/*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2000, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public * documentation not available, but ask me nicely. * * The Level 1 chip is used on some D-Link, SMC and Addtron NICs. * It's a 64-bit PCI part that supports TCP/IP checksum offload, * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There * are three supported methods for data transfer between host and * NIC: programmed I/O, traditional scatter/gather DMA and Packet * Propulsion Technology (tm) DMA. The latter mechanism is a form * of double buffer DMA where the packet data is copied to a * pre-allocated DMA buffer who's physical address has been loaded * into a table at device initialization time. The rationale is that * the virtual to physical address translation needed for normal * scatter/gather DMA is more expensive than the data copy needed * for double buffering. This may be true in Windows NT and the like, * but it isn't true for us, at least on the x86 arch. This driver * uses the scatter/gather I/O method for both TX and RX. * * The LXT1001 only supports TCP/IP checksum offload on receive. * Also, the VLAN tagging is done using a 16-entry table which allows * the chip to perform hardware filtering based on VLAN tags. Sadly, * our vlan support doesn't currently play well with this kind of * hardware support. * * Special thanks to: * - Jeff James at Intel, for arranging to have the LXT1001 manual * released (at long last) * - Beny Chen at D-Link, for actually sending it to me * - Brad Short and Keith Alexis at SMC, for sending me sample * SMC9462SX and SMC9462TX adapters for testing * - Paul Saab at Y!, for not killing me (though it remains to be seen * if in fact he did me much of a favor) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include #include #include #include #define LGE_USEIOSPACE #include /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. */ static const struct lge_type lge_devs[] = { { LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" }, { 0, 0, NULL } }; static int lge_probe(device_t); static int lge_attach(device_t); static int lge_detach(device_t); static int lge_alloc_jumbo_mem(struct lge_softc *); static void lge_free_jumbo_mem(struct lge_softc *); static void *lge_jalloc(struct lge_softc *); static void lge_jfree(struct mbuf *); static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *); static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *); static void lge_rxeof(struct lge_softc *, int); static void lge_rxeoc(struct lge_softc *); static void lge_txeof(struct lge_softc *); static void lge_intr(void *); static void lge_tick(void *); static void lge_start(if_t); static void lge_start_locked(if_t); static int lge_ioctl(if_t, u_long, caddr_t); static void lge_init(void *); static void lge_init_locked(struct lge_softc *); static void lge_stop(struct lge_softc *); static void lge_watchdog(struct lge_softc *); static int lge_shutdown(device_t); static int lge_ifmedia_upd(if_t); static void lge_ifmedia_upd_locked(if_t); static void lge_ifmedia_sts(if_t, struct ifmediareq *); static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *); static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int); static int lge_miibus_readreg(device_t, int, int); static int lge_miibus_writereg(device_t, int, int, int); static void lge_miibus_statchg(device_t); static void lge_setmulti(struct lge_softc *); static void lge_reset(struct lge_softc *); static int lge_list_rx_init(struct lge_softc *); static int lge_list_tx_init(struct lge_softc *); #ifdef LGE_USEIOSPACE #define LGE_RES SYS_RES_IOPORT #define LGE_RID LGE_PCI_LOIO #else #define LGE_RES SYS_RES_MEMORY #define LGE_RID LGE_PCI_LOMEM #endif static device_method_t lge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, lge_probe), DEVMETHOD(device_attach, lge_attach), DEVMETHOD(device_detach, lge_detach), DEVMETHOD(device_shutdown, lge_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, lge_miibus_readreg), DEVMETHOD(miibus_writereg, lge_miibus_writereg), DEVMETHOD(miibus_statchg, lge_miibus_statchg), DEVMETHOD_END }; static driver_t lge_driver = { "lge", lge_methods, sizeof(struct lge_softc) }; DRIVER_MODULE(lge, pci, lge_driver, 0, 0); DRIVER_MODULE(miibus, lge, miibus_driver, 0, 0); MODULE_DEPEND(lge, pci, 1, 1, 1); MODULE_DEPEND(lge, ether, 1, 1, 1); MODULE_DEPEND(lge, miibus, 1, 1, 1); #define LGE_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define LGE_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x) /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void lge_eeprom_getword(struct lge_softc *sc, int addr, u_int16_t *dest) { int i; u_int32_t val; CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ| LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8)); for (i = 0; i < LGE_TIMEOUT; i++) if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ)) break; if (i == LGE_TIMEOUT) { device_printf(sc->lge_dev, "EEPROM read timed out\n"); return; } val = CSR_READ_4(sc, LGE_EEDATA); if (addr & 1) *dest = (val >> 16) & 0xFFFF; else *dest = val & 0xFFFF; return; } /* * Read a sequence of words from the EEPROM. */ static void lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt, int swap) { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { lge_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } static int lge_miibus_readreg(device_t dev, int phy, int reg) { struct lge_softc *sc; int i; sc = device_get_softc(dev); /* * If we have a non-PCS PHY, pretend that the internal * autoneg stuff at PHY address 0 isn't there so that * the miibus code will find only the GMII PHY. */ if (sc->lge_pcs == 0 && phy == 0) return(0); CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ); for (i = 0; i < LGE_TIMEOUT; i++) if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) break; if (i == LGE_TIMEOUT) { device_printf(sc->lge_dev, "PHY read timed out\n"); return(0); } return(CSR_READ_4(sc, LGE_GMIICTL) >> 16); } static int lge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct lge_softc *sc; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, LGE_GMIICTL, (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE); for (i = 0; i < LGE_TIMEOUT; i++) if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) break; if (i == LGE_TIMEOUT) { device_printf(sc->lge_dev, "PHY write timed out\n"); return(0); } return(0); } static void lge_miibus_statchg(device_t dev) { struct lge_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->lge_miibus); LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: case IFM_1000_SX: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); break; case IFM_100_TX: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100); break; case IFM_10_T: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10); break; default: /* * Choose something, even if it's wrong. Clearing * all the bits will hose autoneg on the internal * PHY. */ LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); break; } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); } else { LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); } return; } static u_int lge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int count) { uint32_t h, *hashes = arg; h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); return (1); } static void lge_setmulti(struct lge_softc *sc) { if_t ifp; uint32_t hashes[2] = { 0, 0 }; ifp = sc->lge_ifp; LGE_LOCK_ASSERT(sc); /* Make sure multicast hash table is enabled. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST); if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, LGE_MAR0, 0); CSR_WRITE_4(sc, LGE_MAR1, 0); /* now program new ones */ if_foreach_llmaddr(ifp, lge_hash_maddr, hashes); CSR_WRITE_4(sc, LGE_MAR0, hashes[0]); CSR_WRITE_4(sc, LGE_MAR1, hashes[1]); return; } static void lge_reset(struct lge_softc *sc) { int i; LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST); for (i = 0; i < LGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST)) break; } if (i == LGE_TIMEOUT) device_printf(sc->lge_dev, "reset never completed\n"); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a Level 1 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int lge_probe(device_t dev) { const struct lge_type *t; t = lge_devs; while(t->lge_name != NULL) { if ((pci_get_vendor(dev) == t->lge_vid) && (pci_get_device(dev) == t->lge_did)) { device_set_desc(dev, t->lge_name); return(BUS_PROBE_DEFAULT); } t++; } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int lge_attach(device_t dev) { u_char eaddr[ETHER_ADDR_LEN]; struct lge_softc *sc; if_t ifp = NULL; int error = 0, rid; sc = device_get_softc(dev); sc->lge_dev = dev; mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0); /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = LGE_RID; sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE); if (sc->lge_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } sc->lge_btag = rman_get_bustag(sc->lge_res); sc->lge_bhandle = rman_get_bushandle(sc->lge_res); /* Allocate interrupt */ rid = 0; sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->lge_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Reset the adapter. */ lge_reset(sc); /* * Get station address from the EEPROM. */ lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0); lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0); lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0); sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF, M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->lge_ldata == NULL) { device_printf(dev, "no memory for list buffers!