/* * Copyright (c) 2015-2024, Broadcom. All rights reserved. The term * Broadcom refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Description: QPLib resource manager */ #include #include #include #include #include #include #include #include #include #include "hsi_struct_def.h" #include "qplib_res.h" #include "qplib_sp.h" #include "qplib_rcfw.h" #include "bnxt.h" #include "bnxt_ulp.h" uint8_t _get_chip_gen_p5_type(struct bnxt_qplib_chip_ctx *cctx) { /* Extend this for granular type */ return(BNXT_RE_DEFAULT); } inline bool _is_alloc_mr_unified(struct bnxt_qplib_dev_attr *dattr) { return dattr->dev_cap_flags & CREQ_QUERY_FUNC_RESP_SB_MR_REGISTER_ALLOC; } /* PBL */ static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl, bool is_umem) { struct pci_dev *pdev; int i; pdev = res->pdev; if (is_umem == false) { for (i = 0; i < pbl->pg_count; i++) { if (pbl->pg_arr[i]) { dma_free_coherent(&pdev->dev, pbl->pg_size, (void *)((u64)pbl->pg_arr[i] & PAGE_MASK), pbl->pg_map_arr[i]); } else dev_warn(&pdev->dev, "QPLIB: PBL free pg_arr[%d] empty?!\n", i); pbl->pg_arr[i] = NULL; } } if (pbl->pg_arr) { vfree(pbl->pg_arr); pbl->pg_arr = NULL; } if (pbl->pg_map_arr) { vfree(pbl->pg_map_arr); pbl->pg_map_arr = NULL; } pbl->pg_count = 0; pbl->pg_size = 0; } struct qplib_sg { dma_addr_t pg_map_arr; u32 size; }; static int __fill_user_dma_pages(struct bnxt_qplib_pbl *pbl, struct bnxt_qplib_sg_info *sginfo) { int sg_indx, pg_indx, tmp_size, offset; struct qplib_sg *tmp_sg = NULL; struct scatterlist *sg; u64 pmask, addr; tmp_sg = vzalloc(sginfo->nmap * sizeof(struct qplib_sg)); if (!tmp_sg) return -ENOMEM; pmask = BIT_ULL(sginfo->pgshft) - 1; sg_indx = 0; for_each_sg(sginfo->sghead, sg, sginfo->nmap, sg_indx) { tmp_sg[sg_indx].pg_map_arr = sg_dma_address(sg); tmp_sg[sg_indx].size = sg_dma_len(sg); } pg_indx = 0; for (sg_indx = 0; sg_indx < sginfo->nmap; sg_indx++) { tmp_size = tmp_sg[sg_indx].size; offset = 0; while (tmp_size > 0) { addr = tmp_sg[sg_indx].pg_map_arr + offset; if ((!sg_indx && !pg_indx) || !(addr & pmask)) { pbl->pg_map_arr[pg_indx] = addr &(~pmask); pbl->pg_count++; pg_indx++; } offset += sginfo->pgsize; tmp_size -= sginfo->pgsize; } } vfree(tmp_sg); return 0; } static int bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl, struct bnxt_qplib_sg_info *sginfo) { int rc = 0; rc = __fill_user_dma_pages(pbl, sginfo); return rc; } static int __alloc_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl, struct bnxt_qplib_sg_info *sginfo) { struct pci_dev *pdev; bool is_umem = false; int i; if (sginfo->nopte) return 0; pdev = res->pdev; /* page ptr arrays */ pbl->pg_arr = vmalloc(sginfo->npages * sizeof(void *)); if (!pbl->pg_arr) return -ENOMEM; pbl->pg_map_arr = vmalloc(sginfo->npages * sizeof(dma_addr_t)); if (!pbl->pg_map_arr) { vfree(pbl->pg_arr); return -ENOMEM; } pbl->pg_count = 0; pbl->pg_size = sginfo->pgsize; if (!sginfo->sghead) { for (i = 0; i < sginfo->npages; i++) { pbl->pg_arr[i] = dma_zalloc_coherent(&pdev->dev, pbl->pg_size, &pbl->pg_map_arr[i], GFP_KERNEL); if (!pbl->pg_arr[i]) goto fail; pbl->pg_count++; } } else { is_umem = true; if (bnxt_qplib_fill_user_dma_pages(pbl, sginfo)) goto fail; } return 0; fail: __free_pbl(res, pbl, is_umem); return -ENOMEM; } /* HWQ */ void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res, struct bnxt_qplib_hwq *hwq) { int i; if (!hwq->max_elements) return; if (hwq->level >= PBL_LVL_MAX) return; for (i = 0; i < hwq->level + 1; i++) { if (i == hwq->level) __free_pbl(res, &hwq->pbl[i], hwq->is_user); else __free_pbl(res, &hwq->pbl[i], false); } hwq->level = PBL_LVL_MAX; hwq->max_elements = 0; hwq->element_size = 0; hwq->prod = hwq->cons = 0; hwq->cp_bit = 0; } /* All HWQs are power of 2 in size */ int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq, struct bnxt_qplib_hwq_attr *hwq_attr) { u32 npages = 0, depth, stride, aux_pages = 0; dma_addr_t *src_phys_ptr, **dst_virt_ptr; struct bnxt_qplib_sg_info sginfo = {}; u32 aux_size = 0, npbl, npde; void *umem; struct bnxt_qplib_res *res; u32 aux_slots, pg_size; struct pci_dev *pdev; int i, rc, lvl; res = hwq_attr->res; pdev = res->pdev; umem = hwq_attr->sginfo->sghead; pg_size = hwq_attr->sginfo->pgsize; hwq->level = PBL_LVL_MAX; depth = roundup_pow_of_two(hwq_attr->depth); stride = roundup_pow_of_two(hwq_attr->stride); if (hwq_attr->aux_depth) { aux_slots = hwq_attr->aux_depth; aux_size = roundup_pow_of_two(hwq_attr->aux_stride); aux_pages = (aux_slots * aux_size) / pg_size; if ((aux_slots * aux_size) % pg_size) aux_pages++; } if (!umem) { hwq->is_user = false; npages = (depth * stride) / pg_size + aux_pages; if ((depth * stride) % pg_size) npages++; if (!npages) return -EINVAL; hwq_attr->sginfo->npages = npages; } else { hwq->is_user = true; npages = hwq_attr->sginfo->npages; npages = (npages * (u64)pg_size) / BIT_ULL(hwq_attr->sginfo->pgshft); if ((hwq_attr->sginfo->npages * (u64)pg_size) % BIT_ULL(hwq_attr->sginfo->pgshft)) npages++; } if (npages == MAX_PBL_LVL_0_PGS && !hwq_attr->sginfo->nopte) { /* This request is Level 0, map PTE */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo); if (rc) goto fail; hwq->level = PBL_LVL_0; goto done; } if (npages >= MAX_PBL_LVL_0_PGS) { if (npages > MAX_PBL_LVL_1_PGS) { u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ? 0 : PTU_PTE_VALID; /* 2 levels of indirection */ npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT; if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT)) npbl++; npde = npbl >> MAX_PDL_LVL_SHIFT; if(npbl % BIT(MAX_PDL_LVL_SHIFT)) npde++; /* Alloc PDE pages */ sginfo.pgsize = npde * PAGE_SIZE; sginfo.npages = 1; rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo); /* Alloc PBL pages */ sginfo.npages = npbl; sginfo.pgsize = PAGE_SIZE; rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo); if (rc) goto fail; /* Fill PDL with PBL page pointers */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; if (hwq_attr->type == HWQ_TYPE_MR) { /* For MR it is expected that we supply only 1 contigous * page i.e only 1 entry in the PDL that will contain * all the PBLs for the user supplied memory region */ for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) dst_virt_ptr[0][i] = src_phys_ptr[i] | flag; } else { for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | PTU_PDE_VALID; } /* Alloc or init PTEs */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2], hwq_attr->sginfo); if (rc) goto fail; hwq->level = PBL_LVL_2; if (hwq_attr->sginfo->nopte) goto done; /* Fill PBLs with PTE pointers */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr; for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) { dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | PTU_PTE_VALID; } if (hwq_attr->type == HWQ_TYPE_QUEUE) { /* Find the last pg of the size */ i = hwq->pbl[PBL_LVL_2].pg_count; dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= PTU_PTE_LAST; if (i > 1) dst_virt_ptr[PTR_PG(i - 2)] [PTR_IDX(i - 2)] |= PTU_PTE_NEXT_TO_LAST; } } else { /* pages < 512 npbl = 1, npde = 0 */ u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ? 