLocation BeginLoc = FD->getQualifier() ? FD->getQualifierLoc().getBeginLoc() : FD->getNameInfo().getBeginLoc(); // Note that `FD->getNameInfo().getEndLoc()` returns the begin location of the // last token: SourceLocation EndLoc = Lexer::getLocForEndOfToken( FD->getNameInfo().getEndLoc(), 0, SM, LangOpts); SourceRange NameRange{BeginLoc, EndLoc}; return getRangeText(NameRange, SM, LangOpts); } // Returns the text representing a `std::span` type where the element type is // represented by `EltTyText`. // // Note the optional parameter `Qualifiers`: one needs to pass qualifiers // explicitly if the element type needs to be qualified. static std::string getSpanTypeText(StringRef EltTyText, std::optional Quals = std::nullopt) { const char *const SpanOpen = "std::span<"; if (Quals) return SpanOpen + EltTyText.str() + ' ' + Quals->getAsString() + '>'; return SpanOpen + EltTyText.str() + '>'; } std::optional DerefSimplePtrArithFixableGadget::getFixits(const Strategy &s) const { const VarDecl *VD = dyn_cast(BaseDeclRefExpr->getDecl()); if (VD && s.lookup(VD) == Strategy::Kind::Span) { ASTContext &Ctx = VD->getASTContext(); // std::span can't represent elements before its begin() if (auto ConstVal = Offset->getIntegerConstantExpr(Ctx)) if (ConstVal->isNegative()) return std::nullopt; // note that the expr may (oddly) has multiple layers of parens // example: // *((..(pointer + 123)..)) // goal: // pointer[123] // Fix-It: // remove '*(' // replace ' + ' with '[' // replace ')' with ']' // example: // *((..(123 + pointer)..)) // goal: // 123[pointer] // Fix-It: // remove '*(' // replace ' + ' with '[' // replace ')' with ']' const Expr *LHS = AddOp->getLHS(), *RHS = AddOp->getRHS(); const SourceManager &SM = Ctx.getSourceManager(); const LangOptions &LangOpts = Ctx.getLangOpts(); CharSourceRange StarWithTrailWhitespace = clang::CharSourceRange::getCharRange(DerefOp->getOperatorLoc(), LHS->getBeginLoc()); std::optional LHSLocation = getPastLoc(LHS, SM, LangOpts); if (!LHSLocation) return std::nullopt; CharSourceRange PlusWithSurroundingWhitespace = clang::CharSourceRange::getCharRange(*LHSLocation, RHS->getBeginLoc()); std::optional AddOpLocation = getPastLoc(AddOp, SM, LangOpts); std::optional DerefOpLocation = getPastLoc(DerefOp, SM, LangOpts); if (!AddOpLocation || !DerefOpLocation) return std::nullopt; CharSourceRange ClosingParenWithPrecWhitespace = clang::CharSourceRange::getCharRange(*AddOpLocation, *DerefOpLocation); return FixItList{ {FixItHint::CreateRemoval(StarWithTrailWhitespace), FixItHint::CreateReplacement(PlusWithSurroundingWhitespace, "["), FixItHint::CreateReplacement(ClosingParenWithPrecWhitespace, "]")}}; } return std::nullopt; // something wrong or unsupported, give up } std::optional PointerDereferenceGadget::getFixits(const Strategy &S) const { const VarDecl *VD = cast(BaseDeclRefExpr->getDecl()); switch (S.lookup(VD)) { case Strategy::Kind::Span: { ASTContext &Ctx = VD->getASTContext(); SourceManager &SM = Ctx.getSourceManager(); // Required changes: *(ptr); => (ptr[0]); and *ptr; => ptr[0] // Deletes the *operand CharSourceRange derefRange = clang::CharSourceRange::getCharRange( Op->getBeginLoc(), Op->getBeginLoc().getLocWithOffset(1)); // Inserts the [0] if (auto LocPastOperand = getPastLoc(BaseDeclRefExpr, SM, Ctx.getLangOpts())) { return FixItList{{FixItHint::CreateRemoval(derefRange), FixItHint::CreateInsertion(*LocPastOperand, "[0]")}}; } break; } case Strategy::Kind::Iterator: case Strategy::Kind::Array: case Strategy::Kind::Vector: llvm_unreachable("Strategy not implemented yet!"); case Strategy::Kind::Wontfix: llvm_unreachable("Invalid strategy!"); } return std::nullopt; } // Generates fix-its replacing an expression of the form UPC(DRE) with // `DRE.data()` std::optional UPCStandalonePointerGadget::getFixits(const Strategy &S) const { const auto VD = cast(Node->getDecl()); switch (S.lookup(VD)) { case Strategy::Kind::Span: { ASTContext &Ctx = VD->getASTContext(); SourceManager &SM = Ctx.getSourceManager(); // Inserts the .data() after the DRE std::optional EndOfOperand = getPastLoc(Node, SM, Ctx.getLangOpts()); if (EndOfOperand) return FixItList{{FixItHint::CreateInsertion( *EndOfOperand, ".data()")}}; // FIXME: Points inside a macro expansion. break; } case Strategy::Kind::Wontfix: case Strategy::Kind::Iterator: case Strategy::Kind::Array: case Strategy::Kind::Vector: llvm_unreachable("unsupported strategies for FixableGadgets"); } return std::nullopt; } // Generates fix-its replacing an expression of the form `&DRE[e]` with // `&DRE.data()[e]`: static std::optional fixUPCAddressofArraySubscriptWithSpan(const UnaryOperator *Node) { const auto *ArraySub = cast(Node->getSubExpr()); const auto *DRE = cast(ArraySub->getBase()->IgnoreImpCasts()); // FIXME: this `getASTContext` call is costly, we should pass the // ASTContext in: const ASTContext &Ctx = DRE->getDecl()->getASTContext(); const Expr *Idx = ArraySub->getIdx(); const SourceManager &SM = Ctx.getSourceManager(); const LangOptions &LangOpts = Ctx.getLangOpts(); std::stringstream SS; bool IdxIsLitZero = false; if (auto ICE = Idx->getIntegerConstantExpr(Ctx)) if ((*ICE).isZero()) IdxIsLitZero = true; std::optional DreString = getExprText(DRE, SM, LangOpts); if (!DreString) return std::nullopt; if (IdxIsLitZero) { // If the index is literal zero, we produce the most concise fix-it: SS << (*DreString).str() << ".data()"; } else { std::optional IndexString = getExprText(Idx, SM, LangOpts); if (!IndexString) return std::nullopt; SS << "&" << (*DreString).str() << ".data()" << "[" << (*IndexString).str() << "]"; } return FixItList{ FixItHint::CreateReplacement(Node->getSourceRange(), SS.str())}; } std::optional UUCAddAssignGadget::getFixits(const Strategy &S) const { DeclUseList DREs = getClaimedVarUseSites(); if (DREs.size() != 1) return std::nullopt; // In cases of `Ptr += n` where `Ptr` is not a DRE, we // give up if (const VarDecl *VD = dyn_cast(DREs.front()->getDecl())) { if (S.lookup(VD) == Strategy::Kind::Span) { FixItList Fixes; const Stmt *AddAssignNode = getBaseStmt(); StringRef varName = VD->getName(); const ASTContext &Ctx = VD->getASTContext(); if (!isNonNegativeIntegerExpr(Offset, VD, Ctx)) return std::nullopt; // To transform UUC(p += n) to UUC(p = p.subspan(..)): bool NotParenExpr = (Offset->IgnoreParens()->getBeginLoc() == Offset->getBeginLoc()); std::string SS = varName.str() + " = " + varName.str() + ".subspan"; if (NotParenExpr) SS += "("; std::optional AddAssignLocation = getEndCharLoc( AddAssignNode, Ctx.getSourceManager(), Ctx.getLangOpts()); if (!AddAssignLocation) return std::nullopt; Fixes.push_back(FixItHint::CreateReplacement( SourceRange(AddAssignNode->getBeginLoc(), Node->getOperatorLoc()), SS)); if (NotParenExpr) Fixes.push_back(FixItHint::CreateInsertion( Offset->getEndLoc().getLocWithOffset(1), ")")); return Fixes; } } return std::nullopt; // Not in the cases that we can handle for now, give up. } std::optional UPCPreIncrementGadget::getFixits(const Strategy &S) const { DeclUseList DREs = getClaimedVarUseSites(); if (DREs.size() != 1) return std::nullopt; // In cases of `++Ptr` where `Ptr` is not a DRE, we // give up if (const VarDecl *VD = dyn_cast(DREs.front()->getDecl())) { if (S.lookup(VD) == Strategy::Kind::Span) { FixItList Fixes; std::stringstream SS; const Stmt *PreIncNode = getBaseStmt(); StringRef varName = VD->getName(); const ASTContext &Ctx = VD->getASTContext(); // To transform UPC(++p) to UPC((p = p.subspan(1)).data()): SS << "(" << varName.data() << " = " << varName.data() << ".subspan(1)).data()"; std::optional PreIncLocation = getEndCharLoc(PreIncNode, Ctx.getSourceManager(), Ctx.getLangOpts()); if (!PreIncLocation) return std::nullopt; Fixes.push_back(FixItHint::CreateReplacement( SourceRange(PreIncNode->getBeginLoc(), *PreIncLocation), SS.str())); return Fixes; } } return std::nullopt; // Not in the cases that we can handle for now, give up. } // For a non-null initializer `Init` of `T *` type, this function returns // `FixItHint`s producing a list initializer `{Init, S}` as a part of a fix-it // to output stream. // In many cases, this function cannot figure out the actual extent `S`. It // then will use a place holder to replace `S` to ask users to fill `S` in. The // initializer shall be used to initialize a variable of type `std::span`. // // FIXME: Support multi-level pointers // // Parameters: // `Init` a pointer to the initializer expression // `Ctx` a reference to the ASTContext static FixItList FixVarInitializerWithSpan(const Expr *Init, ASTContext &Ctx, const StringRef UserFillPlaceHolder) { const SourceManager &SM = Ctx.getSourceManager(); const LangOptions &LangOpts = Ctx.getLangOpts(); // If `Init` has a constant value that is (or equivalent to) a // NULL pointer, we use the default constructor to initialize the span // object, i.e., a `std:span` variable declaration with no initializer. // So the fix-it is just to remove the initializer. if (Init->isNullPointerConstant(Ctx, // FIXME: Why does this function not ask for `const ASTContext // &`? It should. Maybe worth an NFC patch later. Expr::NullPointerConstantValueDependence:: NPC_ValueDependentIsNotNull)) { std::optional InitLocation = getEndCharLoc(Init, SM, LangOpts); if (!InitLocation) return {}; SourceRange SR(Init->getBeginLoc(), *InitLocation); return {FixItHint::CreateRemoval(SR)}; } FixItList FixIts{}; std::string ExtentText = UserFillPlaceHolder.data(); StringRef One = "1"; // Insert `{` before `Init`: FixIts.push_back(FixItHint::CreateInsertion(Init->getBeginLoc(), "{")); // Try to get the data extent. Break into different cases: if (auto CxxNew = dyn_cast(Init->IgnoreImpCasts())) { // In cases `Init` is `new T[n]` and there is no explicit cast over // `Init`, we know that `Init` must evaluates to a pointer to `n` objects // of `T`. So the extent is `n` unless `n` has side effects. Similar but // simpler for the case where `Init` is `new T`. if (const Expr *Ext = CxxNew->getArraySize().value_or(nullptr)) { if (!Ext->HasSideEffects(Ctx)) { std::optional ExtentString = getExprText(Ext, SM, LangOpts); if (!ExtentString) return {}; ExtentText = *ExtentString; } } else if (!CxxNew->isArray()) // Although the initializer is not allocating a buffer, the pointer // variable could still be used in buffer access operations. ExtentText = One; } else if (const auto *CArrTy = Ctx.getAsConstantArrayType( Init->IgnoreImpCasts()->getType())) { // In cases `Init` is of an array type after stripping off implicit casts, // the extent is the array size. Note that if the array