/*-
* Copyright (c) 2015, 2020 Ruslan Bukin
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Semihalf under
* the sponsorship of the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Generic ECAM PCIe driver */
#include
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "pcib_if.h"
#if defined(VM_MEMATTR_DEVICE_NP)
#define PCI_UNMAPPED
#define PCI_RF_FLAGS RF_UNMAPPED
#else
#define PCI_RF_FLAGS 0
#endif
/* Forward prototypes */
static uint32_t generic_pcie_read_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, int bytes);
static void generic_pcie_write_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t val, int bytes);
static int generic_pcie_maxslots(device_t dev);
static int generic_pcie_write_ivar(device_t dev, device_t child, int index,
uintptr_t value);
int
pci_host_generic_core_attach(device_t dev)
{
#ifdef PCI_UNMAPPED
struct resource_map_request req;
struct resource_map map;
#endif
struct generic_pcie_core_softc *sc;
struct rman *rm;
uint64_t phys_base;
uint64_t pci_base;
uint64_t size;
const char *range_descr;
char buf[64];
int domain, error;
int flags, rid, tuple, type;
sc = device_get_softc(dev);
sc->dev = dev;
/* Create the parent DMA tag to pass down the coherent flag */
error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE, /* maxsegsize */
sc->coherent ? BUS_DMA_COHERENT : 0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->dmat);
if (error != 0)
return (error);
/*
* Attempt to set the domain. If it's missing, or we are unable to
* set it then memory allocations may be placed in the wrong domain.
*/
if (bus_get_domain(dev, &domain) == 0)
(void)bus_dma_tag_set_domain(sc->dmat, domain);
if ((sc->quirks & PCIE_CUSTOM_CONFIG_SPACE_QUIRK) == 0) {
rid = 0;
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
PCI_RF_FLAGS | RF_ACTIVE);
if (sc->res == NULL) {
device_printf(dev, "could not allocate memory.\n");
error = ENXIO;
goto err_resource;
}
#ifdef PCI_UNMAPPED
resource_init_map_request(&req);
req.memattr = VM_MEMATTR_DEVICE_NP;
error = bus_map_resource(dev, SYS_RES_MEMORY, sc->res, &req,
&map);
if (error != 0) {
device_printf(dev, "could not map memory.\n");
return (error);
}
rman_set_mapping(sc->res, &map);
#endif
}
sc->has_pmem = false;
sc->pmem_rman.rm_type = RMAN_ARRAY;
snprintf(buf, sizeof(buf), "%s prefetch window",
device_get_nameunit(dev));
sc->pmem_rman.rm_descr = strdup(buf, M_DEVBUF);
sc->mem_rman.rm_type = RMAN_ARRAY;
snprintf(buf, sizeof(buf), "%s memory window",
device_get_nameunit(dev));
sc->mem_rman.rm_descr = strdup(buf, M_DEVBUF);
sc->io_rman.rm_type = RMAN_ARRAY;
snprintf(buf, sizeof(buf), "%s I/O port window",
device_get_nameunit(dev));
sc->io_rman.rm_descr = strdup(buf, M_DEVBUF);
/* Initialize rman and allocate memory regions */
error = rman_init(&sc->pmem_rman);
if (error) {
device_printf(dev, "rman_init() failed. error = %d\n", error);
goto err_pmem_rman;
}
error = rman_init(&sc->mem_rman);
if (error) {
device_printf(dev, "rman_init() failed. error = %d\n", error);
goto err_mem_rman;
}
error = rman_init(&sc->io_rman);
if (error) {
device_printf(dev, "rman_init() failed. error = %d\n", error);
goto err_io_rman;
}
for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) {
phys_base = sc->ranges[tuple].phys_base;
pci_base = sc->ranges[tuple].pci_base;
size = sc->ranges[tuple].size;
rid = tuple + 1;
if (size == 0)
continue; /* empty range element */
switch (FLAG_TYPE(sc->ranges[tuple].flags)) {
case FLAG_TYPE_PMEM:
sc->has_pmem = true;
range_descr = "prefetch";
flags = RF_PREFETCHABLE;
type = SYS_RES_MEMORY;
rm = &sc->pmem_rman;
break;
case FLAG_TYPE_MEM:
range_descr = "memory";
flags = 0;
type = SYS_RES_MEMORY;
rm = &sc->mem_rman;
break;
case FLAG_TYPE_IO:
range_descr = "I/O port";
flags = 0;
type = SYS_RES_IOPORT;
rm = &sc->io_rman;
break;
default:
continue;
}
if (bootverbose)
device_printf(dev,
"PCI addr: 0x%jx, CPU addr: 0x%jx, Size: 0x%jx, Type: %s\n",
pci_base, phys_base, size, range_descr);
error = bus_set_resource(dev, type, rid, phys_base, size);
if (error != 0) {
device_printf(dev,
"failed to set resource for range %d: %d\n", tuple,
error);
continue;
}
sc->ranges[tuple].res = bus_alloc_resource_any(dev, type, &rid,
RF_ACTIVE | RF_UNMAPPED | flags);
if (sc->ranges[tuple].res == NULL) {
device_printf(dev,
"failed to allocate resource for range %d\n", tuple);
continue;
}
error = rman_manage_region(rm, pci_base, pci_base + size - 1);
if (error) {
device_printf(dev, "rman_manage_region() failed."
