//===-- Process.cpp -------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include #include #include #include "llvm/ADT/ScopeExit.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/Threading.h" #include "lldb/Breakpoint/BreakpointLocation.h" #include "lldb/Breakpoint/StoppointCallbackContext.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Progress.h" #include "lldb/Expression/DiagnosticManager.h" #include "lldb/Expression/DynamicCheckerFunctions.h" #include "lldb/Expression/UserExpression.h" #include "lldb/Expression/UtilityFunction.h" #include "lldb/Host/ConnectionFileDescriptor.h" #include "lldb/Host/FileSystem.h" #include "lldb/Host/Host.h" #include "lldb/Host/HostInfo.h" #include "lldb/Host/OptionParser.h" #include "lldb/Host/Pipe.h" #include "lldb/Host/Terminal.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Interpreter/OptionArgParser.h" #include "lldb/Interpreter/OptionValueProperties.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Target/ABI.h" #include "lldb/Target/AssertFrameRecognizer.h" #include "lldb/Target/DynamicLoader.h" #include "lldb/Target/InstrumentationRuntime.h" #include "lldb/Target/JITLoader.h" #include "lldb/Target/JITLoaderList.h" #include "lldb/Target/Language.h" #include "lldb/Target/LanguageRuntime.h" #include "lldb/Target/MemoryHistory.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/OperatingSystem.h" #include "lldb/Target/Platform.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StopInfo.h" #include "lldb/Target/StructuredDataPlugin.h" #include "lldb/Target/SystemRuntime.h" #include "lldb/Target/Target.h" #include "lldb/Target/TargetList.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadPlan.h" #include "lldb/Target/ThreadPlanBase.h" #include "lldb/Target/ThreadPlanCallFunction.h" #include "lldb/Target/ThreadPlanStack.h" #include "lldb/Target/UnixSignals.h" #include "lldb/Target/VerboseTrapFrameRecognizer.h" #include "lldb/Utility/AddressableBits.h" #include "lldb/Utility/Event.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/NameMatches.h" #include "lldb/Utility/ProcessInfo.h" #include "lldb/Utility/SelectHelper.h" #include "lldb/Utility/State.h" #include "lldb/Utility/Timer.h" using namespace lldb; using namespace lldb_private; using namespace std::chrono; // Comment out line below to disable memory caching, overriding the process // setting target.process.disable-memory-cache #define ENABLE_MEMORY_CACHING #ifdef ENABLE_MEMORY_CACHING #define DISABLE_MEM_CACHE_DEFAULT false #else #define DISABLE_MEM_CACHE_DEFAULT true #endif class ProcessOptionValueProperties : public Cloneable { public: ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} const Property * GetPropertyAtIndex(size_t idx, const ExecutionContext *exe_ctx) const override { // When getting the value for a key from the process options, we will // always try and grab the setting from the current process if there is // one. Else we just use the one from this instance. if (exe_ctx) { Process *process = exe_ctx->GetProcessPtr(); if (process) { ProcessOptionValueProperties *instance_properties = static_cast( process->GetValueProperties().get()); if (this != instance_properties) return instance_properties->ProtectedGetPropertyAtIndex(idx); } } return ProtectedGetPropertyAtIndex(idx); } }; class ProcessMemoryIterator { public: ProcessMemoryIterator(Process &process, lldb::addr_t base) : m_process(process), m_base_addr(base) {} bool IsValid() { return m_is_valid; } uint8_t operator[](lldb::addr_t offset) { if (!IsValid()) return 0; uint8_t retval = 0; Status error; if (0 == m_process.ReadMemory(m_base_addr + offset, &retval, 1, error)) { m_is_valid = false; return 0; } return retval; } private: Process &m_process; const lldb::addr_t m_base_addr; bool m_is_valid = true; }; static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { { eFollowParent, "parent", "Continue tracing the parent process and detach the child.", }, { eFollowChild, "child", "Trace the child process and detach the parent.", }, }; #define LLDB_PROPERTIES_process #include "TargetProperties.inc" enum { #define LLDB_PROPERTIES_process #include "TargetPropertiesEnum.inc" ePropertyExperimental, }; #define LLDB_PROPERTIES_process_experimental #include "TargetProperties.inc" enum { #define LLDB_PROPERTIES_process_experimental #include "TargetPropertiesEnum.inc" }; class ProcessExperimentalOptionValueProperties : public Cloneable { public: ProcessExperimentalOptionValueProperties() : Cloneable(Properties::GetExperimentalSettingsName()) {} }; ProcessExperimentalProperties::ProcessExperimentalProperties() : Properties(OptionValuePropertiesSP( new ProcessExperimentalOptionValueProperties())) { m_collection_sp->Initialize(g_process_experimental_properties); } ProcessProperties::ProcessProperties(lldb_private::Process *process) : Properties(), m_process(process) // Can be nullptr for global ProcessProperties { if (process == nullptr) { // Global process properties, set them up one time m_collection_sp = std::make_shared("process"); m_collection_sp->Initialize(g_process_properties); m_collection_sp->AppendProperty( "thread", "Settings specific to threads.", true, Thread::GetGlobalProperties().GetValueProperties()); } else { m_collection_sp = OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); m_collection_sp->SetValueChangedCallback( ePropertyPythonOSPluginPath, [this] { m_process->LoadOperatingSystemPlugin(true); }); } m_experimental_properties_up = std::make_unique(); m_collection_sp->AppendProperty( Properties::GetExperimentalSettingsName(), "Experimental settings - setting these won't produce " "errors if the setting is not present.", true, m_experimental_properties_up->GetValueProperties()); } ProcessProperties::~ProcessProperties() = default; bool ProcessProperties::GetDisableMemoryCache() const { const uint32_t idx = ePropertyDisableMemCache; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } uint64_t ProcessProperties::GetMemoryCacheLineSize() const { const uint32_t idx = ePropertyMemCacheLineSize; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value); } Args ProcessProperties::GetExtraStartupCommands() const { Args args; const uint32_t idx = ePropertyExtraStartCommand; m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); return args; } void ProcessProperties::SetExtraStartupCommands(const Args &args) { const uint32_t idx = ePropertyExtraStartCommand; m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); } FileSpec ProcessProperties::GetPythonOSPluginPath() const { const uint32_t idx = ePropertyPythonOSPluginPath; return GetPropertyAtIndexAs(idx, {}); } uint32_t ProcessProperties::GetVirtualAddressableBits() const { const uint32_t idx = ePropertyVirtualAddressableBits; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value); } void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { const uint32_t idx = ePropertyVirtualAddressableBits; SetPropertyAtIndex(idx, static_cast(bits)); } uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { const uint32_t idx = ePropertyHighmemVirtualAddressableBits; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value); } void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { const uint32_t idx = ePropertyHighmemVirtualAddressableBits; SetPropertyAtIndex(idx, static_cast(bits)); } void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { const uint32_t idx = ePropertyPythonOSPluginPath; SetPropertyAtIndex(idx, file); } bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; SetPropertyAtIndex(idx, ignore); } bool ProcessProperties::GetUnwindOnErrorInExpressions() const { const uint32_t idx = ePropertyUnwindOnErrorInExpressions; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { const uint32_t idx = ePropertyUnwindOnErrorInExpressions; SetPropertyAtIndex(idx, ignore); } bool ProcessProperties::GetStopOnSharedLibraryEvents() const { const uint32_t idx = ePropertyStopOnSharedLibraryEvents; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { const uint32_t idx = ePropertyStopOnSharedLibraryEvents; SetPropertyAtIndex(idx, stop); } bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; SetPropertyAtIndex(idx, disable); m_process->Flush(); } bool ProcessProperties::GetDetachKeepsStopped() const { const uint32_t idx = ePropertyDetachKeepsStopped; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } void ProcessProperties::SetDetachKeepsStopped(bool stop) { const uint32_t idx = ePropertyDetachKeepsStopped; SetPropertyAtIndex(idx, stop); } bool ProcessProperties::GetWarningsOptimization() const { const uint32_t idx = ePropertyWarningOptimization; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } bool ProcessProperties::GetWarningsUnsupportedLanguage() const { const uint32_t idx = ePropertyWarningUnsupportedLanguage; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } bool ProcessProperties::GetStopOnExec() const { const uint32_t idx = ePropertyStopOnExec; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { const uint32_t idx = ePropertyUtilityExpressionTimeout; uint64_t value = GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value); return std::chrono::seconds(value); } std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { const uint32_t idx = ePropertyInterruptTimeout; uint64_t value = GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value); return std::chrono::seconds(value); } bool ProcessProperties::GetSteppingRunsAllThreads() const { const uint32_t idx = ePropertySteppingRunsAllThreads; return GetPropertyAtIndexAs( idx, g_process_properties[idx].default_uint_value != 0); } bool ProcessProperties::GetOSPluginReportsAllThreads() const { const bool fail_value = true; const Property *exp_property = m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); OptionValueProperties *exp_values = exp_property->GetValue()->GetAsProperties(); if (!exp_values) return fail_value; return exp_values ->GetPropertyAtIndexAs(ePropertyOSPluginReportsAllThreads) .value_or(fail_value); } void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { const Property *exp_property = m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); OptionValueProperties *exp_values = exp_property->GetValue()->GetAsProperties(); if (exp_values) exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, does_report); } FollowForkMode ProcessProperties::GetFollowForkMode() const { const uint32_t idx = ePropertyFollowForkMode; return GetPropertyAtIndexAs( idx, static_cast( g_process_properties[idx].default_uint_value)); } ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, llvm::StringRef plugin_name, ListenerSP listener_sp, const FileSpec *crash_file_path, bool can_connect) { static uint32_t g_process_unique_id = 0; ProcessSP process_sp; ProcessCreateInstance create_callback = nullptr; if (!plugin_name.empty()) { create_callback = PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); if (create_callback) { process_sp = create_callback(target_sp, listener_sp, crash_file_path, can_connect); if (process_sp) { if (process_sp->CanDebug(target_sp, true)) { process_sp->m_process_unique_id = ++g_process_unique_id; } else process_sp.reset(); } } } else { for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; ++idx) { process_sp = create_callback(target_sp, listener_sp, crash_file_path, can_connect); if (process_sp) { if (process_sp->CanDebug(target_sp, false)) { process_sp->m_process_unique_id = ++g_process_unique_id; break; } else process_sp.reset(); } } } return process_sp; } llvm::StringRef Process::GetStaticBroadcasterClass() { static constexpr llvm::StringLiteral class_name("lldb.process"); return class_name; } Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { // This constructor just delegates to the full Process constructor, // defaulting to using the Host's UnixSignals. } Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, const UnixSignalsSP &unix_signals_sp) : ProcessProperties(this), Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), Process::GetStaticBroadcasterClass().str()), m_target_wp(target_sp), m_public_state(eStateUnloaded), m_private_state(eStateUnloaded), m_private_state_broadcaster(nullptr, "lldb.process.internal_state_broadcaster"), m_private_state_control_broadcaster( nullptr, "lldb.process.internal_state_control_broadcaster"), m_private_state_listener_sp( Listener::MakeListener("lldb.process.internal_state_listener")), m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), m_thread_id_to_index_id_map(), m_exit_status(-1), m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this), m_extended_thread_list(*this), m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), m_stdin_forward(false), m_stdout_data(), m_stderr_data(), m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), m_memory_cache(*this), m_allocated_memory_cache(*this), m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), m_private_run_lock(), m_currently_handling_do_on_removals(false), m_resume_requested(false), m_finalizing(false), m_destructing(false), m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), m_can_interpret_function_calls(false), m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { CheckInWithManager(); Log *log = GetLog(LLDBLog::Object); LLDB_LOGF(log, "%p Process::Process()", static_cast(this)); if (!m_unix_signals_sp) m_unix_signals_sp = std::make_shared(); SetEventName(eBroadcastBitStateChanged, "state-changed"); SetEventName(eBroadcastBitInterrupt, "interrupt"); SetEventName(eBroadcastBitSTDOUT, "stdout-available"); SetEventName(eBroadcastBitSTDERR, "stderr-available"); SetEventName(eBroadcastBitProfileData, "profile-data-available"); SetEventName(eBroadcastBitStructuredData, "structured-data-available"); m_private_state_control_broadcaster.SetEventName( eBroadcastInternalStateControlStop, "control-stop"); m_private_state_control_broadcaster.SetEventName( eBroadcastInternalStateControlPause, "control-pause"); m_private_state_control_broadcaster.SetEventName( eBroadcastInternalStateControlResume, "control-resume"); // The listener passed into process creation is the primary listener: // It always listens for all the event bits for Process: SetPrimaryListener(listener_sp); m_private_state_listener_sp->StartListeningForEvents( &m_private_state_broadcaster, eBroadcastBitStateChanged | eBroadcastBitInterrupt); m_private_state_listener_sp->StartListeningForEvents( &m_private_state_control_broadcaster, eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | eBroadcastInternalStateControlResume); // We need something valid here, even if just the default UnixSignalsSP. assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); // Allow the platform to override the default cache line size OptionValueSP value_sp = m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize) ->GetValue(); uint64_t platform_cache_line_size = target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) value_sp->SetValueAs(platform_cache_line_size); // FIXME: Frame recognizer registration should not be done in Target. // We should have a plugin do the registration instead, for example, a // common C LanguageRuntime plugin. RegisterAssertFrameRecognizer(this); RegisterVerboseTrapFrameRecognizer(*this); } Process::~Process() { Log *log = GetLog(LLDBLog::Object); LLDB_LOGF(log, "%p Process::~Process()", static_cast(this)); StopPrivateStateThread(); // ThreadList::Clear() will try to acquire this process's mutex, so // explicitly clear the thread list here to ensure that the mutex is not // destroyed before the thread list. m_thread_list.Clear(); } ProcessProperties &Process::GetGlobalProperties() { // NOTE: intentional leak so we don't crash if global destructor chain gets // called as other threads still use the result of this function static ProcessProperties *g_settings_ptr = new ProcessProperties(nullptr); return *g_settings_ptr; } void Process::Finalize(bool destructing) { if (m_finalizing.exchange(true)) return; if (destructing) m_destructing.exchange(true); // Destroy the process. This will call the virtual function DoDestroy under // the hood, giving our derived class a chance to do the ncessary tear down. DestroyImpl(false); // Clear our broadcaster before we proceed with destroying Broadcaster::Clear(); // Do any cleanup needed prior to being destructed... Subclasses that // override this method should call this superclass method as well. // We need to destroy the loader before the derived Process class gets // destroyed since it is very likely that undoing the loader will require // access to the real process. m_dynamic_checkers_up.reset(); m_abi_sp.reset(); m_os_up.reset(); m_system_runtime_up.reset(); m_dyld_up.reset(); m_jit_loaders_up.reset(); m_thread_plans.Clear(); m_thread_list_real.Destroy(); m_thread_list.Destroy(); m_extended_thread_list.Destroy(); m_queue_list.Clear(); m_queue_list_stop_id = 0; m_watchpoint_resource_list.Clear(); std::vector empty_notifications; m_notifications.swap(empty_notifications); m_image_tokens.clear(); m_memory_cache.Clear(); m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); { std::lock_guard guard(m_language_runtimes_mutex); m_language_runtimes.clear(); } m_instrumentation_runtimes.clear(); m_next_event_action_up.reset(); // Clear the last natural stop ID since it has a strong reference to this // process m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); // We have to be very careful here as the m_private_state_listener might // contain events that have ProcessSP values in them which can keep this // process around forever. These events need to be cleared out. m_private_state_listener_sp->Clear(); m_public_run_lock.TrySetRunning(); // This will do nothing if already locked m_public_run_lock.SetStopped(); m_private_run_lock.TrySetRunning(); // This will do nothing if already locked m_private_run_lock.SetStopped(); m_structured_data_plugin_map.clear(); } void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { m_notifications.push_back(callbacks); if (callbacks.initialize != nullptr) callbacks.initialize(callbacks.baton, this); } bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { std::vector::iterator pos, end = m_notifications.end(); for (pos = m_notifications.begin(); pos != end; ++pos) { if (pos->baton == callbacks.baton && pos->initialize == callbacks.initialize && pos->process_state_changed == callbacks.process_state_changed) { m_notifications.erase(pos); return true; } } return false; } void Process::SynchronouslyNotifyStateChanged(StateType state) { std::vector::iterator notification_pos, notification_end = m_notifications.end(); for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos) { if (notification_pos->process_state_changed) notification_pos->process_state_changed(notification_pos->baton, this, state); } } // FIXME: We need to do some work on events before the general Listener sees // them. // For instance if we are continuing from a breakpoint, we need to ensure that // we do the little "insert real insn, step & stop" trick. But we can't do // that when the event is delivered by the broadcaster - since that is done on // the thread that is waiting for new events, so if we needed more than one // event for our handling, we would stall. So instead we do it when we fetch // the event off of the queue. // StateType Process::GetNextEvent(EventSP &event_sp) { StateType state = eStateInvalid; if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp, std::chrono::seconds(0)) && event_sp) state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); return state; } void Process::SyncIOHandler(uint32_t iohandler_id, const Timeout &timeout) { // don't sync (potentially context switch) in case where there is no process // IO if (!ProcessIOHandlerExists()) return; auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); Log *log = GetLog(LLDBLog::Process); if (Result) { LLDB_LOG( log, "waited from m_iohandler_sync to change from {0}. New value is {1}.", iohandler_id, *Result); } else { LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", iohandler_id); } } StateType Process::WaitForProcessToStop( const Timeout &timeout, EventSP *event_sp_ptr, bool wait_always, ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, SelectMostRelevant select_most_relevant) { // We can't just wait for a "stopped" event, because the stopped event may // have restarted the target. We have to actually check each event, and in // the case of a stopped event check the restarted flag on the event. if (event_sp_ptr) event_sp_ptr->reset(); StateType state = GetState(); // If we are exited or detached, we won't ever get back to any other valid // state... if (state == eStateDetached || state == eStateExited) return state; Log *log = GetLog(LLDBLog::Process); LLDB_LOG(log, "timeout = {0}", timeout); if (!wait_always && StateIsStoppedState(state, true) && StateIsStoppedState(GetPrivateState(), true)) { LLDB_LOGF(log, "Process::%s returning without waiting for events; process " "private and public states are already 'stopped'.", __FUNCTION__); // We need to toggle the run lock as this won't get done in // SetPublicState() if the process is hijacked. if (hijack_listener_sp && use_run_lock) m_public_run_lock.SetStopped(); return state; } while (state != eStateInvalid) { EventSP event_sp; state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); if (event_sp_ptr && event_sp) *event_sp_ptr = event_sp; bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); Process::HandleProcessStateChangedEvent( event_sp, stream, select_most_relevant, pop_process_io_handler); switch (state) { case eStateCrashed: case eStateDetached: case eStateExited: case eStateUnloaded: // We need to toggle the run lock as this won't get done in // SetPublicState() if the process is hijacked. if (hijack_listener_sp && use_run_lock) m_public_run_lock.SetStopped(); return state; case eStateStopped: if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) continue; else { // We need to toggle the run lock as this won't get done in // SetPublicState() if the process is hijacked. if (hijack_listener_sp && use_run_lock) m_public_run_lock.SetStopped(); return state; } default: continue; } } return state; } bool Process::HandleProcessStateChangedEvent( const EventSP &event_sp, Stream *stream, SelectMostRelevant select_most_relevant, bool &pop_process_io_handler) { const bool handle_pop = pop_process_io_handler; pop_process_io_handler = false; ProcessSP process_sp = Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); if (!process_sp) return false; StateType event_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (event_state == eStateInvalid) return false; switch (event_state) { case eStateInvalid: case eStateUnloaded: case eStateAttaching: case eStateLaunching: case eStateStepping: case eStateDetached: if (stream) stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), StateAsCString(event_state)); if (event_state == eStateDetached) pop_process_io_handler = true; break; case eStateConnected: case eStateRunning: // Don't be chatty when we run... break; case eStateExited: if (stream) process_sp->GetStatus(*stream); pop_process_io_handler = true; break; case eStateStopped: case eStateCrashed: case eStateSuspended: // Make sure the program hasn't been auto-restarted: if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { if (stream) { size_t num_reasons = Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); if (num_reasons > 0) { // FIXME: Do we want to report this, or would that just be annoyingly // chatty? if (num_reasons == 1) { const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex( event_sp.get(), 0); stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", process_sp->GetID(), reason ? reason : ""); } else { stream->Printf("Process %" PRIu64 " stopped and restarted, reasons:\n", process_sp->GetID()); for (size_t i = 0; i < num_reasons; i++) { const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex( event_sp.get(), i); stream->Printf("\t%s\n", reason ? reason : ""); } } } } } else { StopInfoSP curr_thread_stop_info_sp; // Lock the thread list so it doesn't change on us, this is the scope for // the locker: { ThreadList &thread_list = process_sp->GetThreadList(); std::lock_guard guard(thread_list.GetMutex()); ThreadSP curr_thread(thread_list.GetSelectedThread()); ThreadSP thread; StopReason curr_thread_stop_reason = eStopReasonInvalid; bool prefer_curr_thread = false; if (curr_thread && curr_thread->IsValid()) { curr_thread_stop_reason = curr_thread->GetStopReason(); switch (curr_thread_stop_reason) { case eStopReasonNone: case eStopReasonInvalid: // Don't prefer the current thread if it didn't stop for a reason. break; case eStopReasonSignal: { // We need to do the same computation we do for other threads // below in case the current thread happens to be the one that // stopped for the no-stop signal. uint64_t signo = curr_thread->GetStopInfo()->GetValue(); if (process_sp->GetUnixSignals()->GetShouldStop(signo)) prefer_curr_thread = true; } break; default: prefer_curr_thread = true; break; } curr_thread_stop_info_sp = curr_thread->GetStopInfo(); } if (!prefer_curr_thread) { // Prefer a thread that has just completed its plan over another // thread as current thread. ThreadSP plan_thread; ThreadSP other_thread; const size_t num_threads = thread_list.GetSize(); size_t i; for (i = 0; i < num_threads; ++i) { thread = thread_list.GetThreadAtIndex(i); StopReason thread_stop_reason = thread->GetStopReason(); switch (thread_stop_reason) { case eStopReasonInvalid: case eStopReasonNone: break; case eStopReasonSignal: { // Don't select a signal thread if we weren't going to stop at // that signal. We have to have had another reason for stopping // here, and the user doesn't want to see this thread. uint64_t signo = thread->GetStopInfo()->GetValue(); if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { if (!other_thread) other_thread = thread; } break; } case eStopReasonTrace: case eStopReasonBreakpoint: case eStopReasonWatchpoint: case eStopReasonException: case eStopReasonExec: case eStopReasonFork: case eStopReasonVFork: case eStopReasonVForkDone: case eStopReasonThreadExiting: case eStopReasonInstrumentation: case eStopReasonProcessorTrace: if (!other_thread) other_thread = thread; break; case eStopReasonPlanComplete: if (!plan_thread) plan_thread = thread; break; } } if (plan_thread) thread_list.SetSelectedThreadByID(plan_thread->GetID()); else if (other_thread) thread_list.SetSelectedThreadByID(other_thread->GetID()); else { if (curr_thread && curr_thread->IsValid()) thread = curr_thread; else thread = thread_list.GetThreadAtIndex(0); if (thread) thread_list.SetSelectedThreadByID(thread->GetID()); } } } // Drop the ThreadList mutex by here, since GetThreadStatus below might // have to run code, e.g. for Data formatters, and if we hold the // ThreadList mutex, then the process is going to have a hard time // restarting the process. if (stream) { Debugger &debugger = process_sp->GetTarget().GetDebugger(); if (debugger.GetTargetList().GetSelectedTarget().get() == &process_sp->GetTarget()) { ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); if (!thread_sp || !thread_sp->IsValid()) return false; const bool only_threads_with_stop_reason = true; const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(select_most_relevant); const uint32_t num_frames = 1; const uint32_t num_frames_with_source = 1; const bool stop_format = true; process_sp->GetStatus(*stream); process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, start_frame, num_frames, num_frames_with_source, stop_format); if (curr_thread_stop_info_sp) { lldb::addr_t crashing_address; ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( curr_thread_stop_info_sp, &crashing_address); if (valobj_sp) { const ValueObject::GetExpressionPathFormat format = ValueObject::GetExpressionPathFormat:: eGetExpressionPathFormatHonorPointers; stream->PutCString("Likely cause: "); valobj_sp->GetExpressionPath(*stream, format); stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); } } } else { uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( process_sp->GetTarget().shared_from_this()); if (target_idx != UINT32_MAX) stream->Printf("Target %d: (", target_idx); else stream->Printf("Target : ("); process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); stream->Printf(") stopped.\n"); } } // Pop the process IO handler pop_process_io_handler = true; } break; } if (handle_pop && pop_process_io_handler) process_sp->PopProcessIOHandler(); return true; } bool Process::HijackProcessEvents(ListenerSP listener_sp) { if (listener_sp) { return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | eBroadcastBitInterrupt); } else return false; } void Process::RestoreProcessEvents() { RestoreBroadcaster(); } StateType Process::GetStateChangedEvents(EventSP &event_sp, const Timeout &timeout, ListenerSP hijack_listener_sp) { Log *log = GetLog(LLDBLog::Process); LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); ListenerSP listener_sp = hijack_listener_sp; if (!listener_sp) listener_sp = GetPrimaryListener(); StateType state = eStateInvalid; if (listener_sp->GetEventForBroadcasterWithType( this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, timeout)) { if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); else LLDB_LOG(log, "got no event or was interrupted."); } LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); return state; } Event *Process::PeekAtStateChangedEvents() { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::%s...", __FUNCTION__); Event *event_ptr; event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( this, eBroadcastBitStateChanged); if (log) { if (event_ptr) { LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); } else { LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); } } return event_ptr; } StateType Process::GetStateChangedEventsPrivate(EventSP &event_sp, const Timeout &timeout) { Log *log = GetLog(LLDBLog::Process); LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); StateType state = eStateInvalid; if (m_private_state_listener_sp->GetEventForBroadcasterWithType( &m_private_state_broadcaster, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, timeout)) if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); return state; } bool Process::GetEventsPrivate(EventSP &event_sp, const Timeout &timeout, bool control_only) { Log *log = GetLog(LLDBLog::Process); LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); if (control_only) return m_private_state_listener_sp->GetEventForBroadcaster( &m_private_state_control_broadcaster, event_sp, timeout); else return m_private_state_listener_sp->GetEvent(event_sp, timeout); } bool Process::IsRunning() const { return StateIsRunningState(m_public_state.GetValue()); } int Process::GetExitStatus() { std::lock_guard guard(m_exit_status_mutex); if (m_public_state.GetValue() == eStateExited) return m_exit_status; return -1; } const char *Process::GetExitDescription() { std::lock_guard guard(m_exit_status_mutex); if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) return m_exit_string.c_str(); return nullptr; } bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { // Use a mutex to protect setting the exit status. std::lock_guard guard(m_exit_status_mutex); Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")", GetPluginName(), status, exit_string); // We were already in the exited state if (m_private_state.GetValue() == eStateExited) { LLDB_LOG( log, "(plugin = {0}) ignoring exit status because state was already set " "to eStateExited", GetPluginName()); return false; } m_exit_status = status; if (!exit_string.empty()) m_exit_string = exit_string.str(); else m_exit_string.clear(); // Clear the last natural stop ID since it has a strong reference to this // process m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); SetPrivateState(eStateExited); // Allow subclasses to do some cleanup DidExit(); return true; } bool Process::IsAlive() { switch (m_private_state.GetValue()) { case eStateConnected: case eStateAttaching: case eStateLaunching: case eStateStopped: case eStateRunning: case eStateStepping: case eStateCrashed: case eStateSuspended: return true; default: return false; } } // This static callback can be used to watch for local child processes on the // current host. The child process exits, the process will be found in the // global target list (we want to be completely sure that the // lldb_private::Process doesn't go away before we can deliver the signal. bool Process::SetProcessExitStatus( lldb::pid_t pid, bool exited, int signo, // Zero for no signal int exit_status // Exit value of process if signal is zero ) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::SetProcessExitStatus (pid=%" PRIu64 ", exited=%i, signal=%i, exit_status=%i)\n", pid, exited, signo, exit_status); if (exited) { TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); if (target_sp) { ProcessSP process_sp(target_sp->GetProcessSP()); if (process_sp) { llvm::StringRef signal_str = process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); process_sp->SetExitStatus(exit_status, signal_str); } } return true; } return false; } bool Process::UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list) { m_thread_plans.ClearThreadCache(); return DoUpdateThreadList(old_thread_list, new_thread_list); } void Process::UpdateThreadListIfNeeded() { const uint32_t stop_id = GetStopID(); if (m_thread_list.GetSize(false) == 0 || stop_id != m_thread_list.GetStopID()) { bool clear_unused_threads = true; const StateType state = GetPrivateState(); if (StateIsStoppedState(state, true)) { std::lock_guard guard(m_thread_list.GetMutex()); m_thread_list.SetStopID(stop_id); // m_thread_list does have its own mutex, but we need to hold onto the // mutex between the call to UpdateThreadList(...) and the // os->UpdateThreadList(...) so it doesn't change on us ThreadList &old_thread_list = m_thread_list; ThreadList real_thread_list(*this); ThreadList new_thread_list(*this); // Always update the thread list with the protocol specific thread list, // but only update if "true" is returned if (UpdateThreadList(m_thread_list_real, real_thread_list)) { // Don't call into the OperatingSystem to update the thread list if we // are shutting down, since that may call back into the SBAPI's, // requiring the API lock which is already held by whoever is shutting // us down, causing a deadlock. OperatingSystem *os = GetOperatingSystem(); if (os && !m_destroy_in_process) { // Clear any old backing threads where memory threads might have been // backed by actual threads from the lldb_private::Process subclass size_t num_old_threads = old_thread_list.GetSize(false); for (size_t i = 0; i < num_old_threads; ++i) old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); // See if the OS plugin reports all threads. If it does, then // it is safe to clear unseen thread's plans here. Otherwise we // should preserve them in case they show up again: clear_unused_threads = GetOSPluginReportsAllThreads(); // Turn off dynamic types to ensure we don't run any expressions. // Objective-C can run an expression to determine if a SBValue is a // dynamic type or not and we need to avoid this. OperatingSystem // plug-ins can't run expressions that require running code... Target &target = GetTarget(); const lldb::DynamicValueType saved_prefer_dynamic = target.GetPreferDynamicValue(); if (saved_prefer_dynamic != lldb::eNoDynamicValues) target.SetPreferDynamicValue(lldb::eNoDynamicValues); // Now let the OperatingSystem plug-in update the thread list os->UpdateThreadList( old_thread_list, // Old list full of threads created by OS plug-in real_thread_list, // The actual thread list full of threads // created by each lldb_private::Process // subclass new_thread_list); // The new thread list that we will show to the // user that gets filled in if (saved_prefer_dynamic != lldb::eNoDynamicValues) target.SetPreferDynamicValue(saved_prefer_dynamic); } else { // No OS plug-in, the new thread list is the same as the real thread // list. new_thread_list = real_thread_list; } m_thread_list_real.Update(real_thread_list); m_thread_list.Update(new_thread_list); m_thread_list.SetStopID(stop_id); if (GetLastNaturalStopID() != m_extended_thread_stop_id) { // Clear any extended threads that we may have accumulated previously m_extended_thread_list.Clear(); m_extended_thread_stop_id = GetLastNaturalStopID(); m_queue_list.Clear(); m_queue_list_stop_id = GetLastNaturalStopID(); } } // Now update the plan stack map. // If we do have an OS plugin, any absent real threads in the // m_thread_list have already been removed from the ThreadPlanStackMap. // So any remaining threads are OS Plugin threads, and those we want to // preserve in case they show up again. m_thread_plans.Update(m_thread_list, clear_unused_threads); } } } ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { return m_thread_plans.Find(tid); } bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { return m_thread_plans.PrunePlansForTID(tid); } void Process::PruneThreadPlans() { m_thread_plans.Update(GetThreadList(), true, false); } bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, lldb::DescriptionLevel desc_level, bool internal, bool condense_trivial, bool skip_unreported_plans) { return m_thread_plans.DumpPlansForTID( strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); } void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, bool internal, bool condense_trivial, bool skip_unreported_plans) { m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, skip_unreported_plans); } void Process::UpdateQueueListIfNeeded() { if (m_system_runtime_up) { if (m_queue_list.GetSize() == 0 || m_queue_list_stop_id != GetLastNaturalStopID()) { const StateType state = GetPrivateState(); if (StateIsStoppedState(state, true)) { m_system_runtime_up->PopulateQueueList(m_queue_list); m_queue_list_stop_id = GetLastNaturalStopID(); } } } } ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { OperatingSystem *os = GetOperatingSystem(); if (os) return os->CreateThread(tid, context); return ThreadSP(); } uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { return AssignIndexIDToThread(thread_id); } bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { return (m_thread_id_to_index_id_map.find(thread_id) != m_thread_id_to_index_id_map.end()); } uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { uint32_t result = 0; std::map::iterator iterator = m_thread_id_to_index_id_map.find(thread_id); if (iterator == m_thread_id_to_index_id_map.end()) { result = ++m_thread_index_id; m_thread_id_to_index_id_map[thread_id] = result; } else { result = iterator->second; } return result; } StateType Process::GetState() { if (CurrentThreadIsPrivateStateThread()) return m_private_state.GetValue(); else return m_public_state.GetValue(); } void Process::SetPublicState(StateType new_state, bool restarted) { const bool new_state_is_stopped = StateIsStoppedState(new_state, false); if (new_state_is_stopped) { // This will only set the time if the public stop time has no value, so // it is ok to call this multiple times. With a public stop we can't look // at the stop ID because many private stops might have happened, so we // can't check for a stop ID of zero. This allows the "statistics" command // to dump the time it takes to reach somewhere in your code, like a // breakpoint you set. GetTarget().GetStatistics().SetFirstPublicStopTime(); } Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)", GetPluginName().data(), StateAsCString(new_state), restarted); const StateType old_state = m_public_state.GetValue(); m_public_state.SetValue(new_state); // On the transition from Run to Stopped, we unlock the writer end of the run // lock. The lock gets locked in Resume, which is the public API to tell the // program to run. if (!StateChangedIsExternallyHijacked()) { if (new_state == eStateDetached) { LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock for detach", GetPluginName().data(), StateAsCString(new_state)); m_public_run_lock.SetStopped(); } else { const bool old_state_is_stopped = StateIsStoppedState(old_state, false); if ((old_state_is_stopped != new_state_is_stopped)) { if (new_state_is_stopped && !restarted) { LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock", GetPluginName().data(), StateAsCString(new_state)); m_public_run_lock.SetStopped(); } } } } } Status Process::Resume() { Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data()); if (!m_public_run_lock.TrySetRunning()) { Status error("Resume request failed - process still running."); LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.", GetPluginName().data()); return error; } Status error = PrivateResume(); if (!error.Success()) { // Undo running state change m_public_run_lock.SetStopped(); } return error; } Status Process::ResumeSynchronous(Stream *stream) { Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); if (!m_public_run_lock.TrySetRunning()) { Status error("Resume request failed - process still running."); LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); return error; } ListenerSP listener_sp( Listener::MakeListener(ResumeSynchronousHijackListenerName.data())); HijackProcessEvents(listener_sp); Status error = PrivateResume(); if (error.Success()) { StateType state = WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream, true /* use_run_lock */, SelectMostRelevantFrame); const bool must_be_alive = false; // eStateExited is ok, so this must be false if (!StateIsStoppedState(state, must_be_alive)) error.SetErrorStringWithFormat( "process not in stopped state after synchronous resume: %s", StateAsCString(state)); } else { // Undo running state change m_public_run_lock.SetStopped(); } // Undo the hijacking of process events... RestoreProcessEvents(); return error; } bool Process::StateChangedIsExternallyHijacked() { if (IsHijackedForEvent(eBroadcastBitStateChanged)) { llvm::StringRef hijacking_name = GetHijackingListenerName(); if (!hijacking_name.starts_with("lldb.internal")) return true; } return false; } bool Process::StateChangedIsHijackedForSynchronousResume() { if (IsHijackedForEvent(eBroadcastBitStateChanged)) { llvm::StringRef hijacking_name = GetHijackingListenerName(); if (hijacking_name == ResumeSynchronousHijackListenerName) return true; } return false; } StateType Process::GetPrivateState() { return m_private_state.GetValue(); } void Process::SetPrivateState(StateType new_state) { // Use m_destructing not m_finalizing here. If we are finalizing a process // that we haven't started tearing down, we'd like to be able to nicely // detach if asked, but that requires the event system be live. That will // not be true for an in-the-middle-of-being-destructed Process, since the // event system relies on Process::shared_from_this, which may have already // been destroyed. if (m_destructing) return; Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); bool state_changed = false; LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(), StateAsCString(new_state)); std::lock_guard thread_guard(m_thread_list.GetMutex()); std::lock_guard guard(m_private_state.GetMutex()); const StateType old_state = m_private_state.GetValueNoLock(); state_changed = old_state != new_state; const bool old_state_is_stopped = StateIsStoppedState(old_state, false); const bool new_state_is_stopped = StateIsStoppedState(new_state, false); if (old_state_is_stopped != new_state_is_stopped) { if (new_state_is_stopped) m_private_run_lock.SetStopped(); else m_private_run_lock.SetRunning(); } if (state_changed) { m_private_state.SetValueNoLock(new_state); EventSP event_sp( new Event(eBroadcastBitStateChanged, new ProcessEventData(shared_from_this(), new_state))); if (StateIsStoppedState(new_state, false)) { // Note, this currently assumes that all threads in the list stop when // the process stops. In the future we will want to support a debugging // model where some threads continue to run while others are stopped. // When that happens we will either need a way for the thread list to // identify which threads are stopping or create a special thread list // containing only threads which actually stopped. // // The process plugin is responsible for managing the actual behavior of // the threads and should have stopped any threads that are going to stop // before we get here. m_thread_list.DidStop(); if (m_mod_id.BumpStopID() == 0) GetTarget().GetStatistics().SetFirstPrivateStopTime(); if (!m_mod_id.IsLastResumeForUserExpression()) m_mod_id.SetStopEventForLastNaturalStopID(event_sp); m_memory_cache.Clear(); LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u", GetPluginName().data(), StateAsCString(new_state), m_mod_id.GetStopID()); } m_private_state_broadcaster.BroadcastEvent(event_sp); } else { LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...", GetPluginName().data(), StateAsCString(new_state)); } } void Process::SetRunningUserExpression(bool on) { m_mod_id.SetRunningUserExpression(on); } void Process::SetRunningUtilityFunction(bool on) { m_mod_id.SetRunningUtilityFunction(on); } addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } const lldb::ABISP &Process::GetABI() { if (!m_abi_sp) m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); return m_abi_sp; } std::vector Process::GetLanguageRuntimes() { std::vector language_runtimes; if (m_finalizing) return language_runtimes; std::lock_guard guard(m_language_runtimes_mutex); // Before we pass off a copy of the language runtimes, we must make sure that // our collection is properly populated. It's possible that some of the // language runtimes were not loaded yet, either because nobody requested it // yet or the proper condition for loading wasn't yet met (e.g. libc++.so // hadn't been loaded). for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) language_runtimes.emplace_back(runtime); } return language_runtimes; } LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { if (m_finalizing) return nullptr; LanguageRuntime *runtime = nullptr; std::lock_guard guard(m_language_runtimes_mutex); LanguageRuntimeCollection::iterator pos; pos = m_language_runtimes.find(language); if (pos == m_language_runtimes.end() || !pos->second) { lldb::LanguageRuntimeSP runtime_sp( LanguageRuntime::FindPlugin(this, language)); m_language_runtimes[language] = runtime_sp; runtime = runtime_sp.get(); } else runtime = pos->second.get(); if (runtime) // It's possible that a language runtime can support multiple LanguageTypes, // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the // primary language type and make sure that our runtime supports it. assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); return runtime; } bool Process::IsPossibleDynamicValue(ValueObject &in_value) { if (m_finalizing) return false; if (in_value.IsDynamic()) return false; LanguageType known_type = in_value.GetObjectRuntimeLanguage(); if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { LanguageRuntime *runtime = GetLanguageRuntime(known_type); return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; } for (LanguageRuntime *runtime : GetLanguageRuntimes()) { if (runtime->CouldHaveDynamicValue(in_value)) return true; } return false; } void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { m_dynamic_checkers_up.reset(dynamic_checkers); } StopPointSiteList &Process::GetBreakpointSiteList() { return m_breakpoint_site_list; } const StopPointSiteList & Process::GetBreakpointSiteList() const { return m_breakpoint_site_list; } void Process::DisableAllBreakpointSites() { m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { // bp_site->SetEnabled(true); DisableBreakpointSite(bp_site); }); } Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { Status error(DisableBreakpointSiteByID(break_id)); if (error.Success()) m_breakpoint_site_list.Remove(break_id); return error; } Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { Status error; BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); if (bp_site_sp) { if (bp_site_sp->IsEnabled()) error = DisableBreakpointSite(bp_site_sp.get()); } else { error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); } return error; } Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { Status error; BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); if (bp_site_sp) { if (!bp_site_sp->IsEnabled()) error = EnableBreakpointSite(bp_site_sp.get()); } else { error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); } return error; } lldb::break_id_t Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, bool use_hardware) { addr_t load_addr = LLDB_INVALID_ADDRESS; bool show_error = true; switch (GetState()) { case eStateInvalid: case eStateUnloaded: case eStateConnected: case eStateAttaching: case eStateLaunching: case eStateDetached: case eStateExited: show_error = false; break; case eStateStopped: case eStateRunning: case eStateStepping: case eStateCrashed: case eStateSuspended: show_error = IsAlive(); break; } // Reset the IsIndirect flag here, in case the location changes from pointing // to a indirect symbol to a regular symbol. constituent->SetIsIndirect(false); if (constituent->ShouldResolveIndirectFunctions()) { Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); if (symbol && symbol->IsIndirect()) { Status error; Address symbol_address = symbol->GetAddress(); load_addr = ResolveIndirectFunction(&symbol_address, error); if (!error.Success() && show_error) { GetTarget().GetDebugger().GetErrorStream().Printf( "warning: failed to resolve indirect function at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", symbol->GetLoadAddress(&GetTarget()), constituent->GetBreakpoint().GetID(), constituent->GetID(), error.AsCString() ? error.AsCString() : "unknown error"); return LLDB_INVALID_BREAK_ID; } Address resolved_address(load_addr); load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); constituent->SetIsIndirect(true); } else load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); } else load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); if (load_addr != LLDB_INVALID_ADDRESS) { BreakpointSiteSP bp_site_sp; // Look up this breakpoint site. If it exists, then add this new // constituent, otherwise create a new breakpoint site