/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa * All rights reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Dummynet portions related to packet handling. */ #include #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */ #include /* NET_EPOCH_... */ #include #include #include #include #include /* ip_len, ip_off */ #include /* ip_output(), IP_FORWARDING */ #include #include #include /* various ether_* routines */ #include /* for ip6_input, ip6_output prototypes */ #include #include #include #include #ifdef NEW_AQM #include #endif #include /* * We keep a private variable for the simulation time, but we could * probably use an existing one ("softticks" in sys/kern/kern_timeout.c) * instead of V_dn_cfg.curr_time */ VNET_DEFINE(struct dn_parms, dn_cfg); #define V_dn_cfg VNET(dn_cfg) /* * We use a heap to store entities for which we have pending timer events. * The heap is checked at every tick and all entities with expired events * are extracted. */ MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap"); extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *); #ifdef SYSCTL_NODE /* * Because of the way the SYSBEGIN/SYSEND macros work on other * platforms, there should not be functions between them. * So keep the handlers outside the block. */ static int sysctl_hash_size(SYSCTL_HANDLER_ARGS) { int error, value; value = V_dn_cfg.hash_size; error = sysctl_handle_int(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < 16 || value > 65536) return (EINVAL); V_dn_cfg.hash_size = value; return (0); } static int sysctl_limits(SYSCTL_HANDLER_ARGS) { int error; long value; if (arg2 != 0) value = V_dn_cfg.slot_limit; else value = V_dn_cfg.byte_limit; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (arg2 != 0) { if (value < 1) return (EINVAL); V_dn_cfg.slot_limit = value; } else { if (value < 1500) return (EINVAL); V_dn_cfg.byte_limit = value; } return (0); } SYSBEGIN(f4) SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); #ifdef NEW_AQM SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Dummynet"); #else static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Dummynet"); #endif /* wrapper to pass V_dn_cfg fields to SYSCTL_* */ #define DC(x) (&(VNET_NAME(dn_cfg).x)) /* parameters */ SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_hash_size, "I", "Default hash table size"); SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit, CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 1, sysctl_limits, "L", "Upper limit in slots for pipe queue."); SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit, CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_limits, "L", "Upper limit in bytes for pipe queue."); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast, CTLFLAG_RW | CTLFLAG_VNET, DC(io_fast), 0, "Enable fast dummynet io."); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_VNET, DC(debug), 0, "Dummynet debug level"); /* RED parameters */ SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, CTLFLAG_RD | CTLFLAG_VNET, DC(red_lookup_depth), 0, "Depth of RED lookup table"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, CTLFLAG_RD | CTLFLAG_VNET, DC(red_avg_pkt_size), 0, "RED Medium packet size"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, CTLFLAG_RD | CTLFLAG_VNET, DC(red_max_pkt_size), 0, "RED Max packet size"); /* time adjustment */ SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta, CTLFLAG_RD | CTLFLAG_VNET, DC(tick_delta), 0, "Last vs standard tick difference (usec)."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum, CTLFLAG_RD | CTLFLAG_VNET, DC(tick_delta_sum), 0, "Accumulated tick difference (usec)."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment, CTLFLAG_RD | CTLFLAG_VNET, DC(tick_adjustment), 0, "Tick adjustments done."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff, CTLFLAG_RD | CTLFLAG_VNET, DC(tick_diff), 0, "Adjusted vs non-adjusted curr_time difference (ticks)."