//===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a SAT solver implementation that can be used by dataflow // analyses. // //===----------------------------------------------------------------------===// #include #include #include #include #include #include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Solver.h" #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" namespace clang { namespace dataflow { // `WatchedLiteralsSolver` is an implementation of Algorithm D from Knuth's // The Art of Computer Programming Volume 4: Satisfiability, Fascicle 6. It is // based on the backtracking DPLL algorithm [1], keeps references to a single // "watched" literal per clause, and uses a set of "active" variables to perform // unit propagation. // // The solver expects that its input is a boolean formula in conjunctive normal // form that consists of clauses of at least one literal. A literal is either a // boolean variable or its negation. Below we define types, data structures, and // utilities that are used to represent boolean formulas in conjunctive normal // form. // // [1] https://en.wikipedia.org/wiki/DPLL_algorithm /// Boolean variables are represented as positive integers. using Variable = uint32_t; /// A null boolean variable is used as a placeholder in various data structures /// and algorithms. static constexpr Variable NullVar = 0; /// Literals are represented as positive integers. Specifically, for a boolean /// variable `V` that is represented as the positive integer `I`, the positive /// literal `V` is represented as the integer `2*I` and the negative literal /// `!V` is represented as the integer `2*I+1`. using Literal = uint32_t; /// A null literal is used as a placeholder in various data structures and /// algorithms. [[maybe_unused]] static constexpr Literal NullLit = 0; /// Returns the positive literal `V`. static constexpr Literal posLit(Variable V) { return 2 * V; } static constexpr bool isPosLit(Literal L) { return 0 == (L & 1); } static constexpr bool isNegLit(Literal L) { return 1 == (L & 1); } /// Returns the negative literal `!V`. static constexpr Literal negLit(Variable V) { return 2 * V + 1; } /// Returns the negated literal `!L`. static constexpr Literal notLit(Literal L) { return L ^ 1; } /// Returns the variable of `L`. static constexpr Variable var(Literal L) { return L >> 1; } /// Clause identifiers are represented as positive integers. using ClauseID = uint32_t; /// A null clause identifier is used as a placeholder in various data structures /// and algorithms. static constexpr ClauseID NullClause = 0; /// A boolean formula in conjunctive normal form. struct CNFFormula { /// `LargestVar` is equal to the largest positive integer that represents a /// variable in the formula. const Variable LargestVar; /// Literals of all clauses in the formula. /// /// The element at index 0 stands for the literal in the null clause. It is /// set to 0 and isn't used. Literals of clauses in the formula start from the /// element at index 1. /// /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of /// `Clauses` will be `[0, L1, L2, L2, L3, L4]`. std::vector Clauses; /// Start indices of clauses of the formula in `Clauses`. /// /// The element at index 0 stands for the start index of the null clause. It /// is set to 0 and isn't used. Start indices of clauses in the formula start /// from the element at index 1. /// /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of /// `ClauseStarts` will be `[0, 1, 3]`. Note that the literals of the first /// clause always start at index 1. The start index for the literals of the /// second clause depends on the size of the first clause and so on. std::vector ClauseStarts; /// Maps literals (indices of the vector) to clause identifiers (elements of /// the vector) that watch the respective literals. /// /// For a given clause, its watched literal is always its first literal in /// `Clauses`. This invariant is maintained when watched literals change. std::vector WatchedHead; /// Maps clause identifiers (elements of the vector) to identifiers of other /// clauses that watch the same literals, forming a set of linked lists. /// /// The element at index 0 stands for the identifier of the clause that /// follows the null clause. It is set to 0 and isn't used. Identifiers of /// clauses in the formula start from the element at index 1. std::vector