0 : PTU_PTE_VALID; /* 1 level of indirection */ npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT; if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT)) npbl++; sginfo.npages = npbl; sginfo.pgsize = PAGE_SIZE; /* Alloc PBL page */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo); if (rc) goto fail; /* Alloc or init PTEs */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], hwq_attr->sginfo); if (rc) goto fail; hwq->level = PBL_LVL_1; if (hwq_attr->sginfo->nopte) goto done; /* Fill PBL with PTE pointers */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | flag; if (hwq_attr->type == HWQ_TYPE_QUEUE) { /* Find the last pg of the size */ i = hwq->pbl[PBL_LVL_1].pg_count; dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= PTU_PTE_LAST; if (i > 1) dst_virt_ptr[PTR_PG(i - 2)] [PTR_IDX(i - 2)] |= PTU_PTE_NEXT_TO_LAST; } } } done: hwq->prod = 0; hwq->cons = 0; hwq->pdev = pdev; hwq->depth = hwq_attr->depth; hwq->max_elements = depth; hwq->element_size = stride; hwq->qe_ppg = (pg_size/stride); if (hwq->level >= PBL_LVL_MAX) goto fail; /* For direct access to the elements */ lvl = hwq->level; if (hwq_attr->sginfo->nopte && hwq->level) lvl = hwq->level - 1; hwq->pbl_ptr = hwq->pbl[lvl].pg_arr; hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr; spin_lock_init(&hwq->lock); return 0; fail: bnxt_qplib_free_hwq(res, hwq); return -ENOMEM; } /* Context Tables */ void bnxt_qplib_free_hwctx(struct bnxt_qplib_res *res) { struct bnxt_qplib_ctx *hctx; int i; hctx = res->hctx; bnxt_qplib_free_hwq(res, &hctx->qp_ctx.hwq); bnxt_qplib_free_hwq(res, &hctx->mrw_ctx.hwq); bnxt_qplib_free_hwq(res, &hctx->srq_ctx.hwq); bnxt_qplib_free_hwq(res, &hctx->cq_ctx.hwq); bnxt_qplib_free_hwq(res, &hctx->tim_ctx.hwq); for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) bnxt_qplib_free_hwq(res, &hctx->tqm_ctx.qtbl[i]); /* restor original pde level before destroy */ hctx->tqm_ctx.pde.level = hctx->tqm_ctx.pde_level; bnxt_qplib_free_hwq(res, &hctx->tqm_ctx.pde); } static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res, struct bnxt_qplib_ctx *hctx) { struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; struct bnxt_qplib_tqm_ctx *tqmctx; int rc = 0; int i; tqmctx = &hctx->tqm_ctx; sginfo.pgsize = PAGE_SIZE; sginfo.pgshft = PAGE_SHIFT; hwq_attr.sginfo = &sginfo; hwq_attr.res = res; hwq_attr.type = HWQ_TYPE_CTX; hwq_attr.depth = 512; hwq_attr.stride = sizeof(u64); /* Alloc pdl buffer */ rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr); if (rc) goto out; /* Save original pdl level */ tqmctx->pde_level = tqmctx->pde.level; hwq_attr.stride = 1; for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) { if (!tqmctx->qcount[i]) continue; hwq_attr.depth = hctx->qp_ctx.max * tqmctx->qcount[i]; rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr); if (rc) goto out; } out: return rc; } static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx) { struct bnxt_qplib_hwq *qtbl_hwq; dma_addr_t *dma_ptr; __le64 **pbl_ptr, *ptr; int i, j, k; int fnz_idx = -1; int pg_count; pbl_ptr = (__le64 **)ctx->pde.pbl_ptr; for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ; i++, j += MAX_TQM_ALLOC_BLK_SIZE) { qtbl_hwq = &ctx->qtbl[i]; if (!qtbl_hwq->max_elements) continue; if (fnz_idx == -1) fnz_idx = i; /* first non-zero index */ switch (qtbl_hwq->level) { case PBL_LVL_2: pg_count = qtbl_hwq->pbl[PBL_LVL_1].pg_count; for (k = 0; k < pg_count; k++) { ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)]; dma_ptr = &qtbl_hwq->pbl[PBL_LVL_1].pg_map_arr[k]; *ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID); } break; case PBL_LVL_1: case PBL_LVL_0: default: ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)]; *ptr = cpu_to_le64(qtbl_hwq->pbl[PBL_LVL_0].pg_map_arr[0] | PTU_PTE_VALID); break; } } if (fnz_idx == -1) fnz_idx = 0; /* update pde level as per page table programming */ ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 : ctx->qtbl[fnz_idx].level + 1; } static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res, struct bnxt_qplib_ctx *hctx) { int rc = 0; rc = bnxt_qplib_alloc_tqm_rings(res, hctx); if (rc) goto fail; bnxt_qplib_map_tqm_pgtbl(&hctx->tqm_ctx); fail: return rc; } /* * Routine: bnxt_qplib_alloc_hwctx * Description: * Context tables are memories which are used by the chip. * The 6 tables defined are: * QPC ctx - holds QP states * MRW ctx - holds memory region and window * SRQ ctx - holds shared RQ states * CQ ctx - holds completion queue states * TQM ctx - holds Tx Queue Manager context * TIM ctx - holds timer context * Depending on the size of the tbl requested, either a 1 Page Buffer List * or a 1-to-2-stage indirection Page Directory List + 1 PBL is used * instead. * Table might be employed as follows: * For 0 < ctx size <= 1 PAGE, 0 level of ind is used * For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used * For 512 < ctx size <= MAX, 2 levels of ind is used * Returns: * 0 if success, else -ERRORS */ int bnxt_qplib_alloc_hwctx(struct bnxt_qplib_res *res) { struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; struct bnxt_qplib_ctx *hctx; struct bnxt_qplib_hwq *hwq; int rc = 0; hctx = res->hctx; /* QPC Tables */ sginfo.pgsize = PAGE_SIZE; sginfo.pgshft = PAGE_SHIFT; hwq_attr.sginfo = &sginfo; hwq_attr.res = res; hwq_attr.depth = hctx->qp_ctx.max; hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE; hwq_attr.type = HWQ_TYPE_CTX; hwq = &hctx->qp_ctx.hwq; rc = bnxt_qplib_alloc_init_hwq(hwq, &hwq_attr); if (rc) goto fail; /* MRW Tables */ hwq_attr.depth = hctx->mrw_ctx.max; hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE; hwq = &hctx->mrw_ctx.hwq; rc = bnxt_qplib_alloc_init_hwq(hwq, &hwq_attr); if (rc) goto fail; /* SRQ Tables */ hwq_attr.depth = hctx->srq_ctx.max; hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE; hwq = &hctx->srq_ctx.hwq; rc = bnxt_qplib_alloc_init_hwq(hwq, &hwq_attr); if (rc) goto fail; /* CQ Tables */ hwq_attr.depth = hctx->cq_ctx.max; hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE; hwq = &hctx->cq_ctx.hwq; rc = bnxt_qplib_alloc_init_hwq(hwq, &hwq_attr); if (rc) goto fail; /* TQM Buffer */ rc = bnxt_qplib_setup_tqm_rings(res, hctx); if (rc) goto fail; /* TIM Buffer */ hwq_attr.depth = hctx->qp_ctx.max * 16; hwq_attr.stride = 1; hwq = &hctx->tim_ctx.hwq; rc = bnxt_qplib_alloc_init_hwq(hwq, &hwq_attr); if (rc) goto fail; return 0; fail: bnxt_qplib_free_hwctx(res); return rc; } /* GUID */ void bnxt_qplib_get_guid(const u8 *dev_addr, u8 *guid) { u8 mac[ETH_ALEN]; /* MAC-48 to EUI-64 mapping */ memcpy(mac, dev_addr, ETH_ALEN); guid[0] = mac[0] ^ 2; guid[1] = mac[1]; guid[2] = mac[2]; guid[3] = 0xff; guid[4] = 0xfe; guid[5] = mac[3]; guid[6] = mac[4]; guid[7] = mac[5]; } static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res) { struct bnxt_qplib_sgid_tbl *sgid_tbl; sgid_tbl = &res->sgid_tbl; if (sgid_tbl->tbl) { kfree(sgid_tbl->tbl); sgid_tbl->tbl = NULL; kfree(sgid_tbl->hw_id); sgid_tbl->hw_id = NULL; kfree(sgid_tbl->ctx); sgid_tbl->ctx = NULL; kfree(sgid_tbl->vlan); sgid_tbl->vlan = NULL; } else { dev_dbg(&res->pdev->dev, "QPLIB: SGID tbl not present"); } sgid_tbl->max = 0; sgid_tbl->active = 0; } static void bnxt_qplib_free_reftbls(struct bnxt_qplib_res *res) { struct bnxt_qplib_reftbl *tbl; tbl = &res->reftbl.srqref; vfree(tbl->rec); tbl = &res->reftbl.cqref; vfree(tbl->rec); tbl = &res->reftbl.qpref; vfree(tbl->rec); } static int bnxt_qplib_alloc_reftbl(struct bnxt_qplib_reftbl *tbl, u32 max) { tbl->max = max; tbl->rec = vzalloc(sizeof(*tbl->rec) * max); if (!tbl->rec) return -ENOMEM; spin_lock_init(&tbl->lock); return 0; } static int bnxt_qplib_alloc_reftbls(struct bnxt_qplib_res *res, struct bnxt_qplib_dev_attr *dattr) { u32 max_cq = BNXT_QPLIB_MAX_CQ_COUNT; struct bnxt_qplib_reftbl *tbl; u32 res_cnt; int rc; /* * Allocating one extra entry to hold QP1 info. * Store QP1 info at the last entry of the table. * Decrement the tbl->max by one so that modulo * operation to get the qp table index from qp id * returns any value between 0 and max_qp-1 */ res_cnt = max_t(u32, BNXT_QPLIB_MAX_QPC_COUNT + 1, dattr->max_qp); tbl = &res->reftbl.qpref; rc = bnxt_qplib_alloc_reftbl(tbl, res_cnt); if (rc) goto fail; tbl->max--; if (_is_chip_gen_p5_p7(res->cctx)) max_cq = BNXT_QPLIB_MAX_CQ_COUNT_P5; res_cnt = max_t(u32, max_cq, dattr->max_cq); tbl = &res->reftbl.cqref; rc = bnxt_qplib_alloc_reftbl(tbl, res_cnt); if (rc) goto fail; res_cnt = max_t(u32, BNXT_QPLIB_MAX_SRQC_COUNT, dattr->max_cq); tbl = &res->reftbl.srqref; rc = bnxt_qplib_alloc_reftbl(tbl, BNXT_QPLIB_MAX_SRQC_COUNT); if (rc) goto fail; return 0; fail: return rc; } static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res, u16 max) { struct bnxt_qplib_sgid_tbl *sgid_tbl; sgid_tbl = &res->sgid_tbl; sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL); if (!sgid_tbl->tbl) return -ENOMEM; sgid_tbl->hw_id = kcalloc(max, sizeof(u32), GFP_KERNEL); if (!sgid_tbl->hw_id) goto free_tbl; sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL); if (!sgid_tbl->ctx) goto free_hw_id; sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL); if (!sgid_tbl->vlan) goto free_ctx; sgid_tbl->max = max; return 0; free_ctx: kfree(sgid_tbl->ctx); free_hw_id: kfree(sgid_tbl->hw_id); free_tbl: kfree(sgid_tbl->tbl); return -ENOMEM; }; static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl) { int i; for (i = 0; i < sgid_tbl->max; i++) { if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero))) bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid, sgid_tbl->tbl[i].vlan_id, true); } memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max); memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max); sgid_tbl->active = 0; } static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct ifnet *netdev) { u32 i; for (i = 0; i < sgid_tbl->max; i++) sgid_tbl->tbl[i].vlan_id = 0xffff; memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); } /* PDs */ int