/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2024, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "ice_common.h" #define GL_MNG_DEF_DEVID 0x000B611C /** * ice_aq_read_nvm * @hw: pointer to the HW struct * @module_typeid: module pointer location in words from the NVM beginning * @offset: byte offset from the module beginning * @length: length of the section to be read (in bytes from the offset) * @data: command buffer (size [bytes] = length) * @last_command: tells if this is the last command in a series * @read_shadow_ram: tell if this is a shadow RAM read * @cd: pointer to command details structure or NULL * * Read the NVM using the admin queue commands (0x0701) */ int ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length, void *data, bool last_command, bool read_shadow_ram, struct ice_sq_cd *cd) { struct ice_aq_desc desc; struct ice_aqc_nvm *cmd; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); cmd = &desc.params.nvm; if (offset > ICE_AQC_NVM_MAX_OFFSET) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read); if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT) cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY; /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; cmd->module_typeid = CPU_TO_LE16(module_typeid); cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF); cmd->offset_high = (offset >> 16) & 0xFF; cmd->length = CPU_TO_LE16(length); return ice_aq_send_cmd(hw, &desc, data, length, cd); } /** * ice_read_flat_nvm - Read portion of NVM by flat offset * @hw: pointer to the HW struct * @offset: offset from beginning of NVM * @length: (in) number of bytes to read; (out) number of bytes actually read * @data: buffer to return data in (sized to fit the specified length) * @read_shadow_ram: if true, read from shadow RAM instead of NVM * * Reads a portion of the NVM, as a flat memory space. This function correctly * breaks read requests across Shadow RAM sectors and ensures that no single * read request exceeds the maximum 4KB read for a single AdminQ command. * * Returns a status code on failure. Note that the data pointer may be * partially updated if some reads succeed before a failure. */ int ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data, bool read_shadow_ram) { u32 inlen = *length; u32 bytes_read = 0; bool last_cmd; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); *length = 0; /* Verify the length of the read if this is for the Shadow RAM */ if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) { ice_debug(hw, ICE_DBG_NVM, "NVM error: requested data is beyond Shadow RAM limit\n"); return ICE_ERR_PARAM; } do { u32 read_size, sector_offset; /* ice_aq_read_nvm cannot read more than 4KB at a time. * Additionally, a read from the Shadow RAM may not cross over * a sector boundary. Conveniently, the sector size is also * 4KB. */ sector_offset = offset % ICE_AQ_MAX_BUF_LEN; read_size = MIN_T(u32, ICE_AQ_MAX_BUF_LEN - sector_offset, inlen - bytes_read); last_cmd = !(bytes_read + read_size < inlen); /* ice_aq_read_nvm takes the length as a u16. Our read_size is * calculated using a u32, but the ICE_AQ_MAX_BUF_LEN maximum * size guarantees that it will fit within the 2 bytes. */ status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, offset, (u16)read_size, data + bytes_read, last_cmd, read_shadow_ram, NULL); if (status) break; bytes_read += read_size; offset += read_size; } while (!last_cmd); *length = bytes_read; return status; } /** * ice_aq_update_nvm * @hw: pointer to the HW struct * @module_typeid: module pointer location in words from the NVM beginning * @offset: byte offset from the module beginning * @length: length of the section to be written (in bytes from the offset) * @data: command buffer (size [bytes] = length) * @last_command: tells if this is the last command in a series * @command_flags: command parameters * @cd: pointer to command details structure or NULL * * Update the NVM using the admin queue commands (0x0703) */ int ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length, void *data, bool last_command, u8 command_flags, struct ice_sq_cd *cd) { struct ice_aq_desc desc; struct ice_aqc_nvm *cmd; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); cmd = &desc.params.nvm; /* In offset the highest byte must be zeroed. */ if (offset & 0xFF000000) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write); cmd->cmd_flags |= command_flags; /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; cmd->module_typeid = CPU_TO_LE16(module_typeid); cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF); cmd->offset_high = (offset >> 16) & 0xFF; cmd->length = CPU_TO_LE16(length); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); return ice_aq_send_cmd(hw, &desc, data, length, cd); } /** * ice_aq_erase_nvm * @hw: pointer to the HW struct * @module_typeid: module pointer location in words from the NVM beginning * @cd: pointer to command details structure or NULL * * Erase the NVM sector using the admin queue commands (0x0702) */ int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd) { struct ice_aq_desc desc; struct ice_aqc_nvm *cmd; int status; __le16 len; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* read a length value from SR, so module_typeid is equal to 0 */ /* calculate offset where module size is placed from bytes to words */ /* set last command and read from SR values to true */ status = ice_aq_read_nvm(hw, 0, 2 * module_typeid + 2, 2, &len, true, true, NULL); if (status) return status; cmd = &desc.params.nvm; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase); cmd->module_typeid = CPU_TO_LE16(module_typeid); cmd->length = len; cmd->offset_low = 0; cmd->offset_high = 0; return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); } /** * ice_aq_read_nvm_cfg - read an NVM config block * @hw: pointer to the HW struct * @cmd_flags: NVM access admin command bits * @field_id: field or feature ID * @data: buffer for result * @buf_size: buffer size * @elem_count: pointer to count of elements read by FW * @cd: pointer to command details structure or NULL * * Reads single or multiple feature/field ID and data (0x0704) */ int ice_aq_read_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, u16 field_id, void *data, u16 buf_size, u16 *elem_count, struct ice_sq_cd *cd) { struct ice_aqc_nvm_cfg *cmd; struct ice_aq_desc desc; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); cmd = &desc.params.nvm_cfg; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_read); cmd->cmd_flags = cmd_flags; cmd->id = CPU_TO_LE16(field_id); status = ice_aq_send_cmd(hw, &desc, data, buf_size, cd); if (!status && elem_count) *elem_count = LE16_TO_CPU(cmd->count); return status; } /** * ice_aq_write_nvm_cfg - write an NVM config block * @hw: pointer to the HW struct * @cmd_flags: NVM access admin command bits * @data: buffer for result * @buf_size: buffer size * @elem_count: count of elements to be written * @cd: pointer to command details structure or NULL * * Writes single or multiple feature/field ID and data (0x0705) */ int ice_aq_write_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, void *data, u16 buf_size, u16 elem_count, struct ice_sq_cd *cd) { struct ice_aqc_nvm_cfg *cmd; struct ice_aq_desc desc; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); cmd = &desc.params.nvm_cfg; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_write); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); cmd->count = CPU_TO_LE16(elem_count); cmd->cmd_flags = cmd_flags; return ice_aq_send_cmd(hw, &desc, data, buf_size, cd); } /** * ice_check_sr_access_params - verify params for Shadow RAM R/W operations * @hw: pointer to the HW structure * @offset: offset in words from module start * @words: number of words to access */ static int ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words) { if ((offset + words) > hw->flash.sr_words) { ice_debug(hw, ICE_DBG_NVM, "NVM error: offset beyond SR lmt.