/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2016 by Delphix. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. */ /* * The 512-byte leaf is broken into 32 16-byte chunks. * chunk number n means l_chunk[n], even though the header precedes it. * the names are stored null-terminated. */ #include #include #include #include #include #include #include #include #include static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, uint16_t entry); #define CHAIN_END 0xffff /* end of the chunk chain */ #define LEAF_HASH(l, h) \ ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ ((h) >> \ (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)]) static void stv(int len, void *addr, uint64_t value) { switch (len) { case 1: *(uint8_t *)addr = value; return; case 2: *(uint16_t *)addr = value; return; case 4: *(uint32_t *)addr = value; return; case 8: *(uint64_t *)addr = value; return; default: PANIC("bad int len %d", len); } } static uint64_t ldv(int len, const void *addr) { switch (len) { case 1: return (*(uint8_t *)addr); case 2: return (*(uint16_t *)addr); case 4: return (*(uint32_t *)addr); case 8: return (*(uint64_t *)addr); default: PANIC("bad int len %d", len); } return (0xFEEDFACEDEADBEEFULL); } void zap_leaf_byteswap(zap_leaf_phys_t *buf, size_t size) { zap_leaf_t l; dmu_buf_t l_dbuf; l_dbuf.db_data = buf; l.l_bs = highbit64(size) - 1; l.l_dbuf = &l_dbuf; buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); struct zap_leaf_entry *le; switch (lc->l_free.lf_type) { case ZAP_CHUNK_ENTRY: le = &lc->l_entry; le->le_type = BSWAP_8(le->le_type); le->le_value_intlen = BSWAP_8(le->le_value_intlen); le->le_next = BSWAP_16(le->le_next); le->le_name_chunk = BSWAP_16(le->le_name_chunk); le->le_name_numints = BSWAP_16(le->le_name_numints); le->le_value_chunk = BSWAP_16(le->le_value_chunk); le->le_value_numints = BSWAP_16(le->le_value_numints); le->le_cd = BSWAP_32(le->le_cd); le->le_hash = BSWAP_64(le->le_hash); break; case ZAP_CHUNK_FREE: lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); break; case ZAP_CHUNK_ARRAY: lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); /* la_array doesn't need swapping */ break; default: cmn_err(CE_PANIC, "bad leaf type %d", lc->l_free.lf_type); } } } void zap_leaf_init(zap_leaf_t *l, boolean_t sort) { l->l_bs = highbit64(l->l_dbuf->db_size) - 1; memset(&zap_leaf_phys(l)->l_hdr, 0, sizeof (struct zap_leaf_header)); memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; } ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF; zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC; zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); if (sort) zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; } /* * Routines which manipulate leaf chunks (l_chunk[]). */ static uint16_t zap_leaf_chunk_alloc(zap_leaf_t *l) { ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0); uint_t chunk = zap_leaf_phys(l)->l_hdr.lh_freelist; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); zap_leaf_phys(l)->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; zap_leaf_phys(l)->l_hdr.lh_nfree--; return (chunk); } static void zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) { struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); zlf->lf_type = ZAP_CHUNK_FREE; zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist; memset(zlf->lf_pad, 0, sizeof (zlf->lf_pad)); /* help it to compress */ zap_leaf_phys(l)->l_hdr.lh_freelist = chunk; zap_leaf_phys(l)->l_hdr.lh_nfree++; } /* * Routines which manipulate leaf arrays (zap_leaf_array type chunks). */ static uint16_t zap_leaf_array_create(zap_leaf_t *l, const char *buf, int integer_size, int num_integers) { uint16_t chunk_head; uint16_t *chunkp = &chunk_head; int byten = integer_size; uint64_t value = 0; int shift = (integer_size - 1) * 8; int len = num_integers; ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN); if (len > 0) value = ldv(integer_size, buf); while (len > 0) { uint16_t chunk = zap_leaf_chunk_alloc(l); struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; la->la_type = ZAP_CHUNK_ARRAY; for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { la->la_array[i] = value >> shift; value <<= 8; if (--byten == 0) { if (--len == 0) break; byten = integer_size; buf += integer_size; value = ldv(integer_size, buf); } } *chunkp = chunk; chunkp = &la->la_next; } *chunkp = CHAIN_END; return (chunk_head); } /* * Non-destructively copy array between leaves. */ static uint16_t zap_leaf_array_copy(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) { uint16_t new_chunk; uint16_t *nchunkp = &new_chunk; while (chunk != CHAIN_END) { ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); uint16_t nchunk = zap_leaf_chunk_alloc(nl); struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; struct zap_leaf_array *nla = &ZAP_LEAF_CHUNK(nl, nchunk).l_array; ASSERT3U(la->la_type, ==, ZAP_CHUNK_ARRAY); *nla = *la; /* structure assignment */ chunk = la->la_next; *nchunkp = nchunk; nchunkp = &nla->la_next; } *nchunkp = CHAIN_END; return (new_chunk); } /* * Free array. Unlike trivial loop of zap_leaf_chunk_free() this does * not reverse order of chunks in the free list, reducing fragmentation. */ static void zap_leaf_array_free(zap_leaf_t *l, uint16_t chunk) { struct zap_leaf_header *hdr = &zap_leaf_phys(l)->l_hdr; uint16_t *tailp = &hdr->lh_freelist; uint16_t oldfree = *tailp; while (chunk != CHAIN_END) { ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); zap_leaf_chunk_t *c = &ZAP_LEAF_CHUNK(l, chunk); ASSERT3U(c->l_array.la_type, ==, ZAP_CHUNK_ARRAY); *tailp = chunk; chunk = c->l_array.la_next; c->l_free.lf_type = ZAP_CHUNK_FREE; memset(c->l_free.lf_pad, 0, sizeof (c->l_free.lf_pad)); tailp = &c->l_free.lf_next; ASSERT3U(hdr->lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); hdr->lh_nfree++; } *tailp = oldfree; } /* array_len and buf_len are in integers, not bytes */ static void zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, void *buf) { int len = MIN(array_len, buf_len); int byten = 0; uint64_t value = 0; char *p = buf; ASSERT3U(array_int_len, <=, buf_int_len); /* Fast path for one 8-byte integer */ if (array_int_len == 8 && buf_int_len == 8 && len == 1) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; uint8_t *ip = la->la_array; uint64_t *buf64 = buf; *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; return; } /* Fast path for an array of 1-byte integers (eg. the entry name) */ if (array_int_len == 1 && buf_int_len == 1 && buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { while (chunk != CHAIN_END) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; memcpy(p, la->la_array, ZAP_LEAF_ARRAY_BYTES); p += ZAP_LEAF_ARRAY_BYTES; chunk = la->la_next; } return; } while (len > 0) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { value = (value << 8) | la->la_array[i]; byten++; if (byten == array_int_len) { stv(buf_int_len, p, value); byten = 0; len--; if (len == 0) return; p += buf_int_len; } } chunk = la->la_next; } } static boolean_t zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, uint_t chunk, int array_numints) { int bseen = 0; if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { uint64_t *thiskey = kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP); ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, sizeof (*thiskey), array_numints, thiskey); boolean_t match = memcmp(thiskey, zn->zn_key_orig, array_numints * sizeof (*thiskey)) == 0; kmem_free(thiskey, array_numints * sizeof (*thiskey)); return (match); } ASSERT(zn->zn_key_intlen == 1); if (zn->zn_matchtype & MT_NORMALIZE) { char *thisname = kmem_alloc(array_numints, KM_SLEEP); zap_leaf_array_read(l, chunk, sizeof (char), array_numints, sizeof (char), array_numints, thisname); boolean_t match = zap_match(zn, thisname); kmem_free(thisname, array_numints); return (match); } /* * Fast path for exact matching. * First check that the lengths match, so that we don't read * past the end of the zn_key_orig array. */ if (array_numints != zn->zn_key_orig_numints) return (B_FALSE); while (bseen < array_numints) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); if (memcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) break; chunk = la->la_next; bseen += toread; } return (bseen == array_numints); } /* * Routines which manipulate leaf entries. */ int zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) { struct zap_leaf_entry *le; ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); *chunkp != CHAIN_END; chunkp = &le->le_next) { uint16_t chunk = *chunkp; le = ZAP_LEAF_ENTRY(l, chunk); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); if (le->le_hash != zn->zn_hash) continue; /* * NB: the entry chain is always sorted by cd on * normalized zap objects, so this will find the * lowest-cd match for MT_NORMALIZE. */ ASSERT((zn->zn_matchtype == 0) || (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); if (zap_leaf_array_match(l, zn, le->le_name_chunk, le->le_name_numints)) { zeh->zeh_num_integers = le->le_value_numints; zeh->zeh_integer_size = le->le_value_intlen; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_chunkp = chunkp; zeh->zeh_leaf = l; return (0); } } return (SET_ERROR(ENOENT)); } /* Return (h1,cd1 >= h2,cd2) */ #define HCD_GTEQ(h1, cd1, h2, cd2) \ ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) int zap_leaf_lookup_closest(zap_leaf_t *l, uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) { uint64_t besth = -1ULL; uint32_t bestcd = -1U; uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; struct zap_leaf_entry *le; ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh]; chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(l, chunk); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { ASSERT3U(bestlh, >=, lh); bestlh = lh; besth = le->le_hash; bestcd = le->le_cd; zeh->zeh_num_integers = le->le_value_numints; zeh->zeh_integer_size = le->le_value_intlen; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_fakechunk = chunk; zeh->zeh_chunkp = &zeh->zeh_fakechunk; zeh->zeh_leaf = l; } } } return (bestcd == -1U ? SET_ERROR(ENOENT) : 0); } int zap_entry_read(const zap_entry_handle_t *zeh, uint8_t integer_size, uint64_t num_integers, void *buf) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); if (le->le_value_intlen > integer_size) return (SET_ERROR(EINVAL)); zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, le->le_value_intlen, le->le_value_numints, integer_size, num_integers, buf); if (zeh->zeh_num_integers > num_integers) return (SET_ERROR(EOVERFLOW)); return (0); } int zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, char *buf) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, le->le_name_numints, 8, buflen / 8, buf); } else { zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, le->le_name_numints, 1, buflen, buf); } if (le->le_name_numints > buflen) return (SET_ERROR(EOVERFLOW)); return (0); } int zap_entry_update(zap_entry_handle_t *zeh, uint8_t integer_size, uint64_t num_integers, const void *buf) { zap_leaf_t *l = zeh->zeh_leaf; struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks) return (SET_ERROR(EAGAIN)); zap_leaf_array_free(l, le->le_value_chunk); le->le_value_chunk = zap_leaf_array_create(l, buf, integer_size, num_integers); le->le_value_numints = num_integers; le->le_value_intlen = integer_size; return (0); } void zap_entry_remove(zap_entry_handle_t *zeh) { zap_leaf_t *l = zeh->zeh_leaf; ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); uint16_t entry_chunk = *zeh->zeh_chunkp; struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); *zeh->zeh_chunkp = le->le_next; /* Free in opposite order to reduce fragmentation. */ zap_leaf_array_free(l, le->le_value_chunk); zap_leaf_array_free(l, le->le_name_chunk); zap_leaf_chunk_free(l, entry_chunk); zap_leaf_phys(l)->l_hdr.lh_nentries--; } int zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, uint8_t integer_size, uint64_t num_integers, const void *buf, zap_entry_handle_t *zeh) { uint16_t chunk; struct zap_leaf_entry *le; uint64_t h = zn->zn_hash; uint64_t valuelen = integer_size * num_integers; uint_t numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) return (SET_ERROR(E2BIG)); if (cd == ZAP_NEED_CD) { /* find the lowest unused cd */ if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { cd = 0; for (chunk = *LEAF_HASH_ENTPTR(l, h); chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(l, chunk); if (le->le_cd > cd) break; if (le->le_hash == h) { ASSERT3U(cd, ==, le->le_cd); cd++; } } } else { /* old unsorted format; do it the O(n^2) way */ for (cd = 0; ; cd++) { for (chunk = *LEAF_HASH_ENTPTR(l, h); chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(l, chunk); if (le->le_hash == h && le->le_cd == cd) { break; } } /* If this cd is not in use, we are good. */ if (chunk == CHAIN_END) break; } } /* * We would run out of space in a block before we could * store enough entries to run out of CD values. */ ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); } if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks) return (SET_ERROR(EAGAIN)); /* make the entry */ chunk = zap_leaf_chunk_alloc(l); le = ZAP_LEAF_ENTRY(l, chunk); le->le_type = ZAP_CHUNK_ENTRY; le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, zn->zn_key_intlen, zn->zn_key_orig_numints); le->le_name_numints = zn->zn_key_orig_numints; le->le_value_chunk = zap_leaf_array_create(l, buf, integer_size, num_integers); le->le_value_numints = num_integers; le->le_value_intlen = integer_size; le->le_hash = h; le->le_cd = cd; /* link it into the hash chain */ /* XXX if we did the search above, we could just use that */ uint16_t *chunkp = zap_leaf_rehash_entry(l, le, chunk); zap_leaf_phys(l)->l_hdr.lh_nentries++; zeh->zeh_leaf = l; zeh->zeh_num_integers = num_integers; zeh->zeh_integer_size = le->le_value_intlen; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_chunkp = chunkp; return (0); } /* * Determine if there is another entry with the same normalized form. * For performance purposes, either zn or name must be provided (the * other can be NULL). Note, there usually won't be any hash * conflicts, in which case we don't need the concatenated/normalized * form of the name. But all callers have one of these on hand anyway, * so might as well take advantage. A cleaner but slower interface * would accept neither argument, and compute the normalized name as * needed (using zap_name_alloc_str(zap_entry_read_name(zeh))). */ boolean_t zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, const char *name, zap_t *zap) { struct zap_leaf_entry *le; boolean_t allocdzn = B_FALSE; if (zap->zap_normflags == 0) return (B_FALSE); for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); if (le->le_hash != zeh->zeh_hash) continue; if (le->le_cd == zeh->zeh_cd) continue; if (zn == NULL) { zn = zap_name_alloc_str(zap, name, MT_NORMALIZE); allocdzn = B_TRUE; } if (zap_leaf_array_match(zeh->zeh_leaf, zn, le->le_name_chunk, le->le_name_numints)) { if (allocdzn) zap_name_free(zn); return (B_TRUE); } } if (allocdzn) zap_name_free(zn); return (B_FALSE); } /* * Routines for transferring entries between leafs. */ static uint16_t * zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, uint16_t entry) { struct zap_leaf_entry *le2; uint16_t *chunkp; /* * keep the entry chain sorted by cd * NB: this will not cause problems for unsorted leafs, though * it is unnecessary there. */ for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); *chunkp != CHAIN_END; chunkp = &le2->le_next) { le2 = ZAP_LEAF_ENTRY(l, *chunkp); if (le2->le_cd > le->le_cd) break; } le->le_next = *chunkp; *chunkp = entry; return (chunkp); } static void zap_leaf_transfer_entry(zap_leaf_t *l, uint_t entry, zap_leaf_t *nl) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); uint16_t chunk = zap_leaf_chunk_alloc(nl); struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk); *nle = *le; /* structure assignment */ (void) zap_leaf_rehash_entry(nl, nle, chunk); nle->le_name_chunk = zap_leaf_array_copy(l, le->le_name_chunk, nl); nle->le_value_chunk = zap_leaf_array_copy(l, le->le_value_chunk, nl); /* Free in opposite order to reduce fragmentation. */ zap_leaf_array_free(l, le->le_value_chunk); zap_leaf_array_free(l, le->le_name_chunk); zap_leaf_chunk_free(l, entry); zap_leaf_phys(l)->l_hdr.lh_nentries--; zap_leaf_phys(nl)->l_hdr.lh_nentries++; } /* * Transfer the entries whose hash prefix ends in 1 to the new leaf. */ void zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) { uint_t bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len; /* set new prefix and prefix_len */ zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1; zap_leaf_phys(l)->l_hdr.lh_prefix_len++; zap_leaf_phys(nl)->l_hdr.lh_prefix = zap_leaf_phys(l)->l_hdr.lh_prefix | 1; zap_leaf_phys(nl)->l_hdr.lh_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; /* break existing hash chains */ memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); if (sort) zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; /* * Transfer entries whose hash bit 'bit' is set to nl; rehash * the remaining entries * * NB: We could find entries via the hashtable instead. That * would be O(hashents+numents) rather than O(numblks+numents), * but this accesses memory more sequentially, and when we're * called, the block is usually pretty full. */ for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); if (le->le_type != ZAP_CHUNK_ENTRY) continue; if (le->le_hash & (1ULL << bit)) zap_leaf_transfer_entry(l, i, nl); else (void) zap_leaf_rehash_entry(l, le, i); } } void zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) { uint_t n = zap_f_phys(zap)->zap_ptrtbl.zt_shift - zap_leaf_phys(l)->l_hdr.lh_prefix_len; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_leafs_with_2n_pointers[n]++; n = zap_leaf_phys(l)->l_hdr.lh_nentries/5; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_blocks_with_n5_entries[n]++; n = ((1<l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / (1<zs_blocks_n_tenths_full[n]++; for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { uint_t nentries = 0; uint_t chunk = zap_leaf_phys(l)->l_hash[i]; while (chunk != CHAIN_END) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, chunk); n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_entries_using_n_chunks[n]++; chunk = le->le_next; nentries++; } n = nentries; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_buckets_with_n_entries[n]++; } }