"error = %d\n", error);
continue;
}
}
return (0);
err_io_rman:
rman_fini(&sc->mem_rman);
err_mem_rman:
rman_fini(&sc->pmem_rman);
err_pmem_rman:
free(__DECONST(char *, sc->io_rman.rm_descr), M_DEVBUF);
free(__DECONST(char *, sc->mem_rman.rm_descr), M_DEVBUF);
free(__DECONST(char *, sc->pmem_rman.rm_descr), M_DEVBUF);
if (sc->res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->res);
err_resource:
bus_dma_tag_destroy(sc->dmat);
return (error);
}
int
pci_host_generic_core_detach(device_t dev)
{
struct generic_pcie_core_softc *sc;
int error, tuple, type;
sc = device_get_softc(dev);
error = bus_generic_detach(dev);
if (error != 0)
return (error);
for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) {
if (sc->ranges[tuple].size == 0)
continue; /* empty range element */
switch (FLAG_TYPE(sc->ranges[tuple].flags)) {
case FLAG_TYPE_PMEM:
case FLAG_TYPE_MEM:
type = SYS_RES_MEMORY;
break;
case FLAG_TYPE_IO:
type = SYS_RES_IOPORT;
break;
default:
continue;
}
if (sc->ranges[tuple].res != NULL)
bus_release_resource(dev, type, tuple + 1,
sc->ranges[tuple].res);
bus_delete_resource(dev, type, tuple + 1);
}
rman_fini(&sc->io_rman);
rman_fini(&sc->mem_rman);
rman_fini(&sc->pmem_rman);
free(__DECONST(char *, sc->io_rman.rm_descr), M_DEVBUF);
free(__DECONST(char *, sc->mem_rman.rm_descr), M_DEVBUF);
free(__DECONST(char *, sc->pmem_rman.rm_descr), M_DEVBUF);
if (sc->res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->res);
bus_dma_tag_destroy(sc->dmat);
return (0);
}
static uint32_t
generic_pcie_read_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, int bytes)
{
struct generic_pcie_core_softc *sc;
uint64_t offset;
uint32_t data;
sc = device_get_softc(dev);
if ((bus < sc->bus_start) || (bus > sc->bus_end))
return (~0U);
if ((slot > PCI_SLOTMAX) || (func > PCI_FUNCMAX) ||
(reg > PCIE_REGMAX))
return (~0U);
if ((sc->quirks & PCIE_ECAM_DESIGNWARE_QUIRK) && bus == 0 && slot > 0)
return (~0U);
offset = PCIE_ADDR_OFFSET(bus - sc->bus_start, slot, func, reg);
switch (bytes) {
case 1:
data = bus_read_1(sc->res, offset);
break;
case 2:
data = le16toh(bus_read_2(sc->res, offset));
break;
case 4:
data = le32toh(bus_read_4(sc->res, offset));
break;
default:
return (~0U);
}
return (data);
}
static void
generic_pcie_write_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t val, int bytes)
{
struct generic_pcie_core_softc *sc;
uint64_t offset;
sc = device_get_softc(dev);
if ((bus < sc->bus_start) || (bus > sc->bus_end))
return;
if ((slot > PCI_SLOTMAX) || (func > PCI_FUNCMAX) ||
(reg > PCIE_REGMAX))
return;
offset = PCIE_ADDR_OFFSET(bus - sc->bus_start, slot, func, reg);
switch (bytes) {
case 1:
bus_write_1(sc->res, offset, val);
break;
case 2:
bus_write_2(sc->res, offset, htole16(val));
break;
case 4:
bus_write_4(sc->res, offset, htole32(val));
break;
default:
return;
}
}
static int
generic_pcie_maxslots(device_t dev)
{
return (31); /* max slots per bus acc. to standard */
}
int
generic_pcie_read_ivar(device_t dev, device_t child, int index,
uintptr_t *result)
{
struct generic_pcie_core_softc *sc;
sc = device_get_softc(dev);
switch (index) {
case PCIB_IVAR_BUS:
*result = sc->bus_start;
return (0);
case PCIB_IVAR_DOMAIN:
*result = sc->ecam;
return (0);
}
if (bootverbose)
device_printf(dev, "ERROR: Unknown index %d.\n", index);
return (ENOENT);
}
static int
generic_pcie_write_ivar(device_t dev, device_t child, int index,
uintptr_t value)
{
return (ENOENT);
}
static struct rman *
generic_pcie_get_rman(device_t dev, int type, u_int flags)
{
struct generic_pcie_core_softc *sc = device_get_softc(dev);