size is not a // constant, we cannot use it as the extent. ExtentText = getAPIntText(CArrTy->getSize()); } else { // In cases `Init` is of the form `&Var` after stripping of implicit // casts, where `&` is the built-in operator, the extent is 1. if (auto AddrOfExpr = dyn_cast(Init->IgnoreImpCasts())) if (AddrOfExpr->getOpcode() == UnaryOperatorKind::UO_AddrOf && isa_and_present(AddrOfExpr->getSubExpr())) ExtentText = One; // TODO: we can handle more cases, e.g., `&a[0]`, `&a`, `std::addressof`, // and explicit casting, etc. etc. } SmallString<32> StrBuffer{}; std::optional LocPassInit = getPastLoc(Init, SM, LangOpts); if (!LocPassInit) return {}; StrBuffer.append(", "); StrBuffer.append(ExtentText); StrBuffer.append("}"); FixIts.push_back(FixItHint::CreateInsertion(*LocPassInit, StrBuffer.str())); return FixIts; } #ifndef NDEBUG #define DEBUG_NOTE_DECL_FAIL(D, Msg) \ Handler.addDebugNoteForVar((D), (D)->getBeginLoc(), "failed to produce fixit for declaration '" + (D)->getNameAsString() + "'" + (Msg)) #else #define DEBUG_NOTE_DECL_FAIL(D, Msg) #endif // For the given variable declaration with a pointer-to-T type, returns the text // `std::span`. If it is unable to generate the text, returns // `std::nullopt`. static std::optional createSpanTypeForVarDecl(const VarDecl *VD, const ASTContext &Ctx) { assert(VD->getType()->isPointerType()); std::optional PteTyQualifiers = std::nullopt; std::optional PteTyText = getPointeeTypeText( VD, Ctx.getSourceManager(), Ctx.getLangOpts(), &PteTyQualifiers); if (!PteTyText) return std::nullopt; std::string SpanTyText = "std::span<"; SpanTyText.append(*PteTyText); // Append qualifiers to span element type if any: if (PteTyQualifiers) { SpanTyText.append(" "); SpanTyText.append(PteTyQualifiers->getAsString()); } SpanTyText.append(">"); return SpanTyText; } // For a `VarDecl` of the form `T * var (= Init)?`, this // function generates fix-its that // 1) replace `T * var` with `std::span var`; and // 2) change `Init` accordingly to a span constructor, if it exists. // // FIXME: support Multi-level pointers // // Parameters: // `D` a pointer the variable declaration node // `Ctx` a reference to the ASTContext // `UserFillPlaceHolder` the user-input placeholder text // Returns: // the non-empty fix-it list, if fix-its are successfuly generated; empty // list otherwise. static FixItList fixLocalVarDeclWithSpan(const VarDecl *D, ASTContext &Ctx, const StringRef UserFillPlaceHolder, UnsafeBufferUsageHandler &Handler) { if (hasUnsupportedSpecifiers(D, Ctx.getSourceManager())) return {}; FixItList FixIts{}; std::optional SpanTyText = createSpanTypeForVarDecl(D, Ctx); if (!SpanTyText) { DEBUG_NOTE_DECL_FAIL(D, " : failed to generate 'std::span' type"); return {}; } // Will hold the text for `std::span Ident`: std::stringstream SS; SS << *SpanTyText; // Append qualifiers to the type of `D`, if any: if (D->getType().hasQualifiers()) SS << " " << D->getType().getQualifiers().getAsString(); // The end of the range of the original source that will be replaced // by `std::span ident`: SourceLocation EndLocForReplacement = D->getEndLoc(); std::optional IdentText = getVarDeclIdentifierText(D, Ctx.getSourceManager(), Ctx.getLangOpts()); if (!IdentText) { DEBUG_NOTE_DECL_FAIL(D, " : failed to locate the identifier"); return {}; } // Fix the initializer if it exists: if (const Expr *Init = D->getInit()) { FixItList InitFixIts = FixVarInitializerWithSpan(Init, Ctx, UserFillPlaceHolder); if (InitFixIts.empty()) return {}; FixIts.insert(FixIts.end(), std::make_move_iterator(InitFixIts.begin()), std::make_move_iterator(InitFixIts.end())); // If the declaration has the form `T *ident = init`, we want to replace // `T *ident = ` with `std::span ident`: EndLocForReplacement = Init->getBeginLoc().getLocWithOffset(-1); } SS << " " << IdentText->str(); if (!EndLocForReplacement.isValid()) { DEBUG_NOTE_DECL_FAIL(D, " : failed to locate the end of the declaration"); return {}; } FixIts.push_back(FixItHint::CreateReplacement( SourceRange(D->getBeginLoc(), EndLocForReplacement), SS.str())); return FixIts; } static bool hasConflictingOverload(const FunctionDecl *FD) { return !FD->getDeclContext()->lookup(FD->getDeclName()).isSingleResult(); } // For a `FunctionDecl`, whose `ParmVarDecl`s are being changed to have new // types, this function produces fix-its to make the change self-contained. Let // 'F' be the entity defined by the original `FunctionDecl` and "NewF" be the // entity defined by the `FunctionDecl` after the change to the parameters. // Fix-its produced by this function are // 1. Add the `[[clang::unsafe_buffer_usage]]` attribute to each declaration // of 'F'; // 2. Create a declaration of "NewF" next to each declaration of `F`; // 3. Create a definition of "F" (as its' original definition is now belongs // to "NewF") next to its original definition. The body of the creating // definition calls to "NewF". // // Example: // // void f(int *p); // original declaration // void f(int *p) { // original definition // p[5]; // } // // To change the parameter `p` to be of `std::span` type, we // also add overloads: // // [[clang::unsafe_buffer_usage]] void f(int *p); // original decl // void f(std::span p); // added overload decl // void f(std::span p) { // original def where