//===- DeclBase.cpp - Declaration AST Node Implementation -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Decl and DeclContext classes. // //===----------------------------------------------------------------------===// #include "clang/AST/DeclBase.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/Attr.h" #include "clang/AST/AttrIterator.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclContextInternals.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DependentDiagnostic.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Module.h" #include "clang/Basic/ObjCRuntime.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/VersionTuple.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Statistics //===----------------------------------------------------------------------===// #define DECL(DERIVED, BASE) static int n##DERIVED##s = 0; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" void Decl::updateOutOfDate(IdentifierInfo &II) const { getASTContext().getExternalSource()->updateOutOfDateIdentifier(II); } #define DECL(DERIVED, BASE) \ static_assert(alignof(Decl) >= alignof(DERIVED##Decl), \ "Alignment sufficient after objects prepended to " #DERIVED); #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" void *Decl::operator new(std::size_t Size, const ASTContext &Context, unsigned ID, std::size_t Extra) { // Allocate an extra 8 bytes worth of storage, which ensures that the // resulting pointer will still be 8-byte aligned. static_assert(sizeof(unsigned) * 2 >= alignof(Decl), "Decl won't be misaligned"); void *Start = Context.Allocate(Size + Extra + 8); void *Result = (char*)Start + 8; unsigned *PrefixPtr = (unsigned *)Result - 2; // Zero out the first 4 bytes; this is used to store the owning module ID. PrefixPtr[0] = 0; // Store the global declaration ID in the second 4 bytes. PrefixPtr[1] = ID; return Result; } void *Decl::operator new(std::size_t Size, const ASTContext &Ctx, DeclContext *Parent, std::size_t Extra) { assert(!Parent || &Parent->getParentASTContext() == &Ctx); // With local visibility enabled, we track the owning module even for local // declarations. We create the TU decl early and may not yet know what the // LangOpts are, so conservatively allocate the storage. if (Ctx.getLangOpts().trackLocalOwningModule() || !Parent) { // Ensure required alignment of the resulting object by adding extra // padding at the start if required. size_t ExtraAlign = llvm::offsetToAlignment(sizeof(Module *), llvm::Align(alignof(Decl))); auto *Buffer = reinterpret_cast( ::operator new(ExtraAlign + sizeof(Module *) + Size + Extra, Ctx)); Buffer += ExtraAlign; auto *ParentModule = Parent ? cast(Parent)->getOwningModule() : nullptr; return new (Buffer) Module*(ParentModule) + 1; } return ::operator new(Size + Extra, Ctx); } Module *Decl::getOwningModuleSlow() const { assert(isFromASTFile() && "Not from AST file?"); return getASTContext().getExternalSource()->getModule(getOwningModuleID()); } bool Decl::hasLocalOwningModuleStorage() const { return getASTContext().getLangOpts().trackLocalOwningModule(); } const char *Decl::getDeclKindName() const { switch (DeclKind) { default: llvm_unreachable("Declaration not in DeclNodes.inc!"); #define DECL(DERIVED, BASE) case DERIVED: return #DERIVED; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } } void Decl::setInvalidDecl(bool Invalid) { InvalidDecl = Invalid; assert(!isa(this) || !cast(this)->isCompleteDefinition()); if (!Invalid) { return; } if (!isa(this)) { // Defensive maneuver for ill-formed code: we're likely not to make it to // a point where we set the access specifier, so default it to "public" // to avoid triggering asserts elsewhere in the front end. setAccess(AS_public); } // Marking a DecompositionDecl as invalid implies all the child BindingDecl's // are invalid too. if (auto *DD = dyn_cast(this)) { for (auto *Binding : DD->bindings()) { Binding->setInvalidDecl(); } } } bool DeclContext::hasValidDeclKind() const { switch (getDeclKind()) { #define DECL(DERIVED, BASE) case Decl::DERIVED: return true; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } return false; } const char *DeclContext::getDeclKindName() const { switch (getDeclKind()) { #define DECL(DERIVED, BASE) case Decl::DERIVED: return #DERIVED; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } llvm_unreachable("Declaration context not in DeclNodes.inc!"); } bool Decl::StatisticsEnabled = false; void Decl::EnableStatistics() { StatisticsEnabled = true; } void Decl::PrintStats() { llvm::errs() << "\n*** Decl Stats:\n"; int totalDecls = 0; #define DECL(DERIVED, BASE) totalDecls += n##DERIVED##s; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" llvm::errs() << " " << totalDecls << " decls total.\n"; int totalBytes = 0; #define DECL(DERIVED, BASE) \ if (n##DERIVED##s > 0) { \ totalBytes += (int)(n##DERIVED##s * sizeof(DERIVED##Decl)); \ llvm::errs() << " " << n##DERIVED##s << " " #DERIVED " decls, " \ << sizeof(DERIVED##Decl) << " each (" \ << n##DERIVED##s * sizeof(DERIVED##Decl) \ << " bytes)\n"; \ } #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" llvm::errs() << "Total bytes = " << totalBytes << "\n"; } void Decl::add(Kind k) { switch (k) { #define DECL(DERIVED, BASE) case DERIVED: ++n##DERIVED##s; break; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } } bool Decl::isTemplateParameterPack() const { if (const auto *TTP = dyn_cast(this)) return TTP->isParameterPack(); if (const auto *NTTP = dyn_cast(this)) return NTTP->isParameterPack(); if (const auto *TTP = dyn_cast(this)) return TTP->isParameterPack(); return false; } bool Decl::isParameterPack() const { if (const auto *Var = dyn_cast(this)) return Var->isParameterPack(); return isTemplateParameterPack(); } FunctionDecl *Decl::getAsFunction() { if (auto *FD = dyn_cast(this)) return FD; if (const auto *FTD = dyn_cast(this)) return FTD->getTemplatedDecl(); return nullptr; } bool Decl::isTemplateDecl() const { return isa(this); } TemplateDecl *Decl::getDescribedTemplate() const { if (auto *FD = dyn_cast(this)) return FD->getDescribedFunctionTemplate(); if (auto *RD = dyn_cast(this)) return RD->getDescribedClassTemplate(); if (auto *VD = dyn_cast(this)) return VD->getDescribedVarTemplate(); if (auto *AD = dyn_cast(this)) return AD->getDescribedAliasTemplate(); return nullptr; } const TemplateParameterList *Decl::getDescribedTemplateParams() const { if (auto *TD = getDescribedTemplate()) return TD->getTemplateParameters(); if (auto *CTPSD = dyn_cast(this)) return CTPSD->getTemplateParameters(); if (auto *VTPSD = dyn_cast(this)) return VTPSD->getTemplateParameters(); return nullptr; } bool Decl::isTemplated() const { // A declaration is templated if it is a template or a template pattern, or // is within (lexcially for a friend or local function declaration, // semantically otherwise) a dependent context. if (auto *AsDC = dyn_cast(this)) return AsDC->isDependentContext(); auto *DC = getFriendObjectKind() || isLocalExternDecl() ? getLexicalDeclContext() : getDeclContext(); return DC->isDependentContext() || isTemplateDecl() || getDescribedTemplateParams(); } unsigned Decl::getTemplateDepth() const { if (auto *DC = dyn_cast(this)) if (DC->isFileContext()) return 