/*- * Copyright (c) 2015, 2020 Ruslan Bukin * Copyright (c) 2014 The FreeBSD Foundation * All rights reserved. * * This software was developed by Semihalf under * the sponsorship of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Generic ECAM PCIe driver */ #include #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pcib_if.h" #if defined(VM_MEMATTR_DEVICE_NP) #define PCI_UNMAPPED #define PCI_RF_FLAGS RF_UNMAPPED #else #define PCI_RF_FLAGS 0 #endif /* Forward prototypes */ static uint32_t generic_pcie_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, int bytes); static void generic_pcie_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, uint32_t val, int bytes); static int generic_pcie_maxslots(device_t dev); static int generic_pcie_write_ivar(device_t dev, device_t child, int index, uintptr_t value); int pci_host_generic_core_attach(device_t dev) { #ifdef PCI_UNMAPPED struct resource_map_request req; struct resource_map map; #endif struct generic_pcie_core_softc *sc; struct rman *rm; uint64_t phys_base; uint64_t pci_base; uint64_t size; const char *range_descr; char buf[64]; int domain, error; int flags, rid, tuple, type; sc = device_get_softc(dev); sc->dev = dev; /* Create the parent DMA tag to pass down the coherent flag */ error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsize */ sc->coherent ? BUS_DMA_COHERENT : 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->dmat); if (error != 0) return (error); /* * Attempt to set the domain. If it's missing, or we are unable to * set it then memory allocations may be placed in the wrong domain. */ if (bus_get_domain(dev, &domain) == 0) (void)bus_dma_tag_set_domain(sc->dmat, domain); if ((sc->quirks & PCIE_CUSTOM_CONFIG_SPACE_QUIRK) == 0) { rid = 0; sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, PCI_RF_FLAGS | RF_ACTIVE); if (sc->res == NULL) { device_printf(dev, "could not allocate memory.\n"); error = ENXIO; goto err_resource; } #ifdef PCI_UNMAPPED resource_init_map_request(&req); req.memattr = VM_MEMATTR_DEVICE_NP; error = bus_map_resource(dev, SYS_RES_MEMORY, sc->res, &req, &map); if (error != 0) { device_printf(dev, "could not map memory.\n"); return (error); } rman_set_mapping(sc->res, &map); #endif } sc->has_pmem = false; sc->pmem_rman.rm_type = RMAN_ARRAY; snprintf(buf, sizeof(buf), "%s prefetch window", device_get_nameunit(dev)); sc->pmem_rman.rm_descr = strdup(buf, M_DEVBUF); sc->mem_rman.rm_type = RMAN_ARRAY; snprintf(buf, sizeof(buf), "%s memory window", device_get_nameunit(dev)); sc->mem_rman.rm_descr = strdup(buf, M_DEVBUF); sc->io_rman.rm_type = RMAN_ARRAY; snprintf(buf, sizeof(buf), "%s I/O port window", device_get_nameunit(dev)); sc->io_rman.rm_descr = strdup(buf, M_DEVBUF); /* Initialize rman and allocate memory regions */ error = rman_init(&sc->pmem_rman); if (error) { device_printf(dev, "rman_init() failed. error = %d\n", error); goto err_pmem_rman; } error = rman_init(&sc->mem_rman); if (error) { device_printf(dev, "rman_init() failed. error = %d\n", error); goto err_mem_rman; } error = rman_init(&sc->io_rman); if (error) { device_printf(dev, "rman_init() failed. error = %d\n", error); goto err_io_rman; } for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) { phys_base = sc->ranges[tuple].phys_base; pci_base = sc->ranges[tuple].pci_base; size = sc->ranges[tuple].size; rid = tuple + 1; if (size == 0) continue; /* empty range element */ switch (FLAG_TYPE(sc->ranges[tuple].flags)) { case FLAG_TYPE_PMEM: sc->has_pmem = true; range_descr = "prefetch"; flags = RF_PREFETCHABLE; type = SYS_RES_MEMORY; rm = &sc->pmem_rman; break; case FLAG_TYPE_MEM: range_descr = "memory"; flags = 0; type = SYS_RES_MEMORY; rm = &sc->mem_rman; break; case FLAG_TYPE_IO: range_descr = "I/O port"; flags = 0; type = SYS_RES_IOPORT; rm = &sc->io_rman; break; default: continue; } if (bootverbose) device_printf(dev, "PCI addr: 0x%jx, CPU addr: 0x%jx, Size: 0x%jx, Type: %s\n", pci_base, phys_base, size, range_descr); error = bus_set_resource(dev, type, rid, phys_base, size); if (error != 0) { device_printf(dev, "failed to set resource for range %d: %d\n", tuple, error); continue; } sc->ranges[tuple].res = bus_alloc_resource_any(dev, type, &rid, RF_ACTIVE | RF_UNMAPPED | flags); if (sc->ranges[tuple].res == NULL) { device_printf(dev, "failed to allocate resource for range %d\n", tuple); continue; } error = rman_manage_region(rm, pci_base, pci_base + size - 1); if (error) { device_printf(dev, "rman_manage_region() failed." "error = %d\n", error); continue; } } return (0); err_io_rman: rman_fini(&sc->mem_rman); err_mem_rman: rman_fini(&sc->pmem_rman); err_pmem_rman: free(__DECONST(char *, sc->io_rman.rm_descr), M_DEVBUF); free(__DECONST(char *, sc->mem_rman.rm_descr), M_DEVBUF); free(__DECONST(char *, sc->pmem_rman.rm_descr), M_DEVBUF); if (sc->res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->res); err_resource: bus_dma_tag_destroy(sc->dmat); return (error); } int pci_host_generic_core_detach(device_t dev) { struct generic_pcie_core_softc *sc; int error, tuple, type; sc = device_get_softc(dev); error = bus_generic_detach(dev); if (error != 0) return (error); for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) { if (sc->ranges[tuple].size == 0) continue; /* empty range element */ switch (FLAG_TYPE(sc->ranges[tuple].flags)) { case FLAG_TYPE_PMEM: case FLAG_TYPE_MEM: type = SYS_RES_MEMORY; break; case FLAG_TYPE_IO: type = SYS_RES_IOPORT; break; default: continue; } if (sc->ranges[tuple].res != NULL) bus_release_resource(dev, type, tuple + 1, sc->ranges[tuple].res); bus_delete_resource(dev, type, tuple + 1); } rman_fini(&sc->io_rman); rman_fini(&sc->mem_rman); rman_fini(&sc->pmem_rman); free(__DECONST(char *, sc->io_rman.rm_descr), M_DEVBUF); free(__DECONST(char *, sc->mem_rman.rm_descr), M_DEVBUF); free(__DECONST(char *, sc->pmem_rman.rm_descr), M_DEVBUF); if (sc->res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->res); bus_dma_tag_destroy(sc->dmat); return (0); } static uint32_t generic_pcie_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, int bytes) { struct generic_pcie_core_softc *sc; uint64_t offset; uint32_t data; sc = device_get_softc(dev); if ((bus < sc->bus_start) || (bus > sc->bus_end)) return (~0U); if ((slot > PCI_SLOTMAX) || (func > PCI_FUNCMAX) || (reg > PCIE_REGMAX)) return (~0U); if ((sc->quirks & PCIE_ECAM_DESIGNWARE_QUIRK) && bus == 0 && slot > 0) return (~0U); offset = PCIE_ADDR_OFFSET(bus - sc->bus_start, slot, func, reg); switch (bytes) { case 1: data = bus_read_1(sc->res, offset); break; case 2: data = le16toh(bus_read_2(sc->res, offset)); break; case 4: data = le32toh(bus_read_4(sc->res, offset)); break; default: return (~0U); } return (data); } static void generic_pcie_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, uint32_t val, int bytes) { struct generic_pcie_core_softc *sc; uint64_t offset; sc = device_get_softc(dev); if ((bus < sc->bus_start) || (bus > sc->bus_end)) return; if ((slot > PCI_SLOTMAX) || (func > PCI_FUNCMAX) || (reg > PCIE_REGMAX)) return; offset = PCIE_ADDR_OFFSET(bus - sc->bus_start, slot, func, reg); switch (bytes) { case 1: bus_write_1(sc->res, offset, val); break; case 2: bus_write_2(sc->res, offset, htole16(val)); break; case 4: bus_write_4(sc->res, offset, htole32(val)); break; default: return; } } static int generic_pcie_maxslots(device_t dev) { return (31); /* max slots per bus acc. to standard */ } int generic_pcie_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct generic_pcie_core_softc *sc; sc = device_get_softc(dev); switch (index) { case PCIB_IVAR_BUS: *result = sc->bus_start; return (0); case PCIB_IVAR_DOMAIN: *result = sc->ecam; return (0); } if (bootverbose) device_printf(dev, "ERROR: Unknown index %d.