\n"); error = ENXIO; goto fail; } /* Try to allocate memory for jumbo buffers. */ if (lge_alloc_jumbo_mem(sc)) { device_printf(dev, "jumbo buffer allocation failed\n"); error = ENXIO; goto fail; } ifp = sc->lge_ifp = if_alloc(IFT_ETHER); if_setsoftc(ifp, sc); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setioctlfn(ifp, lge_ioctl); if_setstartfn(ifp, lge_start); if_setinitfn(ifp, lge_init); if_setsendqlen(ifp, LGE_TX_LIST_CNT - 1); if_setcapabilities(ifp, IFCAP_RXCSUM); if_setcapenable(ifp, if_getcapabilities(ifp)); if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH) sc->lge_pcs = 1; else sc->lge_pcs = 0; /* * Do MII setup. */ error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd, lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, lge_intr, sc, &sc->lge_intrhand); if (error) { ether_ifdetach(ifp); device_printf(dev, "couldn't set up irq\n"); goto fail; } return (0); fail: lge_free_jumbo_mem(sc); if (sc->lge_ldata) free(sc->lge_ldata, M_DEVBUF); if (ifp) if_free(ifp); if (sc->lge_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); if (sc->lge_res) bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); mtx_destroy(&sc->lge_mtx); return(error); } static int lge_detach(device_t dev) { struct lge_softc *sc; if_t ifp; sc = device_get_softc(dev); ifp = sc->lge_ifp; LGE_LOCK(sc); lge_reset(sc); lge_stop(sc); LGE_UNLOCK(sc); callout_drain(&sc->lge_stat_callout); ether_ifdetach(ifp); bus_generic_detach(dev); device_delete_child(dev, sc->lge_miibus); bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); free(sc->lge_ldata, M_DEVBUF); if_free(ifp); lge_free_jumbo_mem(sc); mtx_destroy(&sc->lge_mtx); return(0); } /* * Initialize the transmit descriptors. */ static int lge_list_tx_init(struct lge_softc *sc) { struct lge_list_data *ld; struct lge_ring_data *cd; int i; cd = &sc->lge_cdata; ld = sc->lge_ldata; for (i = 0; i < LGE_TX_LIST_CNT; i++) { ld->lge_tx_list[i].lge_mbuf = NULL; ld->lge_tx_list[i].lge_ctl = 0; } cd->lge_tx_prod = cd->lge_tx_cons = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arralge the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int lge_list_rx_init(struct lge_softc *sc) { struct lge_list_data *ld; struct lge_ring_data *cd; int i; ld = sc->lge_ldata; cd = &sc->lge_cdata; cd->lge_rx_prod = cd->lge_rx_cons = 0; CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); for (i = 0; i < LGE_RX_LIST_CNT; i++) { if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0) break; if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS) return(ENOBUFS); } /* Clear possible 'rx command queue empty' interrupt. */ CSR_READ_4(sc, LGE_ISR); return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m) { struct mbuf *m_new = NULL; char *buf = NULL; if (m == NULL) { MGETHDR(m_new, M_NOWAIT, MT_DATA); if (m_new == NULL) { device_printf(sc->lge_dev, "no memory for rx list " "-- packet dropped!\n"); return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = lge_jalloc(sc); if (buf == NULL) { #ifdef LGE_VERBOSE device_printf(sc->lge_dev, "jumbo allocation failed " "-- packet dropped!\n"); #endif m_freem(m_new); return(ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; m_extadd(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree, sc, NULL, 0, EXT_NET_DRV); } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; m_new->m_data = m_new->m_ext.ext_buf; } /* * Adjust alignment so packet payload begins on a * longword boundary. Mandatory for Alpha, useful on * x86 too. */ m_adj(m_new, ETHER_ALIGN); c->lge_mbuf = m_new; c->lge_fragptr_hi = 0; c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t)); c->lge_fraglen = m_new->m_len; c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1); c->lge_sts = 0; /* * Put this buffer in the RX command FIFO. To do this, * we just write the physical address of the descriptor * into the RX descriptor address registers. Note that * there are two registers, one high DWORD and one low * DWORD, which lets us specify a 64-bit address if * desired. We only use a 32-bit address for now. * Writing to the low DWORD register is what actually * causes the command to be issued, so we do that * last. */ CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c)); LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT); return(0); } static int lge_alloc_jumbo_mem(struct lge_softc *sc) { caddr_t ptr; int i; struct lge_jpool_entry *entry; /* Grab a big chunk o' storage. */ sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->lge_cdata.lge_jumbo_buf == NULL) { device_printf(sc->lge_dev, "no memory for jumbo buffers!\n"); return(ENOBUFS); } SLIST_INIT(&sc->lge_jfree_listhead); SLIST_INIT(&sc->lge_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->lge_cdata.lge_jumbo_buf; for (i = 0; i < LGE_JSLOTS; i++) { sc->lge_cdata.lge_jslots[i] = ptr; ptr += LGE_JLEN; entry = malloc(sizeof(struct lge_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { device_printf(sc->lge_dev, "no memory for jumbo " "buffer queue!