\n"); return ICE_ERR_PARAM; } if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) { /* We can access only up to 4KB (one sector), in one AQ write */ ice_debug(hw, ICE_DBG_NVM, "NVM error: tried to access %d words, limit is %d.\n", words, ICE_SR_SECTOR_SIZE_IN_WORDS); return ICE_ERR_PARAM; } if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) != (offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) { /* A single access cannot spread over two sectors */ ice_debug(hw, ICE_DBG_NVM, "NVM error: cannot spread over two sectors.\n"); return ICE_ERR_PARAM; } return 0; } /** * ice_read_sr_word_aq - Reads Shadow RAM via AQ * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm. */ int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data) { u32 bytes = sizeof(u16); __le16 data_local; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* Note that ice_read_flat_nvm checks if the read is past the Shadow * RAM size, and ensures we don't read across a Shadow RAM sector * boundary */ status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes, (_FORCE_ u8 *)&data_local, true); if (status) return status; *data = LE16_TO_CPU(data_local); return 0; } /** * ice_write_sr_aq - Writes Shadow RAM * @hw: pointer to the HW structure * @offset: offset in words from module start * @words: number of words to write * @data: buffer with words to write to the Shadow RAM * @last_command: tells the AdminQ that this is the last command * * Writes a 16 bit words buffer to the Shadow RAM using the admin command. */ static int ice_write_sr_aq(struct ice_hw *hw, u32 offset, u16 words, __le16 *data, bool last_command) { int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); status = ice_check_sr_access_params(hw, offset, words); if (!status) status = ice_aq_update_nvm(hw, 0, 2 * offset, 2 * words, data, last_command, 0, NULL); return status; } /** * ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @words: (in) number of words to read; (out) number of words actually read * @data: words read from the Shadow RAM * * Reads 16 bit words (data buf) from the Shadow RAM. Ownership of the NVM is * taken before reading the buffer and later released. */ static int ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data) { u32 bytes = *words * 2, i; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* ice_read_flat_nvm takes into account the 4KB AdminQ and Shadow RAM * sector restrictions necessary when reading from the NVM. */ status = ice_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true); /* Report the number of words successfully read */ *words = (u16)(bytes / 2); /* Byte swap the words up to the amount we actually read */ for (i = 0; i < *words; i++) data[i] = LE16_TO_CPU(((_FORCE_ __le16 *)data)[i]); return status; } /** * ice_acquire_nvm - Generic request for acquiring the NVM ownership * @hw: pointer to the HW structure * @access: NVM access type (read or write) * * This function will request NVM ownership. */ int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access) { ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); if (hw->flash.blank_nvm_mode) return 0; return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT); } /** * ice_release_nvm - Generic request for releasing the NVM ownership * @hw: pointer to the HW structure * * This function will release NVM ownership. */ void ice_release_nvm(struct ice_hw *hw) { ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); if (hw->flash.blank_nvm_mode) return; ice_release_res(hw, ICE_NVM_RES_ID); } /** * ice_get_flash_bank_offset - Get offset into requested flash bank * @hw: pointer to the HW structure * @bank: whether to read from the active or inactive flash bank * @module: the module to read from * * Based on the module, lookup the module offset from the beginning of the * flash. * * Returns the flash offset. Note that a value of zero is invalid and must be * treated as an error. */ static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module) { struct ice_bank_info *banks = &hw->flash.banks; enum ice_flash_bank active_bank; bool second_bank_active; u32 offset, size; switch (module) { case ICE_SR_1ST_NVM_BANK_PTR: offset = banks->nvm_ptr; size = banks->nvm_size; active_bank = banks->nvm_bank; break; case ICE_SR_1ST_OROM_BANK_PTR: offset = banks->orom_ptr; size = banks->orom_size; active_bank = banks->orom_bank; break; case ICE_SR_NETLIST_BANK_PTR: offset = banks->netlist_ptr; size = banks->netlist_size; active_bank = banks->netlist_bank; break; default: ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module); return 0; } switch (active_bank) { case ICE_1ST_FLASH_BANK: second_bank_active = false; break; case ICE_2ND_FLASH_BANK: second_bank_active = true; break; default: ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n", active_bank); return 0; } /* The second flash bank is stored immediately following the first * bank. Based on whether the 1st or 2nd bank is active, and whether * we want the active or inactive bank, calculate the desired offset. */ switch (bank) { case ICE_ACTIVE_FLASH_BANK: return offset + (second_bank_active ? size : 0); case ICE_INACTIVE_FLASH_BANK: return offset + (second_bank_active ? 