\n", index); return (ENOENT); } static int generic_pcie_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { return (ENOENT); } static struct rman * generic_pcie_get_rman(device_t dev, int type, u_int flags) { struct generic_pcie_core_softc *sc = device_get_softc(dev); switch (type) { case SYS_RES_IOPORT: return (&sc->io_rman); case SYS_RES_MEMORY: if (sc->has_pmem && (flags & RF_PREFETCHABLE) != 0) return (&sc->pmem_rman); return (&sc->mem_rman); default: break; } return (NULL); } int pci_host_generic_core_release_resource(device_t dev, device_t child, struct resource *res) { struct generic_pcie_core_softc *sc; sc = device_get_softc(dev); switch (rman_get_type(res)) { case PCI_RES_BUS: return (pci_domain_release_bus(sc->ecam, child, res)); case SYS_RES_IOPORT: case SYS_RES_MEMORY: return (bus_generic_rman_release_resource(dev, child, res)); default: return (bus_generic_release_resource(dev, child, res)); } } static struct pcie_range * generic_pcie_containing_range(device_t dev, int type, rman_res_t start, rman_res_t end) { struct generic_pcie_core_softc *sc = device_get_softc(dev); uint64_t pci_base; uint64_t size; int i, space; switch (type) { case SYS_RES_IOPORT: case SYS_RES_MEMORY: break; default: return (NULL); } for (i = 0; i < MAX_RANGES_TUPLES; i++) { pci_base = sc->ranges[i].pci_base; size = sc->ranges[i].size; if (size == 0) continue; /* empty range element */ if (start < pci_base || end >= pci_base + size) continue; switch (FLAG_TYPE(sc->ranges[i].flags)) { case FLAG_TYPE_MEM: case FLAG_TYPE_PMEM: space = SYS_RES_MEMORY; break; case FLAG_TYPE_IO: space = SYS_RES_IOPORT; break; default: continue; } if (type == space) return (&sc->ranges[i]); } return (NULL); } static int generic_pcie_translate_resource(device_t dev, int type, rman_res_t start, rman_res_t *new_start) { struct pcie_range *range; /* Translate the address from a PCI address to a physical address */ switch (type) { case SYS_RES_IOPORT: case SYS_RES_MEMORY: range = generic_pcie_containing_range(dev, type, start, start); if (range == NULL) return (ENOENT); *new_start = start - range->pci_base + range->phys_base; break; default: /* No translation for non-memory types */ *new_start = start; break; } return (0); } struct resource * pci_host_generic_core_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct generic_pcie_core_softc *sc; struct resource *res; sc = device_get_softc(dev); switch (type) { case PCI_RES_BUS: res = pci_domain_alloc_bus(sc->ecam, child, rid, start, end, count, flags); break; case SYS_RES_IOPORT: case SYS_RES_MEMORY: res = bus_generic_rman_alloc_resource(dev, child, type, rid, start, end, count, flags); break; default: res = bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags); break; } if (res == NULL) { device_printf(dev, "%s FAIL: type=%d, rid=%d, " "start=%016jx, end=%016jx, count=%016jx, flags=%x\n", __func__, type, *rid, start, end, count, flags); } return (res); } static int generic_pcie_activate_resource(device_t dev, device_t child, struct resource *r) { struct generic_pcie_core_softc *sc; sc = device_get_softc(dev); switch (rman_get_type(r)) { case PCI_RES_BUS: return (pci_domain_activate_bus(sc->ecam, child, r)); case SYS_RES_IOPORT: case SYS_RES_MEMORY: return (bus_generic_rman_activate_resource(dev, child, r)); default: return (bus_generic_activate_resource(dev, child, r)); } } static int generic_pcie_deactivate_resource(device_t dev, device_t child, struct resource *r) { struct