//===- ASTStructuralEquivalence.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implement StructuralEquivalenceContext class and helper functions // for layout matching. // // The structural equivalence check could have been implemented as a parallel // BFS on a pair of graphs. That must have been the original approach at the // beginning. // Let's consider this simple BFS algorithm from the `s` source: // ``` // void bfs(Graph G, int s) // { // Queue queue = new Queue(); // marked[s] = true; // Mark the source // queue.enqueue(s); // and put it on the queue. // while (!q.isEmpty()) { // int v = queue.dequeue(); // Remove next vertex from the queue. // for (int w : G.adj(v)) // if (!marked[w]) // For every unmarked adjacent vertex, // { // marked[w] = true; // queue.enqueue(w); // } // } // } // ``` // Indeed, it has it's queue, which holds pairs of nodes, one from each graph, // this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the // marking (`marked`) functionality above, we use it to check whether we've // already seen a pair of nodes. // // We put in the elements into the queue only in the toplevel decl check // function: // ``` // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, // Decl *D1, Decl *D2); // ``` // The `while` loop where we iterate over the children is implemented in // `Finish()`. And `Finish` is called only from the two **member** functions // which check the equivalency of two Decls or two Types. ASTImporter (and // other clients) call only these functions. // // The `static` implementation functions are called from `Finish`, these push // the children nodes to the queue via `static bool // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, // Decl *D2)`. So far so good, this is almost like the BFS. However, if we // let a static implementation function to call `Finish` via another **member** // function that means we end up with two nested while loops each of them // working on the same queue. This is wrong and nobody can reason about it's // doing. Thus, static implementation functions must not call the **member** // functions. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTStructuralEquivalence.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprConcepts.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtOpenMP.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/TemplateName.h" #include "clang/AST/Type.h" #include "clang/Basic/ExceptionSpecificationType.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include #include #include using namespace clang; static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const Stmt *S1, const Stmt *S2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgument &Arg1, const TemplateArgument &Arg2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgumentLoc &Arg1, const TemplateArgumentLoc &Arg2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NestedNameSpecifier *NNS1, NestedNameSpecifier *NNS2); static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, const IdentifierInfo *Name2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const DeclarationName Name1, const DeclarationName Name2) { if (Name1.getNameKind() != Name2.getNameKind()) return false; switch (Name1.getNameKind()) { case DeclarationName::Identifier: return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(), Name2.getAsIdentifierInfo()); case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: return IsStructurallyEquivalent(Context, Name1.getCXXNameType(), Name2.getCXXNameType()); case DeclarationName::CXXDeductionGuideName: { if (!IsStructurallyEquivalent( Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(), Name2.getCXXDeductionGuideTemplate()->getDeclName())) return false; return IsStructurallyEquivalent(Context, Name1.getCXXDeductionGuideTemplate(), Name2.getCXXDeductionGuideTemplate()); } case DeclarationName::CXXOperatorName: return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator(); case DeclarationName::CXXLiteralOperatorName: return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(), Name2.getCXXLiteralIdentifier()); case DeclarationName::CXXUsingDirective: return true; // FIXME When do we consider two using directives equal? case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return true; // FIXME } llvm_unreachable("Unhandled kind of DeclarationName"); return true; } namespace { /// Encapsulates Stmt comparison logic. class StmtComparer { StructuralEquivalenceContext &Context; // IsStmtEquivalent overloads. Each overload compares a specific statement // and only has to compare the data that is specific to the specific statement // class. Should only be called from TraverseStmt. bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) { return IsStructurallyEquivalent(Context, E1->getLabel(), E2->getLabel()); } bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) { return E1->getOp() == E2->getOp(); } bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) { return E1->getOpcode() == E2->getOpcode(); } bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) { // FIXME: IsStructurallyEquivalent requires non-const Decls. Decl *Callee1 = const_cast(E1->getCalleeDecl()); Decl *Callee2 = const_cast(E2->getCalleeDecl()); // Compare whether both calls know their callee. if (static_cast(Callee1) != static_cast(Callee2)) return false; // Both calls have no callee, so nothing to do. if (!static_cast(Callee1)) return true; assert(Callee2); return IsStructurallyEquivalent(Context, Callee1, Callee2); } bool IsStmtEquivalent(const CharacterLiteral *E1, const CharacterLiteral *E2) { return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind(); } bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) { return true; // Semantics only depend on children. } bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) { // Number of children is actually checked by the generic children comparison // code, but a CompoundStmt is one of the few statements where the number of // children frequently differs and the number of statements is also always // precomputed. Directly comparing the number of children here is thus // just an optimization. return E1->size() == E2->size(); } bool IsStmtEquivalent(const DeclRefExpr *DRE1, const DeclRefExpr *DRE2) { const ValueDecl *Decl1 = DRE1->getDecl(); const ValueDecl *Decl2 = DRE2->getDecl(); if (!Decl1 || !Decl2) return false; return IsStructurallyEquivalent(Context, const_cast(Decl1), const_cast(Decl2)); } bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1, const DependentScopeDeclRefExpr *DE2) { if (!IsStructurallyEquivalent(Context, DE1->getDeclName(), DE2->getDeclName())) return false; return IsStructurallyEquivalent(Context, DE1->getQualifier(), DE2->getQualifier()); } bool IsStmtEquivalent(const Expr *E1, const Expr *E2) { return IsStructurallyEquivalent(Context, E1->getType(), E2->getType()); } bool IsStmtEquivalent(const ExpressionTraitExpr *E1, const ExpressionTraitExpr *E2) { return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue(); } bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) { return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue(); } bool IsStmtEquivalent(const GenericSelectionExpr *E1, const GenericSelectionExpr *E2) { for (auto Pair : zip_longest(E1->getAssocTypeSourceInfos(), E2->getAssocTypeSourceInfos())) { std::optional Child1 = std::get<0>(Pair); std::optional Child2 = std::get<1>(Pair); // Skip this case if there are a different number of associated types. if (!Child1 || !Child2) return false; if (!IsStructurallyEquivalent(Context, (*Child1)->getType(), (*Child2)->getType())) return false; } return true; } bool IsStmtEquivalent(const ImplicitCastExpr *CastE1, const ImplicitCastExpr *CastE2) { return IsStructurallyEquivalent(Context, CastE1->getType(), CastE2->getType()); } bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) { return E1->getValue() == E2->getValue(); } bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) { return IsStructurallyEquivalent(Context, E1->getFoundDecl(), E2->getFoundDecl()); } bool IsStmtEquivalent(const ObjCStringLiteral *E1, const ObjCStringLiteral *E2) { // Just wraps a StringLiteral child. return true; } bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; } bool