/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2024, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "ice_ddp_common.h" #include "ice_type.h" #include "ice_common.h" #include "ice_sched.h" /** * ice_aq_download_pkg * @hw: pointer to the hardware structure * @pkg_buf: the package buffer to transfer * @buf_size: the size of the package buffer * @last_buf: last buffer indicator * @error_offset: returns error offset * @error_info: returns error information * @cd: pointer to command details structure or NULL * * Download Package (0x0C40) */ static int ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, bool last_buf, u32 *error_offset, u32 *error_info, struct ice_sq_cd *cd) { struct ice_aqc_download_pkg *cmd; struct ice_aq_desc desc; int status; if (error_offset) *error_offset = 0; if (error_info) *error_info = 0; cmd = &desc.params.download_pkg; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); if (last_buf) cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); if (status == ICE_ERR_AQ_ERROR) { /* Read error from buffer only when the FW returned an error */ struct ice_aqc_download_pkg_resp *resp; resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; if (error_offset) *error_offset = LE32_TO_CPU(resp->error_offset); if (error_info) *error_info = LE32_TO_CPU(resp->error_info); } return status; } /** * ice_aq_upload_section * @hw: pointer to the hardware structure * @pkg_buf: the package buffer which will receive the section * @buf_size: the size of the package buffer * @cd: pointer to command details structure or NULL * * Upload Section (0x0C41) */ int ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, struct ice_sq_cd *cd) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); } /** * ice_aq_update_pkg * @hw: pointer to the hardware structure * @pkg_buf: the package cmd buffer * @buf_size: the size of the package cmd buffer * @last_buf: last buffer indicator * @error_offset: returns error offset * @error_info: returns error information * @cd: pointer to command details structure or NULL * * Update Package (0x0C42) */ static int ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, bool last_buf, u32 *error_offset, u32 *error_info, struct ice_sq_cd *cd) { struct ice_aqc_download_pkg *cmd; struct ice_aq_desc desc; int status; if (error_offset) *error_offset = 0; if (error_info) *error_info = 0; cmd = &desc.params.download_pkg; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); if (last_buf) cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); if (status == ICE_ERR_AQ_ERROR) { /* Read error from buffer only when the FW returned an error */ struct ice_aqc_download_pkg_resp *resp; resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; if (error_offset) *error_offset = LE32_TO_CPU(resp->error_offset); if (error_info) *error_info = LE32_TO_CPU(resp->error_info); } return status; } /** * ice_find_seg_in_pkg * @hw: pointer to the hardware structure * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) * @pkg_hdr: pointer to the package header to be searched * * This function searches a package file for a particular segment type. On * success it returns a pointer to the segment header, otherwise it will * return NULL. */ struct ice_generic_seg_hdr * ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, struct ice_pkg_hdr *pkg_hdr) { u32 i; ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, pkg_hdr->pkg_format_ver.update, pkg_hdr->pkg_format_ver.draft); /* Search all package segments for the requested segment type */ for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) { struct ice_generic_seg_hdr *seg; seg = (struct ice_generic_seg_hdr *) ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i])); if (LE32_TO_CPU(seg->seg_type) == seg_type) return seg; } return NULL; } /** * ice_get_pkg_seg_by_idx * @pkg_hdr: pointer to the package header to be searched * @idx: index of segment */ static struct ice_generic_seg_hdr * ice_get_pkg_seg_by_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx) { struct ice_generic_seg_hdr *seg = NULL; if (idx < LE32_TO_CPU(pkg_hdr->seg_count)) seg = (struct ice_generic_seg_hdr *) ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[idx])); return seg; } /** * ice_is_signing_seg_at_idx - determine if segment is a signing segment * @pkg_hdr: pointer to package header * @idx: segment index */ static bool ice_is_signing_seg_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx) { struct ice_generic_seg_hdr *seg; bool retval = false; seg = ice_get_pkg_seg_by_idx(pkg_hdr, idx); if (seg) retval = LE32_TO_CPU(seg->seg_type) == SEGMENT_TYPE_SIGNING; return retval; } /** * ice_is_signing_seg_type_at_idx * @pkg_hdr: pointer to package header * @idx: segment index * @seg_id: segment id that is expected * @sign_type: signing type * * Determine if a segment is a signing segment of the correct type */ static bool ice_is_signing_seg_type_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx, u32 seg_id, u32 sign_type) { bool result = false; if (ice_is_signing_seg_at_idx(pkg_hdr, idx)) { struct ice_sign_seg *seg; seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx); if (seg && LE32_TO_CPU(seg->seg_id) == seg_id && LE32_TO_CPU(seg->sign_type) == sign_type) result = true; } return result; } /** * ice_update_pkg_no_lock * @hw: pointer to the hardware structure * @bufs: pointer to an array of buffers * @count: the number of buffers in the array */ int ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) { int status = 0; u32 i; for (i = 0; i < count; i++) { struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); bool last = ((i + 1) == count); u32 offset, info; status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end), last, &offset, &info, NULL); if (status) { ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", status, offset, info); break; } } return status; } /** * ice_update_pkg * @hw: pointer to the hardware structure * @bufs: pointer to an array of buffers * @count: the number of buffers in the array * * Obtains change lock and updates package. */ int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) { int status; status = ice_acquire_change_lock(hw, ICE_RES_WRITE); if (status) return status; status = ice_update_pkg_no_lock(hw, bufs, count); ice_release_change_lock(hw); return status; } static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err) { switch (aq_err) { case ICE_AQ_RC_ENOSEC: return ICE_DDP_PKG_NO_SEC_MANIFEST; case ICE_AQ_RC_EBADSIG: return ICE_DDP_PKG_FILE_SIGNATURE_INVALID; case ICE_AQ_RC_ESVN: return ICE_DDP_PKG_SECURE_VERSION_NBR_TOO_LOW; case ICE_AQ_RC_EBADMAN: return ICE_DDP_PKG_MANIFEST_INVALID; case ICE_AQ_RC_EBADBUF: return ICE_DDP_PKG_BUFFER_INVALID; default: return ICE_DDP_PKG_ERR; } } /** * ice_is_buffer_metadata - determine if package buffer is a metadata buffer * @buf: pointer to buffer header */ static bool ice_is_buffer_metadata(struct ice_buf_hdr *buf) { bool metadata = false; if (LE32_TO_CPU(buf->section_entry[0].type) & ICE_METADATA_BUF) metadata = true; return metadata; } /** * ice_is_last_download_buffer * @buf: pointer to current buffer header * @idx: index of the buffer in the current sequence * @count: the buffer count in the current sequence * * Note: this routine should only be called if the buffer is not the last buffer */ static bool ice_is_last_download_buffer(struct ice_buf_hdr *buf, u32 idx, u32 count) { bool last = ((idx + 1) == count); /* A set metadata flag in the next buffer will signal that the current * buffer will be the last buffer downloaded */ if (!last) { struct ice_buf *next_buf = ((struct ice_buf *)buf) + 1; last = ice_is_buffer_metadata((struct ice_buf_hdr *)next_buf); } return last; } /** * ice_dwnld_cfg_bufs_no_lock * @hw: pointer to the hardware structure * @bufs: pointer to an array of buffers * @start: buffer index of first buffer to download * @count: the number of buffers to download * @indicate_last: if true, then set last buffer flag on last buffer download * * Downloads package configuration buffers to the