/*- * Copyright (c) 2003-2005 Nate Lawson (SDG) * Copyright (c) 2001 Michael Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__amd64__) || defined(__i386__) #include #include #include #endif #include #include #include #include /* * Support for ACPI Processor devices, including C[1-3] sleep states. */ /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_PROCESSOR ACPI_MODULE_NAME("PROCESSOR") struct acpi_cx { struct resource *p_lvlx; /* Register to read to enter state. */ uint32_t type; /* C1-3 (C4 and up treated as C3). */ uint32_t trans_lat; /* Transition latency (usec). */ uint32_t power; /* Power consumed (mW). */ int res_type; /* Resource type for p_lvlx. */ int res_rid; /* Resource ID for p_lvlx. */ bool do_mwait; uint32_t mwait_hint; bool mwait_hw_coord; bool mwait_bm_avoidance; }; #define MAX_CX_STATES 8 struct acpi_cpu_softc { device_t cpu_dev; ACPI_HANDLE cpu_handle; struct pcpu *cpu_pcpu; uint32_t cpu_acpi_id; /* ACPI processor id */ uint32_t cpu_p_blk; /* ACPI P_BLK location */ uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ struct acpi_cx cpu_cx_states[MAX_CX_STATES]; int cpu_cx_count; /* Number of valid Cx states. */ int cpu_prev_sleep;/* Last idle sleep duration. */ int cpu_features; /* Child driver supported features. */ /* Runtime state. */ int cpu_non_c2; /* Index of lowest non-C2 state. */ int cpu_non_c3; /* Index of lowest non-C3 state. */ u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */ /* Values for sysctl. */ struct sysctl_ctx_list cpu_sysctl_ctx; struct sysctl_oid *cpu_sysctl_tree; int cpu_cx_lowest; int cpu_cx_lowest_lim; int cpu_disable_idle; /* Disable entry to idle function */ char cpu_cx_supported[64]; }; struct acpi_cpu_device { struct resource_list ad_rl; }; #define CPU_GET_REG(reg, width) \ (bus_space_read_ ## width(rman_get_bustag((reg)), \ rman_get_bushandle((reg)), 0)) #define CPU_SET_REG(reg, width, val) \ (bus_space_write_ ## width(rman_get_bustag((reg)), \ rman_get_bushandle((reg)), 0, (val))) #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */ #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */ #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */ #define PCI_VENDOR_INTEL 0x8086 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ #define PCI_REVISION_A_STEP 0 #define PCI_REVISION_B_STEP 1 #define PCI_REVISION_4E 2 #define PCI_REVISION_4M 3 #define PIIX4_DEVACTB_REG 0x58 #define PIIX4_BRLD_EN_IRQ0 (1<<0) #define PIIX4_BRLD_EN_IRQ (1<<1) #define PIIX4_BRLD_EN_IRQ8 (1<<5) #define PIIX4_STOP_BREAK_MASK (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8) #define PIIX4_PCNTRL_BST_EN (1<<10) #define CST_FFH_VENDOR_INTEL 1 #define CST_FFH_VENDOR_AMD 2 #define CST_FFH_INTEL_CL_C1IO 1 #define CST_FFH_INTEL_CL_MWAIT 2 #define CST_FFH_MWAIT_HW_COORD 0x0001 #define CST_FFH_MWAIT_BM_AVOID 0x0002 #define CPUDEV_DEVICE_ID "ACPI0007" /* Knob to disable acpi_cpu devices */ bool acpi_cpu_disabled = false; /* Platform hardware resource information. */ static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ static int cpu_quirks; /* Indicate any hardware bugs. */ /* Values for sysctl. */ static struct sysctl_ctx_list cpu_sysctl_ctx; static struct sysctl_oid *cpu_sysctl_tree; static int cpu_cx_generic; static int cpu_cx_lowest_lim; #if defined(__i386__) || defined(__amd64__) static bool cppc_notify; #endif static struct acpi_cpu_softc **cpu_softc; ACPI_SERIAL_DECL(cpu, "ACPI CPU"); static int acpi_cpu_probe(device_t dev); static int acpi_cpu_attach(device_t dev); static int acpi_cpu_suspend(device_t dev); static int acpi_cpu_resume(device_t dev); static int acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id); static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child); static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit); static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result); static int acpi_cpu_shutdown(device_t dev); static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc); static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); static void acpi_cpu_startup(void *arg); static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc); static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc); #if defined(__i386__) || defined(__amd64__) static void acpi_cpu_idle(sbintime_t sbt); #endif static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); static void acpi_cpu_quirks(void); static void acpi_cpu_quirks_piix4(void); static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc); static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); #if defined(__i386__) || defined(__amd64__) static int acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS); #endif