and add it. bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); if (bp_site_sp) { bp_site_sp->AddConstituent(constituent); constituent->SetBreakpointSite(bp_site_sp); return bp_site_sp->GetID(); } else { bp_site_sp.reset( new BreakpointSite(constituent, load_addr, use_hardware)); if (bp_site_sp) { Status error = EnableBreakpointSite(bp_site_sp.get()); if (error.Success()) { constituent->SetBreakpointSite(bp_site_sp); return m_breakpoint_site_list.Add(bp_site_sp); } else { if (show_error || use_hardware) { // Report error for setting breakpoint... GetTarget().GetDebugger().GetErrorStream().Printf( "warning: failed to set breakpoint site at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", load_addr, constituent->GetBreakpoint().GetID(), constituent->GetID(), error.AsCString() ? error.AsCString() : "unknown error"); } } } } } // We failed to enable the breakpoint return LLDB_INVALID_BREAK_ID; } void Process::RemoveConstituentFromBreakpointSite( lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, BreakpointSiteSP &bp_site_sp) { uint32_t num_constituents = bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id); if (num_constituents == 0) { // Don't try to disable the site if we don't have a live process anymore. if (IsAlive()) DisableBreakpointSite(bp_site_sp.get()); m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); } } size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, uint8_t *buf) const { size_t bytes_removed = 0; StopPointSiteList bp_sites_in_range; if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, bp_sites_in_range)) { bp_sites_in_range.ForEach([bp_addr, size, buf](BreakpointSite *bp_site) -> void { if (bp_site->GetType() == BreakpointSite::eSoftware) { addr_t intersect_addr; size_t intersect_size; size_t opcode_offset; if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset)) { assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size); assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); size_t buf_offset = intersect_addr - bp_addr; ::memcpy(buf + buf_offset, bp_site->GetSavedOpcodeBytes() + opcode_offset, intersect_size); } } }); } return bytes_removed; } size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp) return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); return 0; } Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { Status error; assert(bp_site != nullptr); Log *log = GetLog(LLDBLog::Breakpoints); const addr_t bp_addr = bp_site->GetLoadAddress(); LLDB_LOGF( log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, bp_site->GetID(), (uint64_t)bp_addr); if (bp_site->IsEnabled()) { LLDB_LOGF( log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already enabled", bp_site->GetID(), (uint64_t)bp_addr); return error; } if (bp_addr == LLDB_INVALID_ADDRESS) { error.SetErrorString("BreakpointSite contains an invalid load address."); return error; } // Ask the lldb::Process subclass to fill in the correct software breakpoint // trap for the breakpoint site const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); if (bp_opcode_size == 0) { error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " "returned zero, unable to get breakpoint " "trap for address 0x%" PRIx64, bp_addr); } else { const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); if (bp_opcode_bytes == nullptr) { error.SetErrorString( "BreakpointSite doesn't contain a valid breakpoint trap opcode."); return error; } // Save the original opcode by reading it if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size) { // Write a software breakpoint in place of the original opcode if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) { uint8_t verify_bp_opcode_bytes[64]; if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) { if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0) { bp_site->SetEnabled(true); bp_site->SetType(BreakpointSite::eSoftware); LLDB_LOGF(log, "Process::EnableSoftwareBreakpoint (site_id = %d) " "addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); } else error.SetErrorString( "failed to verify the breakpoint trap in memory."); } else error.SetErrorString( "Unable to read memory to verify breakpoint trap."); } else error.SetErrorString("Unable to write breakpoint trap to memory."); } else error.SetErrorString("Unable to read memory at breakpoint address."); } if (log && error.Fail()) LLDB_LOGF( log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); return error; } Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { Status error; assert(bp_site != nullptr); Log *log = GetLog(LLDBLog::Breakpoints); addr_t bp_addr = bp_site->GetLoadAddress(); lldb::user_id_t breakID = bp_site->GetID(); LLDB_LOGF(log, "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 ") addr = 0x%" PRIx64, breakID, (uint64_t)bp_addr); if (bp_site->IsHardware()) { error.SetErrorString("Breakpoint site is a hardware breakpoint."); } else if (bp_site->IsEnabled()) { const size_t break_op_size = bp_site->GetByteSize(); const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); if (break_op_size > 0) { // Clear a software breakpoint instruction uint8_t curr_break_op[8]; assert(break_op_size <= sizeof(curr_break_op)); bool break_op_found = false; // Read the breakpoint opcode if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == break_op_size) { bool verify = false; // Make sure the breakpoint opcode exists at this address if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { break_op_found = true; // We found a valid breakpoint opcode at this address, now restore // the saved opcode. if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size) { verify = true; } else error.SetErrorString( "Memory write failed when restoring original opcode."); } else { error.SetErrorString( "Original breakpoint trap is no longer in memory."); // Set verify to true and so we can check if the original opcode has // already been restored verify = true; } if (verify) { uint8_t verify_opcode[8]; assert(break_op_size < sizeof(verify_opcode)); // Verify that our original opcode made it back to the inferior if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == break_op_size) { // compare the memory we just read with the original opcode if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0) { // SUCCESS bp_site->SetEnabled(false); LLDB_LOGF(log, "Process::DisableSoftwareBreakpoint (site_id = %d) " "addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); return error; } else { if (break_op_found) error.SetErrorString("Failed to restore original opcode."); } } else error.SetErrorString("Failed to read memory to verify that " "breakpoint trap was restored."); } } else error.SetErrorString( "Unable to read memory that should contain the breakpoint trap."); } } else { LLDB_LOGF( log, "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already disabled", bp_site->GetID(), (uint64_t)bp_addr); return error; } LLDB_LOGF( log, "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); return error; } // Uncomment to verify memory caching works after making changes to caching // code //#define VERIFY_MEMORY_READS size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { if (ABISP abi_sp = GetABI()) addr = abi_sp->FixAnyAddress(addr); error.Clear(); if (!GetDisableMemoryCache()) { #if defined(VERIFY_MEMORY_READS) // Memory caching is enabled, with debug verification if (buf && size) { // Uncomment the line below to make sure memory caching is working. // I ran this through the test suite and got no assertions, so I am // pretty confident this is working well. If any changes are made to // memory caching, uncomment the line below and test your changes! // Verify all memory reads by using the cache first, then redundantly // reading the same memory from the inferior and comparing to make sure // everything is exactly the same. std::string verify_buf(size, '\0'); assert(verify_buf.size() == size); const size_t cache_bytes_read = m_memory_cache.Read(this, addr, buf, size, error); Status verify_error; const size_t verify_bytes_read = ReadMemoryFromInferior(addr, const_cast(verify_buf.data()), verify_buf.size(), verify_error); assert(cache_bytes_read == verify_bytes_read); assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); assert(verify_error.Success() == error.Success()); return cache_bytes_read; } return 0; #else // !defined(VERIFY_MEMORY_READS) // Memory caching is enabled, without debug verification return m_memory_cache.Read(addr, buf, size, error); #endif // defined (VERIFY_MEMORY_READS) } else { // Memory caching is disabled return ReadMemoryFromInferior(addr, buf, size, error); } } void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr, const uint8_t *buf, size_t size, AddressRanges &matches, size_t alignment, size_t max_matches) { // Inputs are already validated in FindInMemory() functions. assert(buf != nullptr); assert(size > 0); assert(alignment > 0); assert(max_matches > 0); assert(start_addr != LLDB_INVALID_ADDRESS); assert(end_addr != LLDB_INVALID_ADDRESS); assert(start_addr < end_addr); lldb::addr_t start = llvm::alignTo(start_addr, alignment); while (matches.size() < max_matches && (start + size) < end_addr) { const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size); if (found_addr == LLDB_INVALID_ADDRESS) break; if (found_addr % alignment) { // We need to check the alignment because the FindInMemory uses a special // algorithm to efficiently search mememory but doesn't support alignment. start = llvm::alignTo(start + 1, alignment); continue; } matches.emplace_back(found_addr, size); start = found_addr + alignment; } } AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size, const AddressRanges &ranges, size_t alignment, size_t max_matches, Status &error) { AddressRanges matches; if (buf == nullptr) { error.SetErrorString("buffer is null"); return matches; } if (size == 0) { error.SetErrorString("buffer size is zero"); return matches; } if (ranges.empty()) { error.SetErrorString("empty ranges"); return matches; } if (alignment == 0) { error.SetErrorString("alignment must be greater than zero"); return matches; } if (max_matches == 0) { error.SetErrorString("max_matches must be greater than zero"); return matches; } int resolved_ranges = 0; Target &target = GetTarget(); for (size_t i = 0; i < ranges.size(); ++i) { if (matches.size() >= max_matches) break; const AddressRange &range = ranges[i]; if (range.IsValid() == false) continue; const lldb::addr_t start_addr = range.GetBaseAddress().GetLoadAddress(&target); if (start_addr == LLDB_INVALID_ADDRESS) continue; ++resolved_ranges; const lldb::addr_t end_addr = start_addr + range.GetByteSize(); DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, max_matches); } if (resolved_ranges > 0) error.Clear(); else error.SetErrorString("unable to resolve any ranges"); return matches; } lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size, const AddressRange &range, size_t alignment, Status &error) { if (buf == nullptr) { error.SetErrorString("buffer is null"); return LLDB_INVALID_ADDRESS; } if (size == 0) { error.SetErrorString("buffer size is zero"); return LLDB_INVALID_ADDRESS; } if (!range.IsValid()) { error.SetErrorString("range is invalid"); return LLDB_INVALID_ADDRESS; } if (alignment == 0) { error.SetErrorString("alignment must be greater than zero"); return LLDB_INVALID_ADDRESS; } Target &target = GetTarget(); const lldb::addr_t start_addr = range.GetBaseAddress().GetLoadAddress(&target); if (start_addr == LLDB_INVALID_ADDRESS) { error.SetErrorString("range load address is invalid"); return LLDB_INVALID_ADDRESS; } const lldb::addr_t end_addr = start_addr + range.GetByteSize(); AddressRanges matches; DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1); if (matches.empty()) return LLDB_INVALID_ADDRESS; error.Clear(); return matches[0].GetBaseAddress().GetLoadAddress(&target); } size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, Status &error) { char buf[256]; out_str.clear(); addr_t curr_addr = addr; while (true) { size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); if (length == 0) break; out_str.append(buf, length); // If we got "length - 1" bytes, we didn't get the whole C string, we need // to read some more characters if (length == sizeof(buf) - 1) curr_addr += length; else break; } return out_str.size(); } // Deprecated in favor of ReadStringFromMemory which has wchar support and // correct code to find null terminators. size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, size_t dst_max_len, Status &result_error) { size_t total_cstr_len = 0; if (dst && dst_max_len) { result_error.Clear(); // NULL out everything just to be safe memset(dst, 0, dst_max_len); Status error; addr_t curr_addr = addr; const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); size_t bytes_left = dst_max_len - 1; char *curr_dst = dst; while (bytes_left > 0) { addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); addr_t bytes_to_read = std::min(bytes_left, cache_line_bytes_left); size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); if (bytes_read == 0) { result_error = error; dst[total_cstr_len] = '\0'; break; } const size_t len = strlen(curr_dst); total_cstr_len += len; if (len < bytes_to_read) break; curr_dst += bytes_read; curr_addr += bytes_read; bytes_left -= bytes_read; } } else { if (dst == nullptr) result_error.SetErrorString("invalid arguments"); else result_error.Clear(); } return total_cstr_len; } size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, Status &error) { LLDB_SCOPED_TIMER(); if (ABISP abi_sp = GetABI()) addr = abi_sp->FixAnyAddress(addr); if (buf == nullptr || size == 0) return 0; size_t bytes_read = 0; uint8_t *bytes = (uint8_t *)buf; while (bytes_read < size) { const size_t curr_size = size - bytes_read; const size_t curr_bytes_read = DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); bytes_read += curr_bytes_read; if (curr_bytes_read == curr_size || curr_bytes_read == 0) break; } // Replace any software breakpoint opcodes that fall into this range back // into "buf" before we return if (bytes_read > 0) RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); return bytes_read; } uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, uint64_t fail_value, Status &error) { Scalar scalar; if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, error)) return scalar.ULongLong(fail_value); return fail_value; } int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, int64_t fail_value, Status &error) { Scalar scalar; if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, error)) return scalar.SLongLong(fail_value); return fail_value; } addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { Scalar scalar; if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, error)) return scalar.ULongLong(LLDB_INVALID_ADDRESS); return LLDB_INVALID_ADDRESS; } bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, Status &error) { Scalar scalar; const uint32_t addr_byte_size = GetAddressByteSize(); if (addr_byte_size <= 4) scalar = (uint32_t)ptr_value; else scalar = ptr_value; return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == addr_byte_size; } size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, Status &error) { size_t bytes_written = 0; const uint8_t *bytes = (const uint8_t *)buf; while (bytes_written < size) { const size_t curr_size = size - bytes_written; const size_t curr_bytes_written = DoWriteMemory( addr + bytes_written, bytes + bytes_written, curr_size, error); bytes_written += curr_bytes_written; if (curr_bytes_written == curr_size || curr_bytes_written == 0) break; } return bytes_written; } size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, Status &error) { if (ABISP abi_sp = GetABI()) addr = abi_sp->FixAnyAddress(addr); #if defined(ENABLE_MEMORY_CACHING) m_memory_cache.Flush(addr, size); #endif if (buf == nullptr || size == 0) return 0; m_mod_id.BumpMemoryID(); // We need to write any data that would go where any current software traps // (enabled software breakpoints) any software traps (breakpoints) that we // may have placed in our tasks memory. StopPointSiteList bp_sites_in_range; if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) return WriteMemoryPrivate(addr, buf, size, error); // No breakpoint sites overlap if (bp_sites_in_range.IsEmpty()) return WriteMemoryPrivate(addr, buf, size, error); const uint8_t *ubuf = (const uint8_t *)buf; uint64_t bytes_written = 0; bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, &error](BreakpointSite *bp) -> void { if (error.Fail()) return; if (bp->GetType() != BreakpointSite::eSoftware) return; addr_t intersect_addr; size_t intersect_size; size_t opcode_offset; const bool intersects = bp->IntersectsRange( addr, size, &intersect_addr, &intersect_size, &opcode_offset); UNUSED_IF_ASSERT_DISABLED(intersects); assert(intersects); assert(addr <= intersect_addr && intersect_addr < addr + size); assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size); assert(opcode_offset + intersect_size <= bp->GetByteSize()); // Check for bytes before this breakpoint const addr_t curr_addr = addr + bytes_written; if (intersect_addr > curr_addr) { // There are some bytes before this breakpoint that we need to just // write to memory size_t curr_size = intersect_addr - curr_addr; size_t curr_bytes_written = WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); bytes_written += curr_bytes_written; if (curr_bytes_written != curr_size) { // We weren't able to write all of the requested bytes, we are // done looping and will return the number of bytes that we have // written so far. if (error.Success()) error.SetErrorToGenericError(); } } // Now write any bytes that would cover up any software breakpoints // directly into the breakpoint opcode buffer ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size); bytes_written += intersect_size; }); // Write any remaining bytes after the last breakpoint if we have any left if (bytes_written < size) bytes_written += WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, size - bytes_written, error); return bytes_written; } size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, size_t byte_size, Status &error) { if (byte_size == UINT32_MAX) byte_size = scalar.GetByteSize(); if (byte_size > 0) { uint8_t buf[32]; const size_t mem_size = scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); if (mem_size > 0) return WriteMemory(addr, buf, mem_size, error); else error.SetErrorString("failed to get scalar as memory data"); } else { error.SetErrorString("invalid scalar value"); } return 0; } size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Status &error) { uint64_t uval = 0; if (byte_size == 0) { error.SetErrorString("byte size is zero"); } else if (byte_size & (byte_size - 1)) { error.SetErrorStringWithFormat("byte size %u is not a power of 2", byte_size); } else if (byte_size <= sizeof(uval)) { const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); if (bytes_read == byte_size) { DataExtractor data(&uval, sizeof(uval), GetByteOrder(), GetAddressByteSize()); lldb::offset_t offset = 0; if (byte_size <= 4) scalar = data.GetMaxU32(&offset, byte_size); else scalar = data.GetMaxU64(&offset, byte_size); if (is_signed) scalar.SignExtend(byte_size * 8); return bytes_read; } } else { error.SetErrorStringWithFormat( "byte size of %u is too large for integer scalar type", byte_size); } return 0; } Status Process::WriteObjectFile(std::vector entries) { Status error; for (const auto &Entry : entries) { WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), error); if (!error.Success()) break; } return error; } #define USE_ALLOCATE_MEMORY_CACHE 1 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, Status &error) { if (GetPrivateState() != eStateStopped) { error.SetErrorToGenericError(); return LLDB_INVALID_ADDRESS; } #if defined(USE_ALLOCATE_MEMORY_CACHE) return m_allocated_memory_cache.AllocateMemory(size, permissions, error); #else addr_t allocated_addr = DoAllocateMemory(size, permissions, error); Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::AllocateMemory(size=%" PRIu64 ", permissions=%s) => 0x%16.16" PRIx64 " (m_stop_id = %u m_memory_id = %u)", (uint64_t)size, GetPermissionsAsCString(permissions), (uint64_t)allocated_addr, m_mod_id.GetStopID(), m_mod_id.GetMemoryID()); return allocated_addr; #endif } addr_t Process::CallocateMemory(size_t size, uint32_t permissions, Status &error) { addr_t return_addr = AllocateMemory(size, permissions, error); if (error.Success()) { std::string buffer(size, 0); WriteMemory(return_addr, buffer.c_str(), size, error); } return return_addr; } bool Process::CanJIT() { if (m_can_jit == eCanJITDontKnow) { Log *log = GetLog(LLDBLog::Process); Status err; uint64_t allocated_memory = AllocateMemory( 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, err); if (err.Success()) { m_can_jit = eCanJITYes; LLDB_LOGF(log, "Process::%s pid %" PRIu64 " allocation test passed, CanJIT () is true", __FUNCTION__, GetID()); } else { m_can_jit = eCanJITNo; LLDB_LOGF(log, "Process::%s pid %" PRIu64 " allocation test failed, CanJIT () is false: %s", __FUNCTION__, GetID(), err.AsCString()); } DeallocateMemory(allocated_memory); } return m_can_jit == eCanJITYes; } void Process::SetCanJIT(bool can_jit) { m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); } void Process::SetCanRunCode(bool can_run_code) { SetCanJIT(can_run_code); m_can_interpret_function_calls = can_run_code; } Status Process::DeallocateMemory(addr_t ptr) { Status error; #if defined(USE_ALLOCATE_MEMORY_CACHE) if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { error.SetErrorStringWithFormat( "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); } #else error = DoDeallocateMemory(ptr); Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::DeallocateMemory(addr=0x%16.16" PRIx64 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), m_mod_id.GetMemoryID()); #endif return error; } bool Process::GetWatchpointReportedAfter() { if (std::optional subclass_override = DoGetWatchpointReportedAfter()) return *subclass_override; bool reported_after = true; const ArchSpec &arch = GetTarget().GetArchitecture(); if (!arch.IsValid()) return reported_after; llvm::Triple triple = arch.GetTriple(); if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || triple.isAArch64() || triple.isArmMClass() || triple.isARM()) reported_after = false; return reported_after; } ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, lldb::addr_t header_addr, size_t size_to_read) { Log *log = GetLog(LLDBLog::Host); if (log) { LLDB_LOGF(log, "Process::ReadModuleFromMemory reading %s binary from memory", file_spec.GetPath().c_str()); } ModuleSP module_sp(new Module(file_spec, ArchSpec())); if (module_sp) { Status error; std::unique_ptr progress_up; // Reading an ObjectFile from a local corefile is very fast, // only print a progress update if we're reading from a // live session which might go over gdb remote serial protocol. if (IsLiveDebugSession()) progress_up = std::make_unique( "Reading binary from memory", file_spec.GetFilename().GetString()); ObjectFile *objfile = module_sp->GetMemoryObjectFile( shared_from_this(), header_addr, error, size_to_read); if (objfile) return module_sp; } return ModuleSP(); } bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, uint32_t &permissions) { MemoryRegionInfo range_info; permissions = 0; Status error(GetMemoryRegionInfo(load_addr, range_info)); if (!error.Success()) return false; if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || range_info.GetWritable() == MemoryRegionInfo::eDontKnow || range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { return false; } permissions = range_info.GetLLDBPermissions(); return true; } Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { Status error; error.SetErrorString("watchpoints are not supported"); return error; } Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { Status error; error.SetErrorString("watchpoints are not supported"); return error; } StateType Process::WaitForProcessStopPrivate(EventSP &event_sp, const Timeout &timeout) { StateType state; while (true) { event_sp.reset(); state = GetStateChangedEventsPrivate(event_sp, timeout); if (StateIsStoppedState(state, false)) break; // If state is invalid, then we timed out if (state == eStateInvalid) break; if (event_sp) HandlePrivateEvent(event_sp); } return state; } void Process::LoadOperatingSystemPlugin(bool flush) { std::lock_guard guard(m_thread_mutex); if (flush) m_thread_list.Clear(); m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); if (flush) Flush(); } Status Process::Launch(ProcessLaunchInfo &launch_info) { StateType state_after_launch = eStateInvalid; EventSP first_stop_event_sp; Status status = LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); if (status.Fail()) return status; if (state_after_launch != eStateStopped && state_after_launch != eStateCrashed) return Status(); // Note, the stop event was consumed above, but not handled. This // was done to give DidLaunch a chance to run. The target is either // stopped or crashed. Directly set the state. This is done to // prevent a stop message with a bunch of spurious output on thread // status, as well as not pop a ProcessIOHandler. SetPublicState(state_after_launch, false); if (PrivateStateThreadIsValid()) ResumePrivateStateThread(); else StartPrivateStateThread(); // Target was stopped at entry as was intended. Need to notify the // listeners about it. if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) HandlePrivateEvent(first_stop_event_sp); return Status(); } Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, EventSP &event_sp) { Status error; m_abi_sp.reset(); m_dyld_up.reset(); m_jit_loaders_up.reset(); m_system_runtime_up.reset(); m_os_up.reset(); { std::lock_guard guard(m_process_input_reader_mutex); m_process_input_reader.reset(); } Module *exe_module = GetTarget().GetExecutableModulePointer(); // The "remote executable path" is hooked up to the local Executable // module. But we should be able to debug a remote process even if the // executable module only exists on the remote. However, there needs to // be a way to express this path, without actually having a module. // The way to do that is to set the ExecutableFile in the LaunchInfo. // Figure that out here: FileSpec exe_spec_to_use; if (!exe_module) { if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { error.SetErrorString("executable module does not exist"); return error; } exe_spec_to_use = launch_info.GetExecutableFile(); } else exe_spec_to_use = exe_module->GetFileSpec(); if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { // Install anything that might need to be installed prior to launching. // For host systems, this will do nothing, but if we are connected to a // remote platform it will install any needed binaries error = GetTarget().Install(&launch_info); if (error.Fail()) return error; } // Listen and queue events that are broadcasted during the process launch. ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); HijackProcessEvents(listener_sp); auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); if (PrivateStateThreadIsValid()) PausePrivateStateThread(); error = WillLaunch(exe_module); if (error.Fail()) { std::string local_exec_file_path = exe_spec_to_use.GetPath(); return Status("file doesn't exist: '%s'", local_exec_file_path.c_str()); } const bool restarted = false; SetPublicState(eStateLaunching, restarted); m_should_detach = false; if (m_public_run_lock.TrySetRunning()) { // Now launch using these arguments. error = DoLaunch(exe_module, launch_info); } else { // This shouldn't happen error.SetErrorString("failed to acquire process run lock"); } if (error.Fail()) { if (GetID() != LLDB_INVALID_PROCESS_ID) { SetID(LLDB_INVALID_PROCESS_ID); const char *error_string = error.AsCString(); if (error_string == nullptr) error_string = "launch failed"; SetExitStatus(-1, error_string); } return error; } // Now wait for the process to launch and return control to us, and then // call DidLaunch: state = WaitForProcessStopPrivate(event_sp, seconds(10)); if (state == eStateInvalid || !event_sp) { // We were able to launch the process, but we failed to catch the // initial stop. error.SetErrorString("failed to catch stop after launch"); SetExitStatus(0, error.AsCString()); Destroy(false); return error; } if (state == eStateExited) { // We exited while trying to launch somehow. Don't call DidLaunch // as that's not likely to work, and return an invalid pid. HandlePrivateEvent(event_sp); return Status(); } if (state == eStateStopped || state == eStateCrashed) { DidLaunch(); // Now that we know the process type, update its signal responses from the // ones stored in the Target: if (m_unix_signals_sp) { StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); } DynamicLoader *dyld = GetDynamicLoader(); if (dyld) dyld->DidLaunch(); GetJITLoaders().DidLaunch(); SystemRuntime *system_runtime = GetSystemRuntime(); if (system_runtime) system_runtime->DidLaunch(); if (!m_os_up) LoadOperatingSystemPlugin(false); // We successfully launched the process and stopped, now it the // right time to set up signal filters before resuming. UpdateAutomaticSignalFiltering(); return Status(); } return Status("Unexpected process state after the launch: %s, expected %s, " "%s, %s or %s", StateAsCString(state), StateAsCString(eStateInvalid), StateAsCString(eStateExited), StateAsCString(eStateStopped), StateAsCString(eStateCrashed)); } Status Process::LoadCore() { Status error = DoLoadCore(); if (error.Success()) { ListenerSP listener_sp( Listener::MakeListener("lldb.process.load_core_listener")); HijackProcessEvents(listener_sp); if (PrivateStateThreadIsValid()) ResumePrivateStateThread(); else StartPrivateStateThread(); DynamicLoader *dyld = GetDynamicLoader(); if (dyld) dyld->DidAttach(); GetJITLoaders().DidAttach(); SystemRuntime *system_runtime = GetSystemRuntime(); if (system_runtime) system_runtime->DidAttach(); if (!m_os_up) LoadOperatingSystemPlugin(false); // We successfully loaded a core file, now pretend we stopped so we can // show all of the threads in the core file and explore the crashed state. SetPrivateState(eStateStopped); // Wait for a stopped event since we just posted one above... lldb::EventSP event_sp; StateType state = WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp, nullptr, true, SelectMostRelevantFrame); if (!StateIsStoppedState(state, false)) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", StateAsCString(state)); error.SetErrorString( "Did not get stopped event after loading the core file."); } RestoreProcessEvents(); } return error; } DynamicLoader *Process::GetDynamicLoader() { if (!m_dyld_up) m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); return m_dyld_up.get(); } void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { m_dyld_up = std::move(dyld_up); } DataExtractor Process::GetAuxvData() { return DataExtractor(); } llvm::Expected Process::SaveCore(llvm::StringRef outfile) { return false; } JITLoaderList &Process::GetJITLoaders() { if (!m_jit_loaders_up) { m_jit_loaders_up = std::make_unique(); JITLoader::LoadPlugins(this, *m_jit_loaders_up); } return *m_jit_loaders_up; } SystemRuntime *Process::GetSystemRuntime() { if (!m_system_runtime_up) m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); return m_system_runtime_up.get(); } Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, uint32_t exec_count) : NextEventAction(process), m_exec_count(exec_count) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF( log, "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, __FUNCTION__, static_cast(process), exec_count); } Process::NextEventAction::EventActionResult Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { Log *log = GetLog(LLDBLog::Process); StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); LLDB_LOGF(log, "Process::AttachCompletionHandler::%s called with state %s (%d)", __FUNCTION__, StateAsCString(state), static_cast(state)); switch (state) { case eStateAttaching: return eEventActionSuccess; case eStateRunning: case eStateConnected: return eEventActionRetry; case eStateStopped: case eStateCrashed: // During attach, prior to sending the eStateStopped event, // lldb_private::Process subclasses must set the new process ID. assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); // We don't want these events to be reported, so go set the // ShouldReportStop here: m_process->GetThreadList().SetShouldReportStop(eVoteNo); if (m_exec_count > 0) { --m_exec_count; LLDB_LOGF(log, "Process::AttachCompletionHandler::%s state %s: reduced " "remaining exec count to %" PRIu32 ", requesting resume", __FUNCTION__, StateAsCString(state), m_exec_count); RequestResume(); return eEventActionRetry; } else { LLDB_LOGF(log, "Process::AttachCompletionHandler::%s state %s: no more " "execs expected to start, continuing with attach", __FUNCTION__, StateAsCString(state)); m_process->CompleteAttach(); return eEventActionSuccess; } break; default: case eStateExited: case eStateInvalid: break; } m_exit_string.assign("No valid Process"); return eEventActionExit; } Process::NextEventAction::EventActionResult Process::AttachCompletionHandler::HandleBeingInterrupted() { return eEventActionSuccess; } const char *Process::AttachCompletionHandler::GetExitString() { return m_exit_string.c_str(); } ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { if (m_listener_sp) return m_listener_sp; else