0 : size); } ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank); return 0; } /** * ice_read_flash_module - Read a word from one of the main NVM modules * @hw: pointer to the HW structure * @bank: which bank of the module to read * @module: the module to read * @offset: the offset into the module in bytes * @data: storage for the word read from the flash * @length: bytes of data to read * * Read data from the specified flash module. The bank parameter indicates * whether or not to read from the active bank or the inactive bank of that * module. * * The word will be read using flat NVM access, and relies on the * hw->flash.banks data being setup by ice_determine_active_flash_banks() * during initialization. */ static int ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module, u32 offset, u8 *data, u32 length) { int status; u32 start; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); start = ice_get_flash_bank_offset(hw, bank, module); if (!start) { ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n", module); return ICE_ERR_PARAM; } status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; status = ice_read_flat_nvm(hw, start + offset, &length, data, false); ice_release_nvm(hw); return status; } /** * ice_read_nvm_module - Read from the active main NVM module * @hw: pointer to the HW structure * @bank: whether to read from active or inactive NVM module * @offset: offset into the NVM module to read, in words * @data: storage for returned word value * * Read the specified word from the active NVM module. This includes the CSS * header at the start of the NVM module. */ static int ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) { __le16 data_local; int status; status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16), (_FORCE_ u8 *)&data_local, sizeof(u16)); if (!status) *data = LE16_TO_CPU(data_local); return status; } /** * ice_get_nvm_css_hdr_len - Read the CSS header length from the NVM CSS header * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash bank * @hdr_len: storage for header length in words * * Read the CSS header length from the NVM CSS header and add the Authentication * header size, and then convert to words. */ static int ice_get_nvm_css_hdr_len(struct ice_hw *hw, enum ice_bank_select bank, u32 *hdr_len) { u16 hdr_len_l, hdr_len_h; u32 hdr_len_dword; int status; status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_L, &hdr_len_l); if (status) return status; status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_H, &hdr_len_h); if (status) return status; /* CSS header length is in DWORD, so convert to words and add * authentication header size */ hdr_len_dword = hdr_len_h << 16 | hdr_len_l; *hdr_len = (hdr_len_dword * 2) + ICE_NVM_AUTH_HEADER_LEN; return 0; } /** * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank * @hw: pointer to the HW structure * @bank: whether to read from the active or inactive NVM module * @offset: offset into the Shadow RAM copy to read, in words * @data: storage for returned word value * * Read the specified word from the copy of the Shadow RAM found in the * specified NVM module. */ static int ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) { u32 hdr_len; int status; status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len); if (status) return status; hdr_len = ROUND_UP(hdr_len, 32); return ice_read_nvm_module(hw, bank, hdr_len + offset, data); } /** * ice_read_orom_module - Read from the active Option ROM module * @hw: pointer to the HW structure * @bank: whether to read from active or inactive OROM module * @offset: offset into the OROM module to read, in words * @data: storage for returned word value * * Read the specified word from the active Option ROM module of the flash. * Note that unlike the NVM module, the CSS data is stored at the end of the * module instead of at the beginning. */ static int ice_read_orom_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) { __le16 data_local; int status; status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, offset * sizeof(u16), (_FORCE_ u8 *)&data_local, sizeof(u16)); if (!status) *data = LE16_TO_CPU(data_local); return status; } /** * ice_read_netlist_module - Read data from the netlist module area * @hw: pointer to the HW structure * @bank: whether to read from the active or inactive module * @offset: offset into the netlist to read from * @data: storage for returned word value * * Read a word from the specified netlist bank. */ static int ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) { __le16 data_local; int status; status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16), (_FORCE_ u8 *)&data_local, sizeof(u16)); if (!status) *data = LE16_TO_CPU(data_local); return status; } /** * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq. */ int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data) { int status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (!status) { status = ice_read_sr_word_aq(hw, offset, data); ice_release_nvm(hw); } return status; } #define check_add_overflow __builtin_add_overflow /** * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA * @hw: pointer to hardware structure * @module_tlv: pointer to module TLV to return * @module_tlv_len: pointer to module TLV length to return * @module_type: module type requested * * Finds the requested sub module TLV type from the Preserved Field * Area (PFA) and returns the TLV pointer and length. The caller can * use these to read the variable length TLV value. */ int ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len, u16 module_type) { u16 pfa_len, pfa_ptr, next_tlv, max_tlv; int status; status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr); if (status) { ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n"); return status; } status = ice_read_sr_word(hw, pfa_ptr, &pfa_len); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n"); return status; } if (check_add_overflow(pfa_ptr, (u16)(pfa_len - 1), &max_tlv)) { ice_debug(hw, ICE_DBG_INIT, "PFA starts at offset %u. PFA length of %u caused 16-bit arithmetic overflow.\n", pfa_ptr, pfa_len); return ICE_ERR_INVAL_SIZE; } /* The Preserved Fields Area contains a sequence of TLVs which define * its contents. The PFA length includes all of the TLVs, plus its * initial length word itself, *and* one final word at the end of all * of the TLVs. * * Starting with first TLV after PFA length, iterate through the list * of TLVs to find the requested one. */ next_tlv = pfa_ptr + 1; while (next_tlv < max_tlv) { u16 tlv_sub_module_type; u16 tlv_len; /* Read TLV type */ status = ice_read_sr_word(hw, (u16)next_tlv, &tlv_sub_module_type); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n"); break; } /* Read TLV length */ status = ice_read_sr_word(hw, (u16)(next_tlv + 1), &tlv_len); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n"); break; } if (tlv_sub_module_type == module_type) { if (tlv_len) { *module_tlv = (u16)next_tlv; *module_tlv_len = tlv_len; return 0; } return ICE_ERR_INVAL_SIZE; } if (check_add_overflow(next_tlv, (u16)2, &next_tlv) || check_add_overflow(next_tlv, tlv_len, &next_tlv)) { ice_debug(hw, ICE_DBG_INIT, "TLV of type %u and length 0x%04x caused 16-bit arithmetic overflow. The PFA starts at 0x%04x and has length of 0x%04x\n", tlv_sub_module_type, tlv_len, pfa_ptr, pfa_len); return ICE_ERR_INVAL_SIZE; } } /* Module does not exist */ return ICE_ERR_DOES_NOT_EXIST; } /** * ice_read_pba_string - Reads part number string from NVM * @hw: pointer to hardware structure * @pba_num: stores the part number string from the NVM * @pba_num_size: part number string buffer length * * Reads the part number string from the NVM. */ int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size) { u16 pba_tlv, pba_tlv_len; u16 pba_word, pba_size; int status; u16 i; status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len, ICE_SR_PBA_BLOCK_PTR); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n"); return status; } /* pba_size is the next word */ status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n"); return status; } if (pba_tlv_len < pba_size) { ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n"); return ICE_ERR_INVAL_SIZE; } /* Subtract one to get PBA word count (PBA Size word is included in * total size) */ pba_size--; if (pba_num_size < (((u32)pba_size * 2) + 1)) { ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n"); return ICE_ERR_PARAM; } for (i = 0; i < pba_size; i++) { status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i); return status; } pba_num[(i * 2)] = (pba_word >> 8) & 0xFF; pba_num[(i * 2) + 1] = pba_word & 0xFF; } pba_num[(pba_size * 2)] = '\0'; return status; } /** * ice_get_nvm_srev - Read the security revision from the NVM CSS header * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash bank * @srev: storage for security revision * * Read the security revision out of the CSS header of the active NVM module * bank. */ static int ice_get_nvm_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev) { u16 srev_l, srev_h; int status; status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_L, &srev_l); if (status) return status; status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_H, &srev_h); if (status) return status; *srev = srev_h << 16 | srev_l; return 0; } /** * ice_get_nvm_ver_info - Read NVM version information * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash bank * @nvm: pointer to NVM info structure * * Read the NVM EETRACK ID and map version of the main NVM image bank, filling * in the NVM info structure. */ static int ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm) { u16 eetrack_lo, eetrack_hi, ver; int status; status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n"); return status; } nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT; nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT; status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n"); return status; } status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n"); return status; } nvm->eetrack = (eetrack_hi << 16) | eetrack_lo; status = ice_get_nvm_srev(hw, bank, &nvm->srev); if (status) ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM security revision.\n"); return 0; } /** * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank * @hw: pointer to the HW structure * @nvm: storage for Option ROM version information * * Reads the NVM EETRACK ID, Map version, and security revision of the * inactive NVM bank. Used to access version data for a pending update that * has not yet been activated. */ int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm) { return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm); } /** * ice_get_orom_srev - Read the security revision from the OROM CSS header * @hw: pointer to the HW struct * @bank: whether to read from active or inactive flash module * @srev: storage for security revision * * Read the security revision out of the CSS header of the active OROM module * bank. */ static int ice_get_orom_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev) { u32 orom_size_word = hw->flash.banks.orom_size / 2; u16 srev_l, srev_h; u32 css_start; u32 hdr_len; int status; status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len); if (status) return status; if (orom_size_word < hdr_len) { ice_debug(hw, ICE_DBG_NVM, "Unexpected Option ROM Size of %u\n", hw->flash.banks.orom_size); return ICE_ERR_CFG; } /* calculate how far into the Option ROM the CSS header starts. Note * that ice_read_orom_module takes a word offset */ css_start = orom_size_word - hdr_len; status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_L, &srev_l); if (status) return status; status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_H, &srev_h); if (status) return status; *srev = srev_h << 16 | srev_l; return 0; } /** * ice_get_orom_civd_data - Get the combo version information from Option ROM * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash module * @civd: storage for the Option ROM CIVD data. * * Searches through the Option ROM flash contents to locate the CIVD data for * the image. */ static int ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_civd_info *civd) { struct ice_orom_civd_info civd_data_section; int status; u32 offset; u32 tmp; /* The CIVD section is located in the Option ROM aligned to 512 bytes. * The first 4 bytes must contain the ASCII characters "$CIV". * A simple modulo 256 sum of all of the bytes of the structure must * equal 0. * * The exact location is unknown and varies between images but is * usually somewhere in the middle of the bank. We need to scan the * Option ROM bank to locate it. * */ /* Scan the memory buffer to locate the CIVD data section */ for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) { u8 sum = 0, i; status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, offset, (u8 *)&tmp, sizeof(tmp)); if (status) { ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n"); return status; } /* Skip forward until we find a matching signature */ if (memcmp("$CIV", &tmp, sizeof(tmp)) != 0) continue; ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n", offset); status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, offset, (u8 *)&civd_data_section, sizeof(civd_data_section)); if (status) { ice_debug(hw, ICE_DBG_NVM, "Unable to read CIVD data\n"); goto exit_error; } /* Verify that the simple checksum is zero */ for (i = 0; i < sizeof(civd_data_section); i++) sum += ((u8 *)&civd_data_section)[i]; if (sum) { ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n", sum); status = ICE_ERR_NVM; goto exit_error; } *civd = civd_data_section; return 0; } status = ICE_ERR_NVM; ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n"); exit_error: return status; } /** * ice_get_orom_ver_info - Read Option ROM version information * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash module * @orom: pointer to Option ROM info structure * * Read Option ROM version and security revision from the Option ROM flash * section. */ static int ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom) { struct ice_orom_civd_info civd; u32 combo_ver; int status; status = ice_get_orom_civd_data(hw, bank, &civd); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n"); return status; } combo_ver = LE32_TO_CPU(civd.combo_ver); orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT); orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK); orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT); status = ice_get_orom_srev(hw, bank, &orom->srev); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read Option ROM security revision.