static device_method_t acpi_cpu_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_cpu_probe), DEVMETHOD(device_attach, acpi_cpu_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, acpi_cpu_shutdown), DEVMETHOD(device_suspend, acpi_cpu_suspend), DEVMETHOD(device_resume, acpi_cpu_resume), /* Bus interface */ DEVMETHOD(bus_add_child, acpi_cpu_add_child), DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar), DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD_END }; static driver_t acpi_cpu_driver = { "cpu", acpi_cpu_methods, sizeof(struct acpi_cpu_softc), }; DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, 0, 0); MODULE_DEPEND(cpu, acpi, 1, 1, 1); static int acpi_cpu_probe(device_t dev) { static char *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL }; int acpi_id, cpu_id; ACPI_BUFFER buf; ACPI_HANDLE handle; ACPI_OBJECT *obj; ACPI_STATUS status; ACPI_OBJECT_TYPE type; if (acpi_disabled("cpu") || acpi_cpu_disabled) return (ENXIO); type = acpi_get_type(dev); if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE) return (ENXIO); if (type == ACPI_TYPE_DEVICE && ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0) return (ENXIO); handle = acpi_get_handle(dev); if (cpu_softc == NULL) cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); if (type == ACPI_TYPE_PROCESSOR) { /* Get our Processor object. */ buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "probe failed to get Processor obj - %s\n", AcpiFormatException(status)); return (ENXIO); } obj = (ACPI_OBJECT *)buf.Pointer; if (obj->Type != ACPI_TYPE_PROCESSOR) { device_printf(dev, "Processor object has bad type %d\n", obj->Type); AcpiOsFree(obj); return (ENXIO); } /* * Find the processor associated with our unit. We could use the * ProcId as a key, however, some boxes do not have the same values * in their Processor object as the ProcId values in the MADT. */ acpi_id = obj->Processor.ProcId; AcpiOsFree(obj); } else { status = acpi_GetInteger(handle, "_UID", &acpi_id); if (ACPI_FAILURE(status)) { device_printf(dev, "Device object has bad value - %s\n", AcpiFormatException(status)); return (ENXIO); } } if (acpi_pcpu_get_id(dev, acpi_id, &cpu_id) != 0) { if (bootverbose && (type != ACPI_TYPE_PROCESSOR || acpi_id != 255)) printf("ACPI: Processor %s (ACPI ID %u) ignored\n", acpi_name(acpi_get_handle(dev)), acpi_id); return (ENXIO); } if (device_set_unit(dev, cpu_id) != 0) return (ENXIO); device_set_desc(dev, "ACPI CPU"); if (!bootverbose && device_get_unit(dev) != 0) { device_quiet(dev); device_quiet_children(dev); } return (BUS_PROBE_DEFAULT); } static int acpi_cpu_attach(device_t dev) { ACPI_BUFFER buf; ACPI_OBJECT arg, *obj; ACPI_OBJECT_LIST arglist; struct pcpu *pcpu_data; struct acpi_cpu_softc *sc; struct acpi_softc *acpi_sc; ACPI_STATUS status; u_int features; int cpu_id, drv_count, i; driver_t **drivers; uint32_t cap_set[3]; /* UUID needed by _OSC evaluation */ static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70, 0x58, 0x71, 0x39, 0x53 }; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->cpu_dev = dev; sc->cpu_handle = acpi_get_handle(dev); cpu_id = device_get_unit(dev); cpu_softc[cpu_id] = sc; pcpu_data = pcpu_find(cpu_id); pcpu_data->pc_device = dev; sc->cpu_pcpu = pcpu_data; cpu_smi_cmd = AcpiGbl_FADT.SmiCommand; cpu_cst_cnt = AcpiGbl_FADT.CstControl; if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) { buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "attach failed to get Processor obj - %s\n", AcpiFormatException(status)); return (ENXIO); } obj = (ACPI_OBJECT *)buf.Pointer; sc->cpu_p_blk = obj->Processor.PblkAddress; sc->cpu_p_blk_len = obj->Processor.PblkLength; sc->cpu_acpi_id = obj->Processor.ProcId; AcpiOsFree(obj); } else { KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE, ("Unexpected ACPI object")); status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id); if (ACPI_FAILURE(status)) { device_printf(dev, "Device object has bad value - %s\n", AcpiFormatException(status)); return (ENXIO); } sc->cpu_p_blk = 0; sc->cpu_p_blk_len = 0; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); /* * If this is the first cpu we attach, create and initialize the generic * resources that will be used by all acpi cpu devices. */ if (device_get_unit(dev) == 0) { /* Assume we won't be using generic Cx mode by default */ cpu_cx_generic = FALSE; /* Install hw.acpi.cpu sysctl tree */ acpi_sc = acpi_device_get_parent_softc(dev); sysctl_ctx_init(&cpu_sysctl_ctx); cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children"); #if defined(__i386__) || defined(__amd64__) /* Add sysctl handler to control registering for CPPC notifications */ cppc_notify = 