IsStmtEquivalent(const GotoStmt *S1, const GotoStmt *S2) { LabelDecl *L1 = S1->getLabel(); LabelDecl *L2 = S2->getLabel(); if (!L1 || !L2) return L1 == L2; IdentifierInfo *Name1 = L1->getIdentifier(); IdentifierInfo *Name2 = L2->getIdentifier(); return ::IsStructurallyEquivalent(Name1, Name2); } bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) { return E1->getIdentKind() == E2->getIdentKind(); } bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) { return E1->getTemplateDepth() == E2->getTemplateDepth(); } bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) { return E1->getBytes() == E2->getBytes(); } bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1, const SubstNonTypeTemplateParmExpr *E2) { if (!IsStructurallyEquivalent(Context, E1->getAssociatedDecl(), E2->getAssociatedDecl())) return false; if (E1->getIndex() != E2->getIndex()) return false; if (E1->getPackIndex() != E2->getPackIndex()) return false; return true; } bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1, const SubstNonTypeTemplateParmPackExpr *E2) { return IsStructurallyEquivalent(Context, E1->getArgumentPack(), E2->getArgumentPack()); } bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) { if (E1->getTrait() != E2->getTrait()) return false; for (auto Pair : zip_longest(E1->getArgs(), E2->getArgs())) { std::optional Child1 = std::get<0>(Pair); std::optional Child2 = std::get<1>(Pair); // Different number of args. if (!Child1 || !Child2) return false; if (!IsStructurallyEquivalent(Context, (*Child1)->getType(), (*Child2)->getType())) return false; } return true; } bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1, const UnaryExprOrTypeTraitExpr *E2) { if (E1->getKind() != E2->getKind()) return false; return IsStructurallyEquivalent(Context, E1->getTypeOfArgument(), E2->getTypeOfArgument()); } bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) { return E1->getOpcode() == E2->getOpcode(); } bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) { // Semantics only depend on children. return true; } bool IsStmtEquivalent(const OverloadExpr *E1, const OverloadExpr *E2) { if (!IsStructurallyEquivalent(Context, E1->getName(), E2->getName())) return false; if (static_cast(E1->getQualifier()) != static_cast(E2->getQualifier())) return false; if (E1->getQualifier() && !IsStructurallyEquivalent(Context, E1->getQualifier(), E2->getQualifier())) return false; if (E1->getNumTemplateArgs() != E2->getNumTemplateArgs()) return false; const TemplateArgumentLoc *Args1 = E1->getTemplateArgs(); const TemplateArgumentLoc *Args2 = E2->getTemplateArgs(); for (unsigned int ArgI = 0, ArgN = E1->getNumTemplateArgs(); ArgI < ArgN; ++ArgI) if (!IsStructurallyEquivalent(Context, Args1[ArgI], Args2[ArgI])) return false; return true; } bool IsStmtEquivalent(const CXXBoolLiteralExpr *E1, const CXXBoolLiteralExpr *E2) { return E1->getValue() == E2->getValue(); } /// End point of the traversal chain. bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; } // Create traversal methods that traverse the class hierarchy and return // the accumulated result of the comparison. Each TraverseStmt overload // calls the TraverseStmt overload of the parent class. For example, // the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt // overload of 'Expr' which then calls the overload for 'Stmt'. #define STMT(CLASS, PARENT) \ bool TraverseStmt(const CLASS *S1, const CLASS *S2) { \ if (!TraverseStmt(static_cast(S1), \ static_cast(S2))) \ return false; \ return IsStmtEquivalent(S1, S2); \ } #include "clang/AST/StmtNodes.inc" public: StmtComparer(StructuralEquivalenceContext &C) : Context(C) {} /// Determine whether two statements are equivalent. The statements have to /// be of the same kind. The children of the statements and their properties /// are not compared by this function. bool IsEquivalent(const Stmt *S1, const Stmt *S2) { if (S1->getStmtClass() != S2->getStmtClass()) return false; // Each TraverseStmt walks the class hierarchy from the leaf class to // the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast // the Stmt we have here to its specific subclass so that we call the // overload that walks the whole class hierarchy from leaf to root (e.g., // cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed). switch (S1->getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("Can't traverse NoStmtClass"); #define STMT(CLASS, PARENT) \ case Stmt::StmtClass::CLASS##Class: \ return TraverseStmt(static_cast(S1), \ static_cast(S2)); #define ABSTRACT_STMT(S) #include "clang/AST/StmtNodes.inc" } llvm_unreachable("Invalid statement kind"); } }; } // namespace static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const UnaryOperator *E1, const CXXOperatorCallExpr *E2) { return UnaryOperator::getOverloadedOperator(E1->getOpcode()) == E2->getOperator() && IsStructurallyEquivalent(Context, E1->getSubExpr(), E2->getArg(0)); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const CXXOperatorCallExpr *E1, const UnaryOperator *E2) { return E1->getOperator() == UnaryOperator::getOverloadedOperator(E2->getOpcode()) && IsStructurallyEquivalent(Context, E1->getArg(0), E2->getSubExpr()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const BinaryOperator *E1, const CXXOperatorCallExpr *E2) { return BinaryOperator::getOverloadedOperator(E1->getOpcode()) == E2->getOperator() && IsStructurallyEquivalent(Context, E1->getLHS(), E2->getArg(0)) && IsStructurallyEquivalent(Context, E1->getRHS(), E2->getArg(1)); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const CXXOperatorCallExpr *E1, const BinaryOperator *E2) { return E1->getOperator() == BinaryOperator::getOverloadedOperator(E2->getOpcode()) && IsStructurallyEquivalent(Context, E1->getArg(0), E2->getLHS()) && IsStructurallyEquivalent(Context, E1->getArg(1), E2->getRHS()); } /// Determine structural equivalence of two statements. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const Stmt *S1, const Stmt *S2) { if (!S1 || !S2) return S1 == S2; // Check for statements with similar syntax but different AST. // A UnaryOperator node is more lightweight than a CXXOperatorCallExpr node. // The more heavyweight node is only created if the definition-time name // lookup had any results. The lookup results are stored CXXOperatorCallExpr // only. The lookup results can be different in a "From" and "To" AST even if // the compared structure is otherwise equivalent. For this reason we must // treat a similar unary/binary operator node and CXXOperatorCall node as // equivalent. if (const auto *E2CXXOperatorCall = dyn_cast(S2)) { if (const auto *E1Unary = dyn_cast(S1)) return IsStructurallyEquivalent(Context, E1Unary, E2CXXOperatorCall); if (const auto *E1Binary = dyn_cast(S1)) return IsStructurallyEquivalent(Context, E1Binary, E2CXXOperatorCall); } if (const auto *E1CXXOperatorCall = dyn_cast(S1)) { if (const auto *E2Unary = dyn_cast(S2)) return IsStructurallyEquivalent(Context, E1CXXOperatorCall, E2Unary); if (const auto *E2Binary = dyn_cast(S2)) return IsStructurallyEquivalent(Context, E1CXXOperatorCall, E2Binary); } // Compare the statements itself. StmtComparer Comparer(Context); if (!Comparer.IsEquivalent(S1, S2)) return false; // Iterate over the children of both statements and also compare them. for (auto Pair : zip_longest(S1->children(), S2->children())) { std::optional Child1 = std::get<0>(Pair); std::optional Child2 = std::get<1>(Pair); // One of the statements has a different amount of children than the other, // so the statements can't be equivalent. if (!Child1 || !Child2) return false; if (!IsStructurallyEquivalent(Context, *Child1, *Child2)) return false; } return true; } /// Determine whether two identifiers are equivalent. static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, const IdentifierInfo *Name2) { if (!Name1 || !Name2) return Name1 == Name2; return Name1->getName() == Name2->getName(); } /// Determine whether two nested-name-specifiers are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NestedNameSpecifier *NNS1, NestedNameSpecifier *NNS2) { if (NNS1->getKind() != NNS2->getKind()) return false; NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), *Prefix2 = NNS2->getPrefix(); if ((bool)Prefix1 != (bool)Prefix2) return false; if (Prefix1) if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2)) return false; switch (NNS1->getKind()) { case NestedNameSpecifier::Identifier: return IsStructurallyEquivalent(NNS1->getAsIdentifier(), NNS2->getAsIdentifier()); case NestedNameSpecifier::Namespace: return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(), NNS2->getAsNamespace()); case NestedNameSpecifier::NamespaceAlias: return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(), NNS2->getAsNamespaceAlias()); case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0), QualType(NNS2->getAsType(), 0)); case NestedNameSpecifier::Global: return true; case NestedNameSpecifier::Super: return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(), NNS2->getAsRecordDecl()); } return false; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateName &N1, const TemplateName &N2) { TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl(); TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl(); if (TemplateDeclN1 && TemplateDeclN2) { if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2)) return false; // If the kind is different we compare only the template decl. if (N1.getKind() != N2.getKind()) return true; } else if (TemplateDeclN1 || TemplateDeclN2) return false; else if (N1.getKind() != N2.getKind()) return false; // Check for special case incompatibilities. switch (N1.getKind()) { case TemplateName::OverloadedTemplate: { OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), *OS2 = N2.getAsOverloadedTemplate(); OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), E1 = OS1->end(), E2 = OS2->end(); for (; I1 != E1 && I2 != E2; ++I1, ++I2) if (!IsStructurallyEquivalent(Context, *I1, *I2)) return false; return I1 == E1 && I2 == E2; } case TemplateName::AssumedTemplate: { AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(), *TN2 = N1.getAsAssumedTemplateName(); return TN1->getDeclName() == TN2->getDeclName(); } case TemplateName::DependentTemplate: { DependentTemplateName *DN1 = N1.getAsDependentTemplateName(), *DN2 = N2.getAsDependentTemplateName(); if (!IsStructurallyEquivalent(Context, DN1->getQualifier(), DN2->getQualifier())) return false; if (DN1->isIdentifier() && DN2->isIdentifier()) return IsStructurallyEquivalent(DN1->getIdentifier(), DN2->getIdentifier()); else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator()) return DN1->getOperator() == DN2->getOperator(); return false; } case TemplateName::SubstTemplateTemplateParmPack: { SubstTemplateTemplateParmPackStorage *P1 = N1.getAsSubstTemplateTemplateParmPack(), *P2 = N2.getAsSubstTemplateTemplateParmPack(); return IsStructurallyEquivalent(Context, P1->getArgumentPack(), P2->getArgumentPack()) && IsStructurallyEquivalent(Context, P1->getAssociatedDecl(), P2->getAssociatedDecl()) && P1->getIndex() == P2->getIndex(); } case TemplateName::Template: case TemplateName::QualifiedTemplate: case TemplateName::SubstTemplateTemplateParm: case TemplateName::UsingTemplate: // It is sufficient to check value of getAsTemplateDecl. break; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ArrayRef Args1, ArrayRef Args2); /// Determine whether two template arguments are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgument &Arg1, const TemplateArgument &Arg2) { if (Arg1.getKind() != Arg2.getKind()) return false; switch (Arg1.getKind()) { case TemplateArgument::Null: return true; case TemplateArgument::Type: return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType()); case TemplateArgument::Integral: if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(), Arg2.getIntegralType())) return false; return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), Arg2.getAsIntegral()); case TemplateArgument::Declaration: return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl()); case TemplateArgument::NullPtr: return true; // FIXME: Is this correct? case TemplateArgument::Template: return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), Arg2.getAsTemplate()); case TemplateArgument::TemplateExpansion: return IsStructurallyEquivalent(Context, Arg1.getAsTemplateOrTemplatePattern(), Arg2.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), Arg2.getAsExpr()); case TemplateArgument::StructuralValue: return Arg1.structurallyEquals(Arg2); case TemplateArgument::Pack: return IsStructurallyEquivalent(Context, Arg1.pack_elements(), Arg2.pack_elements()); } llvm_unreachable("Invalid template argument kind"); } /// Determine structural equivalence of two template argument lists. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ArrayRef Args1, ArrayRef Args2) { if (Args1.size() != Args2.size()) return false; for (unsigned I = 0, N = Args1.size(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Args1[I], Args2[I])) return false; } return true; } /// Determine whether two template argument locations are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgumentLoc &Arg1, const TemplateArgumentLoc &Arg2) { return IsStructurallyEquivalent(Context, Arg1.getArgument(), Arg2.getArgument()); } /// Determine structural equivalence for the common part of array /// types. static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, const ArrayType *Array1, const ArrayType *Array2) { if (!IsStructurallyEquivalent(Context, Array1->getElementType(), Array2->getElementType())) return false; if (Array1->getSizeModifier() != Array2->getSizeModifier()) return false; if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) return false; return true; } /// Determine structural equivalence based on the ExtInfo of functions. This /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling /// conventions bits but must not compare some other bits. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FunctionType::ExtInfo EI1, FunctionType::ExtInfo EI2) { // Compatible functions must have compatible calling conventions. if (EI1.getCC() != EI2.getCC()) return false; // Regparm is part of the calling convention. if (EI1.getHasRegParm() != EI2.getHasRegParm()) return false; if (EI1.getRegParm() != EI2.getRegParm()) return false; if (EI1.getProducesResult() != EI2.getProducesResult()) return false; if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) return false; if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) return false; return true; } /// Check the equivalence of exception specifications. static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context, const FunctionProtoType *Proto1, const FunctionProtoType *Proto2) { auto Spec1 = Proto1->getExceptionSpecType(); auto Spec2 = Proto2->getExceptionSpecType(); if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2)) return true; if (Spec1 != Spec2) return false; if (Spec1 == EST_Dynamic) { if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) return false; for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I), Proto2->getExceptionType(I))) return false; } } else if (isComputedNoexcept(Spec1)) { if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(), Proto2->getNoexceptExpr())) return false; } return true; } /// Determine structural equivalence of two types. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2) { if (T1.isNull() || T2.isNull()) return T1.isNull() && T2.isNull(); QualType OrigT1 = T1; QualType OrigT2 = T2; if (!Context.StrictTypeSpelling) { // We aren't being strict about token-to-token equivalence of types, // so map down to the canonical type. T1 = Context.FromCtx.getCanonicalType(T1); T2 = Context.ToCtx.getCanonicalType(T2); } if (T1.getQualifiers() != T2.getQualifiers()) return false; Type::TypeClass TC = T1->getTypeClass(); if (T1->getTypeClass() != T2->getTypeClass()) { // Compare function types with prototypes vs. without prototypes as if // both did not have prototypes. if (T1->getTypeClass() == Type::FunctionProto && T2->getTypeClass() == Type::FunctionNoProto) TC = Type::FunctionNoProto; else if (T1->getTypeClass() == Type::FunctionNoProto && T2->getTypeClass() == Type::FunctionProto) TC = Type::FunctionNoProto; else return false; } switch (TC) { case Type::Builtin: // FIXME: Deal with Char_S/Char_U. if (cast(T1)->getKind() != cast(T2)->getKind()) return false; break; case Type::Complex: if (!IsStructurallyEquivalent(Context, cast(T1)->getElementType(), cast(T2)->getElementType())) return false; break; case Type::Adjusted: case Type::Decayed: if (!IsStructurallyEquivalent(Context, cast(T1)->getOriginalType(), cast(T2)->getOriginalType())) return false; break; case Type::Pointer: if (!IsStructurallyEquivalent(Context, cast(T1)->getPointeeType(), cast(T2)->getPointeeType())) return false; break; case Type::BlockPointer: if (!IsStructurallyEquivalent(Context, cast(T1)->getPointeeType(), cast(T2)->getPointeeType())) return false; break; case Type::LValueReference: case Type::RValueReference: { const auto *Ref1 = cast(T1); const auto *Ref2 = cast(T2); if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) return false; if (Ref1->isInnerRef() != Ref2->isInnerRef()) return false; if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), Ref2->getPointeeTypeAsWritten())) return false; break; } case Type::MemberPointer: { const auto *MemPtr1 = cast(T1); const auto *MemPtr2 = cast(T2); if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), MemPtr2->getPointeeType())) return false; if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), QualType(MemPtr2->getClass(), 0))) return false; break; } case Type::ConstantArray: { const auto *Array1 = cast(T1); const auto *Array2 = cast(T2); if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::IncompleteArray: if (!IsArrayStructurallyEquivalent(Context, cast(T1), cast(T2))) return false; break; case Type::VariableArray: { const auto *Array1 = cast(T1); const auto *Array2 = cast(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentSizedArray: { const auto *Array1 = cast(T1); const auto *Array2 = cast(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentAddressSpace: { const auto *DepAddressSpace1 = cast(T1); const auto *DepAddressSpace2 = cast(T2); if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(), DepAddressSpace2->getAddrSpaceExpr())) return false; if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(), DepAddressSpace2->getPointeeType())) return false; break; } case Type::DependentSizedExtVector: { const auto *Vec1 = cast(T1); const auto *Vec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), Vec2->getSizeExpr())) return false; if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; break; } case Type::DependentVector: { const auto *Vec1 = cast(T1); const auto *Vec2 = cast(T2); if (Vec1->getVectorKind() != Vec2->getVectorKind()) return false; if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), Vec2->getSizeExpr())) return false; if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; break; } case Type::Vector: case Type::ExtVector: { const auto *Vec1 = cast(T1); const auto *Vec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; if (Vec1->getNumElements() != Vec2->getNumElements()) return false; if (Vec1->getVectorKind() != Vec2->getVectorKind()) return false; break; } case Type::DependentSizedMatrix: { const DependentSizedMatrixType *Mat1 = cast(T1); const DependentSizedMatrixType *Mat2 = cast(T2); // The element types, row and column expressions must be structurally // equivalent. if (!IsStructurallyEquivalent(Context, Mat1->getRowExpr(), Mat2->getRowExpr()) || !IsStructurallyEquivalent(Context, Mat1->getColumnExpr(), Mat2->getColumnExpr()) || !IsStructurallyEquivalent(Context, Mat1->getElementType(), Mat2->getElementType())) return false; break; } case Type::ConstantMatrix: { const ConstantMatrixType *Mat1 = cast(T1); const ConstantMatrixType *Mat2 = cast(T2); // The element types must be structurally equivalent and the number of rows // and columns must match. if (!IsStructurallyEquivalent(Context, Mat1->getElementType(), Mat2->getElementType()) || Mat1->getNumRows() != Mat2->getNumRows() || Mat1->getNumColumns() != Mat2->getNumColumns()) return false; break; } case Type::FunctionProto: { const auto *Proto1 = cast(T1); const auto *Proto2 = cast(T2); if (Proto1->getNumParams() != Proto2->getNumParams()) return false; for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I), Proto2->getParamType(I))) return false; } if (Proto1->isVariadic() != Proto2->isVariadic()) return false; if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) return false; // Check exceptions, this information is lost in canonical type. const auto *OrigProto1 = cast(OrigT1.getDesugaredType(Context.FromCtx)); const auto *OrigProto2 = cast(OrigT2.getDesugaredType(Context.ToCtx)); if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2)) return false; // Fall through to check the bits common with FunctionNoProtoType. [[fallthrough]]; } case Type::FunctionNoProto: { const auto *Function1 = cast(T1); const auto *Function2 = cast(T2); if (!IsStructurallyEquivalent(Context, Function1->getReturnType(), Function2->getReturnType())) return false; if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(), Function2->getExtInfo())) return false; break; } case Type::UnresolvedUsing: if (!IsStructurallyEquivalent(Context, cast(T1)->getDecl(), cast(T2)->getDecl())) return false; break; case Type::Attributed: if (!IsStructurallyEquivalent(Context, cast(T1)->getModifiedType(), cast(T2)->getModifiedType())) return false; if (!IsStructurallyEquivalent( Context, cast(T1)->getEquivalentType(), cast(T2)->getEquivalentType())) return false; break; case Type::BTFTagAttributed: if (!IsStructurallyEquivalent( Context, cast(T1)->getWrappedType(), cast(T2)->getWrappedType())) return false; break; case Type::Paren: if (!IsStructurallyEquivalent(Context, cast(T1)->getInnerType(), cast(T2)->getInnerType())) return false; break; case Type::MacroQualified: if (!IsStructurallyEquivalent( Context, cast(T1)->getUnderlyingType(), cast(T2)->getUnderlyingType())) return false; break; case Type::Using: if (!IsStructurallyEquivalent(Context, cast(T1)->getFoundDecl(), cast(T2)->getFoundDecl())) return false; if (!IsStructurallyEquivalent(Context, cast(T1)->getUnderlyingType(), cast(T2)->getUnderlyingType())) return false; break; case Type::Typedef: if (!IsStructurallyEquivalent(Context, cast(T1)->getDecl(), cast(T2)->getDecl()) || !IsStructurallyEquivalent(Context, cast(T1)->desugar(), cast(T2)->desugar())) return false; break; case Type::TypeOfExpr: if (!IsStructurallyEquivalent( Context, cast(T1)->getUnderlyingExpr(), cast(T2)->getUnderlyingExpr())) return false; break; case Type::TypeOf: if (!IsStructurallyEquivalent(Context, cast(T1)->getUnmodifiedType(), cast(T2)->getUnmodifiedType())) return false; break; case Type::UnaryTransform: if (!IsStructurallyEquivalent( Context, cast(T1)->getUnderlyingType(), cast(T2)->getUnderlyingType())) return false; break; case Type::Decltype: if (!IsStructurallyEquivalent(Context, cast(T1)->getUnderlyingExpr(), cast(T2)->getUnderlyingExpr())) return false; break; case Type::Auto: { auto *Auto1 = cast(T1); auto *Auto2 = cast(T2); if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(), Auto2->getDeducedType())) return false; if (Auto1->isConstrained() != Auto2->isConstrained()) return false; if (Auto1->isConstrained()) { if (Auto1->getTypeConstraintConcept() != Auto2->getTypeConstraintConcept()) return false; if (!IsStructurallyEquivalent(Context, Auto1->getTypeConstraintArguments(), Auto2->getTypeConstraintArguments())) return false; } break; } case Type::DeducedTemplateSpecialization: { const auto *DT1 = cast(T1); const auto *DT2 = cast(T2); if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(), DT2->getTemplateName())) return false; if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(), DT2->getDeducedType())) return false; break; } case Type::Record: case Type::Enum: if (!IsStructurallyEquivalent(Context, cast(T1)->getDecl(), cast(T2)->getDecl())) return false; break; case Type::TemplateTypeParm: { const auto *Parm1 = cast(T1); const auto *Parm2 = cast(T2); if (!Context.IgnoreTemplateParmDepth && Parm1->getDepth() != Parm2->getDepth()) return false; if (Parm1->getIndex() != Parm2->getIndex()) return false; if (Parm1->isParameterPack() != Parm2->isParameterPack()) return false; // Names of template type parameters are never significant. break; } case Type::SubstTemplateTypeParm: { const auto *Subst1 = cast(T1); const auto *Subst2 = cast(T2); if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), Subst2->getReplacementType())) return