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost, CTLFLAG_RD | CTLFLAG_VNET, DC(tick_lost), 0, "Number of ticks coalesced by dummynet taskqueue."); /* Drain parameters */ SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire, CTLFLAG_RW | CTLFLAG_VNET, DC(expire), 0, "Expire empty queues/pipes"); SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle, CTLFLAG_RD | CTLFLAG_VNET, DC(expire_cycle), 0, "Expire cycle for queues/pipes"); /* statistics */ SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count, CTLFLAG_RD | CTLFLAG_VNET, DC(schk_count), 0, "Number of schedulers"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count, CTLFLAG_RD | CTLFLAG_VNET, DC(si_count), 0, "Number of scheduler instances"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count, CTLFLAG_RD | CTLFLAG_VNET, DC(fsk_count), 0, "Number of flowsets"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count, CTLFLAG_RD | CTLFLAG_VNET, DC(queue_count), 0, "Number of queues"); SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt, CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt), 0, "Number of packets passed to dummynet."); SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast, CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt_fast), 0, "Number of packets bypassed dummynet scheduler."); SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop, CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt_drop), 0, "Number of packets dropped by dummynet."); #undef DC SYSEND #endif static void dummynet_send(struct mbuf *); /* * Return the mbuf tag holding the dummynet state (it should * be the first one on the list). */ struct dn_pkt_tag * dn_tag_get(struct mbuf *m) { struct m_tag *mtag = m_tag_first(m); #ifdef NEW_AQM /* XXX: to skip ts m_tag. For Debugging only*/ if (mtag != NULL && mtag->m_tag_id == DN_AQM_MTAG_TS) { m_tag_delete(m,mtag); mtag = m_tag_first(m); D("skip TS tag"); } #endif KASSERT(mtag != NULL && mtag->m_tag_cookie == MTAG_ABI_COMPAT && mtag->m_tag_id == PACKET_TAG_DUMMYNET, ("packet on dummynet queue w/o dummynet tag!")); return (struct dn_pkt_tag *)(mtag+1); } #ifndef NEW_AQM static inline void mq_append(struct mq *q, struct mbuf *m) { #ifdef USERSPACE // buffers from netmap need to be copied // XXX note that the routine is not expected to fail ND("append %p to %p", m, q); if (m->m_flags & M_STACK) { struct mbuf *m_new; void *p; int l, ofs; ofs = m->m_data - m->__m_extbuf; // XXX allocate MGETHDR(m_new, M_NOWAIT, MT_DATA); ND("*** WARNING, volatile buf %p ext %p %d dofs %d m_new %p", m, m->__m_extbuf, m->__m_extlen, ofs, m_new); p = m_new->__m_extbuf; /* new pointer */ l = m_new->__m_extlen; /* new len */ if (l <= m->__m_extlen) { panic("extlen too large"); } *m_new = *m; // copy m_new->m_flags &= ~M_STACK; m_new->__m_extbuf = p; // point to new buffer _pkt_copy(m->__m_extbuf, p, m->__m_extlen); m_new->m_data = p + ofs; m = m_new; } #endif /* USERSPACE */ if (q->head == NULL) q->head = m; else q->tail->m_nextpkt = m; q->count++; q->tail = m; m->m_nextpkt = NULL; } #endif /* * Dispose a list of packet. Use a functions so if we need to do * more work, this is a central point to do it. */ void dn_free_pkts(struct mbuf *mnext) { struct mbuf *m; while ((m = mnext) != NULL) { mnext = m->m_nextpkt; FREE_PKT(m); } } static int red_drops (struct dn_queue *q, int len) { /* * RED algorithm * * RED calculates the average queue size (avg) using a low-pass filter * with an exponential weighted (w_q) moving average: * avg <- (1-w_q) * avg + w_q * q_size * where q_size is the queue length (measured in bytes or * packets). * * If q_size == 0, we compute the idle time for the link, and set * avg = (1 - w_q)^(idle/s) * where s is the time needed for transmitting a medium-sized packet. * * Now, if avg < min_th the packet is enqueued. * If avg > max_th the packet is dropped. Otherwise, the packet is * dropped with probability P function of avg. */ struct dn_fsk *fs = q->fs; int64_t p_b = 0; /* Queue in bytes or packets? */ uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ? q->ni.len_bytes : q->ni.length; /* Average queue size estimation. */ if (q_size != 0) { /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */ int diff = SCALE(q_size) - q->avg; int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q); q->avg += (int)v; } else { /* * Queue is empty, find for how long the queue has been * empty and use a lookup table for computing * (1 - * w_q)^(idle_time/s) where s is the time to send a * (small) packet. * XXX check wraps... */ if (q->avg) { u_int t = div64((V_dn_cfg.curr_time - q->q_time), fs->lookup_step); q->avg = (t < fs->lookup_depth) ? SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; } } /* Should i drop? */ if (q->avg < fs->min_th) { q->count = -1; return (0); /* accept packet */ } if (q->avg >= fs->max_th) { /* average queue >= max threshold */ if (fs->fs.flags & DN_IS_ECN) return (1); if (fs->fs.flags & DN_IS_GENTLE_RED) { /* * According to Gentle-RED, if avg is greater than * max_th the packet is dropped with a probability * p_b = c_3 * avg - c_4 * where c_3 = (1 - max_p) / max_th * c_4 = 1 - 2 * max_p */ p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) - fs->c_4; } else { q->count = -1; return (1); } } else if (q->avg > fs->min_th) { if (fs->fs.flags & DN_IS_ECN) return (1); /* * We compute p_b using the linear dropping function * p_b = c_1 * avg - c_2 * where c_1 = max_p / (max_th - min_th) * c_2 = max_p * min_th / (max_th - min_th) */ p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2; } if (fs->fs.flags & DN_QSIZE_BYTES) p_b = div64((p_b * len) , fs->max_pkt_size); if (++q->count == 0) q->random = random() & 0xffff; else { /* * q->count counts packets arrived since last drop, so a greater * value of q->count means a greater packet drop probability. */ if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) { q->count = 0; /* After a drop we calculate a new random value. */ q->random = random() & 0xffff; return (1); /* drop */ } } /* End of RED algorithm. */ return (0); /* accept */ } /* * ECN/ECT Processing (partially adopted from altq) */ #ifndef NEW_AQM static #endif int ecn_mark(struct mbuf* m) { struct ip *ip; ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off); switch (ip->ip_v) { case IPVERSION: { uint16_t old; if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT) return (0); /* not-ECT */ if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) return (1); /* already marked */ /* * ecn-capable but not marked, * mark CE and update checksum */ old = *(uint16_t *)ip; ip->ip_tos |= IPTOS_ECN_CE; ip->ip_sum = cksum_adjust(ip->ip_sum, old, *(uint16_t *)ip); return (1); } #ifdef INET6 case (IPV6_VERSION >> 4): { struct ip6_hdr *ip6 = (struct ip6_hdr *)ip; u_int32_t flowlabel; flowlabel = ntohl(ip6->ip6_flow); if ((flowlabel >> 28) != 6) return (0); /* version mismatch! */ if ((flowlabel & (IPTOS_ECN_MASK << 20)) == (IPTOS_ECN_NOTECT << 20)) return (0); /* not-ECT */ if ((flowlabel & (IPTOS_ECN_MASK << 20)) == (IPTOS_ECN_CE << 20)) return (1); /* already marked */ /* * ecn-capable but not marked, mark CE */ flowlabel |= (IPTOS_ECN_CE << 20); ip6->ip6_flow = htonl(flowlabel); return (1); } #endif } return (0); } /* * Enqueue a packet in q, subject to space and queue management policy * (whose parameters are in q->fs). * Update stats for the queue and the scheduler. * Return 0 on success, 1 on drop. The packet is consumed anyways. */ int dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop) { struct dn_fs *f; struct dn_flow *ni; /* stats for scheduler instance */ uint64_t len; if (q->fs == NULL || q->_si == NULL) { printf("%s fs %p si %p, dropping\n", __FUNCTION__, q->fs, q->_si); FREE_PKT(m); return 1; } f = &(q->fs->fs); ni = &q->_si->ni; len = m->m_pkthdr.len; /* Update statistics, then check reasons to drop pkt. */ q->ni.tot_bytes += len; q->ni.tot_pkts++; ni->tot_bytes += len; ni->tot_pkts++; if (drop) goto drop; if (f->plr[0] || f->plr[1]) { if (__predict_true(f->plr[1] == 0)) { if (random() < f->plr[0]) goto drop; } else { switch (f->pl_state) { case PLR_STATE_B: if (random() < f->plr[3]) f->pl_state = PLR_STATE_G; if (random() < f->plr[2]) goto drop; break; case PLR_STATE_G: /* FALLTHROUGH */ default: if (random() < f->plr[1]) f->pl_state = PLR_STATE_B; if (random() < f->plr[0]) goto drop; break; } } } if (m->m_pkthdr.rcvif != NULL) m_rcvif_serialize(m); #ifdef NEW_AQM /* Call AQM enqueue function */ if (q->fs->aqmfp) return q->fs->aqmfp->enqueue(q ,m); #endif if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len)) { if (!