\n"); return status; } return 0; } /** * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank * @hw: pointer to the HW structure * @orom: storage for Option ROM version information * * Reads the Option ROM version and security revision data for the inactive * section of flash. Used to access version data for a pending update that has * not yet been activated. */ int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom) { return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom); } /** * ice_get_netlist_info * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash bank * @netlist: pointer to netlist version info structure * * Get the netlist version information from the requested bank. Reads the Link * Topology section to find the Netlist ID block and extract the relevant * information into the netlist version structure. */ static int ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_netlist_info *netlist) { u16 module_id, length, node_count, i; u16 *id_blk; int status; status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id); if (status) return status; if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) { ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n", ICE_NETLIST_LINK_TOPO_MOD_ID, module_id); return ICE_ERR_NVM; } status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length); if (status) return status; /* sanity check that we have at least enough words to store the netlist ID block */ if (length < ICE_NETLIST_ID_BLK_SIZE) { ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n", ICE_NETLIST_ID_BLK_SIZE, length); return ICE_ERR_NVM; } status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count); if (status) return status; node_count &= ICE_LINK_TOPO_NODE_COUNT_M; id_blk = (u16 *)ice_calloc(hw, ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk)); if (!id_blk) return ICE_ERR_NO_MEMORY; /* Read out the entire Netlist ID Block at once. */ status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16), (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16)); if (status) goto exit_error; for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++) id_blk[i] = LE16_TO_CPU(((_FORCE_ __le16 *)id_blk)[i]); netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW]; netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW]; netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW]; netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_REV_LOW]; netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER]; /* Read the left most 4 bytes of SHA */ netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 | id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)]; exit_error: ice_free(hw, id_blk); return status; } /** * ice_get_netlist_ver_info * @hw: pointer to the HW struct * @netlist: pointer to netlist version info structure * * Get the netlist version information */ int ice_get_netlist_ver_info(struct ice_hw *hw, struct ice_netlist_info *netlist) { return ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, netlist); } /** * ice_get_inactive_netlist_ver * @hw: pointer to the HW struct * @netlist: pointer to netlist version info structure * * Read the netlist version data from the inactive netlist bank. Used to * extract version data of a pending flash update in order to display the * version data. */ int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist) { return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist); } /** * ice_discover_flash_size - Discover the available flash size * @hw: pointer to the HW struct * * The device flash could be up to 16MB in size. However, it is possible that * the actual size is smaller. Use bisection to determine the accessible size * of flash memory. */ static int ice_discover_flash_size(struct ice_hw *hw) { u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; while ((max_size - min_size) > 1) { u32 offset = (max_size + min_size) / 2; u32 len = 1; u8 data; status = ice_read_flat_nvm(hw, offset, &len, &data, false); if (status == ICE_ERR_AQ_ERROR && hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) { ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n", __func__, offset); status = 0; max_size = offset; } else if (!status) { ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n", __func__, offset); min_size = offset; } else { /* an unexpected error occurred */ goto err_read_flat_nvm; } } ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size); hw->flash.flash_size = max_size; err_read_flat_nvm: ice_release_nvm(hw); return status; } /** * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word * @hw: pointer to the HW structure * @offset: the word offset of the Shadow RAM word to read * @pointer: pointer value read from Shadow RAM * * Read the given Shadow RAM word, and convert it to a pointer value specified * in bytes. This function assumes the specified offset is a valid pointer * word. * * Each pointer word specifies whether it is stored in word size or 4KB * sector size by using the highest bit. The reported pointer value will be in * bytes, intended for flat NVM reads. */ static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer) { int status; u16 value; status = ice_read_sr_word(hw, offset, &value); if (status) return status; /* Determine if the pointer is in 4KB or word units */ if (value & ICE_SR_NVM_PTR_4KB_UNITS) *pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024; else *pointer = value * 2; return 0; } /** * ice_read_sr_area_size - Read an area size from a Shadow RAM word * @hw: pointer to the HW structure * @offset: the word offset of the Shadow RAM to read * @size: size value read from the Shadow RAM * * Read the given Shadow RAM word, and convert it to an area size value * specified in bytes. This function assumes the specified offset is a valid * area size word. * * Each area size word is specified in 4KB sector units. This function reports * the size in bytes, intended for flat NVM reads. */ static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size) { int status; u16 value; status = ice_read_sr_word(hw, offset, &value); if (status) return status; /* Area sizes are always specified in 4KB units */ *size = value * 4 * 1024; return 0; } /** * ice_determine_active_flash_banks - Discover active bank for each module * @hw: pointer to the HW struct * * Read the Shadow RAM control word and determine which banks are active for * the NVM, OROM, and Netlist modules. Also read and calculate the associated * pointer and size. These values are then cached into the ice_flash_info * structure for later use in order to calculate the correct offset to read * from the active module. */ static int ice_determine_active_flash_banks(struct ice_hw *hw) { struct ice_bank_info *banks = &hw->flash.banks; u16 ctrl_word; int status; status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n"); return status; } /* Check that the control word indicates validity */ if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) { ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n"); return ICE_ERR_CFG; } if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK)) banks->nvm_bank = ICE_1ST_FLASH_BANK; else banks->nvm_bank = ICE_2ND_FLASH_BANK; if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK)) banks->orom_bank = ICE_1ST_FLASH_BANK; else banks->orom_bank = ICE_2ND_FLASH_BANK; if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK)) banks->netlist_bank = ICE_1ST_FLASH_BANK; else banks->netlist_bank = ICE_2ND_FLASH_BANK; status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n"); return status; } status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n"); return