0; if (auto *TPL = getDescribedTemplateParams()) return TPL->getDepth() + 1; // If this is a dependent lambda, there might be an enclosing variable // template. In this case, the next step is not the parent DeclContext (or // even a DeclContext at all). auto *RD = dyn_cast(this); if (RD && RD->isDependentLambda()) if (Decl *Context = RD->getLambdaContextDecl()) return Context->getTemplateDepth(); const DeclContext *DC = getFriendObjectKind() ? getLexicalDeclContext() : getDeclContext(); return cast(DC)->getTemplateDepth(); } const DeclContext *Decl::getParentFunctionOrMethod(bool LexicalParent) const { for (const DeclContext *DC = LexicalParent ? getLexicalDeclContext() : getDeclContext(); DC && !DC->isFileContext(); DC = DC->getParent()) if (DC->isFunctionOrMethod()) return DC; return nullptr; } //===----------------------------------------------------------------------===// // PrettyStackTraceDecl Implementation //===----------------------------------------------------------------------===// void PrettyStackTraceDecl::print(raw_ostream &OS) const { SourceLocation TheLoc = Loc; if (TheLoc.isInvalid() && TheDecl) TheLoc = TheDecl->getLocation(); if (TheLoc.isValid()) { TheLoc.print(OS, SM); OS << ": "; } OS << Message; if (const auto *DN = dyn_cast_or_null(TheDecl)) { OS << " '"; DN->printQualifiedName(OS); OS << '\''; } OS << '\n'; } //===----------------------------------------------------------------------===// // Decl Implementation //===----------------------------------------------------------------------===// // Out-of-line virtual method providing a home for Decl. Decl::~Decl() = default; void Decl::setDeclContext(DeclContext *DC) { DeclCtx = DC; } void Decl::setLexicalDeclContext(DeclContext *DC) { if (DC == getLexicalDeclContext()) return; if (isInSemaDC()) { setDeclContextsImpl(getDeclContext(), DC, getASTContext()); } else { getMultipleDC()->LexicalDC = DC; } // FIXME: We shouldn't be changing the lexical context of declarations // imported from AST files. if (!isFromASTFile()) { setModuleOwnershipKind(getModuleOwnershipKindForChildOf(DC)); if (hasOwningModule()) setLocalOwningModule(cast(DC)->getOwningModule()); } assert( (getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported || getOwningModule()) && "hidden declaration has no owning module"); } void Decl::setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC, ASTContext &Ctx) { if (SemaDC == LexicalDC) { DeclCtx = SemaDC; } else { auto *MDC = new (Ctx) Decl::MultipleDC(); MDC->SemanticDC = SemaDC; MDC->LexicalDC = LexicalDC; DeclCtx = MDC; } } bool Decl::isInLocalScopeForInstantiation() const { const DeclContext *LDC = getLexicalDeclContext(); if (!LDC->isDependentContext()) return false; while (true) { if (LDC->isFunctionOrMethod()) return true; if (!isa(LDC)) return false; if (const auto *CRD = dyn_cast(LDC)) if (CRD->isLambda()) return true; LDC = LDC->getLexicalParent(); } return false; } bool Decl::isInAnonymousNamespace() const { for (const DeclContext *DC = getDeclContext(); DC; DC = DC->getParent()) { if (const auto *ND = dyn_cast(DC)) if (ND->isAnonymousNamespace()) return true; } return false; } bool Decl::isInStdNamespace() const { const DeclContext *DC = getDeclContext(); return DC && DC->isStdNamespace(); } bool Decl::isFileContextDecl() const { const auto *DC = dyn_cast(this); return DC && DC->isFileContext(); } bool Decl::isFlexibleArrayMemberLike( ASTContext &Ctx, const Decl *D, QualType Ty, LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, bool IgnoreTemplateOrMacroSubstitution) { // For compatibility with existing code, we treat arrays of length 0 or // 1 as flexible array members. const auto *CAT = Ctx.getAsConstantArrayType(Ty); if (CAT) { using FAMKind = LangOptions::StrictFlexArraysLevelKind; llvm::APInt Size = CAT->getSize(); if (StrictFlexArraysLevel == FAMKind::IncompleteOnly) return false; // GCC extension, only allowed to represent a FAM. if (Size.isZero()) return true; if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1)) return false; if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2)) return false; } else if (!Ctx.getAsIncompleteArrayType(Ty)) { return false; } if (const auto *OID = dyn_cast_if_present(D)) return OID->getNextIvar() == nullptr; const auto *FD = dyn_cast_if_present(D); if (!FD) return false; if (CAT) { // GCC treats an array memeber of a union as an FAM if the size is one or // zero. llvm::APInt Size = CAT->getSize(); if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne())) return true; } // Don't consider sizes resulting from macro expansions or template argument // substitution to form C89 tail-padded arrays. if (IgnoreTemplateOrMacroSubstitution) { TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); while (TInfo) { TypeLoc TL = TInfo->getTypeLoc(); // Look through typedefs. if (TypedefTypeLoc TTL = TL.getAsAdjusted()) { const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); TInfo = TDL->getTypeSourceInfo(); continue; } if (auto CTL = TL.getAs()) { if (const Expr *SizeExpr = dyn_cast_if_present(CTL.getSizeExpr()); !SizeExpr || SizeExpr->getExprLoc().isMacroID()) return false; } break; } } // Test that the field is the last in the structure. RecordDecl::field_iterator FI( DeclContext::decl_iterator(const_cast(FD))); return ++FI == FD->getParent()->field_end(); } TranslationUnitDecl *Decl::getTranslationUnitDecl() { if (auto *TUD = dyn_cast(this)) return TUD; DeclContext *DC = getDeclContext(); assert(DC && "This decl is not contained in a translation unit!"); while (!DC->isTranslationUnit()) { DC = DC->getParent(); assert(DC && "This decl is not contained in a translation unit!"); } return cast(DC); } ASTContext &Decl::getASTContext() const { return getTranslationUnitDecl()->getASTContext(); } /// Helper to get the language options from the ASTContext. /// Defined out of line to avoid depending on ASTContext.h. const LangOptions &Decl::getLangOpts() const { return getASTContext().getLangOpts(); } ASTMutationListener *Decl::getASTMutationListener() const { return getASTContext().getASTMutationListener(); } unsigned Decl::getMaxAlignment() const { if (!hasAttrs()) return 0; unsigned Align = 0; const AttrVec &V = getAttrs(); ASTContext &Ctx = getASTContext(); specific_attr_iterator I(V.begin()), E(V.end()); for (; I != E; ++I) { if (!I->isAlignmentErrorDependent()) Align = std::max(Align, I->getAlignment(Ctx)); } return Align; } bool Decl::isUsed(bool CheckUsedAttr) const { const Decl *CanonD = getCanonicalDecl(); if (CanonD->Used) return true; // Check for used attribute. // Ask the most recent decl, since attributes accumulate in the redecl chain. if (CheckUsedAttr && getMostRecentDecl()->hasAttr()) return true; // The information may have not been deserialized yet. Force deserialization // to complete the needed information. return getMostRecentDecl()->getCanonicalDecl()->Used; } void Decl::markUsed(ASTContext &C) { if (isUsed(false)) return; if (C.getASTMutationListener()) C.getASTMutationListener()->DeclarationMarkedUsed(this); setIsUsed(); } bool Decl::isReferenced() const { if (Referenced) return true; // Check redeclarations. for (const auto *I : redecls()) if (I->Referenced) return true; return