//===--- Context.cpp - Context for the constexpr VM -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Context.h" #include "ByteCodeEmitter.h" #include "ByteCodeExprGen.h" #include "ByteCodeGenError.h" #include "ByteCodeStmtGen.h" #include "EvalEmitter.h" #include "Interp.h" #include "InterpFrame.h" #include "InterpStack.h" #include "PrimType.h" #include "Program.h" #include "clang/AST/Expr.h" #include "clang/Basic/TargetInfo.h" using namespace clang; using namespace clang::interp; Context::Context(ASTContext &Ctx) : Ctx(Ctx), P(new Program(*this)) {} Context::~Context() {} bool Context::isPotentialConstantExpr(State &Parent, const FunctionDecl *FD) { assert(Stk.empty()); Function *Func = P->getFunction(FD); if (!Func || !Func->hasBody()) Func = ByteCodeStmtGen(*this, *P).compileFunc(FD); APValue DummyResult; if (!Run(Parent, Func, DummyResult)) { return false; } return Func->isConstexpr(); } bool Context::evaluateAsRValue(State &Parent, const Expr *E, APValue &Result) { assert(Stk.empty()); ByteCodeExprGen C(*this, *P, Parent, Stk, Result); auto Res = C.interpretExpr(E); if (Res.isInvalid()) { Stk.clear(); return false; } assert(Stk.empty()); #ifndef NDEBUG // Make sure we don't rely on some value being still alive in // InterpStack memory. Stk.clear(); #endif // Implicit lvalue-to-rvalue conversion. if (E->isGLValue()) { std::optional RValueResult = Res.toRValue(); if (!RValueResult) { return false; } Result = *RValueResult; } else { Result = Res.toAPValue(); } return true; } bool Context::evaluate(State &Parent, const Expr *E, APValue &Result) { assert(Stk.empty()); ByteCodeExprGen C(*this, *P, Parent, Stk, Result); auto Res = C.interpretExpr(E); if (Res.isInvalid()) { Stk.clear(); return false; } assert(Stk.empty()); #ifndef NDEBUG // Make sure we don't rely on some value being still alive in // InterpStack memory. Stk.clear(); #endif Result = Res.toAPValue(); return true; } bool Context::evaluateAsInitializer(State &Parent, const VarDecl *VD, APValue &Result) { assert(Stk.empty()); ByteCodeExprGen C(*this, *P, Parent, Stk, Result); auto Res = C.interpretDecl(VD); if (Res.isInvalid()) { Stk.clear(); return false; } assert(Stk.empty()); #ifndef NDEBUG // Make sure we don't rely on some value being still alive in // InterpStack memory. Stk.clear(); #endif // Ensure global variables are fully initialized. if (shouldBeGloballyIndexed(VD) && !Res.isInvalid() && (VD->getType()->isRecordType() || VD->getType()->isArrayType())) { assert(Res.isLValue()); if (!Res.checkFullyInitialized(C.getState())) return false; // lvalue-to-rvalue conversion. std::optional RValueResult = Res.toRValue(); if (!RValueResult) return false; Result = *RValueResult; } else Result = Res.toAPValue(); return true; } const LangOptions &Context::getLangOpts() const { return Ctx.getLangOpts(); } std::optional Context::classify(QualType T) const { if (T->isBooleanType()) return PT_Bool; if (T->isAnyComplexType()) return std::nullopt; if (T->isSignedIntegerOrEnumerationType()) { switch (Ctx.getIntWidth(T)) { case 64: return PT_Sint64; case 32: return PT_Sint32; case 16: return PT_Sint16; case 8: return PT_Sint8; default: return PT_IntAPS; } } if (T->isUnsignedIntegerOrEnumerationType()) { switch (Ctx.getIntWidth(T)) { case 64: return PT_Uint64; case 32: return PT_Uint32; case 16: return PT_Uint16; case 8: return PT_Uint8; default: return PT_IntAP; } } if (T->isNullPtrType()) return PT_Ptr; if (T->isFloatingType()) return PT_Float; if (T->isFunctionPointerType() || T->isFunctionReferenceType() || T->isFunctionType() || T->isSpecificBuiltinType(BuiltinType::BoundMember)) return PT_FnPtr; if (T->isReferenceType() || T->isPointerType()) return PT_Ptr; if (const auto *AT = dyn_cast(T)) return classify(AT->getValueType()); if (const auto *DT = dyn_cast(T)) return classify(DT->getUnderlyingType()); if (const auto *DT = dyn_cast(T)) return classify(DT->getPointeeType()); return std::nullopt; } unsigned Context::getCharBit() const { return Ctx.getTargetInfo().getCharWidth(); } /// Simple wrapper around getFloatTypeSemantics() to make code a /// little shorter. const llvm::fltSemantics &Context::getFloatSemantics(QualType T) const { return Ctx.getFloatTypeSemantics(T); } bool Context::Run(State &Parent, const Function *Func, APValue &Result) { { InterpState State(Parent, *P, Stk, *this); State.Current = new InterpFrame(State, Func, /*Caller=*/nullptr, {}); if (Interpret(State, Result)) { assert(Stk.empty()); return true; } // State gets destroyed here, so the Stk.clear() below doesn't accidentally // remove values the State's destructor might access. } Stk.clear(); return false; } bool Context::Check(State &Parent, llvm::Expected &&Flag) { if (Flag) return *Flag; handleAllErrors(Flag.takeError(), [&Parent](ByteCodeGenError &Err) { Parent.FFDiag(Err.getRange().getBegin(), diag::err_experimental_clang_interp_failed) << Err.getRange(); }); return false; } // TODO: Virtual bases? const CXXMethodDecl * Context::getOverridingFunction(const CXXRecordDecl *DynamicDecl, const CXXRecordDecl *StaticDecl, const CXXMethodDecl *InitialFunction) const { const CXXRecordDecl *CurRecord = DynamicDecl; const CXXMethodDecl *FoundFunction = InitialFunction; for (;;) { const CXXMethodDecl *Overrider = FoundFunction->getCorrespondingMethodDeclaredInClass(CurRecord, false); if (Overrider) return Overrider; // Common case of only one base class. if (CurRecord->getNumBases() == 1) { CurRecord = CurRecord->bases_begin()->getType()->getAsCXXRecordDecl(); continue; } // Otherwise, go to the base class that will lead to the StaticDecl. for (const CXXBaseSpecifier &Spec : CurRecord->bases()) { const CXXRecordDecl *Base = Spec.getType()->getAsCXXRecordDecl(); if (Base == StaticDecl || Base->isDerivedFrom(StaticDecl)) { CurRecord = Base; break; } } } llvm_unreachable( "Couldn't find an overriding function in the class hierarchy?"); return nullptr; } const Function *Context::getOrCreateFunction(const FunctionDecl *FD) { assert(FD); const Function *Func = P->getFunction(FD); bool IsBeingCompiled = Func && Func->isDefined() && !Func->isFullyCompiled(); bool WasNotDefined = Func && !Func->isConstexpr() && !Func->isDefined(); if (IsBeingCompiled) return Func; if (!Func || WasNotDefined) { if (auto F = ByteCodeStmtGen(*this, *P).compileFunc(FD)) Func = F; } return Func; }