firmware. Metadata buffers * are skipped, and the first metadata buffer found indicates that the rest * of the buffers are all metadata buffers. */ static enum ice_ddp_state ice_dwnld_cfg_bufs_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 start, u32 count, bool indicate_last) { enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; struct ice_buf_hdr *bh; enum ice_aq_err err; u32 offset, info, i; if (!bufs || !count) return ICE_DDP_PKG_ERR; /* If the first buffer's first section has its metadata bit set * then there are no buffers to be downloaded, and the operation is * considered a success. */ bh = (struct ice_buf_hdr *)(bufs + start); if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF) return ICE_DDP_PKG_SUCCESS; for (i = 0; i < count; i++) { bool last = false; int status; bh = (struct ice_buf_hdr *)(bufs + start + i); if (indicate_last) last = ice_is_last_download_buffer(bh, i, count); status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, &offset, &info, NULL); /* Save AQ status from download package */ if (status) { ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", status, offset, info); err = hw->adminq.sq_last_status; state = ice_map_aq_err_to_ddp_state(err); break; } if (last) break; } return state; } /** * ice_aq_get_pkg_info_list * @hw: pointer to the hardware structure * @pkg_info: the buffer which will receive the information list * @buf_size: the size of the pkg_info information buffer * @cd: pointer to command details structure or NULL * * Get Package Info List (0x0C43) */ static int ice_aq_get_pkg_info_list(struct ice_hw *hw, struct ice_aqc_get_pkg_info_resp *pkg_info, u16 buf_size, struct ice_sq_cd *cd) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); } /** * ice_get_pkg_segment_id - get correct package segment id, based on device * @mac_type: MAC type of the device */ static u32 ice_get_pkg_segment_id(enum ice_mac_type mac_type) { u32 seg_id; switch (mac_type) { case ICE_MAC_E830: seg_id = SEGMENT_TYPE_ICE_E830; break; case ICE_MAC_GENERIC: case ICE_MAC_GENERIC_3K: case ICE_MAC_GENERIC_3K_E825: default: seg_id = SEGMENT_TYPE_ICE_E810; break; } return seg_id; } /** * ice_get_pkg_sign_type - get package segment sign type, based on device * @mac_type: MAC type of the device */ static u32 ice_get_pkg_sign_type(enum ice_mac_type mac_type) { u32 sign_type; switch (mac_type) { case ICE_MAC_E830: sign_type = SEGMENT_SIGN_TYPE_RSA3K_SBB; break; case ICE_MAC_GENERIC_3K: sign_type = SEGMENT_SIGN_TYPE_RSA3K; break; case ICE_MAC_GENERIC_3K_E825: sign_type = SEGMENT_SIGN_TYPE_RSA3K_E825; break; case ICE_MAC_GENERIC: default: sign_type = SEGMENT_SIGN_TYPE_RSA2K; break; } return sign_type; } /** * ice_get_signing_req - get correct package requirements, based on device * @hw: pointer to the hardware structure */ static void ice_get_signing_req(struct ice_hw *hw) { hw->pkg_seg_id = ice_get_pkg_segment_id(hw->mac_type); hw->pkg_sign_type = ice_get_pkg_sign_type(hw->mac_type); } /** * ice_download_pkg_sig_seg - download a signature segment * @hw: pointer to the hardware structure * @seg: pointer to signature segment */ static enum ice_ddp_state ice_download_pkg_sig_seg(struct ice_hw *hw, struct ice_sign_seg *seg) { enum ice_ddp_state state; state = ice_dwnld_cfg_bufs_no_lock(hw, seg->buf_tbl.buf_array, 0, LE32_TO_CPU(seg->buf_tbl.buf_count), false); return state; } /** * ice_download_pkg_config_seg - download a config segment * @hw: pointer to the hardware structure * @pkg_hdr: pointer to package header * @idx: segment index * @start: starting buffer * @count: buffer count * @last_seg: last segment being downloaded * * Note: idx must reference a ICE segment */ static enum ice_ddp_state ice_download_pkg_config_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr, u32 idx, u32 start, u32 count, bool last_seg) { struct ice_buf_table *bufs; enum ice_ddp_state state; struct ice_seg *seg; u32 buf_count; seg = (struct ice_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx); if (!seg) return ICE_DDP_PKG_ERR; bufs = ice_find_buf_table(seg); buf_count = LE32_TO_CPU(bufs->buf_count); if (start >= buf_count || start + count > buf_count) return ICE_DDP_PKG_ERR; state = ice_dwnld_cfg_bufs_no_lock(hw, bufs->buf_array, start, count, last_seg); return state; } /** * ice_dwnld_sign_and_cfg_segs - download a signing segment and config segment * @hw: pointer to the hardware structure * @pkg_hdr: pointer to package header * @idx: segment index (must be a signature segment) * * Note: idx must reference a signature segment */ static enum ice_ddp_state ice_dwnld_sign_and_cfg_segs(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr, u32 idx) { enum ice_ddp_state state; struct ice_sign_seg *seg; bool last_seg = true; u32 conf_idx; u32 start; u32 count; u32 flags; seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx); if (!seg) { state = ICE_DDP_PKG_ERR; goto exit; } conf_idx = LE32_TO_CPU(seg->signed_seg_idx); start = LE32_TO_CPU(seg->signed_buf_start); count = LE32_TO_CPU(seg->signed_buf_count); flags = LE32_TO_CPU(seg->flags); if (flags & ICE_SIGN_SEG_FLAGS_VALID) last_seg = !!(flags & ICE_SIGN_SEG_FLAGS_LAST); state = ice_download_pkg_sig_seg(hw, seg); if (state) goto exit; if (count == 0) { /* this is a "Reference Signature Segment" and download should * be only for the buffers in the signature segment (and not * the hardware configuration segment) */ goto exit; } state = ice_download_pkg_config_seg(hw, pkg_hdr, conf_idx, start, count, last_seg); exit: return state; } /** * ice_match_signing_seg - determine if a matching signing segment exists * @pkg_hdr: pointer to package header * @seg_id: segment id that is expected * @sign_type: signing type */ static bool ice_match_signing_seg(struct ice_pkg_hdr *pkg_hdr, u32 seg_id, u32 sign_type) { bool match = false; u32 i; for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) { if (ice_is_signing_seg_type_at_idx(pkg_hdr, i, seg_id, sign_type)) { match = true; break; } } return match; } /** * ice_post_dwnld_pkg_actions - perform post download package actions * @hw: pointer to the hardware structure */ static enum ice_ddp_state ice_post_dwnld_pkg_actions(struct ice_hw *hw) { enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; int status; status = ice_set_vlan_mode(hw); if (status) { ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n", status); state = ICE_DDP_PKG_ERR; } return state; } /** * ice_download_pkg_with_sig_seg - download package using signature segments * @hw: pointer to the hardware structure * @pkg_hdr: pointer to package header */ static enum ice_ddp_state ice_download_pkg_with_sig_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) { enum ice_aq_err aq_err = hw->adminq.sq_last_status; enum ice_ddp_state state = ICE_DDP_PKG_ERR; int status; u32 i; ice_debug(hw, ICE_DBG_INIT, "Segment ID %d\n", hw->pkg_seg_id); ice_debug(hw, ICE_DBG_INIT, "Signature type %d\n", hw->pkg_sign_type); status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); if (status) { if (status == ICE_ERR_AQ_NO_WORK) state = ICE_DDP_PKG_ALREADY_LOADED; else state = ice_map_aq_err_to_ddp_state(aq_err); return state; } for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) { if (!ice_is_signing_seg_type_at_idx(pkg_hdr, i, hw->pkg_seg_id, hw->pkg_sign_type)) continue; state = ice_dwnld_sign_and_cfg_segs(hw, pkg_hdr, i); if (state) break; } if (!state) state = ice_post_dwnld_pkg_actions(hw); ice_release_global_cfg_lock(hw); return state; } /** * ice_dwnld_cfg_bufs * @hw: pointer to the hardware structure * @bufs: pointer to an array of buffers * @count: the number of buffers in the array * * Obtains global config lock and downloads the package configuration buffers * to the firmware. */ static enum ice_ddp_state ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) { enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; struct ice_buf_hdr *bh; int status; if (!bufs || !count) return ICE_DDP_PKG_ERR; /* If the first buffer's first section has its metadata bit set * then there are no buffers