return debugger.GetListener(); } Status Process::WillLaunch(Module *module) { return DoWillLaunch(module); } Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { return DoWillAttachToProcessWithID(pid); } Status Process::WillAttachToProcessWithName(const char *process_name, bool wait_for_launch) { return DoWillAttachToProcessWithName(process_name, wait_for_launch); } Status Process::Attach(ProcessAttachInfo &attach_info) { m_abi_sp.reset(); { std::lock_guard guard(m_process_input_reader_mutex); m_process_input_reader.reset(); } m_dyld_up.reset(); m_jit_loaders_up.reset(); m_system_runtime_up.reset(); m_os_up.reset(); lldb::pid_t attach_pid = attach_info.GetProcessID(); Status error; if (attach_pid == LLDB_INVALID_PROCESS_ID) { char process_name[PATH_MAX]; if (attach_info.GetExecutableFile().GetPath(process_name, sizeof(process_name))) { const bool wait_for_launch = attach_info.GetWaitForLaunch(); if (wait_for_launch) { error = WillAttachToProcessWithName(process_name, wait_for_launch); if (error.Success()) { if (m_public_run_lock.TrySetRunning()) { m_should_detach = true; const bool restarted = false; SetPublicState(eStateAttaching, restarted); // Now attach using these arguments. error = DoAttachToProcessWithName(process_name, attach_info); } else { // This shouldn't happen error.SetErrorString("failed to acquire process run lock"); } if (error.Fail()) { if (GetID() != LLDB_INVALID_PROCESS_ID) { SetID(LLDB_INVALID_PROCESS_ID); if (error.AsCString() == nullptr) error.SetErrorString("attach failed"); SetExitStatus(-1, error.AsCString()); } } else { SetNextEventAction(new Process::AttachCompletionHandler( this, attach_info.GetResumeCount())); StartPrivateStateThread(); } return error; } } else { ProcessInstanceInfoList process_infos; PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp) { ProcessInstanceInfoMatch match_info; match_info.GetProcessInfo() = attach_info; match_info.SetNameMatchType(NameMatch::Equals); platform_sp->FindProcesses(match_info, process_infos); const uint32_t num_matches = process_infos.size(); if (num_matches == 1) { attach_pid = process_infos[0].GetProcessID(); // Fall through and attach using the above process ID } else { match_info.GetProcessInfo().GetExecutableFile().GetPath( process_name, sizeof(process_name)); if (num_matches > 1) { StreamString s; ProcessInstanceInfo::DumpTableHeader(s, true, false); for (size_t i = 0; i < num_matches; i++) { process_infos[i].DumpAsTableRow( s, platform_sp->GetUserIDResolver(), true, false); } error.SetErrorStringWithFormat( "more than one process named %s:\n%s", process_name, s.GetData()); } else error.SetErrorStringWithFormat( "could not find a process named %s", process_name); } } else { error.SetErrorString( "invalid platform, can't find processes by name"); return error; } } } else { error.SetErrorString("invalid process name"); } } if (attach_pid != LLDB_INVALID_PROCESS_ID) { error = WillAttachToProcessWithID(attach_pid); if (error.Success()) { if (m_public_run_lock.TrySetRunning()) { // Now attach using these arguments. m_should_detach = true; const bool restarted = false; SetPublicState(eStateAttaching, restarted); error = DoAttachToProcessWithID(attach_pid, attach_info); } else { // This shouldn't happen error.SetErrorString("failed to acquire process run lock"); } if (error.Success()) { SetNextEventAction(new Process::AttachCompletionHandler( this, attach_info.GetResumeCount())); StartPrivateStateThread(); } else { if (GetID() != LLDB_INVALID_PROCESS_ID) SetID(LLDB_INVALID_PROCESS_ID); const char *error_string = error.AsCString(); if (error_string == nullptr) error_string = "attach failed"; SetExitStatus(-1, error_string); } } } return error; } void Process::CompleteAttach() { Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); LLDB_LOGF(log, "Process::%s()", __FUNCTION__); // Let the process subclass figure out at much as it can about the process // before we go looking for a dynamic loader plug-in. ArchSpec process_arch; DidAttach(process_arch); if (process_arch.IsValid()) { LLDB_LOG(log, "Process::{0} replacing process architecture with DidAttach() " "architecture: \"{1}\"", __FUNCTION__, process_arch.GetTriple().getTriple()); GetTarget().SetArchitecture(process_arch); } // We just attached. If we have a platform, ask it for the process // architecture, and if it isn't the same as the one we've already set, // switch architectures. PlatformSP platform_sp(GetTarget().GetPlatform()); assert(platform_sp); ArchSpec process_host_arch = GetSystemArchitecture(); if (platform_sp) { const ArchSpec &target_arch = GetTarget().GetArchitecture(); if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( target_arch, process_host_arch, ArchSpec::CompatibleMatch, nullptr)) { ArchSpec platform_arch; platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( target_arch, process_host_arch, &platform_arch); if (platform_sp) { GetTarget().SetPlatform(platform_sp); GetTarget().SetArchitecture(platform_arch); LLDB_LOG(log, "switching platform to {0} and architecture to {1} based on " "info from attach", platform_sp->GetName(), platform_arch.GetTriple().getTriple()); } } else if (!process_arch.IsValid()) { ProcessInstanceInfo process_info; GetProcessInfo(process_info); const ArchSpec &process_arch = process_info.GetArchitecture(); const ArchSpec &target_arch = GetTarget().GetArchitecture(); if (process_arch.IsValid() && target_arch.IsCompatibleMatch(process_arch) && !target_arch.IsExactMatch(process_arch)) { GetTarget().SetArchitecture(process_arch); LLDB_LOGF(log, "Process::%s switching architecture to %s based on info " "the platform retrieved for pid %" PRIu64, __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), GetID()); } } } // Now that we know the process type, update its signal responses from the // ones stored in the Target: if (m_unix_signals_sp) { StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); } // We have completed the attach, now it is time to find the dynamic loader // plug-in DynamicLoader *dyld = GetDynamicLoader(); if (dyld) { dyld->DidAttach(); if (log) { ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); LLDB_LOG(log, "after DynamicLoader::DidAttach(), target " "executable is {0} (using {1} plugin)", exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), dyld->GetPluginName()); } } GetJITLoaders().DidAttach(); SystemRuntime *system_runtime = GetSystemRuntime(); if (system_runtime) { system_runtime->DidAttach(); if (log) { ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); LLDB_LOG(log, "after SystemRuntime::DidAttach(), target " "executable is {0} (using {1} plugin)", exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), system_runtime->GetPluginName()); } } if (!m_os_up) { LoadOperatingSystemPlugin(false); if (m_os_up) { // Somebody might have gotten threads before now, but we need to force the // update after we've loaded the OperatingSystem plugin or it won't get a // chance to process the threads. m_thread_list.Clear(); UpdateThreadListIfNeeded(); } } // Figure out which one is the executable, and set that in our target: ModuleSP new_executable_module_sp; for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { if (module_sp && module_sp->IsExecutable()) { if (GetTarget().GetExecutableModulePointer() != module_sp.get()) new_executable_module_sp = module_sp; break; } } if (new_executable_module_sp) { GetTarget().SetExecutableModule(new_executable_module_sp, eLoadDependentsNo); if (log) { ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); LLDB_LOGF( log, "Process::%s after looping through modules, target executable is %s", __FUNCTION__, exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() : ""); } } } Status Process::ConnectRemote(llvm::StringRef remote_url) { m_abi_sp.reset(); { std::lock_guard guard(m_process_input_reader_mutex); m_process_input_reader.reset(); } // Find the process and its architecture. Make sure it matches the // architecture of the current Target, and if not adjust it. Status error(DoConnectRemote(remote_url)); if (error.Success()) { if (GetID() != LLDB_INVALID_PROCESS_ID) { EventSP event_sp; StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt); if (state == eStateStopped || state == eStateCrashed) { // If we attached and actually have a process on the other end, then // this ended up being the equivalent of an attach. CompleteAttach(); // This delays passing the stopped event to listeners till // CompleteAttach gets a chance to complete... HandlePrivateEvent(event_sp); } } if (PrivateStateThreadIsValid()) ResumePrivateStateThread(); else StartPrivateStateThread(); } return error; } Status Process::PrivateResume() { Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); LLDB_LOGF(log, "Process::PrivateResume() m_stop_id = %u, public state: %s " "private state: %s", m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), StateAsCString(m_private_state.GetValue())); // If signals handing status changed we might want to update our signal // filters before resuming. UpdateAutomaticSignalFiltering(); Status error(WillResume()); // Tell the process it is about to resume before the thread list if (error.Success()) { // Now let the thread list know we are about to resume so it can let all of // our threads know that they are about to be resumed. Threads will each be // called with Thread::WillResume(StateType) where StateType contains the // state that they are supposed to have when the process is resumed // (suspended/running/stepping). Threads should also check their resume // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to // start back up with a signal. if (m_thread_list.WillResume()) { // Last thing, do the PreResumeActions. if (!RunPreResumeActions()) { error.SetErrorString( "Process::PrivateResume PreResumeActions failed, not resuming."); } else { m_mod_id.BumpResumeID(); error = DoResume(); if (error.Success()) { DidResume(); m_thread_list.DidResume(); LLDB_LOGF(log, "Process thinks the process has resumed."); } else { LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); return error; } } } else { // Somebody wanted to run without running (e.g. we were faking a step // from one frame of a set of inlined frames that share the same PC to // another.) So generate a continue & a stopped event, and let the world // handle them. LLDB_LOGF(log, "Process::PrivateResume() asked to simulate a start & stop."); SetPrivateState(eStateRunning); SetPrivateState(eStateStopped); } } else LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", error.AsCString("")); return error; } Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { if (!StateIsRunningState(m_public_state.GetValue())) return Status("Process is not running."); // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in // case it was already set and some thread plan logic calls halt on its own. m_clear_thread_plans_on_stop |= clear_thread_plans; ListenerSP halt_listener_sp( Listener::MakeListener("lldb.process.halt_listener")); HijackProcessEvents(halt_listener_sp); EventSP event_sp; SendAsyncInterrupt(); if (m_public_state.GetValue() == eStateAttaching) { // Don't hijack and eat the eStateExited as the code that was doing the // attach will be waiting for this event... RestoreProcessEvents(); Destroy(false); SetExitStatus(SIGKILL, "Cancelled async attach."); return Status(); } // Wait for the process halt timeout seconds for the process to stop. // If we are going to use the run lock, that means we're stopping out to the // user, so we should also select the most relevant frame. SelectMostRelevant select_most_relevant = use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, halt_listener_sp, nullptr, use_run_lock, select_most_relevant); RestoreProcessEvents(); if (state == eStateInvalid || !event_sp) { // We timed out and didn't get a stop event... return Status("Halt timed out. State = %s", StateAsCString(GetState())); } BroadcastEvent(event_sp); return Status(); } lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high, const uint8_t *buf, size_t size) { const size_t region_size = high - low; if (region_size < size) return LLDB_INVALID_ADDRESS; std::vector bad_char_heuristic(256, size); ProcessMemoryIterator iterator(*this, low); for (size_t idx = 0; idx < size - 1; idx++) { decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx]; bad_char_heuristic[bcu_idx] = size - idx - 1; } for (size_t s = 0; s <= (region_size - size);) { int64_t j = size - 1; while (j >= 0 && buf[j] == iterator[s + j]) j--; if (j < 0) return low + s; else s += bad_char_heuristic[iterator[s + size - 1]]; } return LLDB_INVALID_ADDRESS; } Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { Status error; // Check both the public & private states here. If we're hung evaluating an // expression, for instance, then the public state will be stopped, but we // still need to interrupt. if (m_public_state.GetValue() == eStateRunning || m_private_state.GetValue() == eStateRunning) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); ListenerSP listener_sp( Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); HijackProcessEvents(listener_sp); SendAsyncInterrupt(); // Consume the interrupt event. StateType state = WaitForProcessToStop(GetInterruptTimeout(), &exit_event_sp, true, listener_sp); RestoreProcessEvents(); // If the process exited while we were waiting for it to stop, put the // exited event into the shared pointer passed in and return. Our caller // doesn't need to do anything else, since they don't have a process // anymore... if (state == eStateExited || m_private_state.GetValue() == eStateExited) { LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", __FUNCTION__); return error; } else exit_event_sp.reset(); // It is ok to consume any non-exit stop events if (state != eStateStopped) { LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, StateAsCString(state)); // If we really couldn't stop the process then we should just error out // here, but if the lower levels just bobbled sending the event and we // really are stopped, then continue on. StateType private_state = m_private_state.GetValue(); if (private_state != eStateStopped) { return Status( "Attempt to stop the target in order to detach timed out. " "State = %s", StateAsCString(GetState())); } } } return error; } Status Process::Detach(bool keep_stopped) { EventSP exit_event_sp; Status error; m_destroy_in_process = true; error = WillDetach(); if (error.Success()) { if (DetachRequiresHalt()) { error = StopForDestroyOrDetach(exit_event_sp); if (!error.Success()) { m_destroy_in_process = false; return error; } else if (exit_event_sp) { // We shouldn't need to do anything else here. There's no process left // to detach from... StopPrivateStateThread(); m_destroy_in_process = false; return error; } } m_thread_list.DiscardThreadPlans(); DisableAllBreakpointSites(); error = DoDetach(keep_stopped); if (error.Success()) { DidDetach(); StopPrivateStateThread(); } else { return error; } } m_destroy_in_process = false; // If we exited when we were waiting for a process to stop, then forward the // event here so we don't lose the event if (exit_event_sp) { // Directly broadcast our exited event because we shut down our private // state thread above BroadcastEvent(exit_event_sp); } // If we have been interrupted (to kill us) in the middle of running, we may // not end up propagating the last events through the event system, in which // case we might strand the write lock. Unlock it here so when we do to tear // down the process we don't get an error destroying the lock. m_public_run_lock.SetStopped(); return error; } Status Process::Destroy(bool force_kill) { // If we've already called Process::Finalize then there's nothing useful to // be done here. Finalize has actually called Destroy already. if (m_finalizing) return {}; return DestroyImpl(force_kill); } Status Process::DestroyImpl(bool force_kill) { // Tell ourselves we are in the process of destroying the process, so that we // don't do any unnecessary work that might hinder the destruction. Remember // to set this back to false when we are done. That way if the attempt // failed and the process stays around for some reason it won't be in a // confused state. if (force_kill) m_should_detach = false; if (GetShouldDetach()) { // FIXME: This will have to be a process setting: bool keep_stopped = false; Detach(keep_stopped); } m_destroy_in_process = true; Status error(WillDestroy()); if (error.Success()) { EventSP exit_event_sp; if (DestroyRequiresHalt()) { error = StopForDestroyOrDetach(exit_event_sp); } if (m_public_state.GetValue() == eStateStopped) { // Ditch all thread plans, and remove all our breakpoints: in case we // have to restart the target to kill it, we don't want it hitting