NextWatched; /// Stores the variable identifier and Atom for atomic booleans in the /// formula. llvm::DenseMap Atomics; /// Indicates that we already know the formula is unsatisfiable. /// During construction, we catch simple cases of conflicting unit-clauses. bool KnownContradictory; explicit CNFFormula(Variable LargestVar, llvm::DenseMap Atomics) : LargestVar(LargestVar), Atomics(std::move(Atomics)), KnownContradictory(false) { Clauses.push_back(0); ClauseStarts.push_back(0); NextWatched.push_back(0); const size_t NumLiterals = 2 * LargestVar + 1; WatchedHead.resize(NumLiterals + 1, 0); } /// Adds the `L1 v ... v Ln` clause to the formula. /// Requirements: /// /// `Li` must not be `NullLit`. /// /// All literals in the input that are not `NullLit` must be distinct. void addClause(ArrayRef lits) { assert(!lits.empty()); assert(llvm::all_of(lits, [](Literal L) { return L != NullLit; })); const ClauseID C = ClauseStarts.size(); const size_t S = Clauses.size(); ClauseStarts.push_back(S); Clauses.insert(Clauses.end(), lits.begin(), lits.end()); // Designate the first literal as the "watched" literal of the clause. NextWatched.push_back(WatchedHead[lits.front()]); WatchedHead[lits.front()] = C; } /// Returns the number of literals in clause `C`. size_t clauseSize(ClauseID C) const { return C == ClauseStarts.size() - 1 ? Clauses.size() - ClauseStarts[C] : ClauseStarts[C + 1] - ClauseStarts[C]; } /// Returns the literals of clause `C`. llvm::ArrayRef clauseLiterals(ClauseID C) const { return llvm::ArrayRef(&Clauses[ClauseStarts[C]], clauseSize(C)); } }; /// Applies simplifications while building up a BooleanFormula. /// We keep track of unit clauses, which tell us variables that must be /// true/false in any model that satisfies the overall formula. /// Such variables can be dropped from subsequently-added clauses, which /// may in turn yield more unit clauses or even a contradiction. /// The total added complexity of this preprocessing is O(N) where we /// for every clause, we do a lookup for each unit clauses. /// The lookup is O(1) on average. This method won't catch all /// contradictory formulas, more passes can in principle catch /// more cases but we leave all these and the general case to the /// proper SAT solver. struct CNFFormulaBuilder { // Formula should outlive CNFFormulaBuilder. explicit CNFFormulaBuilder(CNFFormula &CNF) : Formula(CNF) {} /// Adds the `L1 v ... v Ln` clause to the formula. Applies /// simplifications, based on single-literal clauses. /// /// Requirements: /// /// `Li` must not be `NullLit`. /// /// All literals must be distinct. void addClause(ArrayRef Literals) { // We generate clauses with up to 3 literals in this file. assert(!Literals.empty() && Literals.size() <= 3); // Contains literals of the simplified clause. llvm::SmallVector Simplified; for (auto L : Literals) { assert(L != NullLit && llvm::all_of(Simplified, [L](Literal S) { return S != L; })); auto X = var(L); if (trueVars.contains(X)) { // X must be true if (isPosLit(L)) return; // Omit clause `(... v X v ...)`, it is `true`. else continue; // Omit `!X` from `(... v !X v ...)`. } if (falseVars.contains(X)) { // X must be false if (isNegLit(L)) return; // Omit clause `(... v !X v ...)`, it is `true`. else continue; // Omit `X` from `(... v X v ...)`. } Simplified.push_back(L); } if (Simplified.empty()) { // Simplification made the clause empty, which is equivalent to `false`. // We already know that this formula is unsatisfiable. Formula.KnownContradictory = true; // We can add any of the input literals to get an unsatisfiable formula. Formula.addClause(Literals[0]); return; } if (Simplified.size() == 1) { // We have new unit clause. const Literal lit = Simplified.front(); const Variable v = var(lit); if (isPosLit(lit)) trueVars.insert(v); else falseVars.insert(v); } Formula.addClause(Simplified); } /// Returns true if we observed a contradiction while adding clauses. /// In this case then the formula is already known to be unsatisfiable. bool isKnownContradictory() { return Formula.KnownContradictory; } private: CNFFormula &Formula; llvm::DenseSet trueVars; llvm::DenseSet falseVars; }; /// Converts the conjunction of `Vals` into a formula in conjunctive normal /// form where each clause has at least one and at most three literals. CNFFormula buildCNF(const llvm::ArrayRef &Vals) { // The general strategy of the