bnxt_qplib_alloc_pd(struct bnxt_qplib_res *res, struct bnxt_qplib_pd *pd) { u32 bit_num; int rc = 0; struct bnxt_qplib_pd_tbl *pdt = &res->pd_tbl; mutex_lock(&res->pd_tbl_lock); bit_num = find_first_bit(pdt->tbl, pdt->max); if (bit_num == pdt->max - 1) {/* Last bit is reserved */ rc = -ENOMEM; goto fail; } /* Found unused PD */ clear_bit(bit_num, pdt->tbl); pd->id = bit_num; fail: mutex_unlock(&res->pd_tbl_lock); return rc; } int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res, struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd) { mutex_lock(&res->pd_tbl_lock); if (test_and_set_bit(pd->id, pdt->tbl)) { dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n", pd->id); mutex_unlock(&res->pd_tbl_lock); return -EINVAL; } /* Reset to reserved pdid. */ pd->id = pdt->max - 1; mutex_unlock(&res->pd_tbl_lock); return 0; } static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt) { if (pdt->tbl) { kfree(pdt->tbl); pdt->tbl = NULL; } pdt->max = 0; } static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res, u32 max) { struct bnxt_qplib_pd_tbl *pdt; u32 bytes; pdt = &res->pd_tbl; max++; /* One extra for reserved pdid. */ bytes = DIV_ROUND_UP(max, 8); if (!bytes) bytes = 1; pdt->tbl = kmalloc(bytes, GFP_KERNEL); if (!pdt->tbl) { dev_err(&res->pdev->dev, "QPLIB: PD tbl allocation failed for size = %d\n", bytes); return -ENOMEM; } pdt->max = max; memset((u8 *)pdt->tbl, 0xFF, bytes); mutex_init(&res->pd_tbl_lock); return 0; } /* DPIs */ int bnxt_qplib_alloc_dpi(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi *dpi, void *app, u8 type) { struct bnxt_qplib_dpi_tbl *dpit = &res->dpi_tbl; struct bnxt_qplib_reg_desc *reg; u32 bit_num; u64 umaddr; int rc = 0; reg = &dpit->wcreg; mutex_lock(&res->dpi_tbl_lock); if (type == BNXT_QPLIB_DPI_TYPE_WC && _is_chip_p7(res->cctx) && !dpit->avail_ppp) { rc = -ENOMEM; goto fail; } bit_num = find_first_bit(dpit->tbl, dpit->max); if (bit_num == dpit->max) { rc = -ENOMEM; goto fail; } /* Found unused DPI */ clear_bit(bit_num, dpit->tbl); dpit->app_tbl[bit_num] = app; dpi->bit = bit_num; dpi->dpi = bit_num + (reg->offset - dpit->ucreg.offset) / PAGE_SIZE; umaddr = reg->bar_base + reg->offset + bit_num * PAGE_SIZE; dpi->umdbr = umaddr; switch (type) { case BNXT_QPLIB_DPI_TYPE_KERNEL: /* priviledged dbr was already mapped just initialize it. */ dpi->umdbr = dpit->ucreg.bar_base + dpit->ucreg.offset + bit_num * PAGE_SIZE; dpi->dbr = dpit->priv_db; dpi->dpi = dpi->bit; break; case BNXT_QPLIB_DPI_TYPE_WC: dpi->dbr = ioremap_wc(umaddr, PAGE_SIZE); if (_is_chip_p7(res->cctx) && dpi->dbr) dpit->avail_ppp--; break; default: dpi->dbr = ioremap(umaddr, PAGE_SIZE); } if (!dpi->dbr) { dev_err(&res->pdev->dev, "QPLIB: DB remap failed, type = %d\n", type); rc = -ENOMEM; } dpi->type = type; fail: mutex_unlock(&res->dpi_tbl_lock); return rc; } int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi *dpi) { struct bnxt_qplib_dpi_tbl *dpit = &res->dpi_tbl; int rc = 0; mutex_lock(&res->dpi_tbl_lock); if (dpi->bit >= dpit->max) { dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d, bit = %d\n", dpi->dpi, dpi->bit); rc = -EINVAL; goto fail; } if (dpi->dpi && dpi->type != BNXT_QPLIB_DPI_TYPE_KERNEL) { if (dpi->type == BNXT_QPLIB_DPI_TYPE_WC && _is_chip_p7(res->cctx) && dpi->dbr) dpit->avail_ppp++; pci_iounmap(res->pdev, dpi->dbr); } if (test_and_set_bit(dpi->bit, dpit->tbl)) { dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d, bit = %d\n", dpi->dpi, dpi->bit); rc = -EINVAL; goto fail; } if (dpit->app_tbl) dpit->app_tbl[dpi->bit] = NULL; memset(dpi, 0, sizeof(*dpi)); fail: mutex_unlock(&res->dpi_tbl_lock); return rc; } static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_dpi_tbl *dpit) { kfree(dpit->tbl); kfree(dpit->app_tbl); dpit->tbl = NULL; dpit->app_tbl = NULL; dpit->max = 0; } static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_dev_attr *dev_attr, u8 pppp_factor) { struct bnxt_qplib_dpi_tbl *dpit; struct bnxt_qplib_reg_desc *reg; unsigned long bar_len; u32 dbr_offset; u32 bytes; dpit = &res->dpi_tbl; reg = &dpit->wcreg; if (!_is_chip_gen_p5_p7(res->cctx)) { /* Offest should come from L2 driver */ dbr_offset = dev_attr->l2_db_size; dpit->ucreg.offset = dbr_offset; dpit->wcreg.offset = dbr_offset; } bar_len = pci_resource_len(res->pdev, reg->bar_id); dpit->max = (bar_len - reg->offset) / PAGE_SIZE; if (dev_attr->max_dpi) dpit->max = min_t(u32, dpit->max, dev_attr->max_dpi); dpit->app_tbl = kzalloc(dpit->max * sizeof(void*), GFP_KERNEL); if (!dpit->app_tbl) { dev_err(&res->pdev->dev, "QPLIB: DPI app tbl allocation failed"); return -ENOMEM; } bytes = dpit->max >> 3; if (!bytes) bytes = 1; dpit->tbl = kmalloc(bytes, GFP_KERNEL); if (!dpit->tbl) { kfree(dpit->app_tbl); dev_err(&res->pdev->dev, "QPLIB: DPI tbl allocation failed for size = %d\n", bytes); return -ENOMEM; } memset((u8 *)dpit->tbl, 0xFF, bytes); /* * On SR2, 2nd doorbell page of each function * is reserved for L2 PPP. Now that the tbl is * initialized, mark it as unavailable. By default * RoCE can make use of the 512 extended pages for * PPP. */ if (_is_chip_p7(res->cctx)) { clear_bit(1, dpit->tbl); if (pppp_factor) dpit->avail_ppp = BNXT_QPLIB_MAX_EXTENDED_PPP_PAGES / pppp_factor; } mutex_init(&res->dpi_tbl_lock); dpit->priv_db = dpit->ucreg.bar_reg + dpit->ucreg.offset; return 0; } /* Stats */ void bnxt_qplib_free_stat_mem(struct bnxt_qplib_res *res, struct bnxt_qplib_stats *stats) { struct pci_dev *pdev; pdev = res->pdev; if (stats->dma) dma_free_coherent(&pdev->dev, stats->size, stats->dma, stats->dma_map); memset(stats, 0, sizeof(*stats)); stats->fw_id = -1; } int bnxt_qplib_alloc_stat_mem(struct pci_dev *pdev, struct bnxt_qplib_chip_ctx *cctx, struct bnxt_qplib_stats *stats) { cctx->hw_stats_size = 168; memset(stats, 0, sizeof(*stats)); stats->fw_id = -1; stats->size = cctx->hw_stats_size; stats->dma = dma_alloc_coherent(&pdev->dev, stats->size, &stats->dma_map, GFP_KERNEL); if (!stats->dma) { dev_err(&pdev->dev, "QPLIB: Stats DMA allocation failed"); return -ENOMEM; } return 0; } /* Resource */ int bnxt_qplib_stop_res(struct bnxt_qplib_res *res) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct creq_stop_func_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_stop_func req = {}; int rc; bnxt_qplib_rcfw_cmd_prep(&req, CMDQ_BASE_OPCODE_STOP_FUNC, sizeof(req)); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); return rc; } void bnxt_qplib_clear_tbls(struct bnxt_qplib_res *res) { bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl); } int bnxt_qplib_init_tbls(struct bnxt_qplib_res *res) { bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev); return 0; } void bnxt_qplib_free_tbls(struct bnxt_qplib_res *res) { bnxt_qplib_free_sgid_tbl(res); bnxt_qplib_free_pd_tbl(&res->pd_tbl); bnxt_qplib_free_dpi_tbl(&res->dpi_tbl); bnxt_qplib_free_reftbls(res); } int