param is changed // p[5]; // } // [[clang::unsafe_buffer_usage]] void f(int *p) { // added def // return f(std::span(p, <# size #>)); // } // static std::optional createOverloadsForFixedParams(const Strategy &S, const FunctionDecl *FD, const ASTContext &Ctx, UnsafeBufferUsageHandler &Handler) { // FIXME: need to make this conflict checking better: if (hasConflictingOverload(FD)) return std::nullopt; const SourceManager &SM = Ctx.getSourceManager(); const LangOptions &LangOpts = Ctx.getLangOpts(); const unsigned NumParms = FD->getNumParams(); std::vector NewTysTexts(NumParms); std::vector ParmsMask(NumParms, false); bool AtLeastOneParmToFix = false; for (unsigned i = 0; i < NumParms; i++) { const ParmVarDecl *PVD = FD->getParamDecl(i); if (S.lookup(PVD) == Strategy::Kind::Wontfix) continue; if (S.lookup(PVD) != Strategy::Kind::Span) // Not supported, not suppose to happen: return std::nullopt; std::optional PteTyQuals = std::nullopt; std::optional PteTyText = getPointeeTypeText(PVD, SM, LangOpts, &PteTyQuals); if (!PteTyText) // something wrong in obtaining the text of the pointee type, give up return std::nullopt; // FIXME: whether we should create std::span type depends on the Strategy. NewTysTexts[i] = getSpanTypeText(*PteTyText, PteTyQuals); ParmsMask[i] = true; AtLeastOneParmToFix = true; } if (!AtLeastOneParmToFix) // No need to create function overloads: return {}; // FIXME Respect indentation of the original code. // A lambda that creates the text representation of a function declaration // with the new type signatures: const auto NewOverloadSignatureCreator = [&SM, &LangOpts, &NewTysTexts, &ParmsMask](const FunctionDecl *FD) -> std::optional { std::stringstream SS; SS << ";"; SS << getEndOfLine().str(); // Append: ret-type func-name "(" if (auto Prefix = getRangeText( SourceRange(FD->getBeginLoc(), (*FD->param_begin())->getBeginLoc()), SM, LangOpts)) SS << Prefix->str(); else return std::nullopt; // give up // Append: parameter-type-list const unsigned NumParms = FD->getNumParams(); for (unsigned i = 0; i < NumParms; i++) { const ParmVarDecl *Parm = FD->getParamDecl(i); if (Parm->isImplicit()) continue; if (ParmsMask[i]) { // This `i`-th parameter will be fixed with `NewTysTexts[i]` being its // new type: SS << NewTysTexts[i]; // print parameter name if provided: if (IdentifierInfo *II = Parm->getIdentifier()) SS << ' ' << II->getName().str(); } else if (auto ParmTypeText = getRangeText( getSourceRangeToTokenEnd(Parm, SM, LangOpts), SM, LangOpts)) { // print the whole `Parm` without modification: SS << ParmTypeText->str(); } else return std::nullopt; // something wrong, give up if (i != NumParms - 1) SS << ", "; } SS << ")"; return SS.str(); }; // A lambda that creates the text representation of a function definition with // the original signature: const auto OldOverloadDefCreator = [&Handler, &SM, &LangOpts, &NewTysTexts, &ParmsMask](const FunctionDecl *FD) -> std::optional { std::stringstream SS; SS << getEndOfLine().str(); // Append: attr-name ret-type func-name "(" param-list ")" "{" if (auto FDPrefix = getRangeText( SourceRange(FD->getBeginLoc(), FD->getBody()->getBeginLoc()), SM, LangOpts)) SS << Handler.getUnsafeBufferUsageAttributeTextAt(FD->getBeginLoc(), " ") << FDPrefix->str() << "{"; else return std::nullopt; // Append: "return" func-name "(" if (auto FunQualName = getFunNameText(FD, SM, LangOpts)) SS << "return " << FunQualName->str() << "("; else return std::nullopt; // Append: arg-list const unsigned NumParms = FD->getNumParams(); for (unsigned i = 0; i < NumParms; i++) { const ParmVarDecl *Parm = FD->getParamDecl(i); if (Parm->isImplicit()) continue; // FIXME: If a parameter has no name, it is unused in the // definition. So we could just leave it as it is. if (!Parm->getIdentifier()) // If a parameter of a function definition has no name: return std::nullopt; if (ParmsMask[i]) // This is our spanified paramter! SS << NewTysTexts[i] << "(" << Parm->getIdentifier()->getName().str() << ", " << getUserFillPlaceHolder("size") << ")"; else SS << Parm->getIdentifier()->getName().str(); if (i != NumParms - 1) SS << ", "; } // finish call and the body SS << ");}" << getEndOfLine().str(); // FIXME: 80-char line formatting? return SS.str(); }; FixItList FixIts{}; for (FunctionDecl *FReDecl : FD->redecls()) { std::optional Loc = getPastLoc(FReDecl, SM, LangOpts); if (!Loc) return {}; if (FReDecl->isThisDeclarationADefinition()) { assert(FReDecl == FD && "inconsistent function definition"); // Inserts a definition with the old signature to the end of // `FReDecl`: if (auto OldOverloadDef = OldOverloadDefCreator(FReDecl)) FixIts.emplace_back(FixItHint::CreateInsertion(*Loc, *OldOverloadDef)); else return {}; // give up } else { // Adds the unsafe-buffer attribute (if not already there) to `FReDecl`: if (!FReDecl->hasAttr()) { FixIts.emplace_back(FixItHint::CreateInsertion( FReDecl->getBeginLoc(), Handler.getUnsafeBufferUsageAttributeTextAt( FReDecl->getBeginLoc(), " "))); } // Inserts a declaration with the new signature to the end of `FReDecl`: if (auto NewOverloadDecl = NewOverloadSignatureCreator(FReDecl)) FixIts.emplace_back(FixItHint::CreateInsertion(*Loc, *NewOverloadDecl)); else return {}; } } return FixIts; } // To fix a `ParmVarDecl` to be of `std::span` type. static