status; } status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n"); return status; } status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n"); return status; } status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n"); return status; } status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n"); return status; } return 0; } /** * ice_init_nvm - initializes NVM setting * @hw: pointer to the HW struct * * This function reads and populates NVM settings such as Shadow RAM size, * max_timeout, and blank_nvm_mode */ int ice_init_nvm(struct ice_hw *hw) { struct ice_flash_info *flash = &hw->flash; u32 fla, gens_stat; u8 sr_size; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* The SR size is stored regardless of the NVM programming mode * as the blank mode may be used in the factory line. */ gens_stat = rd32(hw, GLNVM_GENS); sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S; /* Switching to words (sr_size contains power of 2) */ flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB; /* Check if we are in the normal or blank NVM programming mode */ fla = rd32(hw, GLNVM_FLA); if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */ flash->blank_nvm_mode = false; } else { /* Blank programming mode */ flash->blank_nvm_mode = true; ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n"); return ICE_ERR_NVM_BLANK_MODE; } status = ice_discover_flash_size(hw); if (status) { ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n"); return status; } status = ice_determine_active_flash_banks(hw); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n"); return status; } status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n"); return status; } status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom); if (status) ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n"); /* read the netlist version information */ status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist); if (status) ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n"); return 0; } /** * ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @words: (in) number of words to read; (out) number of words actually read * @data: words read from the Shadow RAM * * Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq * method. The buf read is preceded by the NVM ownership take * and followed by the release. */ int ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data) { int status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (!status) { status = ice_read_sr_buf_aq(hw, offset, words, data); ice_release_nvm(hw); } return status; } /** * __ice_write_sr_word - Writes Shadow RAM word * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to write * @data: word to write to the Shadow RAM * * Writes a 16 bit word to the SR using the ice_write_sr_aq method. * NVM ownership have to be acquired and released (on ARQ completion event * reception) by caller. To commit SR to NVM update checksum function * should be called. */ int __ice_write_sr_word(struct ice_hw *hw, u32 offset, const u16 *data) { __le16 data_local = CPU_TO_LE16(*data); ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* Value 0x00 below means that we treat SR as a flat mem */ return ice_write_sr_aq(hw, offset, 1, &data_local, false); } /** * __ice_write_sr_buf - Writes Shadow RAM buf * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM buffer to write * @words: number of words to write * @data: words to write to the Shadow RAM * * Writes a 16 bit words buffer to the Shadow RAM using the admin command. * NVM ownership must be acquired before calling this function and released * on ARQ completion event reception by caller. To commit SR to NVM update * checksum function should be called. */ int __ice_write_sr_buf(struct ice_hw *hw, u32 offset, u16 words, const u16 *data) { __le16 *data_local; int status; void *vmem; u32 i; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); vmem = ice_calloc(hw, words, sizeof(u16)); if (!vmem) return ICE_ERR_NO_MEMORY; data_local = (_FORCE_ __le16 *)vmem; for (i = 0; i < words; i++) data_local[i] = CPU_TO_LE16(data[i]); /* Here we will only write one buffer as the size of the modules * mirrored in the Shadow RAM is always less than 4K. */ status = ice_write_sr_aq(hw, offset, words, data_local, false); ice_free(hw, vmem); return status; } /** * ice_calc_sr_checksum - Calculates and returns Shadow RAM SW checksum * @hw: pointer to hardware structure * @checksum: pointer to the checksum * * This function calculates SW Checksum that covers the whole 64kB shadow RAM * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD * is customer specific and unknown. Therefore, this function skips all maximum * possible size of VPD (1kB). */ static int ice_calc_sr_checksum(struct ice_hw *hw, u16 *checksum) { u16 pcie_alt_module = 0; u16 checksum_local = 0; u16 vpd_module; int status = 0; void *vmem; u16 *data; u16 i; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); vmem = ice_calloc(hw, ICE_SR_SECTOR_SIZE_IN_WORDS, sizeof(u16)); if (!vmem) return ICE_ERR_NO_MEMORY; data = (u16 *)vmem; /* read pointer to VPD area */ status = ice_read_sr_word_aq(hw, ICE_SR_VPD_PTR, &vpd_module); if (status) goto ice_calc_sr_checksum_exit; /* read pointer to PCIe Alt Auto-load module */ status = ice_read_sr_word_aq(hw, ICE_SR_PCIE_ALT_AUTO_LOAD_PTR, &pcie_alt_module); if (status) goto ice_calc_sr_checksum_exit; /* Calculate SW checksum that covers the whole 64kB shadow RAM * except the VPD and PCIe ALT Auto-load modules */ for (i = 0; i < hw->flash.sr_words; i++) { /* Read SR page */ if ((i % ICE_SR_SECTOR_SIZE_IN_WORDS) == 0) { u16 words = ICE_SR_SECTOR_SIZE_IN_WORDS; status = ice_read_sr_buf_aq(hw, i, &words, data); if (status) goto ice_calc_sr_checksum_exit; } /* Skip Checksum word */ if (i == ICE_SR_SW_CHECKSUM_WORD) continue; /* Skip VPD module (convert byte size to word count) */ if (i >= (u32)vpd_module && i < ((u32)vpd_module + ICE_SR_VPD_SIZE_WORDS)) continue; /* Skip PCIe ALT module (convert byte size to word count) */ if (i >= (u32)pcie_alt_module && i < ((u32)pcie_alt_module + ICE_SR_PCIE_ALT_SIZE_WORDS)) continue; checksum_local += data[i % ICE_SR_SECTOR_SIZE_IN_WORDS]; } *checksum = (u16)ICE_SR_SW_CHECKSUM_BASE - checksum_local; ice_calc_sr_checksum_exit: ice_free(hw, vmem); return status; } /** * ice_update_sr_checksum - Updates the Shadow RAM SW checksum * @hw: pointer to hardware structure * * NVM ownership must be acquired before calling this function and released * on ARQ completion event reception by caller. * This function will commit SR to NVM. */ int ice_update_sr_checksum(struct ice_hw *hw) { __le16 le_sum; u16 checksum; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); status = ice_calc_sr_checksum(hw, &checksum); if (!status) { le_sum = CPU_TO_LE16(checksum); status = ice_write_sr_aq(hw, ICE_SR_SW_CHECKSUM_WORD, 1, &le_sum, true); } return status; } /** * ice_validate_sr_checksum - Validate Shadow RAM SW checksum * @hw: pointer to hardware structure * @checksum: calculated checksum * * Performs checksum calculation and validates the Shadow