bnxt_qplib_alloc_tbls(struct bnxt_qplib_res *res, u8 pppp_factor) { struct bnxt_qplib_dev_attr *dev_attr; int rc = 0; dev_attr = res->dattr; rc = bnxt_qplib_alloc_reftbls(res, dev_attr); if (rc) goto fail; rc = bnxt_qplib_alloc_sgid_tbl(res, dev_attr->max_sgid); if (rc) goto fail; rc = bnxt_qplib_alloc_pd_tbl(res, dev_attr->max_pd); if (rc) goto fail; rc = bnxt_qplib_alloc_dpi_tbl(res, dev_attr, pppp_factor); if (rc) goto fail; return 0; fail: bnxt_qplib_free_tbls(res); return rc; } void bnxt_qplib_unmap_db_bar(struct bnxt_qplib_res *res) { struct bnxt_qplib_reg_desc *reg; reg = &res->dpi_tbl.ucreg; if (reg->bar_reg) pci_iounmap(res->pdev, reg->bar_reg); reg->bar_reg = NULL; reg->bar_base = 0; reg->len = 0; reg->bar_id = 0; /* Zero? or ff */ } int bnxt_qplib_map_db_bar(struct bnxt_qplib_res *res) { struct bnxt_qplib_reg_desc *ucreg; struct bnxt_qplib_reg_desc *wcreg; wcreg = &res->dpi_tbl.wcreg; wcreg->bar_id = RCFW_DBR_PCI_BAR_REGION; if (!res || !res->pdev || !wcreg) return -1; wcreg->bar_base = pci_resource_start(res->pdev, wcreg->bar_id); /* No need to set the wcreg->len here */ ucreg = &res->dpi_tbl.ucreg; ucreg->bar_id = RCFW_DBR_PCI_BAR_REGION; ucreg->bar_base = pci_resource_start(res->pdev, ucreg->bar_id); ucreg->offset = 65536; ucreg->len = ucreg->offset + PAGE_SIZE; if (!ucreg->len || ((ucreg->len & (PAGE_SIZE - 1)) != 0)) { dev_err(&res->pdev->dev, "QPLIB: invalid dbr length %d\n", (int)ucreg->len); return -EINVAL; } ucreg->bar_reg = ioremap(ucreg->bar_base, ucreg->len); if (!ucreg->bar_reg) { dev_err(&res->pdev->dev, "priviledged dpi map failed!\n"); return -ENOMEM; } return 0; } /** * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port * @dev: the PCI device * @cap_mask: mask of desired AtomicOp sizes, including one or more of: * PCI_EXP_DEVCAP2_ATOMIC_COMP32 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 * * Return 0 if all upstream bridges support AtomicOp routing, egress * blocking is disabled on all upstream ports, and the root port supports * the requested completion capabilities (32-bit, 64-bit and/or 128-bit * AtomicOp completion), or negative otherwise. */ int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) { struct pci_bus *bus = dev->bus; struct pci_dev *bridge; u32 cap; if (!pci_is_pcie(dev)) return -EINVAL; /* * Per PCIe r4.0, sec 6.15, endpoints and root ports may be * AtomicOp requesters. For now, we only support endpoints as * requesters and root ports as completers. No endpoints as * completers, and no peer-to-peer. */ switch (pci_pcie_type(dev)) { case PCI_EXP_TYPE_ENDPOINT: case PCI_EXP_TYPE_LEG_END: break; default: return -EINVAL; } bridge = bus->self; pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); switch (pci_pcie_type(bridge)) { case PCI_EXP_TYPE_DOWNSTREAM: if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) return -EINVAL; break; /* Ensure root port supports all the sizes we care about */ case PCI_EXP_TYPE_ROOT_PORT: if ((cap & cap_mask) != cap_mask) return -EINVAL; break; } return 0; } int bnxt_qplib_enable_atomic_ops_to_root(struct pci_dev *dev) { u16 ctl2; if(pci_enable_atomic_ops_to_root(dev, PCI_EXP_DEVCAP2_ATOMIC_COMP32) && pci_enable_atomic_ops_to_root(dev, PCI_EXP_DEVCAP2_ATOMIC_COMP64)) return -EOPNOTSUPP; pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2); return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ); }