a // breakpoint... Only do this if we've stopped, however, since if we // didn't manage to halt it above, then we're not going to have much luck // doing this now. m_thread_list.DiscardThreadPlans(); DisableAllBreakpointSites(); } error = DoDestroy(); if (error.Success()) { DidDestroy(); StopPrivateStateThread(); } m_stdio_communication.StopReadThread(); m_stdio_communication.Disconnect(); m_stdin_forward = false; { std::lock_guard guard(m_process_input_reader_mutex); if (m_process_input_reader) { m_process_input_reader->SetIsDone(true); m_process_input_reader->Cancel(); m_process_input_reader.reset(); } } // If we exited when we were waiting for a process to stop, then forward // the event here so we don't lose the event if (exit_event_sp) { // Directly broadcast our exited event because we shut down our private // state thread above BroadcastEvent(exit_event_sp); } // If we have been interrupted (to kill us) in the middle of running, we // may not end up propagating the last events through the event system, in // which case we might strand the write lock. Unlock it here so when we do // to tear down the process we don't get an error destroying the lock. m_public_run_lock.SetStopped(); } m_destroy_in_process = false; return error; } Status Process::Signal(int signal) { Status error(WillSignal()); if (error.Success()) { error = DoSignal(signal); if (error.Success()) DidSignal(); } return error; } void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { assert(signals_sp && "null signals_sp"); m_unix_signals_sp = std::move(signals_sp); } const lldb::UnixSignalsSP &Process::GetUnixSignals() { assert(m_unix_signals_sp && "null m_unix_signals_sp"); return m_unix_signals_sp; } lldb::ByteOrder Process::GetByteOrder() const { return GetTarget().GetArchitecture().GetByteOrder(); } uint32_t Process::GetAddressByteSize() const { return GetTarget().GetArchitecture().GetAddressByteSize(); } bool Process::ShouldBroadcastEvent(Event *event_ptr) { const StateType state = Process::ProcessEventData::GetStateFromEvent(event_ptr); bool return_value = true; Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); switch (state) { case eStateDetached: case eStateExited: case eStateUnloaded: m_stdio_communication.SynchronizeWithReadThread(); m_stdio_communication.StopReadThread(); m_stdio_communication.Disconnect(); m_stdin_forward = false; [[fallthrough]]; case eStateConnected: case eStateAttaching: case eStateLaunching: // These events indicate changes in the state of the debugging session, // always report them. return_value = true; break; case eStateInvalid: // We stopped for no apparent reason, don't report it. return_value = false; break; case eStateRunning: case eStateStepping: // If we've started the target running, we handle the cases where we are // already running and where there is a transition from stopped to running // differently. running -> running: Automatically suppress extra running // events stopped -> running: Report except when there is one or more no // votes // and no yes votes. SynchronouslyNotifyStateChanged(state); if (m_force_next_event_delivery) return_value = true; else { switch (m_last_broadcast_state) { case eStateRunning: case eStateStepping: // We always suppress multiple runnings with no PUBLIC stop in between. return_value = false; break; default: // TODO: make this work correctly. For now always report // run if we aren't running so we don't miss any running events. If I // run the lldb/test/thread/a.out file and break at main.cpp:58, run // and hit the breakpoints on multiple threads, then somehow during the // stepping over of all breakpoints no run gets reported. // This is a transition from stop to run. switch (m_thread_list.ShouldReportRun(event_ptr)) { case eVoteYes: case eVoteNoOpinion: return_value = true; break; case eVoteNo: return_value = false; break; } break; } } break; case eStateStopped: case eStateCrashed: case eStateSuspended: // We've stopped. First see if we're going to restart the target. If we // are going to stop, then we always broadcast the event. If we aren't // going to stop, let the thread plans decide if we're going to report this // event. If no thread has an opinion, we don't report it. m_stdio_communication.SynchronizeWithReadThread(); RefreshStateAfterStop(); if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { LLDB_LOGF(log, "Process::ShouldBroadcastEvent (%p) stopped due to an " "interrupt, state: %s", static_cast(event_ptr), StateAsCString(state)); // Even though we know we are going to stop, we should let the threads // have a look at the stop, so they can properly set their state. m_thread_list.ShouldStop(event_ptr); return_value = true; } else { bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); bool should_resume = false; // It makes no sense to ask "ShouldStop" if we've already been // restarted... Asking the thread list is also not likely to go well, // since we are running again. So in that case just report the event. if (!was_restarted) should_resume = !m_thread_list.ShouldStop(event_ptr); if (was_restarted || should_resume || m_resume_requested) { Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); LLDB_LOGF(log, "Process::ShouldBroadcastEvent: should_resume: %i state: " "%s was_restarted: %i report_stop_vote: %d.", should_resume, StateAsCString(state), was_restarted, report_stop_vote); switch (report_stop_vote) { case eVoteYes: return_value = true; break; case eVoteNoOpinion: case eVoteNo: return_value = false; break; } if (!was_restarted) { LLDB_LOGF(log, "Process::ShouldBroadcastEvent (%p) Restarting process " "from state: %s", static_cast(event_ptr), StateAsCString(state)); ProcessEventData::SetRestartedInEvent(event_ptr, true); PrivateResume(); } } else { return_value = true; SynchronouslyNotifyStateChanged(state); } } break; } // Forcing the next event delivery is a one shot deal. So reset it here. m_force_next_event_delivery = false; // We do some coalescing of events (for instance two consecutive running // events get coalesced.) But we only coalesce against events we actually // broadcast. So we use m_last_broadcast_state to track that. NB - you // can't use "m_public_state.GetValue()" for that purpose, as was originally // done, because the PublicState reflects the last event pulled off the // queue, and there may be several events stacked up on the queue unserviced. // So the PublicState may not reflect the last broadcasted event yet. // m_last_broadcast_state gets updated here. if (return_value) m_last_broadcast_state = state; LLDB_LOGF(log, "Process::ShouldBroadcastEvent (%p) => new state: %s, last " "broadcast state: %s - %s", static_cast(event_ptr), StateAsCString(state), StateAsCString(m_last_broadcast_state), return_value ? "YES" : "NO"); return return_value; } bool Process::StartPrivateStateThread(bool is_secondary_thread) { Log *log = GetLog(LLDBLog::Events); bool already_running = PrivateStateThreadIsValid(); LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, already_running ? " already running" : " starting private state thread"); if (!is_secondary_thread && already_running) return true; // Create a thread that watches our internal state and controls which events // make it to clients (into the DCProcess event queue). char thread_name[1024]; uint32_t max_len = llvm::get_max_thread_name_length(); if (max_len > 0 && max_len <= 30) { // On platforms with abbreviated thread name lengths, choose thread names // that fit within the limit. if (already_running) snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); else snprintf(thread_name, sizeof(thread_name), "intern-state"); } else { if (already_running) snprintf(thread_name, sizeof(thread_name), "", GetID()); else snprintf(thread_name, sizeof(thread_name), "", GetID()); } llvm::Expected private_state_thread = ThreadLauncher::LaunchThread( thread_name, [this, is_secondary_thread] { return RunPrivateStateThread(is_secondary_thread); }, 8 * 1024 * 1024); if (!private_state_thread) { LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), "failed to launch host thread: {0}"); return false; } assert(private_state_thread->IsJoinable()); m_private_state_thread = *private_state_thread; ResumePrivateStateThread(); return true; } void Process::PausePrivateStateThread() { ControlPrivateStateThread(eBroadcastInternalStateControlPause); } void Process::ResumePrivateStateThread() { ControlPrivateStateThread(eBroadcastInternalStateControlResume); } void Process::StopPrivateStateThread() { if (m_private_state_thread.IsJoinable()) ControlPrivateStateThread(eBroadcastInternalStateControlStop); else { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF( log, "Went to stop the private state thread, but it was already invalid."); } } void Process::ControlPrivateStateThread(uint32_t signal) { Log *log = GetLog(LLDBLog::Process); assert(signal == eBroadcastInternalStateControlStop || signal == eBroadcastInternalStateControlPause || signal == eBroadcastInternalStateControlResume); LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); // Signal the private state thread if (m_private_state_thread.IsJoinable()) { // Broadcast the event. // It is important to do this outside of the if below, because it's // possible that the thread state is invalid but that the thread is waiting // on a control event instead of simply being on its way out (this should // not happen, but it apparently can). LLDB_LOGF(log, "Sending control event of type: %d.", signal); std::shared_ptr event_receipt_sp(new EventDataReceipt()); m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp); // Wait for the event receipt or for the private state thread to exit bool receipt_received = false; if (PrivateStateThreadIsValid()) { while (!receipt_received) { // Check for a receipt for n seconds and then check if the private // state thread is still around. receipt_received = event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); if (!receipt_received) { // Check if the private state thread is still around. If it isn't // then we are done waiting if (!PrivateStateThreadIsValid()) break; // Private state thread exited or is exiting, we are done } } } if (signal == eBroadcastInternalStateControlStop) { thread_result_t result = {}; m_private_state_thread.Join(&result); m_private_state_thread.Reset(); } } else { LLDB_LOGF( log, "Private state thread already dead, no need to signal it to stop."); } } void Process::SendAsyncInterrupt() { if (PrivateStateThreadIsValid()) m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); else BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); } void Process::HandlePrivateEvent(EventSP &event_sp) { Log *log = GetLog(LLDBLog::Process); m_resume_requested = false; const StateType new_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); // First check to see if anybody wants a shot at this event: if (m_next_event_action_up) { NextEventAction::EventActionResult action_result = m_next_event_action_up->PerformAction(event_sp); LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); switch (action_result) { case NextEventAction::eEventActionSuccess: SetNextEventAction(nullptr); break; case NextEventAction::eEventActionRetry: break; case NextEventAction::eEventActionExit: // Handle Exiting Here. If we already got an exited event, we should // just propagate it. Otherwise, swallow this event, and set our state // to exit so the next event will kill us. if (new_state != eStateExited) { // FIXME: should cons up an exited event, and discard this one. SetExitStatus(0, m_next_event_action_up->GetExitString()); SetNextEventAction(nullptr); return; } SetNextEventAction(nullptr); break; } } // See if we should broadcast this state to external clients? const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); if (should_broadcast) { const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); if (log) { LLDB_LOGF(log, "Process::%s (pid = %" PRIu64 ") broadcasting new state %s (old state %s) to %s", __FUNCTION__, GetID(), StateAsCString(new_state), StateAsCString(GetState()), is_hijacked ? "hijacked" : "public"); } Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); if (StateIsRunningState(new_state)) { // Only push the input handler if we aren't fowarding events, as this // means the curses GUI is in use... Or don't push it if we are launching // since it will come up stopped. if (!GetTarget().GetDebugger().IsForwardingEvents() && new_state != eStateLaunching && new_state != eStateAttaching) { PushProcessIOHandler(); m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, eBroadcastAlways); LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", __FUNCTION__, m_iohandler_sync.GetValue()); } } else if (StateIsStoppedState(new_state, false)) { if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { // If the lldb_private::Debugger is handling the events, we don't want // to pop the process IOHandler here, we want to do it when we receive // the stopped event so we can carefully control when the process // IOHandler is popped because when we stop we want to display some // text stating how and why we stopped, then maybe some // process/thread/frame info, and then we want the "(lldb) " prompt to // show up. If we pop the process IOHandler here, then we will cause // the command interpreter to become the top IOHandler after the // process pops off and it will update its prompt right away... See the // Debugger.cpp file where it calls the function as // "process_sp->PopProcessIOHandler()" to see where I am talking about. // Otherwise we end up getting overlapping "(lldb) " prompts and // garbled output. // // If we aren't handling the events in the debugger (which is indicated // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or // we are hijacked, then we always pop the process IO handler manually. // Hijacking happens when the internal process state thread is running // thread plans, or when commands want to run in synchronous mode and // they call "process->WaitForProcessToStop()". An example of something // that will hijack the events is a simple expression: // // (lldb) expr (int)puts("hello") // // This will cause the internal process state thread to resume and halt // the process (and _it_ will hijack the eBroadcastBitStateChanged // events) and we do need the IO handler to be pushed and popped // correctly. if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) PopProcessIOHandler(); } } BroadcastEvent(event_sp); } else { if (log) { LLDB_LOGF( log, "Process::%s (pid = %" PRIu64 ") suppressing state %s (old state %s): should_broadcast == false", __FUNCTION__, GetID(), StateAsCString(new_state), StateAsCString(GetState())); } } } Status Process::HaltPrivate() { EventSP event_sp; Status error(WillHalt()); if (error.Fail()) return error; // Ask the process subclass to actually halt our process bool caused_stop; error = DoHalt(caused_stop); DidHalt(); return error; } thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { bool control_only = true; Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", __FUNCTION__, static_cast(this), GetID()); bool exit_now = false; bool interrupt_requested = false; while (!exit_now) { EventSP event_sp; GetEventsPrivate(event_sp, std::nullopt, control_only); if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") got a control event: %d", __FUNCTION__, static_cast(this), GetID(), event_sp->GetType()); switch (event_sp->GetType()) { case eBroadcastInternalStateControlStop: exit_now = true; break; // doing any internal state management below case eBroadcastInternalStateControlPause: control_only = true; break; case eBroadcastInternalStateControlResume: control_only = false; break; } continue; } else if (event_sp->GetType() == eBroadcastBitInterrupt) { if (m_public_state.GetValue() == eStateAttaching) { LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt while attaching - " "forwarding interrupt.", __FUNCTION__, static_cast(this), GetID()); // The server may be spinning waiting for a process to appear, in which // case we should tell it to stop doing that. Normally, we don't NEED // to do that because we will next close the communication to the stub // and that will get it to shut down. But there are remote debugging // cases where relying on that side-effect causes the shutdown to be // flakey, so we should send a positive signal to interrupt the wait. Status error = HaltPrivate(); BroadcastEvent(eBroadcastBitInterrupt, nullptr); } else if (StateIsRunningState(m_last_broadcast_state)) { LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt - Halting.", __FUNCTION__, static_cast(this), GetID()); Status error = HaltPrivate(); if (error.Fail() && log) LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") failed to