false; } ExternalSourceSymbolAttr *Decl::getExternalSourceSymbolAttr() const { const Decl *Definition = nullptr; if (auto *ID = dyn_cast(this)) { Definition = ID->getDefinition(); } else if (auto *PD = dyn_cast(this)) { Definition = PD->getDefinition(); } else if (auto *TD = dyn_cast(this)) { Definition = TD->getDefinition(); } if (!Definition) Definition = this; if (auto *attr = Definition->getAttr()) return attr; if (auto *dcd = dyn_cast(getDeclContext())) { return dcd->getAttr(); } return nullptr; } bool Decl::hasDefiningAttr() const { return hasAttr() || hasAttr() || hasAttr(); } const Attr *Decl::getDefiningAttr() const { if (auto *AA = getAttr()) return AA; if (auto *IFA = getAttr()) return IFA; if (auto *NZA = getAttr()) return NZA; return nullptr; } static StringRef getRealizedPlatform(const AvailabilityAttr *A, const ASTContext &Context) { // Check if this is an App Extension "platform", and if so chop off // the suffix for matching with the actual platform. StringRef RealizedPlatform = A->getPlatform()->getName(); if (!Context.getLangOpts().AppExt) return RealizedPlatform; size_t suffix = RealizedPlatform.rfind("_app_extension"); if (suffix != StringRef::npos) return RealizedPlatform.slice(0, suffix); return RealizedPlatform; } /// Determine the availability of the given declaration based on /// the target platform. /// /// When it returns an availability result other than \c AR_Available, /// if the \p Message parameter is non-NULL, it will be set to a /// string describing why the entity is unavailable. /// /// FIXME: Make these strings localizable, since they end up in /// diagnostics. static AvailabilityResult CheckAvailability(ASTContext &Context, const AvailabilityAttr *A, std::string *Message, VersionTuple EnclosingVersion) { if (EnclosingVersion.empty()) EnclosingVersion = Context.getTargetInfo().getPlatformMinVersion(); if (EnclosingVersion.empty()) return AR_Available; StringRef ActualPlatform = A->getPlatform()->getName(); StringRef TargetPlatform = Context.getTargetInfo().getPlatformName(); // Match the platform name. if (getRealizedPlatform(A, Context) != TargetPlatform) return AR_Available; StringRef PrettyPlatformName = AvailabilityAttr::getPrettyPlatformName(ActualPlatform); if (PrettyPlatformName.empty()) PrettyPlatformName = ActualPlatform; std::string HintMessage; if (!A->getMessage().empty()) { HintMessage = " - "; HintMessage += A->getMessage(); } // Make sure that this declaration has not been marked 'unavailable'. if (A->getUnavailable()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); Out << "not available on " << PrettyPlatformName << HintMessage; } return AR_Unavailable; } // Make sure that this declaration has already been introduced. if (!A->getIntroduced().empty() && EnclosingVersion < A->getIntroduced()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); VersionTuple VTI(A->getIntroduced()); Out << "introduced in " << PrettyPlatformName << ' ' << VTI << HintMessage; } return A->getStrict() ? AR_Unavailable : AR_NotYetIntroduced; } // Make sure that this declaration hasn't been obsoleted. if (!A->getObsoleted().empty() && EnclosingVersion >= A->getObsoleted()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); VersionTuple VTO(A->getObsoleted()); Out << "obsoleted in " << PrettyPlatformName << ' ' << VTO << HintMessage; } return AR_Unavailable; } // Make sure that this declaration hasn't been deprecated. if (!A->getDeprecated().empty() && EnclosingVersion >= A->getDeprecated()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); VersionTuple VTD(A->getDeprecated()); Out << "first deprecated in " << PrettyPlatformName << ' ' << VTD << HintMessage; } return AR_Deprecated; } return AR_Available; } AvailabilityResult Decl::getAvailability(std::string *Message, VersionTuple EnclosingVersion, StringRef *RealizedPlatform) const { if (auto *FTD = dyn_cast(this)) return FTD->getTemplatedDecl()->getAvailability(Message, EnclosingVersion, RealizedPlatform); AvailabilityResult Result = AR_Available; std::string ResultMessage; for (const auto *A : attrs()) { if (const auto *Deprecated = dyn_cast(A)) { if (Result >= AR_Deprecated) continue; if (Message) ResultMessage = std::string(Deprecated->getMessage()); Result = AR_Deprecated; continue; } if (const auto *Unavailable = dyn_cast(A)) { if (Message) *Message = std::string(Unavailable->getMessage()); return AR_Unavailable; } if (const auto *Availability = dyn_cast(A)) { AvailabilityResult AR = CheckAvailability(getASTContext(), Availability, Message, EnclosingVersion); if (AR == AR_Unavailable) { if (RealizedPlatform) *RealizedPlatform = Availability->getPlatform()->getName(); return AR_Unavailable; } if (AR > Result) { Result = AR; if (Message) ResultMessage.swap(*Message); } continue; } } if (Message) Message->swap(ResultMessage); return Result; } VersionTuple Decl::getVersionIntroduced() const { const ASTContext &Context = getASTContext(); StringRef TargetPlatform = Context.getTargetInfo().getPlatformName(); for (const auto *A : attrs()) { if (const auto *Availability = dyn_cast(A)) { if (getRealizedPlatform(Availability, Context) != TargetPlatform) continue; if (!Availability->getIntroduced().empty()) return Availability->getIntroduced(); } } return {}; } bool Decl::canBeWeakImported(bool &IsDefinition) const { IsDefinition = false; // Variables, if they aren't definitions. if (const auto *Var = dyn_cast(this)) { if (Var->isThisDeclarationADefinition()) { IsDefinition = true; return false; } return true; } // Functions, if they aren't definitions. if (const auto *FD = dyn_cast(this)) { if (FD->hasBody()) { IsDefinition = true; return false; } return true; } // Objective-C classes, if this is the non-fragile runtime. if (isa(this) && getASTContext().getLangOpts().ObjCRuntime.hasWeakClassImport()) { return true; } // Nothing else. return false; } bool Decl::isWeakImported() const { bool IsDefinition; if (!canBeWeakImported(IsDefinition)) return false; for (const auto *A : getMostRecentDecl()->attrs()) { if (isa(A)) return true; if (const auto *Availability = dyn_cast(A)) { if (CheckAvailability(getASTContext(), Availability, nullptr, VersionTuple()) == AR_NotYetIntroduced) return true; } } return false; } unsigned Decl::getIdentifierNamespaceForKind(Kind DeclKind) { switch (DeclKind) { case Function: case CXXDeductionGuide: case CXXMethod: case CXXConstructor: case ConstructorUsingShadow: case CXXDestructor: case CXXConversion: case EnumConstant: case Var: case ImplicitParam: case ParmVar: case ObjCMethod: case ObjCProperty: case MSProperty: case HLSLBuffer: return IDNS_Ordinary; case Label: return IDNS_Label; case IndirectField: return IDNS_Ordinary | IDNS_Member; case Binding: case NonTypeTemplateParm: case VarTemplate: case Concept: // These (C++-only) declarations are found by redeclaration lookup for // tag types, so we include them in the tag namespace. return IDNS_Ordinary | IDNS_Tag; case ObjCCompatibleAlias: case ObjCInterface: return IDNS_Ordinary | IDNS_Type; case Typedef: case TypeAlias: case TemplateTypeParm: case ObjCTypeParam: return IDNS_Ordinary | IDNS_Type; case UnresolvedUsingTypename: return IDNS_Ordinary | IDNS_Type | IDNS_Using; case UsingShadow: return 0; // we'll