generic_pcie_core_softc *sc; sc = device_get_softc(dev); switch (rman_get_type(r)) { case PCI_RES_BUS: return (pci_domain_deactivate_bus(sc->ecam, child, r)); case SYS_RES_IOPORT: case SYS_RES_MEMORY: return (bus_generic_rman_deactivate_resource(dev, child, r)); default: return (bus_generic_deactivate_resource(dev, child, r)); } } static int generic_pcie_adjust_resource(device_t dev, device_t child, struct resource *res, rman_res_t start, rman_res_t end) { struct generic_pcie_core_softc *sc; sc = device_get_softc(dev); switch (rman_get_type(res)) { case PCI_RES_BUS: return (pci_domain_adjust_bus(sc->ecam, child, res, start, end)); case SYS_RES_IOPORT: case SYS_RES_MEMORY: return (bus_generic_rman_adjust_resource(dev, child, res, start, end)); default: return (bus_generic_adjust_resource(dev, child, res, start, end)); } } static int generic_pcie_map_resource(device_t dev, device_t child, struct resource *r, struct resource_map_request *argsp, struct resource_map *map) { struct resource_map_request args; struct pcie_range *range; rman_res_t length, start; int error, type; type = rman_get_type(r); switch (type) { case PCI_RES_BUS: return (EINVAL); case SYS_RES_IOPORT: case SYS_RES_MEMORY: break; default: return (bus_generic_map_resource(dev, child, r, argsp, map)); } /* Resources must be active to be mapped. */ if (!(rman_get_flags(r) & RF_ACTIVE)) return (ENXIO); resource_init_map_request(&args); error = resource_validate_map_request(r, argsp, &args, &start, &length); if (error) return (error); range = generic_pcie_containing_range(dev, type, rman_get_start(r), rman_get_end(r)); if (range == NULL || range->res == NULL) return (ENOENT); args.offset = start - range->pci_base; args.length = length; return (bus_map_resource(dev, range->res, &args, map)); } static int generic_pcie_unmap_resource(device_t dev, device_t child, struct resource *r, struct resource_map *map) { struct pcie_range *range; int type; type = rman_get_type(r); switch (type) { case PCI_RES_BUS: return (EINVAL); case SYS_RES_IOPORT: case SYS_RES_MEMORY: break; default: return (bus_generic_unmap_resource(dev, child, r, map)); } range = generic_pcie_containing_range(dev, type, rman_get_start(r), rman_get_end(r)); if (range == NULL || range->res == NULL) return (ENOENT); return (bus_unmap_resource(dev, range->res, map)); } static bus_dma_tag_t generic_pcie_get_dma_tag(device_t dev, device_t child) { struct generic_pcie_core_softc *sc; sc = device_get_softc(dev); return (sc->dmat); } static device_method_t generic_pcie_methods[] = { DEVMETHOD(device_attach, pci_host_generic_core_attach), DEVMETHOD(device_detach, pci_host_generic_core_detach), DEVMETHOD(bus_get_rman, generic_pcie_get_rman), DEVMETHOD(bus_read_ivar, generic_pcie_read_ivar), DEVMETHOD(bus_write_ivar, generic_pcie_write_ivar), DEVMETHOD(bus_alloc_resource, pci_host_generic_core_alloc_resource), DEVMETHOD(bus_adjust_resource, generic_pcie_adjust_resource), DEVMETHOD(bus_activate_resource, generic_pcie_activate_resource), DEVMETHOD(bus_deactivate_resource, generic_pcie_deactivate_resource), DEVMETHOD(bus_release_resource, pci_host_generic_core_release_resource), DEVMETHOD(bus_translate_resource, generic_pcie_translate_resource), DEVMETHOD(bus_map_resource, generic_pcie_map_resource), DEVMETHOD(bus_unmap_resource, generic_pcie_unmap_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD(bus_get_dma_tag, generic_pcie_get_dma_tag), /* pcib interface */ DEVMETHOD(pcib_maxslots, generic_pcie_maxslots), DEVMETHOD(pcib_read_config, generic_pcie_read_config), DEVMETHOD(pcib_write_config, generic_pcie_write_config), DEVMETHOD_END }; DEFINE_CLASS_0(pcib, generic_pcie_core_driver, generic_pcie_methods, sizeof(struct generic_pcie_core_softc));