false; if (!IsStructurallyEquivalent(Context, Subst1->getAssociatedDecl(), Subst2->getAssociatedDecl())) return false; if (Subst1->getIndex() != Subst2->getIndex()) return false; if (Subst1->getPackIndex() != Subst2->getPackIndex()) return false; break; } case Type::SubstTemplateTypeParmPack: { const auto *Subst1 = cast(T1); const auto *Subst2 = cast(T2); if (!IsStructurallyEquivalent(Context, Subst1->getAssociatedDecl(), Subst2->getAssociatedDecl())) return false; if (Subst1->getIndex() != Subst2->getIndex()) return false; if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), Subst2->getArgumentPack())) return false; break; } case Type::TemplateSpecialization: { const auto *Spec1 = cast(T1); const auto *Spec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), Spec2->getTemplateName())) return false; if (!IsStructurallyEquivalent(Context, Spec1->template_arguments(), Spec2->template_arguments())) return false; break; } case Type::Elaborated: { const auto *Elab1 = cast(T1); const auto *Elab2 = cast(T2); // CHECKME: what if a keyword is ElaboratedTypeKeyword::None or // ElaboratedTypeKeyword::Typename // ? if (Elab1->getKeyword() != Elab2->getKeyword()) return false; if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), Elab2->getQualifier())) return false; if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), Elab2->getNamedType())) return false; break; } case Type::InjectedClassName: { const auto *Inj1 = cast(T1); const auto *Inj2 = cast(T2); if (!IsStructurallyEquivalent(Context, Inj1->getInjectedSpecializationType(), Inj2->getInjectedSpecializationType())) return false; break; } case Type::DependentName: { const auto *Typename1 = cast(T1); const auto *Typename2 = cast(T2); if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), Typename2->getQualifier())) return false; if (!IsStructurallyEquivalent(Typename1->getIdentifier(), Typename2->getIdentifier())) return false; break; } case Type::DependentTemplateSpecialization: { const auto *Spec1 = cast(T1); const auto *Spec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), Spec2->getQualifier())) return false; if (!IsStructurallyEquivalent(Spec1->getIdentifier(), Spec2->getIdentifier())) return false; if (!IsStructurallyEquivalent(Context, Spec1->template_arguments(), Spec2->template_arguments())) return false; break; } case Type::PackExpansion: if (!IsStructurallyEquivalent(Context, cast(T1)->getPattern(), cast(T2)->getPattern())) return false; break; case Type::ObjCInterface: { const auto *Iface1 = cast(T1); const auto *Iface2 = cast(T2); if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), Iface2->getDecl())) return false; break; } case Type::ObjCTypeParam: { const auto *Obj1 = cast(T1); const auto *Obj2 = cast(T2); if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl())) return false; if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) return false; for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), Obj2->getProtocol(I))) return false; } break; } case Type::ObjCObject: { const auto *Obj1 = cast(T1); const auto *Obj2 = cast(T2); if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), Obj2->getBaseType())) return false; if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) return false; for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), Obj2->getProtocol(I))) return false; } break; } case Type::ObjCObjectPointer: { const auto *Ptr1 = cast(T1); const auto *Ptr2 = cast(T2); if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), Ptr2->getPointeeType())) return false; break; } case Type::Atomic: if (!IsStructurallyEquivalent(Context, cast(T1)->getValueType(), cast(T2)->getValueType())) return false; break; case Type::Pipe: if (!IsStructurallyEquivalent(Context, cast(T1)->getElementType(), cast(T2)->getElementType())) return false; break; case Type::BitInt: { const auto *Int1 = cast(T1); const auto *Int2 = cast(T2); if (Int1->isUnsigned() != Int2->isUnsigned() || Int1->getNumBits() != Int2->getNumBits()) return false; break; } case Type::DependentBitInt: { const auto *Int1 = cast(T1); const auto *Int2 = cast(T2); if (Int1->isUnsigned() != Int2->isUnsigned() || !IsStructurallyEquivalent(Context, Int1->getNumBitsExpr(), Int2->getNumBitsExpr())) return false; break; } } // end switch return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, VarDecl *D1, VarDecl *D2) { if (D1->getStorageClass() != D2->getStorageClass()) return false; IdentifierInfo *Name1 = D1->getIdentifier(); IdentifierInfo *Name2 = D2->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2)) return false; if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) return false; return IsStructurallyEquivalent(Context, D1->getInit(), D2->getInit()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FieldDecl *Field1, FieldDecl *Field2, QualType Owner2Type) { const auto *Owner2 = cast(Field2->getDeclContext()); // For anonymous structs/unions, match up the anonymous struct/union type // declarations directly, so that we don't go off searching for anonymous // types if (Field1->isAnonymousStructOrUnion() && Field2->isAnonymousStructOrUnion()) { RecordDecl *D1 = Field1->getType()->castAs()->getDecl(); RecordDecl *D2 = Field2->getType()->castAs()->getDecl(); return IsStructurallyEquivalent(Context, D1, D2); } // Check for equivalent field names. IdentifierInfo *Name1 = Field1->getIdentifier(); IdentifierInfo *Name2 = Field2->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2)) { if (Context.Complain) { Context.Diag2( Owner2->getLocation(), Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) << Owner2Type; Context.Diag2(Field2->getLocation(), diag::note_odr_field_name) << Field2->getDeclName(); Context.Diag1(Field1->getLocation(), diag::note_odr_field_name) << Field1->getDeclName(); } return false; } if (!IsStructurallyEquivalent(Context, Field1->getType(), Field2->getType())) { if (Context.Complain) { Context.Diag2( Owner2->getLocation(), Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) << Owner2Type; Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); } return false; } if (Field1->isBitField()) return IsStructurallyEquivalent(Context, Field1->getBitWidth(), Field2->getBitWidth()); return true; } /// Determine structural equivalence of two fields. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FieldDecl *Field1, FieldDecl *Field2) { const auto *Owner2 = cast(Field2->getDeclContext()); return IsStructurallyEquivalent(Context, Field1, Field2, Context.ToCtx.getTypeDeclType(Owner2)); } /// Determine structural equivalence of two methods. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, CXXMethodDecl *Method1, CXXMethodDecl *Method2) { bool PropertiesEqual = Method1->getDeclKind() == Method2->getDeclKind() && Method1->getRefQualifier() == Method2->getRefQualifier() && Method1->getAccess() == Method2->getAccess() && Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && Method1->isStatic() == Method2->isStatic() && Method1->isImplicitObjectMemberFunction() == Method2->isImplicitObjectMemberFunction() && Method1->isConst() == Method2->isConst() && Method1->isVolatile() == Method2->isVolatile() && Method1->isVirtual() == Method2->isVirtual() && Method1->isPureVirtual() == Method2->isPureVirtual() && Method1->isDefaulted() == Method2->isDefaulted() && Method1->isDeleted() == Method2->isDeleted(); if (!PropertiesEqual) return false; // FIXME: Check for 'final'. if (auto *Constructor1 = dyn_cast(Method1)) { auto *Constructor2 = cast(Method2); if (!Constructor1->getExplicitSpecifier().isEquivalent( Constructor2->getExplicitSpecifier())) return false; } if (auto *Conversion1 = dyn_cast(Method1)) { auto *Conversion2 = cast(Method2); if (!Conversion1->getExplicitSpecifier().isEquivalent( Conversion2->getExplicitSpecifier())) return false; if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(), Conversion2->getConversionType())) return false; } const IdentifierInfo *Name1 = Method1->getIdentifier(); const IdentifierInfo *Name2 = Method2->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2)) { return false; // TODO: Names do not match, add warning like at check for FieldDecl. } // Check the prototypes. if (!::IsStructurallyEquivalent(Context, Method1->getType(), Method2->getType())) return