(f->flags & DN_IS_ECN) || !ecn_mark(m)) goto drop; } if (f->flags & DN_QSIZE_BYTES) { if (q->ni.len_bytes > f->qsize) goto drop; } else if (q->ni.length >= f->qsize) { goto drop; } mq_append(&q->mq, m); q->ni.length++; q->ni.len_bytes += len; ni->length++; ni->len_bytes += len; return (0); drop: V_dn_cfg.io_pkt_drop++; q->ni.drops++; ni->drops++; FREE_PKT(m); return (1); } /* * Fetch packets from the delay line which are due now. If there are * leftover packets, reinsert the delay line in the heap. * Runs under scheduler lock. */ static void transmit_event(struct mq *q, struct delay_line *dline, uint64_t now) { struct mbuf *m; struct dn_pkt_tag *pkt = NULL; dline->oid.subtype = 0; /* not in heap */ while ((m = dline->mq.head) != NULL) { pkt = dn_tag_get(m); if (!DN_KEY_LEQ(pkt->output_time, now)) break; dline->mq.head = m->m_nextpkt; dline->mq.count--; if (m->m_pkthdr.rcvif != NULL && __predict_false(m_rcvif_restore(m) == NULL)) m_freem(m); else mq_append(q, m); } if (m != NULL) { dline->oid.subtype = 1; /* in heap */ heap_insert(&V_dn_cfg.evheap, pkt->output_time, dline); } } /* * Convert the additional MAC overheads/delays into an equivalent * number of bits for the given data rate. The samples are * in milliseconds so we need to divide by 1000. */ static uint64_t extra_bits(struct mbuf *m, struct dn_schk *s) { int index; uint64_t bits; struct dn_profile *pf = s->profile; if (!pf || pf->samples_no == 0) return 0; index = random() % pf->samples_no; bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000); if (index >= pf->loss_level) { struct dn_pkt_tag *dt = dn_tag_get(m); if (dt) dt->dn_dir = DIR_DROP; } return bits; } /* * Send traffic from a scheduler instance due by 'now'. * Return a pointer to the head of the queue. */ static struct mbuf * serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now) { struct mq def_q; struct dn_schk *s = si->sched; struct mbuf *m = NULL; int delay_line_idle = (si->dline.mq.head == NULL); int done; uint32_t bw; if (q == NULL) { q = &def_q; q->head = NULL; } bw = s->link.bandwidth; si->kflags &= ~DN_ACTIVE; if (bw > 0) si->credit += (now - si->sched_time) * bw; else si->credit = 0; si->sched_time = now; done = 0; while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) { uint64_t len_scaled; done++; len_scaled = (bw == 0) ? 0 : hz * (m->m_pkthdr.len * 8 + extra_bits(m, s)); si->credit -= len_scaled; /* Move packet in the delay line */ dn_tag_get(m)->output_time = V_dn_cfg.curr_time + s->link.delay ; if (m->m_pkthdr.rcvif != NULL) m_rcvif_serialize(m); mq_append(&si->dline.mq, m); } /* * If credit >= 0 the instance is idle, mark time. * Otherwise put back in the heap, and adjust the output * time of the last inserted packet, m, which was too early. */ if (si->credit >= 0) { si->idle_time = now; } else { uint64_t t; KASSERT (bw > 0, ("bw=0 and credit<0 ?")); t = div64(bw - 1 - si->credit, bw); if (m) dn_tag_get(m)->output_time += t; si->kflags |= DN_ACTIVE; heap_insert(&V_dn_cfg.evheap, now + t, si); } if (delay_line_idle && done) transmit_event(q, &si->dline, now); return q->head; } /* * The timer handler for dummynet. Time is computed in ticks, but * but the code is tolerant to the actual rate at which this is called. * Once complete, the function reschedules itself for the next tick. */ void dummynet_task(void *context, int pending) { struct timeval t; struct mq q = { NULL, NULL }; /* queue to accumulate results */ struct epoch_tracker et; VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK(); NET_EPOCH_ENTER(et); VNET_FOREACH(vnet_iter) { memset(&q, 0, sizeof(struct mq)); CURVNET_SET(vnet_iter); if (! V_dn_cfg.init_done) { CURVNET_RESTORE(); continue; } DN_BH_WLOCK(); /* Update number of lost(coalesced) ticks. */ V_dn_cfg.tick_lost += pending - 1; getmicrouptime(&t); /* Last tick duration (usec). */ V_dn_cfg.tick_last = (t.tv_sec - V_dn_cfg.prev_t.tv_sec) * 1000000 + (t.tv_usec - V_dn_cfg.prev_t.tv_usec); /* Last tick vs standard tick difference (usec). */ V_dn_cfg.tick_delta = (V_dn_cfg.tick_last * hz - 1000000) / hz; /* Accumulated tick difference (usec). */ V_dn_cfg.tick_delta_sum += V_dn_cfg.tick_delta; V_dn_cfg.prev_t = t; /* * Adjust curr_time if the accumulated tick difference is * greater than the 'standard' tick. Since curr_time should * be monotonically increasing, we do positive adjustments * as required, and throttle curr_time in case of negative * adjustment. */ V_dn_cfg.curr_time++; if (V_dn_cfg.tick_delta_sum - tick >= 0) { int diff = V_dn_cfg.tick_delta_sum / tick; V_dn_cfg.curr_time += diff; V_dn_cfg.tick_diff += diff; V_dn_cfg.tick_delta_sum %= tick; V_dn_cfg.tick_adjustment++; } else if (V_dn_cfg.tick_delta_sum + tick <= 0) { V_dn_cfg.curr_time--; V_dn_cfg.tick_diff--; V_dn_cfg.tick_delta_sum += tick; V_dn_cfg.tick_adjustment++; } /* serve pending events, accumulate in q */ for (;;) { struct dn_id *p; /* generic parameter to handler */ if (V_dn_cfg.evheap.elements == 0 || DN_KEY_LT(V_dn_cfg.curr_time, HEAP_TOP(&V_dn_cfg.evheap)->key)) break; p = HEAP_TOP(&V_dn_cfg.evheap)->object; heap_extract(&V_dn_cfg.evheap, NULL); if (p->type == DN_SCH_I) { serve_sched(&q, (struct dn_sch_inst *)p, V_dn_cfg.curr_time); } else { /* extracted a delay line */ transmit_event(&q, (struct delay_line *)p, V_dn_cfg.curr_time); } } if (V_dn_cfg.expire && ++V_dn_cfg.expire_cycle >= V_dn_cfg.expire) { V_dn_cfg.expire_cycle = 0; dn_drain_scheduler(); dn_drain_queue(); } DN_BH_WUNLOCK(); if (q.head != NULL) dummynet_send(q.head); CURVNET_RESTORE(); } NET_EPOCH_EXIT(et); VNET_LIST_RUNLOCK(); /* Schedule our next run. */ dn_reschedule(); } /* * forward a chain of packets to the proper destination. * This runs outside the dummynet lock. */ static void dummynet_send(struct mbuf *m) { struct mbuf *n; NET_EPOCH_ASSERT(); for (; m != NULL; m = n) { struct ifnet *ifp = NULL; /* gcc 3.4.6 complains */ struct m_tag *tag; int dst; n = m->m_nextpkt; m->m_nextpkt = NULL; tag = m_tag_first(m); if (tag == NULL) { /* should not happen */ dst = DIR_DROP; } else { struct dn_pkt_tag *pkt = dn_tag_get(m); /* extract the dummynet info, rename the tag * to carry reinject info. */ ifp = ifnet_byindexgen(pkt->if_index, pkt->if_idxgen); if (((pkt->dn_dir == (DIR_OUT | PROTO_LAYER2)) || (pkt->dn_dir == (DIR_OUT | PROTO_LAYER2 | PROTO_IPV6))) && ifp == NULL) { dst = DIR_DROP; } else { dst = pkt->dn_dir; tag->m_tag_cookie = MTAG_IPFW_RULE; tag->m_tag_id = 0; } } switch (dst) { case DIR_OUT: ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL); break ; case DIR_IN : netisr_dispatch(NETISR_IP, m); break; #ifdef INET6 case DIR_IN | PROTO_IPV6: netisr_dispatch(NETISR_IPV6, m); break; case DIR_OUT | PROTO_IPV6: ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL); break; #endif case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */ if (bridge_dn_p != NULL) ((*bridge_dn_p)(m, ifp)); else printf("dummynet: if_bridge not loaded\n"); break; case DIR_IN | PROTO_LAYER2 | PROTO_IPV6: case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */ /* * The Ethernet code assumes the Ethernet header is * contiguous in the first mbuf header. * Insure this is true. */ if (m->m_len < ETHER_HDR_LEN && (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) { printf("dummynet/ether: pullup failed, " "dropping packet\n"); break; } ether_demux(m->m_pkthdr.rcvif, m); break; case DIR_OUT | PROTO_LAYER2 | PROTO_IPV6: case DIR_OUT | PROTO_LAYER2: /* DN_TO_ETH_OUT: */ MPASS(ifp != NULL); ether_output_frame(ifp, m); break; case DIR_DROP: /* drop the packet after some time */ FREE_PKT(m); break; default: printf("dummynet: bad switch %d!