RAM SW checksum. * If the caller does not need checksum, the value can be NULL. */ int ice_validate_sr_checksum(struct ice_hw *hw, u16 *checksum) { u16 checksum_local; u16 checksum_sr; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); status = ice_acquire_nvm(hw, ICE_RES_READ); if (!status) { status = ice_calc_sr_checksum(hw, &checksum_local); ice_release_nvm(hw); if (status) return status; } else { return status; } ice_read_sr_word(hw, ICE_SR_SW_CHECKSUM_WORD, &checksum_sr); /* Verify read checksum from EEPROM is the same as * calculated checksum */ if (checksum_local != checksum_sr) status = ICE_ERR_NVM_CHECKSUM; /* If the user cares, return the calculated checksum */ if (checksum) *checksum = checksum_local; return status; } /** * ice_nvm_validate_checksum * @hw: pointer to the HW struct * * Verify NVM PFA checksum validity (0x0706) */ int ice_nvm_validate_checksum(struct ice_hw *hw) { struct ice_aqc_nvm_checksum *cmd; struct ice_aq_desc desc; int status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; cmd = &desc.params.nvm_checksum; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY; status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); ice_release_nvm(hw); if (!status) if (LE16_TO_CPU(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT) status = ICE_ERR_NVM_CHECKSUM; return status; } /** * ice_nvm_recalculate_checksum * @hw: pointer to the HW struct * * Recalculate NVM PFA checksum (0x0706) */ int ice_nvm_recalculate_checksum(struct ice_hw *hw) { struct ice_aqc_nvm_checksum *cmd; struct ice_aq_desc desc; int status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; cmd = &desc.params.nvm_checksum; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); cmd->flags = ICE_AQC_NVM_CHECKSUM_RECALC; status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); ice_release_nvm(hw); return status; } /** * ice_nvm_write_activate * @hw: pointer to the HW struct * @cmd_flags: flags for write activate command * @response_flags: response indicators from firmware * * Update the control word with the required banks' validity bits * and dumps the Shadow RAM to flash (0x0707) * * cmd_flags controls which banks to activate, the preservation level to use * when activating the NVM bank, and whether an EMP reset is required for * activation. * * Note that the 16bit cmd_flags value is split between two separate 1 byte * flag values in the descriptor. * * On successful return of the firmware command, the response_flags variable * is updated with the flags reported by firmware indicating certain status, * such as whether EMP reset is enabled. */ int ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags) { struct ice_aqc_nvm *cmd; struct ice_aq_desc desc; int err; cmd = &desc.params.nvm; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate); cmd->cmd_flags = (u8)(cmd_flags & 0xFF); cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF); err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); if (!err && response_flags) *response_flags = cmd->cmd_flags; return err; } /** * ice_get_nvm_minsrevs - Get the Minimum Security Revision values from flash * @hw: pointer to the HW struct * @minsrevs: structure to store NVM and OROM minsrev values * * Read the Minimum Security Revision TLV and extract the revision values from * the flash image into a readable structure for processing. */ int ice_get_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs) { struct ice_aqc_nvm_minsrev data; int status; u16 valid; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), &data, true, false, NULL); ice_release_nvm(hw); if (status) return status; valid = LE16_TO_CPU(data.validity); /* Extract NVM minimum security revision */ if (valid & ICE_AQC_NVM_MINSREV_NVM_VALID) { u16 minsrev_l, minsrev_h; minsrev_l = LE16_TO_CPU(data.nvm_minsrev_l); minsrev_h = LE16_TO_CPU(data.nvm_minsrev_h); minsrevs->nvm = minsrev_h << 16 | minsrev_l; minsrevs->nvm_valid = true; } /* Extract the OROM minimum security revision */ if (valid & ICE_AQC_NVM_MINSREV_OROM_VALID) { u16 minsrev_l, minsrev_h; minsrev_l = LE16_TO_CPU(data.orom_minsrev_l); minsrev_h = LE16_TO_CPU(data.orom_minsrev_h); minsrevs->orom = minsrev_h << 16 | minsrev_l; minsrevs->orom_valid = true; } return 0; } /** * ice_update_nvm_minsrevs - Update minimum security revision TLV data in flash * @hw: pointer to the HW struct * @minsrevs: minimum security revision information * * Update the NVM or Option ROM minimum security revision fields in the PFA * area of the flash. Reads the minsrevs->nvm_valid and minsrevs->orom_valid * fields to determine what update is being requested. If the valid bit is not * set for that module, then the associated minsrev will be left as is. */ int ice_update_nvm_minsrevs(struct ice_hw *hw, struct ice_minsrev_info *minsrevs) { struct ice_aqc_nvm_minsrev data; int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); if (!minsrevs->nvm_valid && !minsrevs->orom_valid) { ice_debug(hw, ICE_DBG_NVM, "At least one of NVM and OROM MinSrev must be valid"); return ICE_ERR_PARAM; } status = ice_acquire_nvm(hw, ICE_RES_WRITE); if (status) return status; /* Get current data */ status = ice_aq_read_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), &data, true, false, NULL); if (status) goto exit_release_res; if (minsrevs->nvm_valid) { data.nvm_minsrev_l = CPU_TO_LE16(minsrevs->nvm & 0xFFFF); data.nvm_minsrev_h = CPU_TO_LE16(minsrevs->nvm >> 16); data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_NVM_VALID); } if (minsrevs->orom_valid) { data.orom_minsrev_l = CPU_TO_LE16(minsrevs->orom & 0xFFFF); data.orom_minsrev_h = CPU_TO_LE16(minsrevs->orom >> 16); data.validity |= CPU_TO_LE16(ICE_AQC_NVM_MINSREV_OROM_VALID); } /* Update flash data */ status = ice_aq_update_nvm(hw, ICE_AQC_NVM_MINSREV_MOD_ID, 0, sizeof(data), &data, false, ICE_AQC_NVM_SPECIAL_UPDATE, NULL); if (status) goto exit_release_res; /* Dump the Shadow RAM to the flash */ status = ice_nvm_write_activate(hw, 0, NULL); exit_release_res: ice_release_nvm(hw); return status; } /** * ice_nvm_access_get_features - Return the NVM access features structure * @cmd: NVM access command to process * @data: storage for the driver NVM features * * Fill in the data section of the NVM access request with a copy of the NVM * features structure. */ int ice_nvm_access_get_features(struct ice_nvm_access_cmd *cmd, union ice_nvm_access_data *data) { /* The provided data_size must be at least as large as our NVM * features structure. A larger size should not be treated as an * error, to allow future extensions to the features structure to * work on older drivers. */ if (cmd->data_size < sizeof(struct ice_nvm_features)) return ICE_ERR_NO_MEMORY; /* Initialize the data buffer to zeros */ ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM); /* Fill in the features data */ data->drv_features.major = ICE_NVM_ACCESS_MAJOR_VER; data->drv_features.minor = ICE_NVM_ACCESS_MINOR_VER; data->drv_features.size = sizeof(struct ice_nvm_features); data->drv_features.features[0] = ICE_NVM_FEATURES_0_REG_ACCESS; return 0; } /** * ice_nvm_access_get_module - Helper function to read module value * @cmd: NVM access command structure * * Reads the module value out of the NVM access config field. */ u32 ice_nvm_access_get_module(struct ice_nvm_access_cmd *cmd) { return ((cmd->config & ICE_NVM_CFG_MODULE_M) >> ICE_NVM_CFG_MODULE_S); } /** * ice_nvm_access_get_flags - Helper function to read flags value * @cmd: NVM access command structure * * Reads the flags value out of the NVM access config field. */ u32 ice_nvm_access_get_flags(struct ice_nvm_access_cmd *cmd) { return ((cmd->config & ICE_NVM_CFG_FLAGS_M) >> ICE_NVM_CFG_FLAGS_S); } /** * ice_nvm_access_get_adapter - Helper function to read adapter info * @cmd: NVM access command structure * * Read the adapter info value out of the NVM access config field. */ u32 ice_nvm_access_get_adapter(struct ice_nvm_access_cmd *cmd) { return ((cmd->config & ICE_NVM_CFG_ADAPTER_INFO_M) >> ICE_NVM_CFG_ADAPTER_INFO_S); } /** * ice_validate_nvm_rw_reg - Check than an NVM access request is valid * @cmd: NVM access command structure * * Validates that an NVM access structure is request to read or write a valid * register offset. First validates that the module and flags are correct, and * then ensures that the register offset is one of the accepted registers. */ static int ice_validate_nvm_rw_reg(struct ice_nvm_access_cmd *cmd) { u32 module, flags, offset; u16 i; module = ice_nvm_access_get_module(cmd); flags = ice_nvm_access_get_flags(cmd); offset = cmd->offset; /* Make sure the module and flags indicate a read/write request */ if (module != ICE_NVM_REG_RW_MODULE || flags != ICE_NVM_REG_RW_FLAGS || cmd->data_size != FIELD_SIZEOF(union ice_nvm_access_data, regval)) return ICE_ERR_PARAM; switch (offset) { case GL_HICR: case GL_HICR_EN: /* Note, this register is read only */ case GL_FWSTS: case GL_MNG_FWSM: case GLGEN_CSR_DEBUG_C: case GLGEN_RSTAT: case GLPCI_LBARCTRL: case GL_MNG_DEF_DEVID: case GLNVM_GENS: case GLNVM_FLA: case PF_FUNC_RID: return 0; default: break; } for (i = 0; i <= GL_HIDA_MAX_INDEX; i++) if (offset == (u32)GL_HIDA(i)) return 0; for (i = 0; i <= GL_HIBA_MAX_INDEX; i++) if (offset == (u32)GL_HIBA(i)) return 0; /* All other register offsets are not valid */ return ICE_ERR_OUT_OF_RANGE; } /** * ice_nvm_access_read - Handle an NVM read request * @hw: pointer to the HW struct * @cmd: NVM access command to process * @data: storage for the register value read * * Process an NVM access request to read a register. */ int ice_nvm_access_read(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, union ice_nvm_access_data *data) { int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* Always initialize the output data, even on failure */ ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM); /* Make sure this is a valid read/write access request */ status = ice_validate_nvm_rw_reg(cmd); if (status) return status; ice_debug(hw, ICE_DBG_NVM, "NVM access: reading register %08x\n", cmd->offset); /* Read the register and store the contents in the data field */ data->regval = rd32(hw, cmd->offset); return 0; } /** * ice_nvm_access_write - Handle an NVM write request * @hw: pointer to the HW struct * @cmd: NVM access command to process * @data: NVM access data to write * * Process an NVM access request to write a register. */ int ice_nvm_access_write(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, union ice_nvm_access_data *data) { int status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* Make sure this is a valid read/write access request */ status = ice_validate_nvm_rw_reg(cmd); if (status) return status; /* Reject requests to write to read-only registers */ if (hw->mac_type == ICE_MAC_E830) { if (cmd->offset == E830_GL_HICR_EN) return ICE_ERR_OUT_OF_RANGE; } else { if (cmd->offset == GL_HICR_EN) return ICE_ERR_OUT_OF_RANGE; } if (cmd->offset == GLGEN_RSTAT) return ICE_ERR_OUT_OF_RANGE; ice_debug(hw, ICE_DBG_NVM, "NVM access: writing register %08x with value %08x\n", cmd->offset, data->regval); /* Write the data field to the specified register */ wr32(hw, cmd->offset, data->regval); return 0; } /** * ice_handle_nvm_access - Handle an NVM access request * @hw: pointer to the HW struct * @cmd: NVM access command info * @data: pointer to read or return data * * Process an NVM access request. Read the command structure information and * determine if it is valid. If not, report an error indicating the command * was invalid. * * For valid commands, perform the necessary function, copying the data into * the provided data buffer. */ int ice_handle_nvm_access(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd, union ice_nvm_access_data *data) { u32 module, flags, adapter_info; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* Extended flags are currently reserved and must be zero */ if ((cmd->config & ICE_NVM_CFG_EXT_FLAGS_M) != 0) return ICE_ERR_PARAM; /* Adapter info must match the HW device ID */ adapter_info = ice_nvm_access_get_adapter(cmd); if (adapter_info != hw->device_id) return ICE_ERR_PARAM; switch (cmd->command) { case ICE_NVM_CMD_READ: module = ice_nvm_access_get_module(cmd); flags = ice_nvm_access_get_flags(cmd); /* Getting the driver's NVM features structure shares the same * command type as reading a register. Read the config field * to determine if this is a request to get features. */ if (module == ICE_NVM_GET_FEATURES_MODULE && flags == ICE_NVM_GET_FEATURES_FLAGS && cmd->offset == 0) return ice_nvm_access_get_features(cmd, data); else return ice_nvm_access_read(hw, cmd, data); case ICE_NVM_CMD_WRITE: return ice_nvm_access_write(hw, cmd, data); default: return ICE_ERR_PARAM; } } /** * ice_nvm_sanitize_operate - Clear the user data * @hw: pointer to the HW struct * * Clear user data from NVM using AQ command (0x070C). * * Return: the exit code of the operation. */ s32 ice_nvm_sanitize_operate(struct ice_hw *hw) { s32 status; u8 values; u8 cmd_flags = ICE_AQ_NVM_SANITIZE_REQ_OPERATE | ICE_AQ_NVM_SANITIZE_OPERATE_SUBJECT_CLEAR; status = ice_nvm_sanitize(hw, cmd_flags, &values); if (status) return status; if ((!(values & ICE_AQ_NVM_SANITIZE_OPERATE_HOST_CLEAN_DONE) && !(values & ICE_AQ_NVM_SANITIZE_OPERATE_BMC_CLEAN_DONE)) || ((values & ICE_AQ_NVM_SANITIZE_OPERATE_HOST_CLEAN_DONE) && !(values & ICE_AQ_NVM_SANITIZE_OPERATE_HOST_CLEAN_SUCCESS)) || ((values & ICE_AQ_NVM_SANITIZE_OPERATE_BMC_CLEAN_DONE) && !(values & ICE_AQ_NVM_SANITIZE_OPERATE_BMC_CLEAN_SUCCESS))) return ICE_ERR_AQ_ERROR; return ICE_SUCCESS; } /** * ice_nvm_sanitize - Sanitize NVM * @hw: pointer to the HW struct * @cmd_flags: flag to the ACI command * @values: values returned from the command * * Sanitize NVM using AQ command (0x070C). * * Return: the exit code of the operation. */ s32 ice_nvm_sanitize(struct ice_hw *hw, u8 cmd_flags, u8 *values) { struct ice_aqc_nvm_sanitization *cmd; struct ice_aq_desc desc; s32 status; cmd = &desc.params.sanitization; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_sanitization); cmd->cmd_flags = cmd_flags; status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); if (values) *values = cmd->values; return status; }