to be downloaded, and the operation is * considered a success. */ bh = (struct ice_buf_hdr *)bufs; if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF) return ICE_DDP_PKG_SUCCESS; status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); if (status) { if (status == ICE_ERR_AQ_NO_WORK) return ICE_DDP_PKG_ALREADY_LOADED; return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status); } state = ice_dwnld_cfg_bufs_no_lock(hw, bufs, 0, count, true); if (!state) state = ice_post_dwnld_pkg_actions(hw); ice_release_global_cfg_lock(hw); return state; } /** * ice_download_pkg_without_sig_seg * @hw: pointer to the hardware structure * @ice_seg: pointer to the segment of the package to be downloaded * * Handles the download of a complete package without signature segment. */ static enum ice_ddp_state ice_download_pkg_without_sig_seg(struct ice_hw *hw, struct ice_seg *ice_seg) { struct ice_buf_table *ice_buf_tbl; enum ice_ddp_state state; ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", ice_seg->hdr.seg_format_ver.major, ice_seg->hdr.seg_format_ver.minor, ice_seg->hdr.seg_format_ver.update, ice_seg->hdr.seg_format_ver.draft); ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", LE32_TO_CPU(ice_seg->hdr.seg_type), LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); ice_buf_tbl = ice_find_buf_table(ice_seg); ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", LE32_TO_CPU(ice_buf_tbl->buf_count)); state = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, LE32_TO_CPU(ice_buf_tbl->buf_count)); return state; } /** * ice_download_pkg * @hw: pointer to the hardware structure * @pkg_hdr: pointer to package header * @ice_seg: pointer to the segment of the package to be downloaded * * Handles the download of a complete package. */ static enum ice_ddp_state ice_download_pkg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr, struct ice_seg *ice_seg) { enum ice_ddp_state state; if (ice_match_signing_seg(pkg_hdr, hw->pkg_seg_id, hw->pkg_sign_type)) state = ice_download_pkg_with_sig_seg(hw, pkg_hdr); else state = ice_download_pkg_without_sig_seg(hw, ice_seg); ice_post_pkg_dwnld_vlan_mode_cfg(hw); return state; } /** * ice_init_pkg_info * @hw: pointer to the hardware structure * @pkg_hdr: pointer to the driver's package hdr * * Saves off the package details into the HW structure. */ static enum ice_ddp_state ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) { struct ice_generic_seg_hdr *seg_hdr; if (!pkg_hdr) return ICE_DDP_PKG_ERR; ice_get_signing_req(hw); ice_debug(hw, ICE_DBG_INIT, "Pkg using segment id: 0x%08X\n", hw->pkg_seg_id); seg_hdr = (struct ice_generic_seg_hdr *) ice_find_seg_in_pkg(hw, hw->pkg_seg_id, pkg_hdr); if (seg_hdr) { struct ice_meta_sect *meta; struct ice_pkg_enum state; ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); /* Get package information from the Metadata Section */ meta = (struct ice_meta_sect *) ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, ICE_SID_METADATA); if (!meta) { ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); return ICE_DDP_PKG_INVALID_FILE; } hw->pkg_ver = meta->ver; ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name), ICE_NONDMA_TO_NONDMA); ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", meta->ver.major, meta->ver.minor, meta->ver.update, meta->ver.draft, meta->name); hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id, sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA); ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", seg_hdr->seg_format_ver.major, seg_hdr->seg_format_ver.minor, seg_hdr->seg_format_ver.update, seg_hdr->seg_format_ver.draft, seg_hdr->seg_id); } else { ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); return ICE_DDP_PKG_INVALID_FILE; } return ICE_DDP_PKG_SUCCESS; } /** * ice_get_pkg_info * @hw: pointer to the hardware structure * * Store details of the package currently loaded in HW into the HW structure. */ enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw) { enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; struct ice_aqc_get_pkg_info_resp *pkg_info; u16 size; u32 i; size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT); pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); if (!pkg_info) return ICE_DDP_PKG_ERR; if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) { state = ICE_DDP_PKG_ERR; goto init_pkg_free_alloc; } for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) { #define ICE_PKG_FLAG_COUNT 4 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; u8 place = 0; if (pkg_info->pkg_info[i].is_active) { flags[place++] = 'A'; hw->active_pkg_ver = pkg_info->pkg_info[i].ver; hw->active_track_id = LE32_TO_CPU(pkg_info->pkg_info[i].track_id); ice_memcpy(hw->active_pkg_name, pkg_info->pkg_info[i].name, sizeof(pkg_info->pkg_info[i].name), ICE_NONDMA_TO_NONDMA); hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; } if (pkg_info->pkg_info[i].is_active_at_boot) flags[place++] = 'B'; if (pkg_info->pkg_info[i].is_modified) flags[place++] = 'M'; if (pkg_info->pkg_info[i].is_in_nvm) flags[place++] = 'N'; ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", i, pkg_info->pkg_info[i].ver.major, pkg_info->pkg_info[i].ver.minor, pkg_info->pkg_info[i].ver.update, pkg_info->pkg_info[i].ver.draft, pkg_info->pkg_info[i].name, flags); } init_pkg_free_alloc: ice_free(hw, pkg_info); return state; } /** * ice_label_enum_handler * @sect_type: section type * @section: pointer to section * @index: index of the label entry to be returned * @offset: pointer to receive absolute offset, always zero for label sections * * This is a callback function that can be passed to ice_pkg_enum_entry. * Handles enumeration of individual label entries. */ static void * ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index, u32 *offset) { struct ice_label_section *labels; if (!section) return NULL; if (index > ICE_MAX_LABELS_IN_BUF) return NULL; if (offset) *offset = 0; labels = (struct ice_label_section *)section; if (index >= LE16_TO_CPU(labels->count)) return NULL; return labels->label + index; } /** * ice_enum_labels * @ice_seg: pointer to the ice segment (NULL on subsequent calls) * @type: the section type that will contain the label (0 on subsequent calls) * @state: ice_pkg_enum structure that will hold the state of the enumeration * @value: pointer to a value that will return the label's value if found * * Enumerates a list of labels in the package. The caller will call * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL * the end of the list has been reached. */ static char * ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, u16 *value) { struct ice_label *label; /* Check for valid label section on first call */ if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) return NULL; label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type, NULL, ice_label_enum_handler); if (!label) return NULL; *value = LE16_TO_CPU(label->value); return label->name; } /** * ice_find_label_value * @ice_seg: pointer to the ice segment (non-NULL) * @name: name of the label to search for * @type: the section type that will contain the label * @value: pointer to a value that will return the label's value if found * * Finds a label's value given the label name and the section type to search. * The ice_seg parameter must not be NULL since the first call to * ice_enum_labels requires a pointer to an actual ice_seg structure. */ int ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type, u16 *value) { struct ice_pkg_enum state; char *label_name; u16 val; ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); if (!ice_seg) return ICE_ERR_PARAM; do { label_name = ice_enum_labels(ice_seg, type, &state, &val); if (label_name && !strcmp(label_name, name)) { *value = val; return 0; } ice_seg = NULL; } while (label_name); return ICE_ERR_CFG; } /** * ice_verify_pkg - verify package * @pkg: pointer to the package buffer * @len: size of the package buffer * * Verifies various attributes of the package file, including length, format * version, and the requirement of at least one segment. */ enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) { u32 seg_count; u32 i; if (len < ice_struct_size(pkg, seg_offset, 1)) return ICE_DDP_PKG_INVALID_FILE; if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) return ICE_DDP_PKG_INVALID_FILE; /* pkg must have at least one segment */ seg_count = LE32_TO_CPU(pkg->seg_count); if (seg_count < 1) return ICE_DDP_PKG_INVALID_FILE; /* make sure segment array fits in package length */ if (len < ice_struct_size(pkg, seg_offset, seg_count)) return ICE_DDP_PKG_INVALID_FILE; /* all segments must fit within length */ for (i = 0; i < seg_count; i++) { u32 off = LE32_TO_CPU(pkg->seg_offset[i]); struct ice_generic_seg_hdr *seg; /* segment header must fit */ if (len < off + sizeof(*seg)) return ICE_DDP_PKG_INVALID_FILE; seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); /* segment body must fit */ if (len < off + LE32_TO_CPU(seg->seg_size)) return ICE_DDP_PKG_INVALID_FILE; } return ICE_DDP_PKG_SUCCESS; } /** * ice_free_seg - free package segment pointer * @hw: pointer to the hardware structure * * Frees the package segment pointer in the proper manner, depending on if the * segment was allocated or just the passed in pointer was stored. */ void ice_free_seg(struct ice_hw *hw) { if (hw->pkg_copy) { ice_free(hw, hw->pkg_copy); hw->pkg_copy = NULL; hw->pkg_size = 0; } hw->seg = NULL; } /** * ice_chk_pkg_version - check package version for compatibility with driver * @pkg_ver: pointer to a version structure to check * * Check to make sure that the package about to be downloaded is compatible with * the driver. To be compatible, the major and minor components of the package * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR * definitions. */ static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) { if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ || (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && pkg_ver->minor > ICE_PKG_SUPP_VER_MNR)) return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH; else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ || (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && pkg_ver->minor < ICE_PKG_SUPP_VER_MNR)) return ICE_DDP_PKG_FILE_VERSION_TOO_LOW; return ICE_DDP_PKG_SUCCESS; } /** * ice_chk_pkg_compat * @hw: pointer to the hardware structure * @ospkg: pointer to the package hdr * @seg: pointer to the package segment hdr * * This function checks the package version compatibility with driver and NVM */ static enum ice_ddp_state ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, struct ice_seg **seg) { struct ice_aqc_get_pkg_info_resp *pkg; enum ice_ddp_state state; u16 size; u32 i; /* Check package version compatibility */ state = ice_chk_pkg_version(&hw->pkg_ver); if (state) { ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); return state; } /* find ICE segment in given package */ *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, hw->pkg_seg_id, ospkg); if (!*seg) { ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); return ICE_DDP_PKG_INVALID_FILE; } /* Check if FW is compatible with the OS package */ size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT); pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); if (!pkg) return ICE_DDP_PKG_ERR; if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) { state = ICE_DDP_PKG_ERR; goto fw_ddp_compat_free_alloc; } for (i = 0; i < LE32_TO_CPU(pkg->count); i++) { /* loop till we find the NVM package */ if (!pkg->pkg_info[i].is_in_nvm) continue; if ((*seg)->hdr.seg_format_ver.major != pkg->pkg_info[i].ver.major || (*seg)->hdr.seg_format_ver.minor > pkg->pkg_info[i].ver.minor) { state = ICE_DDP_PKG_FW_MISMATCH; ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); } /* done processing NVM package so break */ break; } fw_ddp_compat_free_alloc: ice_free(hw, pkg); return state; } /** * ice_sw_fv_handler * @sect_type: section type * @section: pointer to section * @index: index of the field vector entry to be returned * @offset: ptr to variable that receives the offset in the field vector table * * This is a callback function that can be passed to ice_pkg_enum_entry. * This function treats the given section as of type ice_sw_fv_section and * enumerates offset field. "offset" is an index into the field vector table. */ static void * ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) { struct ice_sw_fv_section *fv_section = (struct ice_sw_fv_section *)section; if (!section || sect_type != ICE_SID_FLD_VEC_SW) return NULL; if (index >= LE16_TO_CPU(fv_section->count)) return NULL; if (offset) /* "index" passed in to this function is relative to a given * 4k block. To get to the true index into the field vector * table need to add the relative index to the base_offset * field of this section */ *offset = LE16_TO_CPU(fv_section->base_offset) + index; return fv_section->fv + index; } /** * ice_get_prof_index_max - get the max profile index for used profile * @hw: pointer to the HW struct * * Calling this function will get the max profile index for used profile * and store the index number in struct ice_switch_info *switch_info * in hw for following use. */ static int ice_get_prof_index_max(struct ice_hw *hw) { u16 prof_index = 0, j, max_prof_index = 0; struct ice_pkg_enum state; struct ice_seg *ice_seg; bool flag = false; struct ice_fv *fv; u32 offset; ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); if (!hw->seg) return ICE_ERR_PARAM; ice_seg = hw->seg; do { fv = (struct ice_fv *) ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &offset, ice_sw_fv_handler); if (!fv) break; ice_seg = NULL; /* in the profile that not be used, the prot_id is set to 0xff * and the off is set to 0x1ff for all the field vectors. */ for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) if (fv->ew[j].prot_id != ICE_PROT_INVALID || fv->ew[j].off != ICE_FV_OFFSET_INVAL) flag = true; if (flag && prof_index > max_prof_index) max_prof_index = prof_index; prof_index++; flag = false; } while (fv); hw->switch_info->max_used_prof_index = max_prof_index; return 0; } /** * ice_get_ddp_pkg_state - get DDP pkg state after download * @hw: pointer to the HW struct * @already_loaded: indicates if pkg was already loaded onto the device * */ static enum ice_ddp_state ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded) { if (hw->pkg_ver.major == hw->active_pkg_ver.major && hw->pkg_ver.minor == hw->active_pkg_ver.minor && hw->pkg_ver.update == hw->active_pkg_ver.update && hw->pkg_ver.draft == hw->active_pkg_ver.draft && !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) { if (already_loaded) return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED; else return ICE_DDP_PKG_SUCCESS; } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED; } else { return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED; } } /** * ice_init_pkg_regs - initialize additional package registers * @hw: pointer to the hardware structure */ static void ice_init_pkg_regs(struct ice_hw *hw) { #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF #define ICE_SW_BLK_IDX 0 /* setup Switch block input mask, which is 48-bits in two parts */ wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); } /** * ice_init_pkg - initialize/download package * @hw: pointer to the hardware structure * @buf: pointer to the package buffer * @len: size of the package buffer * * This function initializes a package. The package contains HW tables * required to do packet processing. First, the function extracts package * information such as version. Then it finds the ice configuration segment * within the package; this function then saves a copy of the segment pointer * within the supplied package buffer. Next, the function will cache any hints * from the package, followed by downloading the package itself. Note, that if * a previous PF driver has already downloaded the package successfully, then * the current driver will not have to download the package again. * * The local package