\n"); return(ENOBUFS); } entry->slot = i; SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); } return(0); } static void lge_free_jumbo_mem(struct lge_softc *sc) { struct lge_jpool_entry *entry; if (sc->lge_cdata.lge_jumbo_buf == NULL) return; while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) { device_printf(sc->lge_dev, "asked to free buffer that is in use!\n"); SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); } while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) { entry = SLIST_FIRST(&sc->lge_jfree_listhead); SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); free(entry, M_DEVBUF); } free(sc->lge_cdata.lge_jumbo_buf, M_DEVBUF); return; } /* * Allocate a jumbo buffer. */ static void * lge_jalloc(struct lge_softc *sc) { struct lge_jpool_entry *entry; entry = SLIST_FIRST(&sc->lge_jfree_listhead); if (entry == NULL) { #ifdef LGE_VERBOSE device_printf(sc->lge_dev, "no free jumbo buffers\n"); #endif return(NULL); } SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries); return(sc->lge_cdata.lge_jslots[entry->slot]); } /* * Release a jumbo buffer. */ static void lge_jfree(struct mbuf *m) { struct lge_softc *sc; int i; struct lge_jpool_entry *entry; /* Extract the softc struct pointer. */ sc = m->m_ext.ext_arg1; if (sc == NULL) panic("lge_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)m->m_ext.ext_buf - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN; if ((i < 0) || (i >= LGE_JSLOTS)) panic("lge_jfree: asked to free buffer that we don't manage!"); entry = SLIST_FIRST(&sc->lge_jinuse_listhead); if (entry == NULL) panic("lge_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void lge_rxeof(struct lge_softc *sc, int cnt) { struct mbuf *m; if_t ifp; struct lge_rx_desc *cur_rx; int c, i, total_len = 0; u_int32_t rxsts, rxctl; ifp = sc->lge_ifp; /* Find out how many frames were processed. */ c = cnt; i = sc->lge_cdata.lge_rx_cons; /* Suck them in. */ while(c) { struct mbuf *m0 = NULL; cur_rx = &sc->lge_ldata->lge_rx_list[i]; rxctl = cur_rx->lge_ctl; rxsts = cur_rx->lge_sts; m = cur_rx->lge_mbuf; cur_rx->lge_mbuf = NULL; total_len = LGE_RXBYTES(cur_rx); LGE_INC(i, LGE_RX_LIST_CNT); c--; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxctl & LGE_RXCTL_ERRMASK) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); lge_newbuf(sc, &LGE_RXTAIL(sc), m); continue; } if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) { m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp, NULL); lge_newbuf(sc, &LGE_RXTAIL(sc), m); if (m0 == NULL) { device_printf(sc->lge_dev, "no receive buffers " "available -- packet dropped!\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); continue; } m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); /* Do IP checksum checking. */ if (rxsts & LGE_RXSTS_ISIP) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxsts & LGE_RXSTS_IPCSUMERR)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((rxsts & LGE_RXSTS_ISTCP && !(rxsts & LGE_RXSTS_TCPCSUMERR)) || (rxsts & LGE_RXSTS_ISUDP && !(rxsts & LGE_RXSTS_UDPCSUMERR))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } LGE_UNLOCK(sc); if_input(ifp, m); LGE_LOCK(sc); } sc->lge_cdata.lge_rx_cons = i; return; } static void lge_rxeoc(struct lge_softc *sc) { if_t ifp; ifp = sc->lge_ifp; if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); lge_init_locked(sc); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void lge_txeof(struct lge_softc *sc) { struct lge_tx_desc *cur_tx = NULL; if_t ifp; u_int32_t idx, txdone; ifp = sc->lge_ifp; /* Clear the timeout timer. */ sc->lge_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->lge_cdata.lge_tx_cons; txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT); while (idx != sc->lge_cdata.lge_tx_prod && txdone) { cur_tx = &sc->lge_ldata->lge_tx_list[idx]; if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if (cur_tx->lge_mbuf != NULL) { m_freem(cur_tx->lge_mbuf); cur_tx->lge_mbuf = NULL; } cur_tx->lge_ctl = 0; txdone--; LGE_INC(idx, LGE_TX_LIST_CNT); sc->lge_timer = 0; } sc->lge_cdata.lge_tx_cons = idx; if (cur_tx != NULL) if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); return; } static void lge_tick(void *xsc) { struct lge_softc *sc; struct mii_data *mii; if_t ifp; sc = xsc; ifp = sc->lge_ifp; LGE_LOCK_ASSERT(sc); CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS); if_inc_counter(ifp, IFCOUNTER_COLLISIONS, CSR_READ_4(sc, LGE_STATSVAL)); CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS); if_inc_counter(ifp, IFCOUNTER_COLLISIONS, CSR_READ_4(sc, LGE_STATSVAL)); if (!sc->lge_link) { mii = device_get_softc(sc->lge_miibus); mii_tick(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->lge_link++; if (bootverbose && (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX|| IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)) device_printf(sc->lge_dev, "gigabit link up\n"); if (!if_sendq_empty(ifp)) lge_start_locked(ifp); } } if (sc->lge_timer != 0 && --sc->lge_timer == 0) lge_watchdog(sc); callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc); return; } static void lge_intr(void *arg) { struct lge_softc *sc; if_t ifp; u_int32_t status; sc = arg; ifp = sc->lge_ifp; LGE_LOCK(sc); /* Suppress unwanted interrupts */ if (!