false; return true; } /// Determine structural equivalence of two lambda classes. static bool IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context, CXXRecordDecl *D1, CXXRecordDecl *D2) { assert(D1->isLambda() && D2->isLambda() && "Must be called on lambda classes"); if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(), D2->getLambdaCallOperator())) return false; return true; } /// Determine if context of a class is equivalent. static bool IsRecordContextStructurallyEquivalent(StructuralEquivalenceContext &Context, RecordDecl *D1, RecordDecl *D2) { // The context should be completely equal, including anonymous and inline // namespaces. // We compare objects as part of full translation units, not subtrees of // translation units. DeclContext *DC1 = D1->getDeclContext()->getNonTransparentContext(); DeclContext *DC2 = D2->getDeclContext()->getNonTransparentContext(); while (true) { // Special case: We allow a struct defined in a function to be equivalent // with a similar struct defined outside of a function. if ((DC1->isFunctionOrMethod() && DC2->isTranslationUnit()) || (DC2->isFunctionOrMethod() && DC1->isTranslationUnit())) return true; if (DC1->getDeclKind() != DC2->getDeclKind()) return false; if (DC1->isTranslationUnit()) break; if (DC1->isInlineNamespace() != DC2->isInlineNamespace()) return false; if (const auto *ND1 = dyn_cast(DC1)) { const auto *ND2 = cast(DC2); if (!DC1->isInlineNamespace() && !IsStructurallyEquivalent(ND1->getIdentifier(), ND2->getIdentifier())) return false; } if (auto *D1Spec = dyn_cast(DC1)) { auto *D2Spec = dyn_cast(DC2); if (!IsStructurallyEquivalent(Context, D1Spec, D2Spec)) return false; } DC1 = DC1->getParent()->getNonTransparentContext(); DC2 = DC2->getParent()->getNonTransparentContext(); } return true; } static bool NameIsStructurallyEquivalent(const TagDecl &D1, const TagDecl &D2) { auto GetName = [](const TagDecl &D) -> const IdentifierInfo * { if (const IdentifierInfo *Name = D.getIdentifier()) return Name; if (const TypedefNameDecl *TypedefName = D.getTypedefNameForAnonDecl()) return TypedefName->getIdentifier(); return nullptr; }; return IsStructurallyEquivalent(GetName(D1), GetName(D2)); } /// Determine structural equivalence of two records. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, RecordDecl *D1, RecordDecl *D2) { if (!NameIsStructurallyEquivalent(*D1, *D2)) { return false; } if (D1->isUnion() != D2->isUnion()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) << D1->getDeclName() << (unsigned)D1->getTagKind(); } return false; } if (!D1->getDeclName() && !D2->getDeclName()) { // If both anonymous structs/unions are in a record context, make sure // they occur in the same location in the context records. if (std::optional Index1 = StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) { if (std::optional Index2 = StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( D2)) { if (*Index1 != *Index2) return false; } } } // If the records occur in different context (namespace), these should be // different. This is specially important if the definition of one or both // records is missing. if (!IsRecordContextStructurallyEquivalent(Context, D1, D2)) return false; // If both declarations are class template specializations, we know // the ODR applies, so check the template and template arguments. const auto *Spec1 = dyn_cast(D1); const auto *Spec2 = dyn_cast(D2); if (Spec1 && Spec2) { // Check that the specialized templates are the same. if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), Spec2->getSpecializedTemplate())) return false; // Check that the template arguments are the same. if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) return false; for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), Spec2->getTemplateArgs().get(I))) return false; } // If one is a class template specialization and the other is not, these // structures are different. else if (Spec1 || Spec2) return false; // Compare the definitions of these two records. If either or both are // incomplete (i.e. it is a forward decl), we assume that they are // equivalent. D1 = D1->getDefinition(); D2 = D2->getDefinition(); if (!D1 || !D2) return true; // If any of the records has external storage and we do a minimal check (or // AST import) we assume they are equivalent. (If we didn't have this // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger // another AST import which in turn would call the structural equivalency // check again and finally we'd have an improper result.) if (Context.EqKind == StructuralEquivalenceKind::Minimal) if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) return true; // If one definition is currently being defined, we do not compare for // equality and we assume that the decls are equal. if (D1->isBeingDefined() || D2->isBeingDefined()) return true; if (auto *D1CXX = dyn_cast(D1)) { if (auto *D2CXX = dyn_cast(D2)) { if (D1CXX->hasExternalLexicalStorage() && !D1CXX->isCompleteDefinition()) { D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX); } if (D1CXX->isLambda() != D2CXX->isLambda()) return false; if (D1CXX->isLambda()) { if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX)) return false; } if (D1CXX->getNumBases() != D2CXX->getNumBases()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) << D2CXX->getNumBases(); Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) << D1CXX->getNumBases(); } return false; } // Check the base classes. for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), BaseEnd1 = D1CXX->bases_end(), Base2 = D2CXX->bases_begin(); Base1 != BaseEnd1; ++Base1, ++Base2) { if (!IsStructurallyEquivalent(Context, Base1->getType(), Base2->getType())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base) << Base2->getType() << Base2->getSourceRange(); Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); } return false; } // Check virtual vs. non-virtual inheritance mismatch. if (Base1->isVirtual() != Base2->isVirtual()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base) << Base2->isVirtual() << Base2->getSourceRange(); Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) << Base1->isVirtual() << Base1->getSourceRange(); } return false; } } // Check the friends for consistency. CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), Friend2End = D2CXX->friend_end(); for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), Friend1End = D1CXX->friend_end(); Friend1 != Friend1End; ++Friend1, ++Friend2) { if (Friend2 == Friend2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2CXX); Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend); } return false; } if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2CXX); Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); } return false; } } if (Friend2 != Friend2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend); } return false; } } else if (D1CXX->getNumBases() > 0) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); } return false; } } // Check the fields for consistency. QualType D2Type = Context.ToCtx.getTypeDeclType(D2); RecordDecl::field_iterator Field2 = D2->field_begin(), Field2End = D2->field_end(); for (RecordDecl::field_iterator Field1 = D1->field_begin(), Field1End = D1->field_end(); Field1 != Field1End; ++Field1, ++Field2) { if (Field2 == Field2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); } return false; } if (!IsStructurallyEquivalent(Context, *Field1, *Field2, D2Type)) return false; } if (Field2 != Field2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, EnumConstantDecl *D1, EnumConstantDecl *D2) { const llvm::APSInt &FromVal = D1->getInitVal(); const llvm::APSInt &ToVal = D2->getInitVal(); if (FromVal.isSigned() != ToVal.isSigned()) return false; if (FromVal.getBitWidth() != ToVal.getBitWidth()) return false; if (FromVal != ToVal) return false; if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) return false; // Init expressions are the most expensive check, so do them last. return IsStructurallyEquivalent(Context, D1->getInitExpr(), D2->getInitExpr()); } /// Determine structural equivalence of two enums. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, EnumDecl *D1, EnumDecl *D2) { if (!NameIsStructurallyEquivalent(*D1, *D2)) { return false; } // Compare the definitions of these two enums. If either or both are // incomplete (i.e. forward declared), we assume that they are equivalent. D1 = D1->getDefinition(); D2 = D2->getDefinition(); if (!D1 || !D2) return true; EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), EC2End = D2->enumerator_end(); for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), EC1End = D1->enumerator_end(); EC1 != EC1End; ++EC1, ++EC2) { if (EC2 == EC2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << toString(EC1->getInitVal(), 10); Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); } return false; } llvm::APSInt Val1 = EC1->getInitVal(); llvm::APSInt Val2 = EC2->getInitVal(); if (!llvm::APSInt::isSameValue(Val1, Val2) || !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << toString(EC2->getInitVal(), 10); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << toString(EC1->getInitVal(), 10); } return false; } } if (EC2 != EC2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << toString(EC2->getInitVal(), 10); Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateParameterList *Params1, TemplateParameterList *Params2) { if (Params1->size() != Params2->size()) { if (Context.Complain) { Context.Diag2(Params2->getTemplateLoc(), Context.getApplicableDiagnostic( diag::err_odr_different_num_template_parameters)) << Params1->size() << Params2->size(); Context.Diag1(Params1->getTemplateLoc(), diag::note_odr_template_parameter_list); } return false; } for (unsigned I = 0, N = Params1->size(); I != N; ++I) { if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { if (Context.Complain) { Context.Diag2(Params2->getParam(I)->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_different_template_parameter_kind)); Context.Diag1(Params1->getParam(I)->getLocation(), diag::note_odr_template_parameter_here); } return false; } if (!IsStructurallyEquivalent(Context, Params1->getParam(I), Params2->getParam(I))) return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTypeParmDecl *D1, TemplateTypeParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_parameter_pack_non_pack)) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NonTypeTemplateParmDecl *D1, NonTypeTemplateParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_parameter_pack_non_pack)) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } // Check types. if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_non_type_parameter_type_inconsistent)) << D2->getType() << D1->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_value_here) << D1->getType(); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTemplateParmDecl *D1, TemplateTemplateParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_parameter_pack_non_pack)) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } // Check template parameter lists. return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), D2->getTemplateParameters()); } static bool IsTemplateDeclCommonStructurallyEquivalent( StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) return false; if (!D1->getIdentifier()) // Special name if (D1->getNameAsString() != D2->getNameAsString()) return false; return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(), D2->getTemplateParameters()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ClassTemplateDecl *D1, ClassTemplateDecl *D2) { // Check template parameters. if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) return false; // Check the templated declaration. return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), D2->getTemplatedDecl()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FunctionTemplateDecl *D1, FunctionTemplateDecl *D2) { // Check template parameters. if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) return false; // Check the templated declaration. return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(), D2->getTemplatedDecl()->getType()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TypeAliasTemplateDecl *D1, TypeAliasTemplateDecl *D2) { // Check template parameters. if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) return false; // Check the templated declaration. return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), D2->getTemplatedDecl()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ConceptDecl *D1, ConceptDecl *D2) { // Check template parameters. if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) return false; // Check the constraint expression. return IsStructurallyEquivalent(Context, D1->getConstraintExpr(), D2->getConstraintExpr()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FriendDecl *D1, FriendDecl *D2) { if ((D1->getFriendType() && D2->getFriendDecl()) || (D1->getFriendDecl() && D2->getFriendType())) { return false; } if (D1->getFriendType() && D2->getFriendType()) return IsStructurallyEquivalent(Context, D1->getFriendType()->getType(), D2->getFriendType()->getType()); if (D1->getFriendDecl() && D2->getFriendDecl()) return IsStructurallyEquivalent(Context, D1->getFriendDecl(), D2->getFriendDecl()); return false; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TypedefNameDecl *D1, TypedefNameDecl *D2) { if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) return false; return IsStructurallyEquivalent(Context, D1->getUnderlyingType(), D2->getUnderlyingType()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FunctionDecl *D1, FunctionDecl *D2) { if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) return false; if (D1->isOverloadedOperator()) { if (!D2->isOverloadedOperator()) return false; if (D1->getOverloadedOperator() != D2->getOverloadedOperator()) return false; } // FIXME: Consider checking for function attributes as well. if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) return false; return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ObjCIvarDecl *D1, ObjCIvarDecl *D2, QualType Owner2Type) { if (D1->getAccessControl() != D2->getAccessControl()) return false; return IsStructurallyEquivalent(Context, cast(D1), cast(D2), Owner2Type); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ObjCIvarDecl *D1, ObjCIvarDecl *D2) { QualType Owner2Type = Context.ToCtx.getObjCInterfaceType(D2->getContainingInterface()); return IsStructurallyEquivalent(Context, D1, D2, Owner2Type); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ObjCMethodDecl *Method1, ObjCMethodDecl *Method2) { bool PropertiesEqual = Method1->isInstanceMethod() == Method2->isInstanceMethod() && Method1->isVariadic() == Method2->isVariadic() && Method1->isDirectMethod() == Method2->isDirectMethod(); if (!PropertiesEqual) return false; // Compare selector slot names. Selector Selector1 = Method1->getSelector(), Selector2 = Method2->getSelector(); unsigned NumArgs = Selector1.getNumArgs(); if (NumArgs != Selector2.getNumArgs()) return false; // Compare all selector slots. For selectors with arguments it means all arg // slots. And if there are no arguments, compare the first-and-only slot. unsigned SlotsToCheck = NumArgs > 0 ? NumArgs : 1; for (unsigned I = 0; I < SlotsToCheck; ++I) { if (!IsStructurallyEquivalent(Selector1.getIdentifierInfoForSlot(I), Selector2.getIdentifierInfoForSlot(I))) return false; } // Compare types. if (!IsStructurallyEquivalent(Context, Method1->getReturnType(), Method2->getReturnType())) return false; assert( Method1->param_size() == Method2->param_size() && "Same number of arguments should be already enforced in Selector checks"); for (ObjCMethodDecl::param_type_iterator ParamT1 = Method1->param_type_begin(), ParamT1End = Method1->param_type_end(), ParamT2 = Method2->param_type_begin(), ParamT2End = Method2->param_type_end(); (ParamT1 != ParamT1End) && (ParamT2 != ParamT2End); ++ParamT1, ++ParamT2) { if (!IsStructurallyEquivalent(Context, *ParamT1, *ParamT2)) return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ObjCCategoryDecl *D1, ObjCCategoryDecl *D2) { if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) return false; const ObjCInterfaceDecl *Intf1 = D1->getClassInterface(), *Intf2 = D2->getClassInterface(); if ((!Intf1 || !Intf2) && (Intf1 != Intf2)) return false; if (Intf1 && !IsStructurallyEquivalent(Intf1->getIdentifier(), Intf2->getIdentifier())) return