contents will be used to query default behavior and to * update specific sections of the HW's version of the package (e.g. to update * the parse graph to understand new protocols). * * This function stores a pointer to the package buffer memory, and it is * expected that the supplied buffer will not be freed immediately. If the * package buffer needs to be freed, such as when read from a file, use * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this * case. */ enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) { bool already_loaded = false; enum ice_ddp_state state; struct ice_pkg_hdr *pkg; struct ice_seg *seg; if (!buf || !len) return ICE_DDP_PKG_ERR; pkg = (struct ice_pkg_hdr *)buf; state = ice_verify_pkg(pkg, len); if (state) { ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", state); return state; } /* initialize package info */ state = ice_init_pkg_info(hw, pkg); if (state) return state; /* before downloading the package, check package version for * compatibility with driver */ state = ice_chk_pkg_compat(hw, pkg, &seg); if (state) return state; /* initialize package hints and then download package */ ice_init_pkg_hints(hw, seg); state = ice_download_pkg(hw, pkg, seg); if (state == ICE_DDP_PKG_ALREADY_LOADED) { ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); already_loaded = true; } /* Get information on the package currently loaded in HW, then make sure * the driver is compatible with this version. */ if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) { state = ice_get_pkg_info(hw); if (!state) state = ice_get_ddp_pkg_state(hw, already_loaded); } if (ice_is_init_pkg_successful(state)) { hw->seg = seg; /* on successful package download update other required * registers to support the package and fill HW tables * with package content. */ ice_init_pkg_regs(hw); ice_fill_blk_tbls(hw); ice_get_prof_index_max(hw); } else { ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", state); } return state; } /** * ice_copy_and_init_pkg - initialize/download a copy of the package * @hw: pointer to the hardware structure * @buf: pointer to the package buffer * @len: size of the package buffer * * This function copies the package buffer, and then calls ice_init_pkg() to * initialize the copied package contents. * * The copying is necessary if the package buffer supplied is constant, or if * the memory may disappear shortly after calling this function. * * If the package buffer resides in the data segment and can be modified, the * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). * * However, if the package buffer needs to be copied first, such as when being * read from a file, the caller should use ice_copy_and_init_pkg(). * * This function will first copy the package buffer, before calling * ice_init_pkg(). The caller is free to immediately destroy the original * package buffer, as the new copy will be managed by this function and * related routines. */ enum ice_ddp_state ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) { enum ice_ddp_state state; u8 *buf_copy; if (!buf || !len) return ICE_DDP_PKG_ERR; buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA); state = ice_init_pkg(hw, buf_copy, len); if (!ice_is_init_pkg_successful(state)) { /* Free the copy, since we failed to initialize the package */ ice_free(hw, buf_copy); } else { /* Track the copied pkg so we can free it later */ hw->pkg_copy = buf_copy; hw->pkg_size = len; } return state; } /** * ice_is_init_pkg_successful - check if DDP init was successful * @state: state of the DDP pkg after download */ bool ice_is_init_pkg_successful(enum ice_ddp_state state) { switch (state) { case ICE_DDP_PKG_SUCCESS: case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: return true; default: return false; } } /** * ice_pkg_buf_alloc * @hw: pointer to the HW structure * * Allocates a package buffer and returns a pointer to the buffer header. * Note: all package contents must be in Little Endian form. */ struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) { struct ice_buf_build *bld; struct ice_buf_hdr *buf; bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld)); if (!bld) return NULL; buf = (struct ice_buf_hdr *)bld; buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr, section_entry)); return bld; } static bool ice_is_gtp_u_profile(u32 prof_idx) { return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID && prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP) || prof_idx == ICE_PROFID_IPV4_GTPU_TEID; } static bool ice_is_gtp_c_profile(u32 prof_idx) { switch (prof_idx) { case ICE_PROFID_IPV4_GTPC_TEID: case ICE_PROFID_IPV4_GTPC_NO_TEID: case ICE_PROFID_IPV6_GTPC_TEID: case ICE_PROFID_IPV6_GTPC_NO_TEID: return true; default: return false; } } /** * ice_get_sw_prof_type - determine switch profile type * @hw: pointer to the HW structure * @fv: pointer to the switch field vector * @prof_idx: profile index to check */ static enum ice_prof_type ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx) { bool valid_prof = false; u16 i; if (ice_is_gtp_c_profile(prof_idx)) return ICE_PROF_TUN_GTPC; if (ice_is_gtp_u_profile(prof_idx)) return ICE_PROF_TUN_GTPU; for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { if (fv->ew[i].off != ICE_NAN_OFFSET) valid_prof = true; /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && fv->ew[i].off == ICE_VNI_OFFSET) return ICE_PROF_TUN_UDP; /* GRE tunnel will have GRE protocol */ if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) return ICE_PROF_TUN_GRE; } return valid_prof ? ICE_PROF_NON_TUN : ICE_PROF_INVALID; } /** * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type * @hw: pointer to hardware structure * @req_profs: type of profiles requested * @bm: pointer to memory for returning the bitmap of field vectors */ void ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, ice_bitmap_t *bm) { struct ice_pkg_enum state; struct ice_seg *ice_seg; struct ice_fv *fv; ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES); ice_seg = hw->seg; do { enum ice_prof_type prof_type; u32 offset; fv = (struct ice_fv *) ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &offset, ice_sw_fv_handler); ice_seg = NULL; if (fv) { /* Determine field vector type */ prof_type = ice_get_sw_prof_type(hw, fv, offset); if (req_profs & prof_type) ice_set_bit((u16)offset, bm); } } while (fv); } /** * ice_get_sw_fv_list * @hw: pointer to the HW structure * @lkups: lookup elements or match criteria for the advanced recipe, one * structure per protocol header * @bm: bitmap of field vectors to consider * @fv_list: Head of a list * * Finds all the field vector entries from switch block that contain * a given protocol ID and offset and returns a list of structures of type * "ice_sw_fv_list_entry". Every structure in the list has a field vector * definition and profile ID information * NOTE: The caller of the function is responsible for freeing the memory * allocated for every list entry. */ int ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups, ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list) { struct ice_sw_fv_list_entry *fvl; struct ice_sw_fv_list_entry *tmp; struct ice_pkg_enum state; struct ice_seg *ice_seg; struct ice_fv *fv; u32 offset; ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); if (!lkups->n_val_words || !hw->seg) return ICE_ERR_PARAM; ice_seg = hw->seg; do { u16 i; fv = (struct ice_fv *) ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &offset, ice_sw_fv_handler); if (!fv) break; ice_seg = NULL; /* If field vector is not in the bitmap list, then skip this * profile. */ if (!ice_is_bit_set(bm, (u16)offset)) continue; for (i = 0; i < lkups->n_val_words; i++) { int j; for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) if (fv->ew[j].prot_id == lkups->fv_words[i].prot_id && fv->ew[j].off == lkups->fv_words[i].off) break; if (j >= hw->blk[ICE_BLK_SW].es.fvw) break; if (i + 1 == lkups->n_val_words) { fvl = (struct ice_sw_fv_list_entry *) ice_malloc(hw, sizeof(*fvl)); if (!fvl) goto err; fvl->fv_ptr = fv; fvl->profile_id = offset; LIST_ADD(&fvl->list_entry, fv_list); break; } } } while (fv); if (LIST_EMPTY(fv_list)) { ice_warn(hw, "Required profiles not found in currently loaded DDP package"); return ICE_ERR_CFG; } return 0; err: LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry, list_entry) { LIST_DEL(&fvl->list_entry); ice_free(hw, fvl); } return ICE_ERR_NO_MEMORY; } /** * ice_init_prof_result_bm - Initialize the profile result index bitmap * @hw: pointer to hardware structure */ void ice_init_prof_result_bm(struct ice_hw *hw) { struct ice_pkg_enum state; struct ice_seg *ice_seg; struct ice_fv *fv; ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); if (!hw->seg) return; ice_seg = hw->seg; do { u32 off; u16 i; fv = (struct ice_fv *) ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &off, ice_sw_fv_handler); ice_seg = NULL; if (!fv) break; ice_zero_bitmap(hw->switch_info->prof_res_bm[off], ICE_MAX_FV_WORDS); /* Determine empty field vector indices, these can be * used for recipe results. Skip index 0, since it is * always used for Switch ID. */ for (i = 1; i < ICE_MAX_FV_WORDS; i++) if (fv->ew[i].prot_id == ICE_PROT_INVALID && fv->ew[i].off == ICE_FV_OFFSET_INVAL) ice_set_bit(i, hw->switch_info->prof_res_bm[off]); } while (fv); } /** * ice_pkg_buf_free * @hw: pointer to the HW structure * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * * Frees a package buffer */ void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) { ice_free(hw, bld); } /** * ice_pkg_buf_reserve_section * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * @count: the number of sections to reserve * * Reserves one or more section table entries in a package buffer. This routine * can be called multiple times as long as they are made before calling * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() * is called once, the number of sections that can be allocated will not be able * to be increased; not using all reserved sections is fine, but this will * result in some wasted space in the buffer. * Note: all package contents must be in Little Endian form. */ int ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) { struct ice_buf_hdr *buf; u16 section_count; u16 data_end; if (!bld) return ICE_ERR_PARAM; buf = (struct ice_buf_hdr *)&bld->buf; /* already an active section, can't increase table size */ section_count = LE16_TO_CPU(buf->section_count); if (section_count > 0) return ICE_ERR_CFG; if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) return ICE_ERR_CFG; bld->reserved_section_table_entries += count; data_end = LE16_TO_CPU(buf->data_end) + FLEX_ARRAY_SIZE(buf, section_entry, count); buf->data_end = CPU_TO_LE16(data_end); return 0; } /** * ice_pkg_buf_alloc_section * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * @type: the section type value * @size: the size of the section to reserve (in bytes) * * Reserves memory in the buffer for a section's content and updates the * buffers' status accordingly. This routine returns a pointer to the first * byte of the section start within the buffer, which is used to fill in the * section contents. * Note: all package contents must be in Little Endian form. */ void * ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) { struct ice_buf_hdr *buf; u16 sect_count; u16 data_end; if (!bld || !type || !size) return NULL; buf = (struct ice_buf_hdr *)&bld->buf; /* check for enough space left in buffer */ data_end = LE16_TO_CPU(buf->data_end); /* section start must align on 4 byte boundary */ data_end = ICE_ALIGN(data_end, 4); if ((data_end + size) > ICE_MAX_S_DATA_END) return NULL; /* check for more available section table entries */ sect_count = LE16_TO_CPU(buf->section_count); if (sect_count < bld->reserved_section_table_entries) { void *section_ptr = ((u8 *)buf) + data_end; buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end); buf->section_entry[sect_count].size = CPU_TO_LE16(size); buf->section_entry[sect_count].type = CPU_TO_LE32(type); data_end += size; buf->data_end = CPU_TO_LE16(data_end); buf->section_count = CPU_TO_LE16(sect_count + 1); return section_ptr; } /* no free section table entries */ return NULL; } /** * ice_pkg_buf_alloc_single_section * @hw: pointer to the HW structure * @type: the section type value * @size: the size of the section to reserve (in bytes) * @section: returns pointer to the section * * Allocates a package buffer with a single section. * Note: all package contents must be in Little Endian form. */ struct ice_buf_build * ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, void **section) { struct ice_buf_build *buf; if (!section) return NULL; buf = ice_pkg_buf_alloc(hw); if (!buf) return NULL; if (ice_pkg_buf_reserve_section(buf, 1)) goto ice_pkg_buf_alloc_single_section_err; *section = ice_pkg_buf_alloc_section(buf, type, size); if (!*section) goto ice_pkg_buf_alloc_single_section_err; return buf; ice_pkg_buf_alloc_single_section_err: ice_pkg_buf_free(hw, buf); return NULL; } /** * ice_pkg_buf_unreserve_section * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * @count: the number of sections to unreserve * * Unreserves one or more section table entries in a package buffer, releasing * space that can be used for section data. This routine can be called * multiple times as long as they are made before calling * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() * is called once, the number of sections that can be allocated will not be able * to be increased; not using all reserved sections is fine, but this will * result in some wasted space in the buffer. * Note: all package contents must be in Little Endian form. */ int ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count) { struct ice_buf_hdr *buf; u16 section_count; u16 data_end; if (!bld) return ICE_ERR_PARAM; buf = (struct ice_buf_hdr *)&bld->buf; /* already an active section, can't decrease table size */ section_count = LE16_TO_CPU(buf->section_count); if (section_count > 0) return ICE_ERR_CFG; if (count > bld->reserved_section_table_entries) return ICE_ERR_CFG; bld->reserved_section_table_entries -= count; data_end = LE16_TO_CPU(buf->data_end) - FLEX_ARRAY_SIZE(buf, section_entry, count); buf->data_end = CPU_TO_LE16(data_end); return 0; } /** * ice_pkg_buf_get_free_space * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * * Returns the number of free bytes remaining in the buffer. * Note: all package contents must be in Little Endian form. */ u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld) { struct ice_buf_hdr *buf; if (!bld) return 0; buf = (struct ice_buf_hdr *)&bld->buf; return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end); } /** * ice_pkg_buf_get_active_sections * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * * Returns the number of active sections. Before using the package buffer * in an update package command, the caller should make sure that there is at * least one active section - otherwise, the buffer is not legal and should * not be used. * Note: all package contents must be in Little Endian form. */ u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) { struct ice_buf_hdr *buf; if (!bld) return 0; buf = (struct ice_buf_hdr *)&bld->buf; return LE16_TO_CPU(buf->section_count); } /** * ice_pkg_buf * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * * Return a pointer to the buffer's header */ struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) { if (bld) return &bld->buf; return NULL; } /** * ice_find_buf_table * @ice_seg: pointer to the ice segment * * Returns the address of the buffer table within the ice segment. */ struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) { struct ice_nvm_table *nvms; nvms = (struct ice_nvm_table *) (ice_seg->device_table + LE32_TO_CPU(ice_seg->device_table_count)); return (_FORCE_ struct ice_buf_table *) (nvms->vers + LE32_TO_CPU(nvms->table_count)); } /** * ice_pkg_val_buf * @buf: pointer to the ice buffer * * This helper function validates a buffer's header. */ static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) { struct ice_buf_hdr *hdr; u16 section_count; u16 data_end; hdr = (struct ice_buf_hdr *)buf->buf; /* verify data */ section_count = LE16_TO_CPU(hdr->section_count); if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) return NULL; data_end = LE16_TO_CPU(hdr->data_end); if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) return NULL; return hdr; } /** * ice_pkg_enum_buf * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * * This function will enumerate all the buffers in the ice segment. The first * call is made with the ice_seg parameter non-NULL; on subsequent calls, * ice_seg is set to NULL which continues the enumeration. When the function * returns a NULL pointer, then the end of the buffers has been reached, or an * unexpected value has been detected (for example an invalid section count or * an invalid buffer end value). */ struct ice_buf_hdr * ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) { if (ice_seg) { state->buf_table = ice_find_buf_table(ice_seg); if (!state->buf_table) return NULL; state->buf_idx = 0; return ice_pkg_val_buf(state->buf_table->buf_array); } if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count)) return ice_pkg_val_buf(state->buf_table->buf_array + state->buf_idx); else return NULL; } /** * ice_pkg_advance_sect * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * * This helper function will advance the section within the ice segment, * also advancing the buffer if needed. */ bool ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) { if (!ice_seg && !state->buf) return false; if (!ice_seg && state->buf) if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count)) return true; state->buf = ice_pkg_enum_buf(ice_seg, state); if (!state->buf) return false; /* start of new buffer, reset section index */ state->sect_idx = 0; return true; } /** * ice_pkg_enum_section * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * @sect_type: section type to enumerate * * This function will enumerate all the sections of a particular type in the * ice segment. The first call is made with the ice_seg parameter non-NULL; * on subsequent calls, ice_seg is set to NULL which continues the enumeration. * When the function returns a NULL pointer, then the end of the matching * sections has been reached. */ void * ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, u32 sect_type) { u16 offset, size; if (ice_seg) state->type = sect_type; if (!ice_pkg_advance_sect(ice_seg, state)) return NULL; /* scan for next matching section */ while (state->buf->section_entry[state->sect_idx].type != CPU_TO_LE32(state->type)) if (!ice_pkg_advance_sect(NULL, state)) return NULL; /* validate section */ offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) return NULL; size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size); if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) return NULL; /* make sure the section fits in the buffer */ if (offset + size > ICE_PKG_BUF_SIZE) return NULL; state->sect_type = LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type); /* calc pointer to this section */ state->sect = ((u8 *)state->buf) + LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); return state->sect; } /** * ice_pkg_enum_entry * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * @sect_type: section type to enumerate * @offset: pointer to variable that receives the offset in the table (optional) * @handler: function that handles access to the entries into the section type * * This function will enumerate all the entries in particular section type in * the ice segment. The first call is made with the ice_seg parameter non-NULL; * on subsequent calls, ice_seg is set to NULL which continues the enumeration. * When the function returns a NULL pointer, then the end of the entries has * been reached. * * Since each section may have a different header and entry size, the handler * function is needed to determine the number and location entries in each * section. * * The offset parameter is optional, but should be used for sections that * contain an offset for each section table. For such cases, the section handler * function must return the appropriate offset + index to give the absolution * offset for each entry. For example, if the base for a section's header * indicates a base offset of 10, and the index for the entry is 2, then * section handler function should set the offset to 10 + 2 = 12. */ void * ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, u32 sect_type, u32 *offset, void *(*handler)(u32 sect_type, void *section, u32 index, u32 *offset)) { void *entry; if (ice_seg) { if (!handler) return NULL; if (!ice_pkg_enum_section(ice_seg, state, sect_type)) return NULL; state->entry_idx = 0; state->handler = handler; } else { state->entry_idx++; } if (!state->handler) return NULL; /* get entry */ entry = state->handler(state->sect_type, state->sect, state->entry_idx, offset); if (!entry) { /* end of a section, look for another section of this type */ if (!ice_pkg_enum_section(NULL, state, 0)) return NULL; state->entry_idx = 0; entry = state->handler(state->sect_type, state->sect, state->entry_idx, offset); } return entry; } /** * ice_boost_tcam_handler * @sect_type: section type * @section: pointer to section * @index: index of the boost TCAM entry to be returned * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections * * This is a callback function that can be passed to ice_pkg_enum_entry. * Handles enumeration of individual boost TCAM entries. */ static void * ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) { struct ice_boost_tcam_section *boost; if (!section) return NULL; if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) return NULL; if (index > ICE_MAX_BST_TCAMS_IN_BUF) return NULL; if (offset) *offset = 0; boost = (struct ice_boost_tcam_section *)section; if (index >= LE16_TO_CPU(boost->count)) return NULL; return boost->tcam + index; } /** * ice_find_boost_entry * @ice_seg: pointer to the ice segment (non-NULL) * @addr: Boost TCAM address of entry to search for * @entry: returns pointer to the entry * * Finds a particular Boost TCAM entry and returns a pointer to that entry * if it is found. The ice_seg parameter must not be NULL since the first call * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. */ static int ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, struct ice_boost_tcam_entry **entry) { struct ice_boost_tcam_entry *tcam; struct ice_pkg_enum state; ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); if (!ice_seg) return ICE_ERR_PARAM; do { tcam = (struct ice_boost_tcam_entry *) ice_pkg_enum_entry(ice_seg, &state, ICE_SID_RXPARSER_BOOST_TCAM, NULL, ice_boost_tcam_handler); if (tcam && LE16_TO_CPU(tcam->addr) == addr) { *entry = tcam; return 0; } ice_seg = NULL; } while (tcam); *entry = NULL; return ICE_ERR_CFG; } /** * ice_init_pkg_hints * @hw: pointer to the HW structure * @ice_seg: pointer to the segment of the package scan (non-NULL) * * This function will scan the package and save off relevant information * (hints or metadata) for driver use. The ice_seg parameter must not be NULL * since the first call to ice_enum_labels requires a pointer to an actual * ice_seg structure. */ void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) { struct ice_pkg_enum state; char *label_name; u16 val; int i; ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM); ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); if (!ice_seg) return; label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, &val); while (label_name) { /* TODO: Replace !strnsmp() with wrappers like match_some_pre() */ if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) /* check for a tunnel entry */ ice_add_tunnel_hint(hw, label_name, val); label_name = ice_enum_labels(NULL, 0, &state, &val); } /* Cache the appropriate boost TCAM entry pointers for tunnels */ for (i = 0; i < hw->tnl.count; i++) { ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, &hw->tnl.tbl[i].boost_entry); if (hw->tnl.tbl[i].boost_entry) hw->tnl.tbl[i].valid = true; } } /** * ice_acquire_global_cfg_lock * @hw: pointer to the HW structure * @access: access type (read or write) * * This function will request ownership of the global config lock for reading * or writing of the package. When attempting to obtain write access, the * caller must check for the following two return values: * * 0 - Means the caller has acquired the global config lock * and can perform writing of the package. * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the * package or has found that no update was necessary; in * this case, the caller can just skip performing any * update of the package. */ int ice_acquire_global_cfg_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) { int status; status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, ICE_GLOBAL_CFG_LOCK_TIMEOUT); if (status == ICE_ERR_AQ_NO_WORK) ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); return status; } /** * ice_release_global_cfg_lock * @hw: pointer to the HW structure * * This function will release the global config lock. */ void ice_release_global_cfg_lock(struct ice_hw *hw) { ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); } /** * ice_acquire_change_lock * @hw: pointer to the HW structure * @access: access type (read or write) * * This function will request ownership of the change lock. */ int ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) { return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, ICE_CHANGE_LOCK_TIMEOUT); } /** * ice_release_change_lock * @hw: pointer to the HW structure * * This function will release the change lock using the proper Admin Command. */ void ice_release_change_lock(struct ice_hw *hw) { ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); } /** * ice_is_get_tx_sched_new_format * @hw: pointer to the HW struct * * Determines if the new format for the Tx scheduler get api is supported */ static bool ice_is_get_tx_sched_new_format(struct ice_hw *hw) { if (ice_is_e830(hw)) return true; if (ice_is_e825c(hw)) return true; return false; } /** * ice_get_set_tx_topo - get or set tx topology * @hw: pointer to the HW struct * @buf: pointer to tx topology buffer * @buf_size: buffer size * @cd: pointer to command details structure or NULL * @flags: pointer to descriptor flags * @set: 0-get, 1-set topology * * The function will get or set tx topology */ static int ice_get_set_tx_topo(struct ice_hw *hw, u8 *buf, u16 buf_size, struct ice_sq_cd *cd, u8 *flags, bool set) { struct ice_aqc_get_set_tx_topo *cmd; struct ice_aq_desc desc; int status; cmd = &desc.params.get_set_tx_topo; if (set) { ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_tx_topo); cmd->set_flags = ICE_AQC_TX_TOPO_FLAGS_ISSUED; /* requested to update a new topology, not a default topolgy */ if (buf) cmd->set_flags |= ICE_AQC_TX_TOPO_FLAGS_SRC_RAM | ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW; desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); } else { ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_tx_topo); cmd->get_flags = ICE_AQC_TX_TOPO_GET_RAM; if (!ice_is_get_tx_sched_new_format(hw)) desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); } status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (status) return status; /* read the return flag values (first byte) for get operation */ if (!set && flags) *flags = desc.params.get_set_tx_topo.set_flags; return 0; } /** * ice_cfg_tx_topo - Initialize new tx topology if available * @hw: pointer to the HW struct * @buf: pointer to Tx topology buffer * @len: buffer size * * The function will apply the new Tx topology from the package buffer * if available. */ int ice_cfg_tx_topo(struct ice_hw *hw, u8 *buf, u32 len) { u8 *current_topo, *new_topo = NULL; struct ice_run_time_cfg_seg *seg; struct ice_buf_hdr *section; struct ice_pkg_hdr *pkg_hdr; enum ice_ddp_state state; u16 i, size = 0, offset; u32 reg = 0; int status; u8 flags; if (!buf || !len) return ICE_ERR_PARAM; /* Does FW support new Tx topology mode ? */ if (!hw->func_caps.common_cap.tx_sched_topo_comp_mode_en) { ice_debug(hw, ICE_DBG_INIT, "FW doesn't support compatibility mode\n"); return ICE_ERR_NOT_SUPPORTED; } current_topo = (u8 *)ice_malloc(hw, ICE_AQ_MAX_BUF_LEN); if (!current_topo) return ICE_ERR_NO_MEMORY; /* get the current Tx topology */ status = ice_get_set_tx_topo(hw, current_topo, ICE_AQ_MAX_BUF_LEN, NULL, &flags, false); ice_free(hw, current_topo); if (status) { ice_debug(hw, ICE_DBG_INIT, "Get current topology is failed\n"); return status; } /* Is default topology already applied ? */ if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) && hw->num_tx_sched_layers == 9) { ice_debug(hw, ICE_DBG_INIT, "Loaded default topology\n"); /* Already default topology is loaded */ return ICE_ERR_ALREADY_EXISTS; } /* Is new topology already applied ? */ if ((flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) && hw->num_tx_sched_layers == 5) { ice_debug(hw, ICE_DBG_INIT, "Loaded new topology\n"); /* Already new topology is loaded */ return ICE_ERR_ALREADY_EXISTS; } /* Is set topology issued already ? */ if (flags & ICE_AQC_TX_TOPO_FLAGS_ISSUED) { ice_debug(hw, ICE_DBG_INIT, "Update tx topology was done by another PF\n"); /* add a small delay before exiting */ for (i = 0; i < 20; i++) ice_msec_delay(100, true); return ICE_ERR_ALREADY_EXISTS; } /* Change the topology from new to default (5 to 9) */ if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) && hw->num_tx_sched_layers == 5) { ice_debug(hw, ICE_DBG_INIT, "Change topology from 5 to 9 layers\n"); goto update_topo; } pkg_hdr = (struct ice_pkg_hdr *)buf; state = ice_verify_pkg(pkg_hdr, len); if (state) { ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", state); return ICE_ERR_CFG; } /* find run time configuration segment */ seg = (struct ice_run_time_cfg_seg *) ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE_RUN_TIME_CFG, pkg_hdr); if (!seg) { ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment is missing\n"); return ICE_ERR_CFG; } if (LE32_TO_CPU(seg->buf_table.buf_count) < ICE_MIN_S_COUNT) { ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment count(%d) is wrong\n", seg->buf_table.buf_count); return ICE_ERR_CFG; } section = ice_pkg_val_buf(seg->buf_table.buf_array); if (!section || LE32_TO_CPU(section->section_entry[0].type) != ICE_SID_TX_5_LAYER_TOPO) { ice_debug(hw, ICE_DBG_INIT, "5 layer topology section type is wrong\n"); return ICE_ERR_CFG; } size = LE16_TO_CPU(section->section_entry[0].size); offset = LE16_TO_CPU(section->section_entry[0].offset); if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) { ice_debug(hw, ICE_DBG_INIT, "5 layer topology section size is wrong\n"); return ICE_ERR_CFG; } /* make sure the section fits in the buffer */ if (offset + size > ICE_PKG_BUF_SIZE) { ice_debug(hw, ICE_DBG_INIT, "5 layer topology buffer > 4K\n"); return ICE_ERR_CFG; } /* Get the new topology buffer */ new_topo = ((u8 *)section) + offset; update_topo: /* acquire global lock to make sure that set topology issued * by one PF */ status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, ICE_RES_WRITE, ICE_GLOBAL_CFG_LOCK_TIMEOUT); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to acquire global lock\n"); return status; } /* check reset was triggered already or not */ reg = rd32(hw, GLGEN_RSTAT); if (reg & GLGEN_RSTAT_DEVSTATE_M) { /* Reset is in progress, re-init the hw again */ ice_debug(hw, ICE_DBG_INIT, "Reset is in progress. layer topology might be applied already\n"); ice_check_reset(hw); return 0; } /* set new topology */ status = ice_get_set_tx_topo(hw, new_topo, size, NULL, NULL, true); if (status) { ice_debug(hw, ICE_DBG_INIT, "Set tx topology is failed\n"); return status; } /* new topology is updated, delay 1 second before issuing the CORRER */ for (i = 0; i < 10; i++) ice_msec_delay(100, true); ice_reset(hw, ICE_RESET_CORER); /* CORER will clear the global lock, so no explicit call * required for release */ return 0; }