(if_getflags(ifp) & IFF_UP)) { lge_stop(sc); LGE_UNLOCK(sc); return; } for (;;) { /* * Reading the ISR register clears all interrupts, and * clears the 'interrupts enabled' bit in the IMR * register. */ status = CSR_READ_4(sc, LGE_ISR); if ((status & LGE_INTRS) == 0) break; if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE))) lge_txeof(sc); if (status & LGE_ISR_RXDMA_DONE) lge_rxeof(sc, LGE_RX_DMACNT(status)); if (status & LGE_ISR_RXCMDFIFO_EMPTY) lge_rxeoc(sc); if (status & LGE_ISR_PHY_INTR) { sc->lge_link = 0; callout_stop(&sc->lge_stat_callout); lge_tick(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB); if (!if_sendq_empty(ifp)) lge_start_locked(ifp); LGE_UNLOCK(sc); return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int lge_encap(struct lge_softc *sc, struct mbuf *m_head, u_int32_t *txidx) { struct lge_frag *f = NULL; struct lge_tx_desc *cur_tx; struct mbuf *m; int frag = 0, tot_len = 0; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; cur_tx = &sc->lge_ldata->lge_tx_list[*txidx]; frag = 0; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { tot_len += m->m_len; f = &cur_tx->lge_frags[frag]; f->lge_fraglen = m->m_len; f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t)); f->lge_fragptr_hi = 0; frag++; } } if (m != NULL) return(ENOBUFS); cur_tx->lge_mbuf = m_head; cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len; LGE_INC((*txidx), LGE_TX_LIST_CNT); /* Queue for transmit */ CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx)); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void lge_start(if_t ifp) { struct lge_softc *sc; sc = if_getsoftc(ifp); LGE_LOCK(sc); lge_start_locked(ifp); LGE_UNLOCK(sc); } static void lge_start_locked(if_t ifp) { struct lge_softc *sc; struct mbuf *m_head = NULL; u_int32_t idx; sc = if_getsoftc(ifp); if (!sc->lge_link) return; idx = sc->lge_cdata.lge_tx_prod; if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) return; while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) { if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) break; m_head = if_dequeue(ifp); if (m_head == NULL) break; if (lge_encap(sc, m_head, &idx)) { if_sendq_prepend(ifp, m_head); if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } sc->lge_cdata.lge_tx_prod = idx; /* * Set a timeout in case the chip goes out to lunch. */ sc->lge_timer = 5; return; } static void lge_init(void *xsc) { struct lge_softc *sc = xsc; LGE_LOCK(sc); lge_init_locked(sc); LGE_UNLOCK(sc); } static void lge_init_locked(struct lge_softc *sc) { if_t ifp = sc->lge_ifp; LGE_LOCK_ASSERT(sc); if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) return; /* * Cancel pending I/O and free all RX/TX buffers. */ lge_stop(sc); lge_reset(sc); /* Set MAC address */ CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&if_getlladdr(sc->lge_ifp)[0])); CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&if_getlladdr(sc->lge_ifp)[4])); /* Init circular RX list. */ if (lge_list_rx_init(sc) == ENOBUFS) { device_printf(sc->lge_dev, "initialization failed: no " "memory for rx buffers\n"); lge_stop(sc); return; } /* * Init tx descriptors. */ lge_list_tx_init(sc); /* Set initial value for MODE1 register. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST| LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD| LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0| LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2); /* If we want promiscuous mode, set the allframes bit. */ if (if_getflags(ifp) & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC); } else { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); } /* * Set the capture broadcast bit to capture broadcast frames. */ if (if_getflags(ifp) & IFF_BROADCAST) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST); } else { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST); } /* Packet padding workaround? */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD); /* No error frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS); /* Receive large frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS); /* Workaround: disable RX/TX flow control */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL); /* Make