1; SYSCTL_ADD_BOOL(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree), OID_AUTO, "cppc_notify", CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &cppc_notify, 0, "Register for CPPC Notifications"); #endif } /* * Before calling any CPU methods, collect child driver feature hints * and notify ACPI of them. We support unified SMP power control * so advertise this ourselves. Note this is not the same as independent * SMP control where each CPU can have different settings. */ sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 | ACPI_CAP_C1_IO_HALT; #if defined(__i386__) || defined(__amd64__) /* * Ask for MWAIT modes if not disabled and interrupts work * reasonable with MWAIT. */ if (!acpi_disabled("mwait") && cpu_mwait_usable()) sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE; /* * Work around a lingering SMM bug which leads to freezes when handling * CPPC notifications. Tell the SMM we will handle any CPPC notifications. */ if ((cpu_power_eax & CPUTPM1_HWP_NOTIFICATION) && cppc_notify) sc->cpu_features |= ACPI_CAP_INTR_CPPC; #endif if (devclass_get_drivers(device_get_devclass(dev), &drivers, &drv_count) == 0) { for (i = 0; i < drv_count; i++) { if (ACPI_GET_FEATURES(drivers[i], &features) == 0) sc->cpu_features |= features; } free(drivers, M_TEMP); } /* * CPU capabilities are specified in * Intel Processor Vendor-Specific ACPI Interface Specification. */ if (sc->cpu_features) { cap_set[1] = sc->cpu_features; status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set, cap_set, false); if (ACPI_SUCCESS(status)) { if (cap_set[0] != 0) device_printf(dev, "_OSC returned status %#x\n", cap_set[0]); } else { arglist.Pointer = &arg; arglist.Count = 1; arg.Type = ACPI_TYPE_BUFFER; arg.Buffer.Length = sizeof(cap_set); arg.Buffer.Pointer = (uint8_t *)cap_set; cap_set[0] = 1; /* revision */ cap_set[1] = 1; /* number of capabilities integers */ cap_set[2] = sc->cpu_features; AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL); } } /* Probe for Cx state support. */ acpi_cpu_cx_probe(sc); return (0); } static void acpi_cpu_postattach(void *unused __unused) { struct acpi_cpu_softc *sc; int attached = 0, i; if (cpu_softc == NULL) return; bus_topo_lock(); CPU_FOREACH(i) { if ((sc = cpu_softc[i]) != NULL) bus_identify_children(sc->cpu_dev); } CPU_FOREACH(i) { if ((sc = cpu_softc[i]) != NULL) { bus_attach_children(sc->cpu_dev); attached = 1; } } bus_topo_unlock(); if (attached) { #ifdef EARLY_AP_STARTUP acpi_cpu_startup(NULL); #else /* Queue post cpu-probing task handler */ AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL); #endif } } SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, acpi_cpu_postattach, NULL); static void disable_idle(struct acpi_cpu_softc *sc) { cpuset_t cpuset; CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset); sc->cpu_disable_idle = TRUE; /* * Ensure that the CPU is not in idle state or in acpi_cpu_idle(). * Note that this code depends on the fact that the rendezvous IPI * can not penetrate context where interrupts are disabled and acpi_cpu_idle * is called and executed in such a context with interrupts being re-enabled * right before return. */ smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL, smp_no_rendezvous_barrier, NULL); } static void enable_idle(struct acpi_cpu_softc *sc) { if (sc->cpu_cx_count > sc->cpu_non_c3 + 1 && (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1); sc->cpu_disable_idle = FALSE; } #if defined(__i386__) || defined(__amd64__) static int is_idle_disabled(struct acpi_cpu_softc *sc) { return (sc->cpu_disable_idle); } #endif /* * Disable any entry to the idle function during suspend and re-enable it * during resume. */ static int acpi_cpu_suspend(device_t dev) { int error; error = bus_generic_suspend(dev); if (error) return (error); disable_idle(device_get_softc(dev)); return (0); } static int acpi_cpu_resume(device_t dev) { enable_idle(device_get_softc(dev)); return (bus_generic_resume(dev)); } /* * Find the processor associated with a given ACPI ID. */ static int acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id) { struct pcpu *pc; u_int i; CPU_FOREACH(i) { pc = pcpu_find(i); if (pc->pc_acpi_id == acpi_id) { *cpu_id = pc->pc_cpuid; return (0); } } /* * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC * UP box) use the ACPI ID from the first processor we find. */ if (mp_ncpus == 1) { pc = pcpu_find(0); if (pc->pc_acpi_id == 0xffffffff) pc->pc_acpi_id = acpi_id; *cpu_id = 0; return (0); } return (ESRCH); } static struct resource_list * acpi_cpu_get_rlist(device_t dev, device_t child) { struct acpi_cpu_device *ad; ad = device_get_ivars(child); if (ad == NULL) return (NULL); return (&ad->ad_rl); } static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit) { struct acpi_cpu_device *ad; device_t child; if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL) return (NULL); resource_list_init(&ad->ad_rl); child = device_add_child_ordered(dev, order, name, unit); if (child != NULL) device_set_ivars(child, ad); else free(ad, M_TEMP); return (child); } static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct acpi_cpu_softc *sc; sc = device_get_softc(dev); switch (index) { case ACPI_IVAR_HANDLE: *result = (uintptr_t)sc->cpu_handle; break; case CPU_IVAR_PCPU: *result = (uintptr_t)sc->cpu_pcpu; break; #if defined(__amd64__) || defined(__i386__) case CPU_IVAR_NOMINAL_MHZ: if (tsc_is_invariant) { *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000); break; } /* FALLTHROUGH */ #endif default: return (ENOENT); } return (0); } static int acpi_cpu_shutdown(device_t dev) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Allow children to shutdown first. */ bus_generic_shutdown(dev); /* * Disable any entry to the idle function. */ disable_idle(device_get_softc(dev)); /* * CPU devices are not truly detached and remain referenced, * so their resources are not freed. */ return_VALUE (0); } static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Use initial sleep value of 1 sec. to start with lowest idle state. */ sc->cpu_prev_sleep = 1000000; sc->cpu_cx_lowest = 0; sc->cpu_cx_lowest_lim = 0; /* * Check for the ACPI 2.0 _CST sleep states object. If we can't find * any, we'll revert to generic FADT/P_BLK Cx control method which will * be handled by acpi_cpu_startup. We need to defer to after having * probed all the cpus in the system before probing for generic Cx * states as we may already have found cpus with valid _CST packages */ if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) { /* * We were unable to find a _CST package for this cpu or there * was an error parsing it. Switch back to generic mode. */ cpu_cx_generic = TRUE; if (bootverbose) device_printf(sc->cpu_dev, "switching to generic Cx mode\n"); } /* * TODO: _CSD Package should be checked here. */ } static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc) { ACPI_GENERIC_ADDRESS gas; struct acpi_cx *cx_ptr; sc->cpu_cx_count = 0; cx_ptr = sc->cpu_cx_states; /* Use initial sleep value of 1 sec. to start with lowest idle state. */ sc->cpu_prev_sleep = 1000000; /* C1 has been required since just after ACPI 1.0 */ cx_ptr->type = ACPI_STATE_C1; cx_ptr->trans_lat = 0; cx_ptr++; sc->cpu_non_c2 = sc->cpu_cx_count; sc->cpu_non_c3 = sc->cpu_cx_count; sc->cpu_cx_count++; /* * The spec says P_BLK must be 6 bytes long. However, some systems * use it to indicate a fractional set of features present so we * take 5 as C2. Some may also have a value of 7 to indicate * another C3 but most use _CST for this (as required) and having * "only" C1-C3 is not a hardship. */ if (sc->cpu_p_blk_len < 5) return; /* Validate and allocate resources for C2 (P_LVL2). */ gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; gas.BitWidth = 8; if (AcpiGbl_FADT.C2Latency <= 100) { gas.Address = sc->cpu_p_blk + 4; cx_ptr->res_rid = 0; acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid, &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); if (cx_ptr->p_lvlx != NULL) { cx_ptr->type = ACPI_STATE_C2; cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency; cx_ptr++; sc->cpu_non_c3 = sc->cpu_cx_count; sc->cpu_cx_count++; } } if (sc->cpu_p_blk_len < 6) return; /* Validate and allocate resources for C3 (P_LVL3). */ if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) { gas.Address = sc->cpu_p_blk + 5; cx_ptr->res_rid = 1; acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid, &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); if (cx_ptr->p_lvlx != NULL) { cx_ptr->type = ACPI_STATE_C3; cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency; cx_ptr++; sc->cpu_cx_count++; } } } #if defined(__i386__) || defined(__amd64__) static void acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize) { cx_ptr->do_mwait = true; cx_ptr->mwait_hint = address & 0xffffffff; cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0; cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0; } #endif static void acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr) { if (cx_ptr->p_lvlx == NULL) return; bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid, cx_ptr->p_lvlx); cx_ptr->p_lvlx = NULL; } /* * Parse a _CST package and set up its Cx states. Since the _CST object * can change dynamically, our notify handler may call this function * to clean up and probe the new _CST package. */ static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) { struct acpi_cx *cx_ptr; ACPI_STATUS status; ACPI_BUFFER buf; ACPI_OBJECT *top; ACPI_OBJECT *pkg; uint32_t count; int i; #if defined(__i386__) || defined(__amd64__) uint64_t address; int vendor, class, accsize; #endif ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); if (ACPI_FAILURE(status)) return (ENXIO); /* _CST is a package with a count and at least one Cx package. */ top = (ACPI_OBJECT *)buf.Pointer; if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { device_printf(sc->cpu_dev, "invalid _CST package\n"); AcpiOsFree(buf.Pointer); return (ENXIO); } if (count != top->Package.Count - 1) { device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n", count, top->Package.Count - 1); count = top->Package.Count - 1; } if (count > MAX_CX_STATES) { device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); count = MAX_CX_STATES; } sc->cpu_non_c2 = 0; sc->cpu_non_c3 = 0; sc->cpu_cx_count = 0; cx_ptr = sc->cpu_cx_states; /* * C1 has been required since just after ACPI 1.0. * Reserve the first slot for it. */ cx_ptr->type = ACPI_STATE_C0; cx_ptr++; sc->cpu_cx_count++; /* Set up all valid states. */ for (i = 0; i < count; i++) { pkg = &top->Package.Elements[i + 1]; if (!ACPI_PKG_VALID(pkg, 4) || acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { device_printf(sc->cpu_dev, "skipping invalid Cx state package\n"); continue; } /* Validate the state to see if we should use it. */ switch (cx_ptr->type) { case ACPI_STATE_C1: acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr); #if defined(__i386__) || defined(__amd64__) if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address, &accsize) == 0 && (vendor == CST_FFH_VENDOR_INTEL || vendor == CST_FFH_VENDOR_AMD)) { if (class == CST_FFH_INTEL_CL_C1IO) { /* C1 I/O then Halt */ cx_ptr->res_rid = sc->cpu_cx_count; bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT, cx_ptr->res_rid, address, 1); cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev, SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE | RF_SHAREABLE); if (cx_ptr->p_lvlx == NULL) { bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT, cx_ptr->res_rid); device_printf(sc->cpu_dev, "C1 I/O failed to allocate port %d, " "degrading to C1 Halt", (int)address); } } else if (class == CST_FFH_INTEL_CL_MWAIT) { if (vendor == CST_FFH_VENDOR_INTEL || (vendor == CST_FFH_VENDOR_AMD && cpu_mon_mwait_edx != 0)) acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize); } } #endif if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) { /* This is the first C1 state. Use the reserved slot. */ sc->cpu_cx_states[0] = *cx_ptr; } else { sc->cpu_non_c2 = sc->cpu_cx_count; sc->cpu_non_c3 = sc->cpu_cx_count; cx_ptr++; sc->cpu_cx_count++; } continue; case ACPI_STATE_C2: sc->cpu_non_c3 = sc->cpu_cx_count; break; case ACPI_STATE_C3: default: if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: C3[%d] not available.\n", device_get_unit(sc->cpu_dev), i)); continue; } break; } /* Free up any previous register. */ acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr); /* Allocate the control register for C2 or C3. */ #if defined(__i386__) || defined(__amd64__) if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address, &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL && class == CST_FFH_INTEL_CL_MWAIT) { /* Native C State Instruction use (mwait) */ acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: Got C%d/mwait - %d latency\n", device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat)); cx_ptr++; sc->cpu_cx_count++; } else #endif { cx_ptr->res_rid = sc->cpu_cx_count; acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE); if (cx_ptr->p_lvlx) { cx_ptr->do_mwait = false; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: Got C%d - %d latency\n", device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat)); cx_ptr++; sc->cpu_cx_count++; } } } AcpiOsFree(buf.Pointer); /* If C1 state was not found, we need one now. */ cx_ptr = sc->cpu_cx_states; if (cx_ptr->type == ACPI_STATE_C0) { cx_ptr->type = ACPI_STATE_C1; cx_ptr->trans_lat = 0; } return (0); } /* * Call this *after* all CPUs have been attached. */ static void acpi_cpu_startup(void *arg) { struct acpi_cpu_softc *sc; int i; /* * Setup any quirks that might necessary now that we have probed * all the CPUs */ acpi_cpu_quirks(); if (cpu_cx_generic) { /* * We are using generic Cx mode, probe for available Cx states * for all processors. */ CPU_FOREACH(i) { if ((sc = cpu_softc[i]) != NULL) acpi_cpu_generic_cx_probe(sc); } } else { /* * We are using _CST mode, remove C3 state if necessary. * As we now know for sure that we will