algorithm implemented below is to map each // of the sub-values in `Vals` to a unique variable and use these variables in // the resulting CNF expression to avoid exponential blow up. The number of // literals in the resulting formula is guaranteed to be linear in the number // of sub-formulas in `Vals`. // Map each sub-formula in `Vals` to a unique variable. llvm::DenseMap SubValsToVar; // Store variable identifiers and Atom of atomic booleans. llvm::DenseMap Atomics; Variable NextVar = 1; { std::queue UnprocessedSubVals; for (const Formula *Val : Vals) UnprocessedSubVals.push(Val); while (!UnprocessedSubVals.empty()) { Variable Var = NextVar; const Formula *Val = UnprocessedSubVals.front(); UnprocessedSubVals.pop(); if (!SubValsToVar.try_emplace(Val, Var).second) continue; ++NextVar; for (const Formula *F : Val->operands()) UnprocessedSubVals.push(F); if (Val->kind() == Formula::AtomRef) Atomics[Var] = Val->getAtom(); } } auto GetVar = [&SubValsToVar](const Formula *Val) { auto ValIt = SubValsToVar.find(Val); assert(ValIt != SubValsToVar.end()); return ValIt->second; }; CNFFormula CNF(NextVar - 1, std::move(Atomics)); std::vector ProcessedSubVals(NextVar, false); CNFFormulaBuilder builder(CNF); // Add a conjunct for each variable that represents a top-level conjunction // value in `Vals`. for (const Formula *Val : Vals) builder.addClause(posLit(GetVar(Val))); // Add conjuncts that represent the mapping between newly-created variables // and their corresponding sub-formulas. std::queue UnprocessedSubVals; for (const Formula *Val : Vals) UnprocessedSubVals.push(Val); while (!UnprocessedSubVals.empty()) { const Formula *Val = UnprocessedSubVals.front(); UnprocessedSubVals.pop(); const Variable Var = GetVar(Val); if (ProcessedSubVals[Var]) continue; ProcessedSubVals[Var] = true; switch (Val->kind()) { case Formula::AtomRef: break; case Formula::Literal: CNF.addClause(Val->literal() ? posLit(Var) : negLit(Var)); break; case Formula::And: { const Variable LHS = GetVar(Val->operands()[0]); const Variable RHS = GetVar(Val->operands()[1]); if (LHS == RHS) { // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is // already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. builder.addClause({negLit(Var), posLit(LHS)}); builder.addClause({posLit(Var), negLit(LHS)}); } else { // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v // !B)` which is already in conjunctive normal form. Below we add each // of the conjuncts of the latter expression to the result. builder.addClause({negLit(Var), posLit(LHS)}); builder.addClause({negLit(Var), posLit(RHS)}); builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)}); } break; } case Formula::Or: { const Variable LHS = GetVar(Val->operands()[0]); const Variable RHS = GetVar(Val->operands()[1]); if (LHS == RHS) { // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is // already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. builder.addClause({negLit(Var), posLit(LHS)}); builder.addClause({posLit(Var), negLit(LHS)}); } else { // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v // !B)` which is already in conjunctive normal form. Below we add each // of the conjuncts of the latter expression to the result. builder.addClause({negLit(Var), posLit(LHS), posLit(RHS)}); builder.addClause({posLit(Var), negLit(LHS)}); builder.addClause({posLit(Var), negLit(RHS)}); } break; } case Formula::Not: { const Variable Operand = GetVar(Val->operands()[0]); // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is // already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. builder.addClause({negLit(Var), negLit(Operand)}); builder.addClause({posLit(Var), posLit(Operand)}); break; } case Formula::Implies: { const Variable LHS = GetVar(Val->operands()[0]); const Variable RHS = GetVar(Val->operands()[1]); // `X <=> (A => B)` is equivalent to // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in // conjunctive normal form. Below we add each of the conjuncts of // the latter expression to the result. builder.addClause({posLit(Var), posLit(LHS)}); builder.addClause({posLit(Var), negLit(RHS)}); builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)}); break; } case Formula::Equal: { const Variable LHS = GetVar(Val->operands()[0]); const Variable RHS = GetVar(Val->operands()[1]); if (LHS == RHS) { // `X <=> (A <=> A)` is equivalent to `X` which is already in // conjunctive normal form. Below we add each of the conjuncts of the // latter expression to the result. builder.addClause(posLit(Var)); // No need to visit the sub-values of `Val`. continue; } // `X <=> (A <=> B)` is equivalent to // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which // is already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. builder.addClause({posLit(Var), posLit(LHS), posLit(RHS)}); builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)}); builder.addClause({negLit(Var), posLit(LHS), negLit(RHS)}); builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)}); break; } } if (builder.isKnownContradictory()) { return CNF; } for (const Formula *Child : Val->operands()) UnprocessedSubVals.push(Child); } // Unit clauses that were added later were not // considered for the simplification of earlier clauses. Do a final // pass to find more opportunities for simplification. CNFFormula FinalCNF(NextVar - 1, std::move(CNF.Atomics)); CNFFormulaBuilder FinalBuilder(FinalCNF); // Collect unit clauses. for (ClauseID C = 1; C < CNF.ClauseStarts.size(); ++C) { if (CNF.clauseSize(C) == 1) { FinalBuilder.addClause(CNF.clauseLiterals(C)[0]); } } // Add all clauses that were added previously, preserving the order. for (ClauseID C = 1; C < CNF.ClauseStarts.size(); ++C) { FinalBuilder.addClause(CNF.clauseLiterals(C)); if (FinalBuilder.isKnownContradictory()) { break; } } // It is possible there were new unit clauses again, but // we stop here and leave the rest to the solver algorithm. return FinalCNF; } class WatchedLiteralsSolverImpl { /// A boolean formula in conjunctive normal form that the solver will attempt /// to prove satisfiable. The formula will be modified in the process. CNFFormula CNF; /// The search for a satisfying assignment of the variables in `Formula` will /// proceed in levels, starting from 1 and going up to `Formula.LargestVar` /// (inclusive). The current level is stored in `Level`. At each level the /// solver will assign a value to an unassigned variable. If this leads to a /// consistent partial assignment, `Level` will be incremented. Otherwise, if /// it results in a conflict, the solver will backtrack by decrementing /// `Level` until it reaches the most recent level where a decision was made. size_t Level = 0; /// Maps levels (indices of the vector) to variables (elements of the vector) /// that are assigned values at the respective levels. /// /// The element at index 0 isn't used. Variables start from the element at /// index 1. std::vector LevelVars; /// State of the solver at a particular level. enum class State : uint8_t { /// Indicates that the solver made a decision. Decision = 0, /// Indicates that the solver made a forced move. Forced = 1, }; /// State of the solver at a particular level. It keeps track of previous /// decisions that the solver can refer to when backtracking. /// /// The element at index 0 isn't used. States start from the element at index /// 1. std::vector LevelStates; enum class Assignment : int8_t { Unassigned = -1, AssignedFalse = 0, AssignedTrue = 1 }; /// Maps variables (indices of the vector) to their assignments (elements of /// the vector). /// /// The element at index 0 isn't used. Variable assignments start from the /// element at index 1. std::vector VarAssignments; /// A set of unassigned variables that appear in watched literals in /// `Formula`. The vector is guaranteed to contain unique elements. std::vector ActiveVars; public: explicit WatchedLiteralsSolverImpl( const llvm::ArrayRef &Vals) : CNF(buildCNF(Vals)), LevelVars(CNF.LargestVar + 1), LevelStates(CNF.LargestVar + 1) { assert(!Vals.empty()); // Initialize the state at the root level to a decision so that in // `reverseForcedMoves` we don't have to check that `Level >= 0` on each // iteration. LevelStates[0] = State::Decision; // Initialize all variables as unassigned. VarAssignments.resize(CNF.LargestVar + 1, Assignment::Unassigned); // Initialize the active variables. for (Variable Var = CNF.LargestVar; Var != NullVar; --Var) { if (isWatched(posLit(Var)) || isWatched(negLit(Var))) ActiveVars.push_back(Var); } } // Returns the `Result` and the number of iterations "remaining" from // `MaxIterations` (that is, `MaxIterations` - iterations in this call). std::pair solve(std::int64_t MaxIterations) && { if (CNF.KnownContradictory) { // Short-cut the solving process. We