sure to strip CRC from received frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC); /* Turn off magic packet mode */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB); /* Turn off all VLAN stuff */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX| LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT); /* Workarond: FIFO overflow */ CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF); CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT); /* * Load the multicast filter. */ lge_setmulti(sc); /* * Enable hardware checksum validation for all received IPv4 * packets, do not reject packets with bad checksums. */ CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM| LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM| LGE_MODE2_RX_ERRCSUM); /* * Enable the delivery of PHY interrupts based on * link/speed/duplex status chalges. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL); /* Enable receiver and transmitter. */ CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB); CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB); /* * Enable interrupts. */ CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0| LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS); lge_ifmedia_upd_locked(ifp); if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc); return; } /* * Set media options. */ static int lge_ifmedia_upd(if_t ifp) { struct lge_softc *sc; sc = if_getsoftc(ifp); LGE_LOCK(sc); lge_ifmedia_upd_locked(ifp); LGE_UNLOCK(sc); return(0); } static void lge_ifmedia_upd_locked(if_t ifp) { struct lge_softc *sc; struct mii_data *mii; struct mii_softc *miisc; sc = if_getsoftc(ifp); LGE_LOCK_ASSERT(sc); mii = device_get_softc(sc->lge_miibus); sc->lge_link = 0; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); mii_mediachg(mii); } /* * Report current media status. */ static void lge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) { struct lge_softc *sc; struct mii_data *mii; sc = if_getsoftc(ifp); LGE_LOCK(sc); mii = device_get_softc(sc->lge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; LGE_UNLOCK(sc); return; } static int lge_ioctl(if_t ifp, u_long command, caddr_t data) { struct lge_softc *sc = if_getsoftc(ifp); struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch(command) { case SIOCSIFMTU: LGE_LOCK(sc); if (ifr->ifr_mtu > LGE_JUMBO_MTU) error = EINVAL; else if_setmtu(ifp, ifr->ifr_mtu); LGE_UNLOCK(sc); break; case SIOCSIFFLAGS: LGE_LOCK(sc); if (if_getflags(ifp) & IFF_UP) { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && if_getflags(ifp) & IFF_PROMISC && !(sc->lge_if_flags & IFF_PROMISC)) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1| LGE_MODE1_RX_PROMISC); } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && !(if_getflags(ifp) & IFF_PROMISC) && sc->lge_if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); } else { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); lge_init_locked(sc); } } else { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) lge_stop(sc); } sc->lge_if_flags = if_getflags(ifp); LGE_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: LGE_LOCK(sc); lge_setmulti(sc); LGE_UNLOCK(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->lge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } static void lge_watchdog(struct lge_softc *sc) { if_t ifp; LGE_LOCK_ASSERT(sc); ifp = sc->lge_ifp; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if_printf(ifp, "watchdog timeout\n"); lge_stop(sc); lge_reset(sc); if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); lge_init_locked(sc); if (!if_sendq_empty(ifp)) lge_start_locked(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void lge_stop(struct lge_softc *sc) { int i; if_t ifp; LGE_LOCK_ASSERT(sc); ifp = sc->lge_ifp; sc->lge_timer = 0; callout_stop(&sc->lge_stat_callout); CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB); /* Disable receiver and transmitter. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB); sc->lge_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < LGE_RX_LIST_CNT; i++) { if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) { m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf); sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL; } } bzero((char *)&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < LGE_TX_LIST_CNT; i++) { if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) { m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf); sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL; } } bzero((char *)&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list)); if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int lge_shutdown(device_t dev) { struct lge_softc *sc; sc = device_get_softc(dev); LGE_LOCK(sc); lge_reset(sc); lge_stop(sc); LGE_UNLOCK(sc); return (0); }