FixItList fixParamWithSpan(const ParmVarDecl *PVD, const ASTContext &Ctx, UnsafeBufferUsageHandler &Handler) { if (hasUnsupportedSpecifiers(PVD, Ctx.getSourceManager())) { DEBUG_NOTE_DECL_FAIL(PVD, " : has unsupport specifier(s)"); return {}; } if (PVD->hasDefaultArg()) { // FIXME: generate fix-its for default values: DEBUG_NOTE_DECL_FAIL(PVD, " : has default arg"); return {}; } std::optional PteTyQualifiers = std::nullopt; std::optional PteTyText = getPointeeTypeText( PVD, Ctx.getSourceManager(), Ctx.getLangOpts(), &PteTyQualifiers); if (!PteTyText) { DEBUG_NOTE_DECL_FAIL(PVD, " : invalid pointee type"); return {}; } std::optional PVDNameText = PVD->getIdentifier()->getName(); if (!PVDNameText) { DEBUG_NOTE_DECL_FAIL(PVD, " : invalid identifier name"); return {}; } std::stringstream SS; std::optional SpanTyText = createSpanTypeForVarDecl(PVD, Ctx); if (PteTyQualifiers) // Append qualifiers if they exist: SS << getSpanTypeText(*PteTyText, PteTyQualifiers); else SS << getSpanTypeText(*PteTyText); // Append qualifiers to the type of the parameter: if (PVD->getType().hasQualifiers()) SS << ' ' << PVD->getType().getQualifiers().getAsString(); // Append parameter's name: SS << ' ' << PVDNameText->str(); // Add replacement fix-it: return {FixItHint::CreateReplacement(PVD->getSourceRange(), SS.str())}; } static FixItList fixVariableWithSpan(const VarDecl *VD, const DeclUseTracker &Tracker, ASTContext &Ctx, UnsafeBufferUsageHandler &Handler) { const DeclStmt *DS = Tracker.lookupDecl(VD); if (!DS) { DEBUG_NOTE_DECL_FAIL(VD, " : variables declared this way not implemented yet"); return {}; } if (!DS->isSingleDecl()) { // FIXME: to support handling multiple `VarDecl`s in a single `DeclStmt` DEBUG_NOTE_DECL_FAIL(VD, " : multiple VarDecls"); return {}; } // Currently DS is an unused variable but we'll need it when // non-single decls are implemented, where the pointee type name // and the '*' are spread around the place. (void)DS; // FIXME: handle cases where DS has multiple declarations return fixLocalVarDeclWithSpan(VD, Ctx, getUserFillPlaceHolder(), Handler); } // TODO: we should be consistent to use `std::nullopt` to represent no-fix due // to any unexpected problem. static FixItList fixVariable(const VarDecl *VD, Strategy::Kind K, /* The function decl under analysis */ const Decl *D, const DeclUseTracker &Tracker, ASTContext &Ctx, UnsafeBufferUsageHandler &Handler) { if (const auto *PVD = dyn_cast(VD)) { auto *FD = dyn_cast(PVD->getDeclContext()); if (!FD || FD != D) { // `FD != D` means that `PVD` belongs to a function that is not being // analyzed currently. Thus `FD` may not be complete. DEBUG_NOTE_DECL_FAIL(VD, " : function not currently analyzed"); return {}; } // TODO If function has a try block we can't change params unless we check // also its catch block for their use. // FIXME We might support static class methods, some select methods, // operators and possibly lamdas. if (FD->isMain() || FD->isConstexpr() || FD->getTemplatedKind() != FunctionDecl::TemplatedKind::TK_NonTemplate || FD->isVariadic() || // also covers call-operator of lamdas isa(FD) || // skip when the function body is a try-block (FD->hasBody() && isa(FD->getBody())) || FD->isOverloadedOperator()) { DEBUG_NOTE_DECL_FAIL(VD, " : unsupported function decl"); return {}; // TODO test all these cases } } switch (K) { case Strategy::Kind::Span: { if (VD->getType()->isPointerType()) { if (const auto *PVD = dyn_cast(VD)) return fixParamWithSpan(PVD, Ctx, Handler); if (VD->isLocalVarDecl()) return fixVariableWithSpan(VD, Tracker, Ctx, Handler); } DEBUG_NOTE_DECL_FAIL(VD, " : not a pointer"); return {}; } case Strategy::Kind::Iterator: case Strategy::Kind::Array: case Strategy::Kind::Vector: llvm_unreachable("Strategy not implemented yet!"); case Strategy::Kind::Wontfix: llvm_unreachable("Invalid strategy!"); } llvm_unreachable("Unknown strategy!"); } // Returns true iff there exists a `FixItHint` 'h' in `FixIts` such that the // `RemoveRange` of 'h' overlaps with a macro use. static bool overlapWithMacro(const FixItList &FixIts) { // FIXME: For now we only check if the range (or the first token) is (part of) // a macro expansion. Ideally, we want to check for all tokens in the range. return llvm::any_of(FixIts, [](const FixItHint &Hint) { auto Range = Hint.RemoveRange; if (Range.getBegin().isMacroID() || Range.getEnd().isMacroID()) // If the range (or the first token) is (part of) a macro expansion: return true; return false; }); } // Returns true iff `VD` is a parameter of the declaration `D`: static bool isParameterOf(const VarDecl *VD, const Decl *D) { return isa(VD) && VD->getDeclContext() == dyn_cast(D); } // Erases variables in `FixItsForVariable`, if such a variable has an unfixable // group mate. A variable `v` is unfixable iff `FixItsForVariable` does not // contain `v`. static void eraseVarsForUnfixableGroupMates( std::map &FixItsForVariable, const VariableGroupsManager &VarGrpMgr) { // Variables will be removed from `FixItsForVariable`: SmallVector ToErase; for (const auto &[VD, Ignore] : FixItsForVariable) { VarGrpRef Grp = VarGrpMgr.getGroupOfVar(VD); if (llvm::any_of(Grp, [&FixItsForVariable](const VarDecl *GrpMember) -> bool { return !FixItsForVariable.count(GrpMember); })) { // At least one group