already found out at CNF // construction time that the formula is unsatisfiable. return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations); } size_t I = 0; while (I < ActiveVars.size()) { if (MaxIterations == 0) return std::make_pair(Solver::Result::TimedOut(), 0); --MaxIterations; // Assert that the following invariants hold: // 1. All active variables are unassigned. // 2. All active variables form watched literals. // 3. Unassigned variables that form watched literals are active. // FIXME: Consider replacing these with test cases that fail if the any // of the invariants is broken. That might not be easy due to the // transformations performed by `buildCNF`. assert(activeVarsAreUnassigned()); assert(activeVarsFormWatchedLiterals()); assert(unassignedVarsFormingWatchedLiteralsAreActive()); const Variable ActiveVar = ActiveVars[I]; // Look for unit clauses that contain the active variable. const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar)); const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar)); if (unitPosLit && unitNegLit) { // We found a conflict! // Backtrack and rewind the `Level` until the most recent non-forced // assignment. reverseForcedMoves(); // If the root level is reached, then all possible assignments lead to // a conflict. if (Level == 0) return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations); // Otherwise, take the other branch at the most recent level where a // decision was made. LevelStates[Level] = State::Forced; const Variable Var = LevelVars[Level]; VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue ? Assignment::AssignedFalse : Assignment::AssignedTrue; updateWatchedLiterals(); } else if (unitPosLit || unitNegLit) { // We found a unit clause! The value of its unassigned variable is // forced. ++Level; LevelVars[Level] = ActiveVar; LevelStates[Level] = State::Forced; VarAssignments[ActiveVar] = unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse; // Remove the variable that was just assigned from the set of active // variables. if (I + 1 < ActiveVars.size()) { // Replace the variable that was just assigned with the last active // variable for efficient removal. ActiveVars[I] = ActiveVars.back(); } else { // This was the last active variable. Repeat the process from the // beginning. I = 0; } ActiveVars.pop_back(); updateWatchedLiterals(); } else if (I + 1 == ActiveVars.size()) { // There are no remaining unit clauses in the formula! Make a decision // for one of the active variables at the current level. ++Level; LevelVars[Level] = ActiveVar; LevelStates[Level] = State::Decision; VarAssignments[ActiveVar] = decideAssignment(ActiveVar); // Remove the variable that was just assigned from the set of active // variables. ActiveVars.pop_back(); updateWatchedLiterals(); // This was the last active variable. Repeat the process from the // beginning. I = 0; } else { ++I; } } return std::make_pair(Solver::Result::Satisfiable(buildSolution()), MaxIterations); } private: /// Returns a satisfying truth assignment to the atoms in the boolean formula. llvm::DenseMap buildSolution() { llvm::DenseMap Solution; for (auto &Atomic : CNF.Atomics) { // A variable may have a definite true/false assignment, or it may be // unassigned indicating its truth value does not affect the result of // the formula. Unassigned variables are assigned to true as a default. Solution[Atomic.second] = VarAssignments[Atomic.first] == Assignment::AssignedFalse ? Solver::Result::Assignment::AssignedFalse : Solver::Result::Assignment::AssignedTrue; } return Solution; } /// Reverses forced moves until the most recent level where a decision was /// made on the assignment of a variable. void reverseForcedMoves() { for (; LevelStates[Level] == State::Forced; --Level) { const Variable Var = LevelVars[Level]; VarAssignments[Var] = Assignment::Unassigned; // If the variable that we pass through is watched then we add it to the // active variables. if (isWatched(posLit(Var)) || isWatched(negLit(Var))) ActiveVars.push_back(Var); } } /// Updates watched literals that are affected by a variable assignment. void updateWatchedLiterals() { const Variable Var = LevelVars[Level]; // Update the watched literals of clauses that currently watch the literal // that falsifies `Var`. const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue ? negLit(Var) : posLit(Var); ClauseID