be using _CST mode * install our notify handler. */ CPU_FOREACH(i) { if ((sc = cpu_softc[i]) == NULL) continue; if (cpu_quirks & CPU_QUIRK_NO_C3) { sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1); } AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, acpi_cpu_notify, sc); } } /* Perform Cx final initialization. */ CPU_FOREACH(i) { if ((sc = cpu_softc[i]) != NULL) acpi_cpu_startup_cx(sc); } /* Add a sysctl handler to handle global Cx lowest setting */ SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree), OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A", "Global lowest Cx sleep state to use"); /* Take over idling from cpu_idle_default(). */ cpu_cx_lowest_lim = 0; CPU_FOREACH(i) { if ((sc = cpu_softc[i]) != NULL) enable_idle(sc); } #if defined(__i386__) || defined(__amd64__) cpu_idle_hook = acpi_cpu_idle; #endif } static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc) { struct sbuf sb; int i; /* * Set up the list of Cx states */ sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported), SBUF_FIXEDLEN); for (i = 0; i < sc->cpu_cx_count; i++) sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type, sc->cpu_cx_states[i].trans_lat); sbuf_trim(&sb); sbuf_finish(&sb); } static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc) { acpi_cpu_cx_list(sc); SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_supported", CTLFLAG_RD, sc->cpu_cx_supported, 0, "Cx/microsecond values for supported Cx states"); SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A", "lowest Cx sleep state to use"); SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, (void *)sc, 0, acpi_cpu_usage_sysctl, "A", "percent usage for each Cx state"); SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A", "Cx sleep state counters"); #if defined(__i386__) || defined(__amd64__) SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, (void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods"); #endif /* Signal platform that we can handle _CST notification. */ if (!cpu_cx_generic && cpu_cst_cnt != 0) { ACPI_LOCK(acpi); AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); ACPI_UNLOCK(acpi); } } #if defined(__i386__) || defined(__amd64__) /* * Idle the CPU in the lowest state possible. This function is called with * interrupts disabled. Note that once it re-enables interrupts, a task * switch can occur so do not access shared data (i.e. the softc) after * interrupts are re-enabled. */ static void acpi_cpu_idle(sbintime_t sbt) { struct acpi_cpu_softc *sc; struct acpi_cx *cx_next; uint64_t start_ticks, end_ticks; uint32_t start_time, end_time; ACPI_STATUS status; int bm_active, cx_next_idx, i, us; /* * Look up our CPU id to get our softc. If it's NULL, we'll use C1 * since there is no ACPI processor object for this CPU. This occurs * for logical CPUs in the HTT case. */ sc = cpu_softc[PCPU_GET(cpuid)]; if (sc == NULL) { acpi_cpu_c1(); return; } /* If disabled, take the safe path. */ if (is_idle_disabled(sc)) { acpi_cpu_c1(); return; } /* Find the lowest state that has small enough latency. */ us = sc->cpu_prev_sleep; if (sbt >= 0 && us > (sbt >> 12)) us = (sbt >> 12); cx_next_idx = 0; if (cpu_disable_c2_sleep) i = min(sc->cpu_cx_lowest, sc->cpu_non_c2); else if (cpu_disable_c3_sleep) i = min(sc->cpu_cx_lowest, sc->cpu_non_c3); else i = sc->cpu_cx_lowest; for (; i >= 0; i--) { if (sc->cpu_cx_states[i].trans_lat * 3 <= us) { cx_next_idx = i; break; } } /* * Check for bus master activity. If there was activity, clear * the bit and use the lowest non-C3 state. Note that the USB * driver polling for new devices keeps this bit set all the * time if USB is loaded. */ cx_next = &sc->cpu_cx_states[cx_next_idx]; if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 && cx_next_idx > sc->cpu_non_c3 && (!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) { status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active); if (ACPI_SUCCESS(status) && bm_active != 0) { AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1); cx_next_idx = sc->cpu_non_c3; cx_next = &sc->cpu_cx_states[cx_next_idx]; } } /* Select the next state and update statistics. */ sc->cpu_cx_stats[cx_next_idx]++; KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep")); /* * Execute HLT (or equivalent) and wait for an interrupt. We can't * precisely calculate the time spent in C1 since the place we wake up * is an ISR. Assume we slept no more then half of quantum, unless * we are called inside critical section, delaying context switch. */ if (cx_next->type == ACPI_STATE_C1) { start_ticks = cpu_ticks(); if (cx_next->p_lvlx != NULL) { /* C1 I/O then Halt */ CPU_GET_REG(cx_next->p_lvlx, 1); } if (cx_next->do_mwait) acpi_cpu_idle_mwait(cx_next->mwait_hint); else acpi_cpu_c1(); end_ticks = cpu_ticks(); /* acpi_cpu_c1() returns with interrupts enabled. */ if (cx_next->do_mwait) ACPI_ENABLE_IRQS(); end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate(); if (!cx_next->do_mwait && curthread->td_critnest == 0) end_time = min(end_time, 500000 / hz); sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4; return; } /* * For C3, disable bus master arbitration if BM control is available. * CPU may have to wake up to handle it. Otherwise flush the CPU cache. */ if (cx_next->type == ACPI_STATE_C3) { if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1); else ACPI_FLUSH_CPU_CACHE(); } /* * Read from P_LVLx to enter C2(+), checking time spent asleep. * Use the ACPI timer for measuring sleep time. Since we need to * get the time very close to the CPU start/stop clock logic, this * is the only reliable time source. */ if (cx_next->type == ACPI_STATE_C3) { AcpiGetTimer(&start_time); start_ticks = 0; } else { start_time = 0; start_ticks = cpu_ticks(); } if (cx_next->do_mwait) { acpi_cpu_idle_mwait(cx_next->mwait_hint); } else { CPU_GET_REG(cx_next->p_lvlx, 1); /* * Read the end time twice. Since it may take an arbitrary time * to enter the idle state, the first read may be executed before * the processor has stopped. Doing it again provides enough * margin that we are certain to have a correct value. */ AcpiGetTimer(&end_time); } if (cx_next->type == ACPI_STATE_C3) AcpiGetTimer(&end_time); else end_ticks = cpu_ticks(); /* Enable bus master arbitration. */ if (cx_next->type == ACPI_STATE_C3 && (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0); ACPI_ENABLE_IRQS(); if (cx_next->type == ACPI_STATE_C3) AcpiGetTimerDuration(start_time, end_time, &end_time); else end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate(); sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4; } #endif /* * Re-evaluate the _CST object when we are notified that it changed. */ static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) { struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; if (notify != ACPI_NOTIFY_CX_STATES) return; /* * C-state data for target CPU is going to be in flux while we execute * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle. * Also, it may happen that multiple ACPI taskqueues may concurrently * execute notifications for the same CPU. ACPI_SERIAL is used to * protect against that. */ ACPI_SERIAL_BEGIN(cpu); disable_idle(sc); /* Update the list of Cx states. */ acpi_cpu_cx_cst(sc); acpi_cpu_cx_list(sc); acpi_cpu_set_cx_lowest(sc); enable_idle(sc); ACPI_SERIAL_END(cpu); acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify); } static void acpi_cpu_quirks(void) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * Bus mastering arbitration control is needed to keep caches coherent * while sleeping in C3. If it's not present but a working flush cache * instruction is present, flush the caches before entering C3 instead. * Otherwise, just disable C3 completely. */ if (AcpiGbl_FADT.Pm2ControlBlock == 0 || AcpiGbl_FADT.Pm2ControlLength == 0) { if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) && (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) { cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: no BM control, using flush cache method\n")); } else { cpu_quirks |= CPU_QUIRK_NO_C3; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: no BM control, C3 not available\n")); } } /* * If we are using generic Cx mode, C3 on multiple CPUs requires using * the expensive flush cache instruction. */ if (cpu_cx_generic && mp_ncpus > 1) { cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: SMP, using flush cache mode for C3\n")); } /* Look for various quirks of the PIIX4 part. */ acpi_cpu_quirks_piix4(); } static void acpi_cpu_quirks_piix4(void) { #ifdef __i386__ device_t acpi_dev; uint32_t val; ACPI_STATUS status; acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); if (acpi_dev != NULL) { switch (pci_get_revid(acpi_dev)) { /* * Disable C3 support for all PIIX4 chipsets. Some of these parts * do not report the BMIDE status to the BM status register and * others have a livelock bug if Type-F DMA is enabled. Linux * works around the BMIDE bug by reading the BM status directly * but we take the simpler approach of disabling C3 for these * parts. * * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA * Livelock") from the January 2002 PIIX4 specification update. * Applies to all PIIX4 models. * * Also, make sure that all interrupts cause a "Stop Break" * event to exit from C2 state. * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak) * should