member cannot be fixed, so we have to erase the // whole group: for (const VarDecl *Member : Grp) ToErase.push_back(Member); } } for (auto *VarToErase : ToErase) FixItsForVariable.erase(VarToErase); } // Returns the fix-its that create bounds-safe function overloads for the // function `D`, if `D`'s parameters will be changed to safe-types through // fix-its in `FixItsForVariable`. // // NOTE: In case `D`'s parameters will be changed but bounds-safe function // overloads cannot created, the whole group that contains the parameters will // be erased from `FixItsForVariable`. static FixItList createFunctionOverloadsForParms( std::map &FixItsForVariable /* mutable */, const VariableGroupsManager &VarGrpMgr, const FunctionDecl *FD, const Strategy &S, ASTContext &Ctx, UnsafeBufferUsageHandler &Handler) { FixItList FixItsSharedByParms{}; std::optional OverloadFixes = createOverloadsForFixedParams(S, FD, Ctx, Handler); if (OverloadFixes) { FixItsSharedByParms.append(*OverloadFixes); } else { // Something wrong in generating `OverloadFixes`, need to remove the // whole group, where parameters are in, from `FixItsForVariable` (Note // that all parameters should be in the same group): for (auto *Member : VarGrpMgr.getGroupOfParms()) FixItsForVariable.erase(Member); } return FixItsSharedByParms; } // Constructs self-contained fix-its for each variable in `FixablesForAllVars`. static std::map getFixIts(FixableGadgetSets &FixablesForAllVars, const Strategy &S, ASTContext &Ctx, /* The function decl under analysis */ const Decl *D, const DeclUseTracker &Tracker, UnsafeBufferUsageHandler &Handler, const VariableGroupsManager &VarGrpMgr) { // `FixItsForVariable` will map each variable to a set of fix-its directly // associated to the variable itself. Fix-its of distinct variables in // `FixItsForVariable` are disjoint. std::map FixItsForVariable; // Populate `FixItsForVariable` with fix-its directly associated with each // variable. Fix-its directly associated to a variable 'v' are the ones // produced by the `FixableGadget`s whose claimed variable is 'v'. for (const auto &[VD, Fixables] : FixablesForAllVars.byVar) { FixItsForVariable[VD] = fixVariable(VD, S.lookup(VD), D, Tracker, Ctx, Handler); // If we fail to produce Fix-It for the declaration we have to skip the // variable entirely. if (FixItsForVariable[VD].empty()) { FixItsForVariable.erase(VD); continue; } for (const auto &F : Fixables) { std::optional Fixits = F->getFixits(S); if (Fixits) { FixItsForVariable[VD].insert(FixItsForVariable[VD].end(), Fixits->begin(), Fixits->end()); continue; } #ifndef NDEBUG Handler.addDebugNoteForVar( VD, F->getBaseStmt()->getBeginLoc(), ("gadget '" + F->getDebugName() + "' refused to produce a fix") .str()); #endif FixItsForVariable.erase(VD); break; } } // `FixItsForVariable` now contains only variables that can be // fixed. A variable can be fixed if its' declaration and all Fixables // associated to it can all be fixed. // To further remove from `FixItsForVariable` variables whose group mates // cannot be fixed... eraseVarsForUnfixableGroupMates(FixItsForVariable, VarGrpMgr); // Now `FixItsForVariable` gets further reduced: a variable is in // `FixItsForVariable` iff it can be fixed and all its group mates can be // fixed. // Fix-its of bounds-safe overloads of `D` are shared by parameters of `D`. // That is, when fixing multiple parameters in one step, these fix-its will // be applied only once (instead of being applied per parameter). FixItList FixItsSharedByParms{}; if (auto *FD = dyn_cast(D)) FixItsSharedByParms = createFunctionOverloadsForParms( FixItsForVariable, VarGrpMgr, FD, S, Ctx, Handler); // The map that maps each variable `v` to fix-its for the whole group where // `v` is in: std::map FinalFixItsForVariable{ FixItsForVariable}; for (auto &[Var, Ignore] : FixItsForVariable) { bool AnyParm = false; const auto VarGroupForVD = VarGrpMgr.getGroupOfVar(Var, &AnyParm); for (const VarDecl *GrpMate : VarGroupForVD) { if (Var == GrpMate) continue; if (FixItsForVariable.count(GrpMate)) FinalFixItsForVariable[Var].append(FixItsForVariable[GrpMate]); } if (AnyParm) { // This assertion should never fail. Otherwise we have a bug. assert(!FixItsSharedByParms.empty() && "Should not try to fix a parameter that does not belong to a " "FunctionDecl"); FinalFixItsForVariable[Var].append(FixItsSharedByParms); } } // Fix-its that will be applied in one step shall NOT: // 1. overlap with macros or/and templates; or // 2. conflict with each other. // Otherwise, the fix-its will be dropped. for (auto Iter = FinalFixItsForVariable.begin(); Iter != FinalFixItsForVariable.end();) if (overlapWithMacro(Iter->second) || clang::internal::anyConflict(Iter->second, Ctx.getSourceManager())) { Iter = FinalFixItsForVariable.erase(Iter); } else Iter++; return FinalFixItsForVariable; } template static Strategy getNaiveStrategy(llvm::iterator_range UnsafeVars) { Strategy S; for (const VarDecl *VD : UnsafeVars) { S.set(VD, Strategy::Kind::Span); } return S; } // Manages variable groups: class VariableGroupsManagerImpl : public VariableGroupsManager { const std::vector Groups; const std::map &VarGrpMap; const llvm::SetVector &GrpsUnionForParms; public: VariableGroupsManagerImpl( const std::vector &Groups, const std::map &VarGrpMap, const llvm::SetVector &GrpsUnionForParms) : Groups(Groups), VarGrpMap(VarGrpMap), GrpsUnionForParms(GrpsUnionForParms) {} VarGrpRef getGroupOfVar(const VarDecl *Var, bool *HasParm) const override { if (GrpsUnionForParms.contains(Var)) { if (HasParm) *HasParm = true; return GrpsUnionForParms.getArrayRef(); } if (HasParm) *HasParm = false; auto It = VarGrpMap.find(Var); if (It == VarGrpMap.end()) return std::nullopt; return Groups[It->second]; } VarGrpRef getGroupOfParms() const override { return GrpsUnionForParms.getArrayRef(); } }; void clang::checkUnsafeBufferUsage(const Decl *D, UnsafeBufferUsageHandler &Handler, bool EmitSuggestions) { #ifndef NDEBUG Handler.clearDebugNotes(); #endif assert(D && D->getBody()); // We do not want to visit a Lambda expression defined inside a method independently. // Instead, it should be visited along with the outer method. // FIXME: do we want to do the same thing for `BlockDecl`s? if (const auto *fd = dyn_cast(D)) { if (fd->getParent()->isLambda() && fd->getParent()->isLocalClass()) return; } // Do not emit fixit suggestions for functions declared in an // extern "C" block. if (const auto *FD = dyn_cast(D)) { for (FunctionDecl *FReDecl : FD->redecls()) { if (FReDecl->isExternC()) { EmitSuggestions = false; break; } } } WarningGadgetSets UnsafeOps; FixableGadgetSets FixablesForAllVars; auto [FixableGadgets, WarningGadgets, Tracker] = findGadgets(D, Handler, EmitSuggestions); if (!EmitSuggestions) { // Our job is very easy without suggestions. Just warn about // every problematic operation and consider it done. No need to deal // with fixable gadgets, no need to group operations by variable. for (const auto &G : WarningGadgets) { Handler.handleUnsafeOperation(G->getBaseStmt(), /*IsRelatedToDecl=*/false, D->getASTContext()); } // This return guarantees that most of the machine doesn't run when // suggestions aren't requested. assert(FixableGadgets.size() == 0 && "Fixable gadgets found but suggestions not requested!"); return; } // If no `WarningGadget`s ever matched, there is no unsafe operations in the // function under the analysis. No need to fix any Fixables. if (!WarningGadgets.empty()) { // Gadgets "claim" variables they're responsible for. Once this loop // finishes, the tracker will only track DREs that weren't claimed by any // gadgets, i.e. not understood by the analysis. for (const auto &G : FixableGadgets) { for (const auto *DRE : G->getClaimedVarUseSites()) { Tracker.claimUse(DRE); } } } // If no `WarningGadget`s ever matched, there is no unsafe operations in the // function under the analysis. Thus, it early returns here as there is // nothing needs to be fixed. // // Note this claim is based on the assumption that there is no unsafe // variable whose declaration is invisible from the analyzing function. // Otherwise, we need to consider if the uses of those unsafe varuables needs // fix. // So far, we are not fixing any global variables or class members. And, // lambdas will be analyzed along with the enclosing function. So this early // return is correct for now. if (WarningGadgets.empty()) return; UnsafeOps = groupWarningGadgetsByVar(std::move(WarningGadgets)); FixablesForAllVars = groupFixablesByVar(std::move(FixableGadgets)); std::map FixItsForVariableGroup; // Filter out non-local vars and vars with unclaimed DeclRefExpr-s. for (auto it = FixablesForAllVars.byVar.cbegin(); it != FixablesForAllVars.byVar.cend();) { // FIXME: need to deal with global variables later if ((!it->first->isLocalVarDecl() && !isa(it->first))) { #ifndef NDEBUG Handler.addDebugNoteForVar( it->first, it->first->getBeginLoc(), ("failed to produce fixit for '" + it->first->getNameAsString() + "' : neither local nor a parameter")); #endif it = FixablesForAllVars.byVar.erase(it); } else if (it->first->getType().getCanonicalType()->isReferenceType()) { #ifndef NDEBUG Handler.addDebugNoteForVar(it->first, it->first->getBeginLoc(), ("failed to produce fixit for '" + it->first->getNameAsString() + "' : has a reference type")); #endif it = FixablesForAllVars.byVar.erase(it); } else if (Tracker.hasUnclaimedUses(it->first)) { #ifndef NDEBUG auto AllUnclaimed = Tracker.getUnclaimedUses(it->first); for (auto UnclaimedDRE : AllUnclaimed) { std::string UnclaimedUseTrace = getDREAncestorString(UnclaimedDRE, D->getASTContext()); Handler.addDebugNoteForVar( it->first, UnclaimedDRE->getBeginLoc(), ("failed to produce fixit for '" + it->first->getNameAsString() + "' : has an unclaimed use\nThe unclaimed DRE trace: " + UnclaimedUseTrace)); } #endif it = FixablesForAllVars.byVar.erase(it); } else if (it->first->isInitCapture()) { #ifndef NDEBUG Handler.addDebugNoteForVar( it->first, it->first->getBeginLoc(), ("failed to produce fixit for '" + it->first->getNameAsString() + "' : init capture")); #endif it = FixablesForAllVars.byVar.erase(it); }else { ++it; } } // Fixpoint iteration for pointer assignments using DepMapTy = DenseMap>; DepMapTy DependenciesMap{}; DepMapTy PtrAssignmentGraph{}; for (auto it : FixablesForAllVars.byVar) { for (const FixableGadget *fixable : it.second) { std::optional> ImplPair = fixable->getStrategyImplications(); if (ImplPair) { std::pair Impl = std::move(*ImplPair); PtrAssignmentGraph[Impl.first].insert(Impl.second); } } } /* The following