\n", dst); FREE_PKT(m); break; } } } static inline int tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa) { struct dn_pkt_tag *dt; struct m_tag *mtag; mtag = m_tag_get(PACKET_TAG_DUMMYNET, sizeof(*dt), M_NOWAIT | M_ZERO); if (mtag == NULL) return 1; /* Cannot allocate packet header. */ m_tag_prepend(m, mtag); /* Attach to mbuf chain. */ dt = (struct dn_pkt_tag *)(mtag + 1); dt->rule = fwa->rule; /* only keep this info */ dt->rule.info &= (IPFW_ONEPASS | IPFW_IS_DUMMYNET); dt->dn_dir = dir; if (fwa->flags & IPFW_ARGS_OUT && fwa->ifp != NULL) { NET_EPOCH_ASSERT(); dt->if_index = fwa->ifp->if_index; dt->if_idxgen = fwa->ifp->if_idxgen; } /* dt->output_time is updated as we move through */ dt->output_time = V_dn_cfg.curr_time; dt->iphdr_off = (dir & PROTO_LAYER2) ? ETHER_HDR_LEN : 0; return 0; } /* * dummynet hook for packets. * We use the argument to locate the flowset fs and the sched_set sch * associated to it. The we apply flow_mask and sched_mask to * determine the queue and scheduler instances. */ int dummynet_io(struct mbuf **m0, struct ip_fw_args *fwa) { struct mbuf *m = *m0; struct dn_fsk *fs = NULL; struct dn_sch_inst *si; struct dn_queue *q = NULL; /* default */ int fs_id, dir; fs_id = (fwa->rule.info & IPFW_INFO_MASK) + ((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0); /* XXXGL: convert args to dir */ if (fwa->flags & IPFW_ARGS_IN) dir = DIR_IN; else dir = DIR_OUT; if (fwa->flags & IPFW_ARGS_ETHER) dir |= PROTO_LAYER2; else if (fwa->flags & IPFW_ARGS_IP6) dir |= PROTO_IPV6; DN_BH_WLOCK(); V_dn_cfg.io_pkt++; /* we could actually tag outside the lock, but who cares... */ if (tag_mbuf(m, dir, fwa)) goto dropit; /* XXX locate_flowset could be optimised with a direct ref. */ fs = dn_ht_find(V_dn_cfg.fshash, fs_id, 0, NULL); if (fs == NULL) goto dropit; /* This queue/pipe does not exist! */ if (fs->sched == NULL) /* should not happen */ goto dropit; /* find scheduler instance, possibly applying sched_mask */ si = ipdn_si_find(fs->sched, &(fwa->f_id)); if (si == NULL) goto dropit; /* * If the scheduler supports multiple queues, find the right one * (otherwise it will be ignored by enqueue). */ if (fs->sched->fp->flags & DN_MULTIQUEUE) { q = ipdn_q_find(fs, si, &(fwa->f_id)); if (q == NULL) goto dropit; } if (fs->sched->fp->enqueue(si, q, m)) { /* packet was dropped by enqueue() */ m = *m0 = NULL; /* dn_enqueue already increases io_pkt_drop */ V_dn_cfg.io_pkt_drop--; goto dropit; } if (si->kflags & DN_ACTIVE) { m = *m0 = NULL; /* consumed */ goto done; /* already active, nothing to do */ } /* compute the initial allowance */ if (si->idle_time < V_dn_cfg.curr_time) { /* Do this only on the first packet on an idle pipe */ struct dn_link *p = &fs->sched->link; si->sched_time = V_dn_cfg.curr_time; si->credit = V_dn_cfg.io_fast ? p->bandwidth : 0; if (p->burst) { uint64_t burst = (V_dn_cfg.curr_time - si->idle_time) * p->bandwidth; if (burst > p->burst) burst = p->burst; si->credit += burst; } } /* pass through scheduler and delay line */ m = serve_sched(NULL, si, V_dn_cfg.curr_time); /* optimization -- pass it back to ipfw for immediate send */ /* XXX Don't call dummynet_send() if scheduler return the packet * just enqueued. This avoid a lock order reversal. * */ if (/*V_dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) { /* fast io, rename the tag * to carry reinject info. */ struct m_tag *tag = m_tag_first(m); tag->m_tag_cookie = MTAG_IPFW_RULE; tag->m_tag_id = 0; V_dn_cfg.io_pkt_fast++; if (m->m_nextpkt != NULL) { printf("dummynet: fast io: pkt chain detected!\n"); m->m_nextpkt = NULL; } m = NULL; } else { *m0 = NULL; } done: DN_BH_WUNLOCK(); if (m) dummynet_send(m); return 0; dropit: V_dn_cfg.io_pkt_drop++; DN_BH_WUNLOCK(); if (m) FREE_PKT(m); *m0 = NULL; return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS; }