actually overwrite this later case UnresolvedUsingValue: return IDNS_Ordinary | IDNS_Using; case Using: case UsingPack: case UsingEnum: return IDNS_Using; case ObjCProtocol: return IDNS_ObjCProtocol; case Field: case ObjCAtDefsField: case ObjCIvar: return IDNS_Member; case Record: case CXXRecord: case Enum: return IDNS_Tag | IDNS_Type; case Namespace: case NamespaceAlias: return IDNS_Namespace; case FunctionTemplate: return IDNS_Ordinary; case ClassTemplate: case TemplateTemplateParm: case TypeAliasTemplate: return IDNS_Ordinary | IDNS_Tag | IDNS_Type; case UnresolvedUsingIfExists: return IDNS_Type | IDNS_Ordinary; case OMPDeclareReduction: return IDNS_OMPReduction; case OMPDeclareMapper: return IDNS_OMPMapper; // Never have names. case Friend: case FriendTemplate: case AccessSpec: case LinkageSpec: case Export: case FileScopeAsm: case TopLevelStmt: case StaticAssert: case ObjCPropertyImpl: case PragmaComment: case PragmaDetectMismatch: case Block: case Captured: case TranslationUnit: case ExternCContext: case Decomposition: case MSGuid: case UnnamedGlobalConstant: case TemplateParamObject: case UsingDirective: case BuiltinTemplate: case ClassTemplateSpecialization: case ClassTemplatePartialSpecialization: case VarTemplateSpecialization: case VarTemplatePartialSpecialization: case ObjCImplementation: case ObjCCategory: case ObjCCategoryImpl: case Import: case OMPThreadPrivate: case OMPAllocate: case OMPRequires: case OMPCapturedExpr: case Empty: case LifetimeExtendedTemporary: case RequiresExprBody: case ImplicitConceptSpecialization: // Never looked up by name. return 0; } llvm_unreachable("Invalid DeclKind!"); } void Decl::setAttrsImpl(const AttrVec &attrs, ASTContext &Ctx) { assert(!HasAttrs && "Decl already contains attrs."); AttrVec &AttrBlank = Ctx.getDeclAttrs(this); assert(AttrBlank.empty() && "HasAttrs was wrong?"); AttrBlank = attrs; HasAttrs = true; } void Decl::dropAttrs() { if (!HasAttrs) return; HasAttrs = false; getASTContext().eraseDeclAttrs(this); } void Decl::addAttr(Attr *A) { if (!hasAttrs()) { setAttrs(AttrVec(1, A)); return; } AttrVec &Attrs = getAttrs(); if (!A->isInherited()) { Attrs.push_back(A); return; } // Attribute inheritance is processed after attribute parsing. To keep the // order as in the source code, add inherited attributes before non-inherited // ones. auto I = Attrs.begin(), E = Attrs.end(); for (; I != E; ++I) { if (!(*I)->isInherited()) break; } Attrs.insert(I, A); } const AttrVec &Decl::getAttrs() const { assert(HasAttrs && "No attrs to get!"); return getASTContext().getDeclAttrs(this); } Decl *Decl::castFromDeclContext (const DeclContext *D) { Decl::Kind DK = D->getDeclKind(); switch (DK) { #define DECL(NAME, BASE) #define DECL_CONTEXT(NAME) \ case Decl::NAME: \ return static_cast(const_cast(D)); #include "clang/AST/DeclNodes.inc" default: llvm_unreachable("a decl that inherits DeclContext isn't handled"); } } DeclContext *Decl::castToDeclContext(const Decl *D) { Decl::Kind DK = D->getKind(); switch(DK) { #define DECL(NAME, BASE) #define DECL_CONTEXT(NAME) \ case Decl::NAME: \ return static_cast(const_cast(D)); #include "clang/AST/DeclNodes.inc" default: llvm_unreachable("a decl that inherits DeclContext isn't handled"); } } SourceLocation Decl::getBodyRBrace() const { // Special handling of FunctionDecl to avoid de-serializing the body from PCH. // FunctionDecl stores EndRangeLoc for this purpose. if (const auto *FD = dyn_cast(this)) { const FunctionDecl *Definition; if (FD->hasBody(Definition)) return Definition->getSourceRange().getEnd(); return {}; } if (Stmt *Body = getBody()) return Body->getSourceRange().getEnd(); return {}; } bool Decl::AccessDeclContextCheck() const { #ifndef NDEBUG // Suppress this check if any of the following hold: // 1. this is the translation unit (and thus has no parent) // 2. this is a template parameter (and thus doesn't belong to its context) // 3. this is a non-type template parameter // 4. the context is not a record // 5. it's invalid // 6. it's a C++0x static_assert. // 7. it's a block literal declaration // 8. it's a temporary with lifetime extended due to being default value. if (isa(this) || isa(this) || isa(this) || !getDeclContext() || !isa(getDeclContext()) || isInvalidDecl() || isa(this) || isa(this) || // FIXME: a ParmVarDecl can have ClassTemplateSpecialization // as DeclContext (?). isa(this) || // FIXME: a ClassTemplateSpecialization or CXXRecordDecl can have // AS_none as access specifier. isa(this) || isa(this)) return true; assert(Access != AS_none && "Access specifier is AS_none inside a record decl"); #endif return true; } bool Decl::isInExportDeclContext() const { const DeclContext *DC = getLexicalDeclContext(); while (DC && !isa(DC)) DC = DC->getLexicalParent(); return DC && isa(DC); } bool Decl::isInAnotherModuleUnit() const { auto *M = getOwningModule(); if (!M) return false; M = M->getTopLevelModule(); // FIXME: It is problematic if the header module lives in another module // unit. Consider to fix this by techniques like // ExternalASTSource::hasExternalDefinitions. if (M->isHeaderLikeModule()) return false; // A global module without parent implies that we're parsing the global // module. So it can't be in another module unit. if (M->isGlobalModule()) return false; assert(M->isNamedModule() && "New module kind?"); return M != getASTContext().getCurrentNamedModule(); } bool Decl::shouldSkipCheckingODR() const { return getASTContext().getLangOpts().SkipODRCheckInGMF && getOwningModule() && getOwningModule()->isExplicitGlobalModule(); } static Decl::Kind getKind(const Decl *D) { return D->getKind(); } static Decl::Kind getKind(const DeclContext *DC) { return DC->getDeclKind(); } int64_t Decl::getID() const { return getASTContext().getAllocator().identifyKnownAlignedObject(this); } const FunctionType *Decl::getFunctionType(bool BlocksToo) const { QualType Ty; if (const auto *D = dyn_cast(this)) Ty = D->getType(); else if (const auto *D = dyn_cast(this)) Ty = D->getUnderlyingType(); else return nullptr; if (Ty->isFunctionPointerType()) Ty = Ty->castAs()->getPointeeType(); else if (Ty->isFunctionReferenceType()) Ty = Ty->castAs()->getPointeeType(); else if (BlocksToo && Ty->isBlockPointerType()) Ty = Ty->castAs()->getPointeeType(); return Ty->getAs(); } bool Decl::isFunctionPointerType() const { QualType Ty; if (const auto *D = dyn_cast(this)) Ty = D->getType(); else if (const auto *D = dyn_cast(this)) Ty = D->getUnderlyingType(); else return false; return Ty.getCanonicalType()->isFunctionPointerType(); } DeclContext *Decl::getNonTransparentDeclContext() { assert(getDeclContext()); return getDeclContext()->getNonTransparentContext(); } /// Starting at a given context (a Decl or DeclContext), look for a /// code context that is not a closure (a lambda, block, etc.). template static Decl *getNonClosureContext(T *D) { if (getKind(D) == Decl::CXXMethod) { auto *MD = cast(D); if (MD->getOverloadedOperator() == OO_Call && MD->getParent()->isLambda()) return getNonClosureContext(MD->getParent()->getParent()); return MD; } if (auto *FD = dyn_cast(D)) return FD; if (auto *MD = dyn_cast(D)) return MD; if (auto *BD = dyn_cast(D)) return getNonClosureContext(BD->getParent()); if (auto *CD = dyn_cast(D)) return getNonClosureContext(CD->getParent()); return nullptr; } Decl *Decl::getNonClosureContext() { return ::getNonClosureContext(this); } Decl *DeclContext::getNonClosureAncestor() { return ::getNonClosureContext(this); } //===----------------------------------------------------------------------===// // DeclContext Implementation //===----------------------------------------------------------------------===// DeclContext::DeclContext(Decl::Kind K) { DeclContextBits.DeclKind = K; setHasExternalLexicalStorage(false); setHasExternalVisibleStorage(false); setNeedToReconcileExternalVisibleStorage(false); setHasLazyLocalLexicalLookups(false); setHasLazyExternalLexicalLookups(false); setUseQualifiedLookup(false); } bool DeclContext::classof(const Decl *D) { Decl::Kind DK = D->getKind(); switch (DK) { #define DECL(NAME, BASE) #define DECL_CONTEXT(NAME) case Decl::NAME: #include "clang/AST/DeclNodes.inc" return true; default: return false; } } DeclContext::~DeclContext() = default; /// Find the parent context of this context that will be /// used for unqualified name lookup. /// /// Generally, the parent lookup context is the semantic context. However, for /// a friend function the parent lookup context is the lexical context, which /// is the class in which the friend is declared. DeclContext *DeclContext::getLookupParent() { // FIXME: Find a better way to identify friends. if (isa(this)) if (getParent()->getRedeclContext()->isFileContext() && getLexicalParent()->getRedeclContext()->isRecord()) return getLexicalParent(); // A lookup within the call operator of a lambda never looks in the lambda // class; instead, skip to the context in which that closure type is // declared. if (isLambdaCallOperator(this)) return getParent()->getParent(); return getParent(); } const BlockDecl *DeclContext::getInnermostBlockDecl() const { const DeclContext *Ctx = this; do { if (Ctx->isClosure()) return cast(Ctx); Ctx = Ctx->getParent(); } while (Ctx); return nullptr; } bool DeclContext::isInlineNamespace() const { return isNamespace() && cast(this)->isInline(); } bool DeclContext::isStdNamespace() const { if (!isNamespace()) return false; const auto *ND = cast(this); if (ND->isInline()) { return ND->getParent()->isStdNamespace(); } if (!getParent()->getRedeclContext()->isTranslationUnit()) return false; const IdentifierInfo *II = ND->getIdentifier(); return II && II->isStr("std"); } bool DeclContext::isDependentContext() const { if (isFileContext()) return false; if (isa(this)) return true; if (const auto *Record = dyn_cast(this)) { if (Record->getDescribedClassTemplate()) return true; if (Record->isDependentLambda()) return true; if (Record->isNeverDependentLambda()) return false; } if (const auto *Function = dyn_cast(this)) { if (Function->getDescribedFunctionTemplate()) return true; // Friend function declarations are dependent if their *lexical* // context is dependent. if (cast(this)->getFriendObjectKind()) return getLexicalParent()->isDependentContext(); } // FIXME: A variable template is a dependent context, but is not a // DeclContext. A context within it (such as a lambda-expression) // should be considered dependent. return getParent() && getParent()->isDependentContext(); } bool DeclContext::isTransparentContext() const { if (getDeclKind() == Decl::Enum) return !cast(this)->isScoped(); return isa(this); } static bool isLinkageSpecContext(const DeclContext *DC, LinkageSpecLanguageIDs ID) { while (DC->getDeclKind() != Decl::TranslationUnit) { if (DC->getDeclKind() == Decl::LinkageSpec) return cast(DC)->getLanguage() == ID; DC = DC->getLexicalParent(); } return false; } bool DeclContext::isExternCContext() const { return isLinkageSpecContext(this, LinkageSpecLanguageIDs::C); } const LinkageSpecDecl *DeclContext::getExternCContext() const { const DeclContext *DC = this; while (DC->getDeclKind() != Decl::TranslationUnit) { if (DC->getDeclKind() == Decl::LinkageSpec && cast(DC)->getLanguage() == LinkageSpecLanguageIDs::C) return cast(DC); DC = DC->getLexicalParent(); } return nullptr; } bool DeclContext::isExternCXXContext() const { return isLinkageSpecContext(this, LinkageSpecLanguageIDs::CXX); } bool DeclContext::Encloses(const DeclContext *DC) const { if (getPrimaryContext() != this) return getPrimaryContext()->Encloses(DC); for (; DC; DC = DC->getParent()) if (!isa(DC) && !isa(DC) && DC->getPrimaryContext() == this) return true; return false; } DeclContext *DeclContext::getNonTransparentContext() { DeclContext *DC = this; while (DC->isTransparentContext()) { DC = DC->getParent(); assert(DC && "All transparent contexts should have a parent!"); } return DC; } DeclContext *DeclContext::getPrimaryContext() { switch (getDeclKind()) { case Decl::ExternCContext: case Decl::LinkageSpec: case Decl::Export: case Decl::Block: case Decl::Captured: case Decl::OMPDeclareReduction: case Decl::OMPDeclareMapper: case Decl::RequiresExprBody: // There is only one DeclContext for these entities. return this; case Decl::HLSLBuffer: // Each buffer, even with the same name, is a distinct construct. // Multiple buffers with the same name are allowed for backward // compatibility. // As long as buffers have unique resource bindings the names don't matter. // The names get exposed via the CPU-side reflection API which // supports querying bindings, so we cannot remove them. return this; case Decl::TranslationUnit: return static_cast(this)->getFirstDecl(); case Decl::Namespace: // The original namespace is our primary context. return static_cast(this)->getOriginalNamespace(); case Decl::ObjCMethod: return this; case Decl::ObjCInterface: if (auto *OID = dyn_cast(this)) if (auto *Def = OID->getDefinition()) return Def; return this; case Decl::ObjCProtocol: if (auto *OPD = dyn_cast(this)) if (auto *Def = OPD->getDefinition()) return Def; return this; case Decl::ObjCCategory: return this; case Decl::ObjCImplementation: case Decl::ObjCCategoryImpl: return this; default: if (getDeclKind() >= Decl::firstTag && getDeclKind() <= Decl::lastTag) { // If this is a tag type that has a definition or is currently // being defined, that definition is our primary context. auto *Tag = cast(this); if (TagDecl *Def = Tag->getDefinition()) return Def; if (const auto *TagTy = dyn_cast(Tag->getTypeForDecl())) { // Note, TagType::getDecl returns the (partial) definition one exists. TagDecl *PossiblePartialDef = TagTy->getDecl(); if (PossiblePartialDef->isBeingDefined()) return PossiblePartialDef; } else { assert(isa(Tag->getTypeForDecl())); } return Tag; } assert(getDeclKind() >= Decl::firstFunction && getDeclKind() <= Decl::lastFunction && "Unknown DeclContext kind"); return this; } } template void collectAllContextsImpl(T *Self, SmallVectorImpl &Contexts) { for (T *D = Self->getMostRecentDecl(); D; D = D->getPreviousDecl()) Contexts.push_back(D); std::reverse(Contexts.begin(), Contexts.end()); } void DeclContext::collectAllContexts(SmallVectorImpl &Contexts) { Contexts.clear(); Decl::Kind Kind = getDeclKind(); if (Kind == Decl::TranslationUnit) collectAllContextsImpl(static_cast(this), Contexts); else if (Kind == Decl::Namespace) collectAllContextsImpl(static_cast(this), Contexts); else