be set to zero, otherwise it causes C2 to short-sleep. * PIIX4 doesn't properly support C3 and bus master activity * need not break out of C2. */ case PCI_REVISION_A_STEP: case PCI_REVISION_B_STEP: case PCI_REVISION_4E: case PCI_REVISION_4M: cpu_quirks |= CPU_QUIRK_NO_C3; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: working around PIIX4 bug, disabling C3\n")); val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4); if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n")); val |= PIIX4_STOP_BREAK_MASK; pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4); } status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val); if (ACPI_SUCCESS(status) && val != 0) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: PIIX4: reset BRLD_EN_BM\n")); AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); } break; default: break; } } #endif } static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1; struct sbuf sb; char buf[128]; int error, i; uintmax_t fract, sum, whole; sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req); sum = 0; for (i = 0; i < sc->cpu_cx_count; i++) sum += sc->cpu_cx_stats[i]; for (i = 0; i < sc->cpu_cx_count; i++) { if (sum > 0) { whole = (uintmax_t)sc->cpu_cx_stats[i] * 100; fract = (whole % sum) * 100; sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum), (u_int)(fract / sum)); } else sbuf_printf(&sb, "0.00%% "); } sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep); error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } /* * XXX TODO: actually add support to count each entry/exit * from the Cx states. */ static int acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1; struct sbuf sb; char buf[128]; int error, i; sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req); for (i = 0; i < sc->cpu_cx_count; i++) { if (i > 0) sbuf_putc(&sb, ' '); sbuf_printf(&sb, "%u", sc->cpu_cx_stats[i]); } error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } #if defined(__i386__) || defined(__amd64__) static int acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1; struct acpi_cx *cx; struct sbuf sb; char buf[128]; int error, i; sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req); for (i = 0; i < sc->cpu_cx_count; i++) { cx = &sc->cpu_cx_states[i]; if (i > 0) sbuf_putc(&sb, ' '); sbuf_printf(&sb, "C%d/", i + 1); if (cx->do_mwait) { sbuf_cat(&sb, "mwait"); if (cx->mwait_hw_coord) sbuf_cat(&sb, "/hwc"); if (cx->mwait_bm_avoidance) sbuf_cat(&sb, "/bma"); } else if (cx->type == ACPI_STATE_C1) { sbuf_cat(&sb, "hlt"); } else { sbuf_cat(&sb, "io"); } if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL) sbuf_cat(&sb, "/iohlt"); } error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } #endif static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc) { int i; ACPI_SERIAL_ASSERT(cpu); sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1); /* If not disabling, cache the new lowest non-C3 state. */ sc->cpu_non_c3 = 0; for (i = sc->cpu_cx_lowest; i >= 0; i--) { if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { sc->cpu_non_c3 = i; break; } } /* Reset the statistics counters. */ bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats)); return (0); } static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc; char state[8]; int val, error; sc = (struct acpi_cpu_softc *) arg1; snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1); error = sysctl_handle_string(oidp, state, sizeof(state), req); if (error != 0 || req->newptr == NULL) return (error); if (strlen(state) < 2 || toupper(state[0]) != 'C') return (EINVAL); if (strcasecmp(state, "Cmax") == 0) val = MAX_CX_STATES; else { val = (int) strtol(state + 1, NULL, 10); if (val < 1 || val > MAX_CX_STATES) return (EINVAL); } ACPI_SERIAL_BEGIN(cpu); sc->cpu_cx_lowest_lim = val - 1; acpi_cpu_set_cx_lowest(sc); ACPI_SERIAL_END(cpu); return (0); } static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc; char state[8]; int val, error, i; snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1); error = sysctl_handle_string(oidp, state, sizeof(state), req); if (error != 0 || req->newptr == NULL) return (error); if (strlen(state) < 2 || toupper(state[0]) != 'C') return (EINVAL); if (strcasecmp(state, "Cmax") == 0) val = MAX_CX_STATES; else { val = (int) strtol(state + 1, NULL, 10); if (val < 1 || val > MAX_CX_STATES) return (EINVAL); } /* Update the new lowest useable Cx state for all CPUs. */ ACPI_SERIAL_BEGIN(cpu); cpu_cx_lowest_lim = val - 1; CPU_FOREACH(i) { if ((sc = cpu_softc[i]) == NULL) continue; sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim; acpi_cpu_set_cx_lowest(sc); } ACPI_SERIAL_END(cpu); return (0); }