switch (type) {
case SYS_RES_IOPORT:
return (&sc->io_rman);
case SYS_RES_MEMORY:
if (sc->has_pmem && (flags & RF_PREFETCHABLE) != 0)
return (&sc->pmem_rman);
return (&sc->mem_rman);
default:
break;
}
return (NULL);
}
int
pci_host_generic_core_release_resource(device_t dev, device_t child,
struct resource *res)
{
struct generic_pcie_core_softc *sc;
sc = device_get_softc(dev);
switch (rman_get_type(res)) {
case PCI_RES_BUS:
return (pci_domain_release_bus(sc->ecam, child, res));
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
return (bus_generic_rman_release_resource(dev, child, res));
default:
return (bus_generic_release_resource(dev, child, res));
}
}
static struct pcie_range *
generic_pcie_containing_range(device_t dev, int type, rman_res_t start,
rman_res_t end)
{
struct generic_pcie_core_softc *sc = device_get_softc(dev);
uint64_t pci_base;
uint64_t size;
int i, space;
switch (type) {
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
break;
default:
return (NULL);
}
for (i = 0; i < MAX_RANGES_TUPLES; i++) {
pci_base = sc->ranges[i].pci_base;
size = sc->ranges[i].size;
if (size == 0)
continue; /* empty range element */
if (start < pci_base || end >= pci_base + size)
continue;
switch (FLAG_TYPE(sc->ranges[i].flags)) {
case FLAG_TYPE_MEM:
case FLAG_TYPE_PMEM:
space = SYS_RES_MEMORY;
break;
case FLAG_TYPE_IO:
space = SYS_RES_IOPORT;
break;
default:
continue;
}
if (type == space)
return (&sc->ranges[i]);
}
return (NULL);
}
static int
generic_pcie_translate_resource(device_t dev, int type, rman_res_t start,
rman_res_t *new_start)
{
struct pcie_range *range;
/* Translate the address from a PCI address to a physical address */
switch (type) {
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
range = generic_pcie_containing_range(dev, type, start, start);
if (range == NULL)
return (ENOENT);
*new_start = start - range->pci_base + range->phys_base;
break;
default:
/* No translation for non-memory types */
*new_start = start;
break;
}
return (0);
}
struct resource *
pci_host_generic_core_alloc_resource(device_t dev, device_t child, int type,
int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct generic_pcie_core_softc *sc;
struct resource *res;
sc = device_get_softc(dev);
switch (type) {
case PCI_RES_BUS:
res = pci_domain_alloc_bus(sc->ecam, child, rid, start, end,
count, flags);
break;
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
res = bus_generic_rman_alloc_resource(dev, child, type, rid,
start, end, count, flags);
break;
default:
res = bus_generic_alloc_resource(dev, child, type, rid, start,
end, count, flags);
break;
}
if (res == NULL) {
device_printf(dev, "%s FAIL: type=%d, rid=%d, "
"start=%016jx, end=%016jx, count=%016jx, flags=%x\n",
__func__, type, *rid, start, end, count, flags);
}
return (res);
}
static int
generic_pcie_activate_resource(device_t dev, device_t child, struct resource *r)
{
struct generic_pcie_core_softc *sc;
sc = device_get_softc(dev);
switch (rman_get_type(r)) {
case PCI_RES_BUS:
return (pci_domain_activate_bus(sc->ecam, child, r));
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
return (bus_generic_rman_activate_resource(dev, child, r));
default:
return (bus_generic_activate_resource(dev, child, r));
}
}
static int
generic_pcie_deactivate_resource(device_t dev, device_t child,
struct resource *r)
{
struct generic_pcie_core_softc *sc;
sc = device_get_softc(dev);
switch (rman_get_type(r)) {
case PCI_RES_BUS:
return (pci_domain_deactivate_bus(sc->ecam, child, r));
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