Contexts.push_back(this); } std::pair DeclContext::BuildDeclChain(ArrayRef Decls, bool FieldsAlreadyLoaded) { // Build up a chain of declarations via the Decl::NextInContextAndBits field. Decl *FirstNewDecl = nullptr; Decl *PrevDecl = nullptr; for (auto *D : Decls) { if (FieldsAlreadyLoaded && isa(D)) continue; if (PrevDecl) PrevDecl->NextInContextAndBits.setPointer(D); else FirstNewDecl = D; PrevDecl = D; } return std::make_pair(FirstNewDecl, PrevDecl); } /// We have just acquired external visible storage, and we already have /// built a lookup map. For every name in the map, pull in the new names from /// the external storage. void DeclContext::reconcileExternalVisibleStorage() const { assert(hasNeedToReconcileExternalVisibleStorage() && LookupPtr); setNeedToReconcileExternalVisibleStorage(false); for (auto &Lookup : *LookupPtr) Lookup.second.setHasExternalDecls(); } /// Load the declarations within this lexical storage from an /// external source. /// \return \c true if any declarations were added. bool DeclContext::LoadLexicalDeclsFromExternalStorage() const { ExternalASTSource *Source = getParentASTContext().getExternalSource(); assert(hasExternalLexicalStorage() && Source && "No external storage?"); // Notify that we have a DeclContext that is initializing. ExternalASTSource::Deserializing ADeclContext(Source); // Load the external declarations, if any. SmallVector Decls; setHasExternalLexicalStorage(false); Source->FindExternalLexicalDecls(this, Decls); if (Decls.empty()) return false; // We may have already loaded just the fields of this record, in which case // we need to ignore them. bool FieldsAlreadyLoaded = false; if (const auto *RD = dyn_cast(this)) FieldsAlreadyLoaded = RD->hasLoadedFieldsFromExternalStorage(); // Splice the newly-read declarations into the beginning of the list // of declarations. Decl *ExternalFirst, *ExternalLast; std::tie(ExternalFirst, ExternalLast) = BuildDeclChain(Decls, FieldsAlreadyLoaded); ExternalLast->NextInContextAndBits.setPointer(FirstDecl); FirstDecl = ExternalFirst; if (!LastDecl) LastDecl = ExternalLast; return true; } DeclContext::lookup_result ExternalASTSource::SetNoExternalVisibleDeclsForName(const DeclContext *DC, DeclarationName Name) { ASTContext &Context = DC->getParentASTContext(); StoredDeclsMap *Map; if (!(Map = DC->LookupPtr)) Map = DC->CreateStoredDeclsMap(Context); if (DC->hasNeedToReconcileExternalVisibleStorage()) DC->reconcileExternalVisibleStorage(); (*Map)[Name].removeExternalDecls(); return DeclContext::lookup_result(); } DeclContext::lookup_result ExternalASTSource::SetExternalVisibleDeclsForName(const DeclContext *DC, DeclarationName Name, ArrayRef Decls) { ASTContext &Context = DC->getParentASTContext(); StoredDeclsMap *Map; if (!(Map = DC->LookupPtr)) Map = DC->CreateStoredDeclsMap(Context); if (DC->hasNeedToReconcileExternalVisibleStorage()) DC->reconcileExternalVisibleStorage(); StoredDeclsList &List = (*Map)[Name]; List.replaceExternalDecls(Decls); return List.getLookupResult(); } DeclContext::decl_iterator DeclContext::decls_begin() const { if (hasExternalLexicalStorage()) LoadLexicalDeclsFromExternalStorage(); return decl_iterator(FirstDecl); } bool DeclContext::decls_empty() const { if (hasExternalLexicalStorage()) LoadLexicalDeclsFromExternalStorage(); return !FirstDecl; } bool DeclContext::containsDecl(Decl *D) const { return (D->getLexicalDeclContext() == this && (D->NextInContextAndBits.getPointer() || D == LastDecl)); } bool DeclContext::containsDeclAndLoad(Decl *D) const { if (hasExternalLexicalStorage()) LoadLexicalDeclsFromExternalStorage(); return containsDecl(D); } /// shouldBeHidden - Determine whether a declaration which was declared /// within its semantic context should be invisible to qualified name lookup. static bool shouldBeHidden(NamedDecl *D) { // Skip unnamed declarations. if (!D->getDeclName()) return true; // Skip entities that can't be found by name lookup into a particular // context. if ((D->getIdentifierNamespace() == 0 && !isa(D)) || D->isTemplateParameter()) return true; // Skip friends and local extern declarations unless they're the first // declaration of the entity. if ((D->isLocalExternDecl() || D->getFriendObjectKind()) && D != D->getCanonicalDecl()) return true; // Skip template specializations. // FIXME: This feels like a hack. Should DeclarationName support // template-ids, or is there a better way to keep specializations // from being visible? if (isa(D)) return true; if (auto *FD = dyn_cast(D)) if (FD->isFunctionTemplateSpecialization()) return true; // Hide destructors that are invalid. There should always be one destructor, // but if it is an invalid decl, another one is created. We need to hide the // invalid one from places that expect exactly one destructor, like the // serialization code. if (isa(D) && D->isInvalidDecl()) return true; return false; } void DeclContext::removeDecl(Decl *D) { assert(D->getLexicalDeclContext() == this && "decl being removed from non-lexical context"); assert((D->NextInContextAndBits.getPointer() || D == LastDecl) && "decl is not in decls list"); // Remove D from the decl chain. This is O(n) but hopefully rare. if (D == FirstDecl) { if (D == LastDecl) FirstDecl = LastDecl = nullptr; else FirstDecl = D->NextInContextAndBits.getPointer(); } else { for (Decl *I = FirstDecl; true; I = I->NextInContextAndBits.getPointer()) { assert(I && "decl not found in linked list"); if (I->NextInContextAndBits.getPointer() == D) { I->NextInContextAndBits.setPointer(D->NextInContextAndBits.getPointer()); if (D == LastDecl) LastDecl = I; break; } } } // Mark that D is no longer in the decl chain. D->NextInContextAndBits.setPointer(nullptr); // Remove D from the lookup table if necessary. if (isa(D)) { auto *ND = cast(D); // Do not try to remove the declaration if that is invisible to qualified // lookup. E.g. template specializations are skipped. if (shouldBeHidden(ND)) return; // Remove only decls that have a name if (!ND->getDeclName()) return; auto *DC = D->getDeclContext(); do { StoredDeclsMap *Map = DC->getPrimaryContext()->LookupPtr; if (Map) { StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName()); assert(Pos != Map->end() && "no lookup entry for decl"); StoredDeclsList &List = Pos->second; List.remove(ND); // Clean up the entry if there are no more decls. if (List.isNull()) Map->erase(Pos); } } while (DC->isTransparentContext() && (DC = DC->getParent())); } } void DeclContext::addHiddenDecl(Decl *D) { assert(D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context"); assert(!D->getNextDeclInContext() && D != LastDecl && "Decl already inserted into a DeclContext"); if (FirstDecl) { LastDecl->NextInContextAndBits.setPointer(D); LastDecl = D; } else { FirstDecl = LastDecl = D; } // Notify a C++ record declaration that we've added a member, so it can // update its class-specific state. if (auto *Record = dyn_cast(this)) Record->addedMember(D); // If this is a newly-created (not de-serialized) import declaration, wire // it in to the list of local import declarations. if (!D->isFromASTFile()) { if (auto *Import = dyn_cast(D)) D->getASTContext().addedLocalImportDecl(Import); } } void DeclContext::addDecl(Decl *D) { addHiddenDecl(D); if (auto *ND = dyn_cast(D)) ND->getDeclContext()->getPrimaryContext()-> makeDeclVisibleInContextWithFlags(ND, false, true); } void DeclContext::addDeclInternal(Decl *D) { addHiddenDecl(D); if (auto *ND = dyn_cast(D)) ND->getDeclContext()->getPrimaryContext()-> makeDeclVisibleInContextWithFlags(ND, true, true); } /// buildLookup - Build the lookup data structure with all of the /// declarations in this DeclContext (and any other contexts linked /// to it or transparent contexts nested within it) and return it. /// /// Note that the produced map may miss out declarations from an /// external source. If it does, those entries will be marked with /// the 'hasExternalDecls' flag. StoredDeclsMap *DeclContext::buildLookup() { assert(this == getPrimaryContext() && "buildLookup called on non-primary DC"); if (!hasLazyLocalLexicalLookups() && !hasLazyExternalLexicalLookups()) return LookupPtr; SmallVector Contexts; collectAllContexts(Contexts); if (hasLazyExternalLexicalLookups()) { setHasLazyExternalLexicalLookups(false); for (auto *DC : Contexts) { if (DC->hasExternalLexicalStorage()) { bool LoadedDecls = DC->LoadLexicalDeclsFromExternalStorage(); setHasLazyLocalLexicalLookups( hasLazyLocalLexicalLookups() | LoadedDecls ); } } if (!hasLazyLocalLexicalLookups()) return LookupPtr; } for (auto *DC : Contexts) buildLookupImpl(DC, hasExternalVisibleStorage()); // We no longer have any lazy decls. setHasLazyLocalLexicalLookups(false); return LookupPtr; } /// buildLookupImpl - Build part of the lookup data structure for the /// declarations contained within DCtx, which will either be this /// DeclContext, a DeclContext linked to it, or a transparent context /// nested within it. void DeclContext::buildLookupImpl(DeclContext *DCtx, bool Internal) { for (auto *D : DCtx->noload_decls()) { // Insert this declaration into the lookup structure, but only if // it's semantically within its decl context. Any other decls which // should be found in this context are added eagerly. // // If it's from an AST file, don't add it now. It'll get handled by // FindExternalVisibleDeclsByName if needed. Exception: if we're not // in C++, we do not track external visible decls for the TU, so in // that case we need to collect them all here. if (auto *ND = dyn_cast(D)) if (ND->getDeclContext() == DCtx && !shouldBeHidden(ND) && (!ND->isFromASTFile() || (isTranslationUnit() && !getParentASTContext().getLangOpts().CPlusPlus))) makeDeclVisibleInContextImpl(ND, Internal); // If this declaration is itself a transparent declaration context // or inline namespace, add the members of this declaration of that // context (recursively). if (auto *InnerCtx = dyn_cast(D)) if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace()) buildLookupImpl(InnerCtx, Internal); } } DeclContext::lookup_result DeclContext::lookup(DeclarationName Name) const { // For transparent DeclContext, we should lookup in their enclosing context. if (getDeclKind() == Decl::LinkageSpec || getDeclKind() == Decl::Export) return getParent()->lookup(Name); const DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) return PrimaryContext->lookup(Name); // If we have an external source, ensure that any later redeclarations of this // context have been loaded, since they may add names to the result of this // lookup (or add external visible storage). ExternalASTSource *Source = getParentASTContext().getExternalSource(); if (Source) (void)cast(this)->getMostRecentDecl(); if (hasExternalVisibleStorage()) { assert(Source && "external visible storage but no external source?"); if (hasNeedToReconcileExternalVisibleStorage()) reconcileExternalVisibleStorage(); StoredDeclsMap *Map = LookupPtr; if (hasLazyLocalLexicalLookups() || hasLazyExternalLexicalLookups()) // FIXME: Make buildLookup const? Map = const_cast(this)->buildLookup(); if (!Map) Map = CreateStoredDeclsMap(getParentASTContext()); // If we have a lookup result with no external decls, we are done. std::pair R = Map->insert(std::make_pair(Name, StoredDeclsList())); if (!R.second && !R.first->second.hasExternalDecls()) return R.first->second.getLookupResult(); if (Source->FindExternalVisibleDeclsByName(this, Name) || !R.second) { if (StoredDeclsMap *Map = LookupPtr) { StoredDeclsMap::iterator I = Map->find(Name); if (I != Map->end()) return I->second.getLookupResult(); } } return {}; } StoredDeclsMap *Map = LookupPtr; if (hasLazyLocalLexicalLookups() || hasLazyExternalLexicalLookups()) Map = const_cast(this)->buildLookup(); if (!Map) return {}; StoredDeclsMap::iterator I = Map->find(Name); if (I == Map->end()) return {}; return I->second.getLookupResult(); } DeclContext::lookup_result DeclContext::noload_lookup(DeclarationName Name) { assert(getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export && "should not perform lookups into transparent contexts"); DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) return PrimaryContext->noload_lookup(Name); loadLazyLocalLexicalLookups(); StoredDeclsMap *Map = LookupPtr; if (!Map) return {}; StoredDeclsMap::iterator I = Map->find(Name); return I != Map->end() ? I->second.getLookupResult() : lookup_result(); } // If we have any lazy lexical declarations not in our lookup map, add them // now. Don't import any external declarations, not even if we know we have // some missing from the external visible lookups. void DeclContext::loadLazyLocalLexicalLookups() { if (hasLazyLocalLexicalLookups()) { SmallVector Contexts; collectAllContexts(Contexts); for (auto *Context : Contexts) buildLookupImpl(Context, hasExternalVisibleStorage()); setHasLazyLocalLexicalLookups(false); } } void DeclContext::localUncachedLookup(DeclarationName Name, SmallVectorImpl &Results) { Results.clear(); // If there's no external storage, just perform a normal lookup and copy // the results. if (!hasExternalVisibleStorage() && !hasExternalLexicalStorage() && Name) { lookup_result LookupResults = lookup(Name); Results.insert(Results.end(), LookupResults.begin(), LookupResults.end()); if (!Results.empty()) return; } // If we have a lookup table, check there first. Maybe we'll get lucky. // FIXME: Should we be checking these flags on the primary context? if (Name && !hasLazyLocalLexicalLookups() && !hasLazyExternalLexicalLookups()) { if (StoredDeclsMap *Map = LookupPtr) { StoredDeclsMap::iterator Pos = Map->find(Name); if (Pos != Map->end()) { Results.insert(Results.end(), Pos->second.getLookupResult().begin(), Pos->second.getLookupResult().end()); return; } } } // Slow case: grovel through the declarations in our chain looking for // matches. // FIXME: If we have lazy external declarations, this will not find them! // FIXME: Should we CollectAllContexts and walk them all here? for (Decl *D = FirstDecl; D; D = D->getNextDeclInContext()) { if (auto *ND = dyn_cast(D)) if (ND->getDeclName() == Name) Results.push_back(ND); } } DeclContext *DeclContext::getRedeclContext() { DeclContext *Ctx = this; // In C, a record type is the redeclaration context for its fields only. If // we arrive at a record context after skipping anything else, we should skip // the record as well. Currently, this means skipping enumerations because // they're the only transparent context that can exist