false; // Compare protocols. ObjCCategoryDecl::protocol_iterator Protocol2 = D2->protocol_begin(), Protocol2End = D2->protocol_end(); for (ObjCCategoryDecl::protocol_iterator Protocol1 = D1->protocol_begin(), Protocol1End = D1->protocol_end(); Protocol1 != Protocol1End; ++Protocol1, ++Protocol2) { if (Protocol2 == Protocol2End) return false; if (!IsStructurallyEquivalent((*Protocol1)->getIdentifier(), (*Protocol2)->getIdentifier())) return false; } if (Protocol2 != Protocol2End) return false; // Compare ivars. QualType D2Type = Intf2 ? Context.ToCtx.getObjCInterfaceType(Intf2) : QualType(); ObjCCategoryDecl::ivar_iterator Ivar2 = D2->ivar_begin(), Ivar2End = D2->ivar_end(); for (ObjCCategoryDecl::ivar_iterator Ivar1 = D1->ivar_begin(), Ivar1End = D1->ivar_end(); Ivar1 != Ivar1End; ++Ivar1, ++Ivar2) { if (Ivar2 == Ivar2End) return false; if (!IsStructurallyEquivalent(Context, *Ivar1, *Ivar2, D2Type)) return false; } if (Ivar2 != Ivar2End) return false; // Compare methods. ObjCCategoryDecl::method_iterator Method2 = D2->meth_begin(), Method2End = D2->meth_end(); for (ObjCCategoryDecl::method_iterator Method1 = D1->meth_begin(), Method1End = D1->meth_end(); Method1 != Method1End; ++Method1, ++Method2) { if (Method2 == Method2End) return false; if (!IsStructurallyEquivalent(Context, *Method1, *Method2)) return false; } if (Method2 != Method2End) return false; return true; } /// Determine structural equivalence of two declarations. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2) { // FIXME: Check for known structural equivalences via a callback of some sort. D1 = D1->getCanonicalDecl(); D2 = D2->getCanonicalDecl(); std::pair P{D1, D2}; // Check whether we already know that these two declarations are not // structurally equivalent. if (Context.NonEquivalentDecls.count(P)) return false; // Check if a check for these declarations is already pending. // If yes D1 and D2 will be checked later (from DeclsToCheck), // or these are already checked (and equivalent). bool Inserted = Context.VisitedDecls.insert(P).second; if (!Inserted) return true; Context.DeclsToCheck.push(P); return true; } DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, unsigned DiagID) { assert(Complain && "Not allowed to complain"); if (LastDiagFromC2) FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics()); LastDiagFromC2 = false; return FromCtx.getDiagnostics().Report(Loc, DiagID); } DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, unsigned DiagID) { assert(Complain && "Not allowed to complain"); if (!LastDiagFromC2) ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics()); LastDiagFromC2 = true; return ToCtx.getDiagnostics().Report(Loc, DiagID); } std::optional StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { ASTContext &Context = Anon->getASTContext(); QualType AnonTy = Context.getRecordType(Anon); const auto *Owner = dyn_cast(Anon->getDeclContext()); if (!Owner) return std::nullopt; unsigned Index = 0; for (const auto *D : Owner->noload_decls()) { const auto *F = dyn_cast(D); if (!F) continue; if (F->isAnonymousStructOrUnion()) { if (Context.hasSameType(F->getType(), AnonTy)) break; ++Index; continue; } // If the field looks like this: // struct { ... } A; QualType FieldType = F->getType(); // In case of nested structs. while (const auto *ElabType = dyn_cast(FieldType)) FieldType = ElabType->getNamedType(); if (const auto *RecType = dyn_cast(FieldType)) { const RecordDecl *RecDecl = RecType->getDecl(); if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { if (Context.hasSameType(FieldType, AnonTy)) break; ++Index; continue; } } } return Index; } unsigned StructuralEquivalenceContext::getApplicableDiagnostic( unsigned ErrorDiagnostic) { if (ErrorOnTagTypeMismatch) return ErrorDiagnostic; switch (ErrorDiagnostic) { case diag::err_odr_variable_type_inconsistent: return diag::warn_odr_variable_type_inconsistent; case diag::err_odr_variable_multiple_def: return diag::warn_odr_variable_multiple_def; case diag::err_odr_function_type_inconsistent: return diag::warn_odr_function_type_inconsistent; case diag::err_odr_tag_type_inconsistent: return diag::warn_odr_tag_type_inconsistent; case diag::err_odr_field_type_inconsistent: return diag::warn_odr_field_type_inconsistent; case diag::err_odr_ivar_type_inconsistent: return diag::warn_odr_ivar_type_inconsistent; case diag::err_odr_objc_superclass_inconsistent: return diag::warn_odr_objc_superclass_inconsistent; case diag::err_odr_objc_method_result_type_inconsistent: return diag::warn_odr_objc_method_result_type_inconsistent; case diag::err_odr_objc_method_num_params_inconsistent: return diag::warn_odr_objc_method_num_params_inconsistent; case diag::err_odr_objc_method_param_type_inconsistent: return diag::warn_odr_objc_method_param_type_inconsistent; case diag::err_odr_objc_method_variadic_inconsistent: return diag::warn_odr_objc_method_variadic_inconsistent; case diag::err_odr_objc_property_type_inconsistent: return diag::warn_odr_objc_property_type_inconsistent; case diag::err_odr_objc_property_impl_kind_inconsistent: return diag::warn_odr_objc_property_impl_kind_inconsistent; case diag::err_odr_objc_synthesize_ivar_inconsistent: return diag::warn_odr_objc_synthesize_ivar_inconsistent; case diag::err_odr_different_num_template_parameters: return diag::warn_odr_different_num_template_parameters; case diag::err_odr_different_template_parameter_kind: return diag::warn_odr_different_template_parameter_kind; case diag::err_odr_parameter_pack_non_pack: return diag::warn_odr_parameter_pack_non_pack; case diag::err_odr_non_type_parameter_type_inconsistent: return diag::warn_odr_non_type_parameter_type_inconsistent; } llvm_unreachable("Diagnostic kind not handled in preceding switch"); } bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { // Ensure that the implementation functions (all static functions in this TU) // never call the public ASTStructuralEquivalence::IsEquivalent() functions, // because that will wreak havoc the internal state (DeclsToCheck and // VisitedDecls members) and can cause faulty behaviour. // In other words: Do not start a graph search from a new node with the // internal data of another search in progress. // FIXME: Better encapsulation and separation of internal and public // functionality. assert(DeclsToCheck.empty()); assert(VisitedDecls.empty()); if (!::IsStructurallyEquivalent(*this, D1, D2)) return false; return !Finish(); } bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { assert(DeclsToCheck.empty()); assert(VisitedDecls.empty()); if (!::IsStructurallyEquivalent(*this, T1, T2)) return false; return !Finish(); } bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) { assert(DeclsToCheck.empty()); assert(VisitedDecls.empty()); if (!::IsStructurallyEquivalent(*this, S1, S2)) return false; return !Finish(); } bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { // Check for equivalent described template. TemplateDecl *Template1 = D1->getDescribedTemplate(); TemplateDecl *Template2 = D2->getDescribedTemplate(); if ((Template1 != nullptr) != (Template2 != nullptr)) return false; if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2)) return false; // FIXME: Move check for identifier names into this function. return true; } bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( Decl *D1, Decl *D2) { // Kind mismatch. if (D1->getKind() != D2->getKind()) return false; // Cast the Decls to their actual subclass so that the right overload of // IsStructurallyEquivalent is called. switch (D1->getKind()) { #define ABSTRACT_DECL(DECL) #define DECL(DERIVED, BASE) \ case Decl::Kind::DERIVED: \ return ::IsStructurallyEquivalent(*this, static_cast(D1), \ static_cast(D2)); #include "clang/AST/DeclNodes.inc" } return true; } bool StructuralEquivalenceContext::Finish() { while (!DeclsToCheck.empty()) { // Check the next declaration. std::pair P = DeclsToCheck.front(); DeclsToCheck.pop(); Decl *D1 = P.first; Decl *D2 = P.second; bool Equivalent = CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); if (!Equivalent) { // Note that these two declarations are not equivalent (and we already // know about it). NonEquivalentDecls.insert(P); return true; } } return false; }