code does a BFS traversal of the `PtrAssignmentGraph` considering all unsafe vars as starting nodes and constructs an undirected graph `DependenciesMap`. Constructing the `DependenciesMap` in this manner elimiates all variables that are unreachable from any unsafe var. In other words, this removes all dependencies that don't include any unsafe variable and consequently don't need any fixit generation. Note: A careful reader would observe that the code traverses `PtrAssignmentGraph` using `CurrentVar` but adds edges between `Var` and `Adj` and not between `CurrentVar` and `Adj`. Both approaches would achieve the same result but the one used here dramatically cuts the amount of hoops the second part of the algorithm needs to jump, given that a lot of these connections become "direct". The reader is advised not to imagine how the graph is transformed because of using `Var` instead of `CurrentVar`. The reader can continue reading as if `CurrentVar` was used, and think about why it's equivalent later. */ std::set VisitedVarsDirected{}; for (const auto &[Var, ignore] : UnsafeOps.byVar) { if (VisitedVarsDirected.find(Var) == VisitedVarsDirected.end()) { std::queue QueueDirected{}; QueueDirected.push(Var); while(!QueueDirected.empty()) { const VarDecl* CurrentVar = QueueDirected.front(); QueueDirected.pop(); VisitedVarsDirected.insert(CurrentVar); auto AdjacentNodes = PtrAssignmentGraph[CurrentVar]; for (const VarDecl *Adj : AdjacentNodes) { if (VisitedVarsDirected.find(Adj) == VisitedVarsDirected.end()) { QueueDirected.push(Adj); } DependenciesMap[Var].insert(Adj); DependenciesMap[Adj].insert(Var); } } } } // `Groups` stores the set of Connected Components in the graph. std::vector Groups; // `VarGrpMap` maps variables that need fix to the groups (indexes) that the // variables belong to. Group indexes refer to the elements in `Groups`. // `VarGrpMap` is complete in that every variable that needs fix is in it. std::map VarGrpMap; // The union group over the ones in "Groups" that contain parameters of `D`: llvm::SetVector GrpsUnionForParms; // these variables need to be fixed in one step // Group Connected Components for Unsafe Vars // (Dependencies based on pointer assignments) std::set VisitedVars{}; for (const auto &[Var, ignore] : UnsafeOps.byVar) { if (VisitedVars.find(Var) == VisitedVars.end()) { VarGrpTy &VarGroup = Groups.emplace_back(); std::queue Queue{}; Queue.push(Var); while(!Queue.empty()) { const VarDecl* CurrentVar = Queue.front(); Queue.pop(); VisitedVars.insert(CurrentVar); VarGroup.push_back(CurrentVar); auto AdjacentNodes = DependenciesMap[CurrentVar]; for (const VarDecl *Adj : AdjacentNodes) { if (VisitedVars.find(Adj) == VisitedVars.end()) { Queue.push(Adj); } } } bool HasParm = false; unsigned GrpIdx = Groups.size() - 1; for (const VarDecl *V : VarGroup) { VarGrpMap[V] = GrpIdx; if (!HasParm && isParameterOf(V, D)) HasParm = true; } if (HasParm) GrpsUnionForParms.insert(VarGroup.begin(), VarGroup.end()); } } // Remove a `FixableGadget` if the associated variable is not in the graph // computed above. We do not want to generate fix-its for such variables, // since they are neither warned nor reachable from a warned one. // // Note a variable is not warned if it is not directly used in any unsafe // operation. A variable `v` is NOT reachable from an unsafe variable, if it // does not exist another variable `u` such that `u` is warned and fixing `u` // (transitively) implicates fixing `v`. // // For example, // ``` // void f(int * p) { // int * a = p; *p = 0; // } // ``` // `*p = 0` is a fixable gadget associated with a variable `p` that is neither // warned nor reachable from a warned one. If we add `a[5] = 0` to the end of // the function above, `p` becomes reachable from a warned variable. for (auto I = FixablesForAllVars.byVar.begin(); I != FixablesForAllVars.byVar.end();) { // Note `VisitedVars` contain all the variables in the graph: if (!VisitedVars.count((*I).first)) { // no such var in graph: I = FixablesForAllVars.byVar.erase(I); } else ++I; } // We assign strategies to variables that are 1) in the graph and 2) can be // fixed. Other variables have the default "Won't fix" strategy. Strategy NaiveStrategy = getNaiveStrategy(llvm::make_filter_range( VisitedVars, [&FixablesForAllVars](const VarDecl *V) { // If a warned variable has no "Fixable", it is considered unfixable: return FixablesForAllVars.byVar.count(V); })); VariableGroupsManagerImpl VarGrpMgr(Groups, VarGrpMap, GrpsUnionForParms); if (isa(D)) // The only case where `D` is not a `NamedDecl` is when `D` is a // `BlockDecl`. Let's not fix variables in blocks for now FixItsForVariableGroup = getFixIts(FixablesForAllVars, NaiveStrategy, D->getASTContext(), D, Tracker, Handler, VarGrpMgr); for (const auto &G : UnsafeOps.noVar) { Handler.handleUnsafeOperation(G->getBaseStmt(), /*IsRelatedToDecl=*/false, D->getASTContext()); } for (const auto &[VD, WarningGadgets] : UnsafeOps.byVar) { auto FixItsIt = FixItsForVariableGroup.find(VD); Handler.handleUnsafeVariableGroup(VD, VarGrpMgr, FixItsIt != FixItsForVariableGroup.end() ? std::move(FixItsIt->second) : FixItList{}, D); for (const auto &G : WarningGadgets) { Handler.handleUnsafeOperation(G->getBaseStmt(), /*IsRelatedToDecl=*/true, D->getASTContext()); } } }