within a struct or // union. bool SkipRecords = getDeclKind() == Decl::Kind::Enum && !getParentASTContext().getLangOpts().CPlusPlus; // Skip through contexts to get to the redeclaration context. Transparent // contexts are always skipped. while ((SkipRecords && Ctx->isRecord()) || Ctx->isTransparentContext()) Ctx = Ctx->getParent(); return Ctx; } DeclContext *DeclContext::getEnclosingNamespaceContext() { DeclContext *Ctx = this; // Skip through non-namespace, non-translation-unit contexts. while (!Ctx->isFileContext()) Ctx = Ctx->getParent(); return Ctx->getPrimaryContext(); } RecordDecl *DeclContext::getOuterLexicalRecordContext() { // Loop until we find a non-record context. RecordDecl *OutermostRD = nullptr; DeclContext *DC = this; while (DC->isRecord()) { OutermostRD = cast(DC); DC = DC->getLexicalParent(); } return OutermostRD; } bool DeclContext::InEnclosingNamespaceSetOf(const DeclContext *O) const { // For non-file contexts, this is equivalent to Equals. if (!isFileContext()) return O->Equals(this); do { if (O->Equals(this)) return true; const auto *NS = dyn_cast(O); if (!NS || !NS->isInline()) break; O = NS->getParent(); } while (O); return false; } void DeclContext::makeDeclVisibleInContext(NamedDecl *D) { DeclContext *PrimaryDC = this->getPrimaryContext(); DeclContext *DeclDC = D->getDeclContext()->getPrimaryContext(); // If the decl is being added outside of its semantic decl context, we // need to ensure that we eagerly build the lookup information for it. PrimaryDC->makeDeclVisibleInContextWithFlags(D, false, PrimaryDC == DeclDC); } void DeclContext::makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal, bool Recoverable) { assert(this == getPrimaryContext() && "expected a primary DC"); if (!isLookupContext()) { if (isTransparentContext()) getParent()->getPrimaryContext() ->makeDeclVisibleInContextWithFlags(D, Internal, Recoverable); return; } // Skip declarations which should be invisible to name lookup. if (shouldBeHidden(D)) return; // If we already have a lookup data structure, perform the insertion into // it. If we might have externally-stored decls with this name, look them // up and perform the insertion. If this decl was declared outside its // semantic context, buildLookup won't add it, so add it now. // // FIXME: As a performance hack, don't add such decls into the translation // unit unless we're in C++, since qualified lookup into the TU is never // performed. if (LookupPtr || hasExternalVisibleStorage() || ((!Recoverable || D->getDeclContext() != D->getLexicalDeclContext()) && (getParentASTContext().getLangOpts().CPlusPlus || !isTranslationUnit()))) { // If we have lazily omitted any decls, they might have the same name as // the decl which we are adding, so build a full lookup table before adding // this decl. buildLookup(); makeDeclVisibleInContextImpl(D, Internal); } else { setHasLazyLocalLexicalLookups(true); } // If we are a transparent context or inline namespace, insert into our // parent context, too. This operation is recursive. if (isTransparentContext() || isInlineNamespace()) getParent()->getPrimaryContext()-> makeDeclVisibleInContextWithFlags(D, Internal, Recoverable); auto *DCAsDecl = cast(this); // Notify that a decl was made visible unless we are a Tag being defined. if (!(isa(DCAsDecl) && cast(DCAsDecl)->isBeingDefined())) if (ASTMutationListener *L = DCAsDecl->getASTMutationListener()) L->AddedVisibleDecl(this, D); } void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal) { // Find or create the stored declaration map. StoredDeclsMap *Map = LookupPtr; if (!Map) { ASTContext *C = &getParentASTContext(); Map = CreateStoredDeclsMap(*C); } // If there is an external AST source, load any declarations it knows about // with this declaration's name. // If the lookup table contains an entry about this name it means that we // have already checked the external source. if (!Internal) if (ExternalASTSource *Source = getParentASTContext().getExternalSource()) if (hasExternalVisibleStorage() && Map->find(D->getDeclName()) == Map->end()) Source->FindExternalVisibleDeclsByName(this, D->getDeclName()); // Insert this declaration into the map. StoredDeclsList &DeclNameEntries = (*Map)[D->getDeclName()]; if (Internal) { // If this is being added as part of loading an external declaration, // this may not be the only external declaration with this name. // In this case, we never try to replace an existing declaration; we'll // handle that when we finalize the list of declarations for this name. DeclNameEntries.setHasExternalDecls(); DeclNameEntries.prependDeclNoReplace(D); return; } DeclNameEntries.addOrReplaceDecl(D); } UsingDirectiveDecl *DeclContext::udir_iterator::operator*() const { return cast(*I); } /// Returns iterator range [First, Last) of UsingDirectiveDecls stored within /// this context. DeclContext::udir_range DeclContext::using_directives() const { // FIXME: Use something more efficient than normal lookup for using // directives. In C++, using directives are looked up more than anything else. lookup_result Result = lookup(UsingDirectiveDecl::getName()); return udir_range(Result.begin(), Result.end()); } //===----------------------------------------------------------------------===// // Creation and Destruction of StoredDeclsMaps. // //===----------------------------------------------------------------------===// StoredDeclsMap *DeclContext::CreateStoredDeclsMap(ASTContext &C) const { assert(!LookupPtr && "context already has a decls map"); assert(getPrimaryContext() == this && "creating decls map on non-primary context"); StoredDeclsMap *M; bool Dependent = isDependentContext(); if (Dependent) M = new DependentStoredDeclsMap(); else M = new StoredDeclsMap(); M->Previous = C.LastSDM; C.LastSDM = llvm::PointerIntPair(M, Dependent); LookupPtr = M; return M; } void ASTContext::ReleaseDeclContextMaps() { // It's okay to delete DependentStoredDeclsMaps via a StoredDeclsMap // pointer because the subclass doesn't add anything that needs to // be deleted. StoredDeclsMap::DestroyAll(LastSDM.getPointer(), LastSDM.getInt()); LastSDM.setPointer(nullptr); } void StoredDeclsMap::DestroyAll(StoredDeclsMap *Map, bool Dependent) { while (Map) { // Advance the iteration before we invalidate memory. llvm::PointerIntPair Next = Map->Previous; if (Dependent) delete static_cast(Map); else delete Map; Map = Next.getPointer(); Dependent = Next.getInt(); } } DependentDiagnostic *DependentDiagnostic::Create(ASTContext &C, DeclContext *Parent, const PartialDiagnostic &PDiag) { assert(Parent->isDependentContext() && "cannot iterate dependent diagnostics of non-dependent context"); Parent = Parent->getPrimaryContext(); if (!Parent->LookupPtr) Parent->CreateStoredDeclsMap(C); auto *Map = static_cast(Parent->LookupPtr); // Allocate the copy of the PartialDiagnostic via the ASTContext's // BumpPtrAllocator, rather than the ASTContext itself. DiagnosticStorage *DiagStorage = nullptr; if (PDiag.hasStorage()) DiagStorage = new (C) DiagnosticStorage; auto *DD = new (C) DependentDiagnostic(PDiag, DiagStorage); // TODO: Maybe we shouldn't reverse the order during insertion. DD->NextDiagnostic = Map->FirstDiagnostic; Map->FirstDiagnostic = DD; return DD; }