return (bus_generic_rman_deactivate_resource(dev, child, r));
default:
return (bus_generic_deactivate_resource(dev, child, r));
}
}
static int
generic_pcie_adjust_resource(device_t dev, device_t child,
struct resource *res, rman_res_t start, rman_res_t end)
{
struct generic_pcie_core_softc *sc;
sc = device_get_softc(dev);
switch (rman_get_type(res)) {
case PCI_RES_BUS:
return (pci_domain_adjust_bus(sc->ecam, child, res, start,
end));
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
return (bus_generic_rman_adjust_resource(dev, child, res,
start, end));
default:
return (bus_generic_adjust_resource(dev, child, res, start,
end));
}
}
static int
generic_pcie_map_resource(device_t dev, device_t child, struct resource *r,
struct resource_map_request *argsp, struct resource_map *map)
{
struct resource_map_request args;
struct pcie_range *range;
rman_res_t length, start;
int error, type;
type = rman_get_type(r);
switch (type) {
case PCI_RES_BUS:
return (EINVAL);
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
break;
default:
return (bus_generic_map_resource(dev, child, r, argsp, map));
}
/* Resources must be active to be mapped. */
if (!(rman_get_flags(r) & RF_ACTIVE))
return (ENXIO);
resource_init_map_request(&args);
error = resource_validate_map_request(r, argsp, &args, &start, &length);
if (error)
return (error);
range = generic_pcie_containing_range(dev, type, rman_get_start(r),
rman_get_end(r));
if (range == NULL || range->res == NULL)
return (ENOENT);
args.offset = start - range->pci_base;
args.length = length;
return (bus_map_resource(dev, range->res, &args, map));
}
static int
generic_pcie_unmap_resource(device_t dev, device_t child, struct resource *r,
struct resource_map *map)
{
struct pcie_range *range;
int type;
type = rman_get_type(r);
switch (type) {
case PCI_RES_BUS:
return (EINVAL);
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
break;
default:
return (bus_generic_unmap_resource(dev, child, r, map));
}
range = generic_pcie_containing_range(dev, type, rman_get_start(r),
rman_get_end(r));
if (range == NULL || range->res == NULL)
return (ENOENT);
return (bus_unmap_resource(dev, range->res, map));
}
static bus_dma_tag_t
generic_pcie_get_dma_tag(device_t dev, device_t child)
{
struct generic_pcie_core_softc *sc;
sc = device_get_softc(dev);
return (sc->dmat);
}
static device_method_t generic_pcie_methods[] = {
DEVMETHOD(device_attach, pci_host_generic_core_attach),
DEVMETHOD(device_detach, pci_host_generic_core_detach),
DEVMETHOD(bus_get_rman, generic_pcie_get_rman),
DEVMETHOD(bus_read_ivar, generic_pcie_read_ivar),
DEVMETHOD(bus_write_ivar, generic_pcie_write_ivar),
DEVMETHOD(bus_alloc_resource, pci_host_generic_core_alloc_resource),
DEVMETHOD(bus_adjust_resource, generic_pcie_adjust_resource),
DEVMETHOD(bus_activate_resource, generic_pcie_activate_resource),
DEVMETHOD(bus_deactivate_resource, generic_pcie_deactivate_resource),
DEVMETHOD(bus_release_resource, pci_host_generic_core_release_resource),
DEVMETHOD(bus_translate_resource, generic_pcie_translate_resource),
DEVMETHOD(bus_map_resource, generic_pcie_map_resource),
DEVMETHOD(bus_unmap_resource, generic_pcie_unmap_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
DEVMETHOD(bus_get_dma_tag, generic_pcie_get_dma_tag),
/* pcib interface */
DEVMETHOD(pcib_maxslots, generic_pcie_maxslots),
DEVMETHOD(pcib_read_config, generic_pcie_read_config),
DEVMETHOD(pcib_write_config, generic_pcie_write_config),
DEVMETHOD_END
};
DEFINE_CLASS_0(pcib, generic_pcie_core_driver,
generic_pcie_methods, sizeof(struct generic_pcie_core_softc));