FalseLitWatcher = CNF.WatchedHead[FalseLit]; CNF.WatchedHead[FalseLit] = NullClause; while (FalseLitWatcher != NullClause) { const ClauseID NextFalseLitWatcher = CNF.NextWatched[FalseLitWatcher]; // Pick the first non-false literal as the new watched literal. const size_t FalseLitWatcherStart = CNF.ClauseStarts[FalseLitWatcher]; size_t NewWatchedLitIdx = FalseLitWatcherStart + 1; while (isCurrentlyFalse(CNF.Clauses[NewWatchedLitIdx])) ++NewWatchedLitIdx; const Literal NewWatchedLit = CNF.Clauses[NewWatchedLitIdx]; const Variable NewWatchedLitVar = var(NewWatchedLit); // Swap the old watched literal for the new one in `FalseLitWatcher` to // maintain the invariant that the watched literal is at the beginning of // the clause. CNF.Clauses[NewWatchedLitIdx] = FalseLit; CNF.Clauses[FalseLitWatcherStart] = NewWatchedLit; // If the new watched literal isn't watched by any other clause and its // variable isn't assigned we need to add it to the active variables. if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) && VarAssignments[NewWatchedLitVar] == Assignment::Unassigned) ActiveVars.push_back(NewWatchedLitVar); CNF.NextWatched[FalseLitWatcher] = CNF.WatchedHead[NewWatchedLit]; CNF.WatchedHead[NewWatchedLit] = FalseLitWatcher; // Go to the next clause that watches `FalseLit`. FalseLitWatcher = NextFalseLitWatcher; } } /// Returns true if and only if one of the clauses that watch `Lit` is a unit /// clause. bool watchedByUnitClause(Literal Lit) const { for (ClauseID LitWatcher = CNF.WatchedHead[Lit]; LitWatcher != NullClause; LitWatcher = CNF.NextWatched[LitWatcher]) { llvm::ArrayRef Clause = CNF.clauseLiterals(LitWatcher); // Assert the invariant that the watched literal is always the first one // in the clause. // FIXME: Consider replacing this with a test case that fails if the // invariant is broken by `updateWatchedLiterals`. That might not be easy // due to the transformations performed by `buildCNF`. assert(Clause.front() == Lit); if (isUnit(Clause)) return true; } return false; } /// Returns true if and only if `Clause` is a unit clause. bool isUnit(llvm::ArrayRef Clause) const { return llvm::all_of(Clause.drop_front(), [this](Literal L) { return isCurrentlyFalse(L); }); } /// Returns true if and only if `Lit` evaluates to `false` in the current /// partial assignment. bool isCurrentlyFalse(Literal Lit) const { return static_cast(VarAssignments[var(Lit)]) == static_cast(Lit & 1); } /// Returns true if and only if `Lit` is watched by a clause in `Formula`. bool isWatched(Literal Lit) const { return CNF.WatchedHead[Lit] != NullClause; } /// Returns an assignment for an unassigned variable. Assignment decideAssignment(Variable Var) const { return !isWatched(posLit(Var)) || isWatched(negLit(Var)) ? Assignment::AssignedFalse : Assignment::AssignedTrue; } /// Returns a set of all watched literals. llvm::DenseSet watchedLiterals() const { llvm::DenseSet WatchedLiterals; for (Literal Lit = 2; Lit < CNF.WatchedHead.size(); Lit++) { if (CNF.WatchedHead[Lit] == NullClause) continue; WatchedLiterals.insert(Lit); } return WatchedLiterals; } /// Returns true if and only if all active variables are unassigned. bool activeVarsAreUnassigned() const { return llvm::all_of(ActiveVars, [this](Variable Var) { return VarAssignments[Var] == Assignment::Unassigned; }); } /// Returns true if and only if all active variables form watched literals. bool activeVarsFormWatchedLiterals() const { const llvm::DenseSet WatchedLiterals = watchedLiterals(); return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) { return WatchedLiterals.contains(posLit(Var)) || WatchedLiterals.contains(negLit(Var)); }); } /// Returns true if and only if all unassigned variables that are forming /// watched literals are active. bool unassignedVarsFormingWatchedLiteralsAreActive() const { const llvm::DenseSet ActiveVarsSet(ActiveVars.begin(), ActiveVars.end()); for (Literal Lit : watchedLiterals()) { const Variable Var = var(Lit); if (VarAssignments[Var] != Assignment::Unassigned) continue; if (ActiveVarsSet.contains(Var)) continue; return false; } return true; } }; Solver::Result WatchedLiteralsSolver::solve(llvm::ArrayRef Vals) { if (Vals.empty()) return Solver::Result::Satisfiable({{}}); auto [Res, Iterations] = WatchedLiteralsSolverImpl(Vals).solve(MaxIterations); MaxIterations = Iterations; return Res; } } // namespace dataflow } // namespace clang