halt the process: %s", __FUNCTION__, static_cast(this), GetID(), error.AsCString()); // Halt should generate a stopped event. Make a note of the fact that // we were doing the interrupt, so we can set the interrupted flag // after we receive the event. We deliberately set this to true even if // HaltPrivate failed, so that we can interrupt on the next natural // stop. interrupt_requested = true; } else { // This can happen when someone (e.g. Process::Halt) sees that we are // running and sends an interrupt request, but the process actually // stops before we receive it. In that case, we can just ignore the // request. We use m_last_broadcast_state, because the Stopped event // may not have been popped of the event queue yet, which is when the // public state gets updated. LLDB_LOGF(log, "Process::%s ignoring interrupt as we have already stopped.", __FUNCTION__); } continue; } const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (internal_state != eStateInvalid) { if (m_clear_thread_plans_on_stop && StateIsStoppedState(internal_state, true)) { m_clear_thread_plans_on_stop = false; m_thread_list.DiscardThreadPlans(); } if (interrupt_requested) { if (StateIsStoppedState(internal_state, true)) { // We requested the interrupt, so mark this as such in the stop event // so clients can tell an interrupted process from a natural stop ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); interrupt_requested = false; } else if (log) { LLDB_LOGF(log, "Process::%s interrupt_requested, but a non-stopped " "state '%s' received.", __FUNCTION__, StateAsCString(internal_state)); } } HandlePrivateEvent(event_sp); } if (internal_state == eStateInvalid || internal_state == eStateExited || internal_state == eStateDetached) { LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") about to exit with internal state %s...", __FUNCTION__, static_cast(this), GetID(), StateAsCString(internal_state)); break; } } // Verify log is still enabled before attempting to write to it... LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", __FUNCTION__, static_cast(this), GetID()); // If we are a secondary thread, then the primary thread we are working for // will have already acquired the public_run_lock, and isn't done with what // it was doing yet, so don't try to change it on the way out. if (!is_secondary_thread) m_public_run_lock.SetStopped(); return {}; } // Process Event Data Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, StateType state) : EventData(), m_process_wp(), m_state(state) { if (process_sp) m_process_wp = process_sp; } Process::ProcessEventData::~ProcessEventData() = default; llvm::StringRef Process::ProcessEventData::GetFlavorString() { return "Process::ProcessEventData"; } llvm::StringRef Process::ProcessEventData::GetFlavor() const { return ProcessEventData::GetFlavorString(); } bool Process::ProcessEventData::ShouldStop(Event *event_ptr, bool &found_valid_stopinfo) { found_valid_stopinfo = false; ProcessSP process_sp(m_process_wp.lock()); if (!process_sp) return false; ThreadList &curr_thread_list = process_sp->GetThreadList(); uint32_t num_threads = curr_thread_list.GetSize(); // The actions might change one of the thread's stop_info's opinions about // whether we should stop the process, so we need to query that as we go. // One other complication here, is that we try to catch any case where the // target has run (except for expressions) and immediately exit, but if we // get that wrong (which is possible) then the thread list might have // changed, and that would cause our iteration here to crash. We could // make a copy of the thread list, but we'd really like to also know if it // has changed at all, so we store the original thread ID's of all threads and // check what we get back against this list & bag out if anything differs. std::vector> not_suspended_threads; for (uint32_t idx = 0; idx < num_threads; ++idx) { lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); /* Filter out all suspended threads, they could not be the reason of stop and no need to perform any actions on them. */ if (thread_sp->GetResumeState() != eStateSuspended) not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID()); } // Use this to track whether we should continue from here. We will only // continue the target running if no thread says we should stop. Of course // if some thread's PerformAction actually sets the target running, then it // doesn't matter what the other threads say... bool still_should_stop = false; // Sometimes - for instance if we have a bug in the stub we are talking to, // we stop but no thread has a valid stop reason. In that case we should // just stop, because we have no way of telling what the right thing to do // is, and it's better to let the user decide than continue behind their // backs. for (auto [thread_sp, thread_index] : not_suspended_threads) { if (curr_thread_list.GetSize() != num_threads) { Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); LLDB_LOGF( log, "Number of threads changed from %u to %u while processing event.", num_threads, curr_thread_list.GetSize()); break; } if (thread_sp->GetIndexID() != thread_index) { Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); LLDB_LOG(log, "The thread {0} changed from {1} to {2} while processing event.", thread_sp.get(), thread_index, thread_sp->GetIndexID()); break; } StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); if (stop_info_sp && stop_info_sp->IsValid()) { found_valid_stopinfo = true; bool this_thread_wants_to_stop; if (stop_info_sp->GetOverrideShouldStop()) { this_thread_wants_to_stop = stop_info_sp->GetOverriddenShouldStopValue(); } else { stop_info_sp->PerformAction(event_ptr); // The stop action might restart the target. If it does, then we // want to mark that in the event so that whoever is receiving it // will know to wait for the running event and reflect that state // appropriately. We also need to stop processing actions, since they // aren't expecting the target to be running. // FIXME: we might have run. if (stop_info_sp->HasTargetRunSinceMe()) { SetRestarted(true); break; } this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); } if (!still_should_stop) still_should_stop = this_thread_wants_to_stop; } } return still_should_stop; } bool Process::ProcessEventData::ForwardEventToPendingListeners( Event *event_ptr) { // STDIO and the other async event notifications should always be forwarded. if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) return true; // For state changed events, if the update state is zero, we are handling // this on the private state thread. We should wait for the public event. return m_update_state == 1; } void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { // We only have work to do for state changed events: if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) return; ProcessSP process_sp(m_process_wp.lock()); if (!process_sp) return; // This function gets called twice for each event, once when the event gets // pulled off of the private process event queue, and then any number of // times, first when it gets pulled off of the public event queue, then other // times when we're pretending that this is where we stopped at the end of // expression evaluation. m_update_state is used to distinguish these three // cases; it is 0 when we're just pulling it off for private handling, and > // 1 for expression evaluation, and we don't want to do the breakpoint // command handling then. if (m_update_state != 1) return; process_sp->SetPublicState( m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); if (m_state == eStateStopped && !m_restarted) { // Let process subclasses know we are about to do a public stop and do // anything they might need to in order to speed up register and memory // accesses. process_sp->WillPublicStop(); } // If this is a halt event, even if the halt stopped with some reason other // than a plain interrupt (e.g. we had already stopped for a breakpoint when // the halt request came through) don't do the StopInfo actions, as they may // end up restarting the process. if (m_interrupted) return; // If we're not stopped or have restarted, then skip the StopInfo actions: if (m_state != eStateStopped || m_restarted) { return; } bool does_anybody_have_an_opinion = false; bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); if (GetRestarted()) { return; } if (!still_should_stop && does_anybody_have_an_opinion) { // We've been asked to continue, so do that here. SetRestarted(true); // Use the private resume method here, since we aren't changing the run // lock state. process_sp->PrivateResume(); } else { bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && !process_sp->StateChangedIsHijackedForSynchronousResume(); if (!hijacked) { // If we didn't restart, run the Stop Hooks here. // Don't do that if state changed events aren't hooked up to the // public (or SyncResume) broadcasters. StopHooks are just for // real public stops. They might also restart the target, // so watch for that. if (process_sp->GetTarget().RunStopHooks()) SetRestarted(true); } } } void Process::ProcessEventData::Dump(Stream *s) const { ProcessSP process_sp(m_process_wp.lock()); if (process_sp) s->Printf(" process = %p (pid = %" PRIu64 "), ", static_cast(process_sp.get()), process_sp->GetID()); else s->PutCString(" process = NULL, "); s->Printf("state = %s", StateAsCString(GetState())); } const Process::ProcessEventData * Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { if (event_ptr) { const EventData *event_data = event_ptr->GetData(); if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString()) return static_cast(event_ptr->GetData()); } return nullptr; } ProcessSP Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { ProcessSP process_sp; const ProcessEventData *data = GetEventDataFromEvent(event_ptr); if (data) process_sp = data->GetProcessSP(); return process_sp; } StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { const ProcessEventData *data = GetEventDataFromEvent(event_ptr); if (data == nullptr) return eStateInvalid; else return data->GetState(); } bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { const ProcessEventData *data = GetEventDataFromEvent(event_ptr); if (data == nullptr) return false; else return data->GetRestarted(); } void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, bool new_value) { ProcessEventData *data = const_cast(GetEventDataFromEvent(event_ptr)); if (data != nullptr) data->SetRestarted(new_value); } size_t Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { ProcessEventData *data = const_cast(GetEventDataFromEvent(event_ptr)); if (data != nullptr) return data->GetNumRestartedReasons(); else return 0; } const char * Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, size_t idx) { ProcessEventData *data = const_cast(GetEventDataFromEvent(event_ptr)); if (data != nullptr) return data->GetRestartedReasonAtIndex(idx); else return nullptr; } void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, const char *reason) { ProcessEventData *data = const_cast(GetEventDataFromEvent(event_ptr)); if (data != nullptr) data->AddRestartedReason(reason); } bool Process::ProcessEventData::GetInterruptedFromEvent( const Event *event_ptr) { const ProcessEventData *data = GetEventDataFromEvent(event_ptr); if (data == nullptr) return false; else return data->GetInterrupted(); } void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, bool new_value) { ProcessEventData *data = const_cast(GetEventDataFromEvent(event_ptr)); if (data != nullptr) data->SetInterrupted(new_value); } bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { ProcessEventData *data = const_cast(GetEventDataFromEvent(event_ptr)); if (data) { data->SetUpdateStateOnRemoval(); return true; } return false; } lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { exe_ctx.SetTargetPtr(&GetTarget()); exe_ctx.SetProcessPtr(this); exe_ctx.SetThreadPtr(nullptr); exe_ctx.SetFramePtr(nullptr); } // uint32_t // Process::ListProcessesMatchingName (const char *name, StringList &matches, // std::vector &pids) //{ // return 0; //} // // ArchSpec // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) //{ // return Host::GetArchSpecForExistingProcess (pid); //} // // ArchSpec // Process::GetArchSpecForExistingProcess (const char *process_name) //{ // return Host::GetArchSpecForExistingProcess (process_name); //} EventSP Process::CreateEventFromProcessState(uint32_t event_type) { auto event_data_sp = std::make_shared(shared_from_this(), GetState()); return std::make_shared(event_type, event_data_sp); } void Process::AppendSTDOUT(const char *s, size_t len) { std::lock_guard guard(m_stdio_communication_mutex); m_stdout_data.append(s, len); auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT); BroadcastEventIfUnique(event_sp); } void Process::AppendSTDERR(const char *s, size_t len) { std::lock_guard guard(m_stdio_communication_mutex); m_stderr_data.append(s, len); auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR); BroadcastEventIfUnique(event_sp); } void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { std::lock_guard guard(m_profile_data_comm_mutex); m_profile_data.push_back(one_profile_data); auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData); BroadcastEventIfUnique(event_sp); } void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, const StructuredDataPluginSP &plugin_sp) { auto data_sp = std::make_shared( shared_from_this(), object_sp, plugin_sp); BroadcastEvent(eBroadcastBitStructuredData, data_sp); } StructuredDataPluginSP Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { auto find_it = m_structured_data_plugin_map.find(type_name); if (find_it != m_structured_data_plugin_map.end()) return find_it->second; else return StructuredDataPluginSP(); } size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { std::lock_guard guard(m_profile_data_comm_mutex); if (m_profile_data.empty()) return 0; std::string &one_profile_data = m_profile_data.front(); size_t bytes_available = one_profile_data.size(); if (bytes_available > 0) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", static_cast(buf), static_cast(buf_size)); if (bytes_available > buf_size) { memcpy(buf, one_profile_data.c_str(), buf_size); one_profile_data.erase(0, buf_size); bytes_available = buf_size; } else { memcpy(buf, one_profile_data.c_str(), bytes_available); m_profile_data.erase(m_profile_data.begin()); } } return bytes_available; } // Process STDIO size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { std::lock_guard guard(m_stdio_communication_mutex); size_t bytes_available = m_stdout_data.size(); if (bytes_available > 0) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", static_cast(buf), static_cast(buf_size)); if (bytes_available > buf_size) { memcpy(buf, m_stdout_data.c_str(), buf_size); m_stdout_data.erase(0, buf_size); bytes_available = buf_size; } else { memcpy(buf, m_stdout_data.c_str(), bytes_available); m_stdout_data.clear(); } } return bytes_available; } size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { std::lock_guard gaurd(m_stdio_communication_mutex); size_t bytes_available = m_stderr_data.size(); if (bytes_available > 0) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", static_cast(buf), static_cast(buf_size)); if (bytes_available > buf_size) { memcpy(buf, m_stderr_data.c_str(), buf_size); m_stderr_data.erase(0, buf_size); bytes_available = buf_size; } else { memcpy(buf, m_stderr_data.c_str(), bytes_available); m_stderr_data.clear(); } } return bytes_available; } void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, size_t src_len) { Process *process = (Process *)baton; process->AppendSTDOUT(static_cast(src), src_len); } class IOHandlerProcessSTDIO : public IOHandler { public: IOHandlerProcessSTDIO(Process *process, int write_fd) : IOHandler(process->GetTarget().GetDebugger(), IOHandler::Type::ProcessIO), m_process(process), m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { m_pipe.CreateNew(false); } ~IOHandlerProcessSTDIO() override = default; void SetIsRunning(bool running) { std::lock_guard guard(m_mutex); SetIsDone(!running); m_is_running = running; } // Each IOHandler gets to run until it is done. It should read data from the // "in" and place output into "out" and "err and return when done. void Run() override { if (!m_read_file.IsValid() || !m_write_file.IsValid() || !m_pipe.CanRead() || !m_pipe.CanWrite()) { SetIsDone(true); return; } SetIsDone(false); const int read_fd = m_read_file.GetDescriptor(); Terminal terminal(read_fd); TerminalState terminal_state(terminal, false); // FIXME: error handling? llvm::consumeError(terminal.SetCanonical(false)); llvm::consumeError(terminal.SetEcho(false)); // FD_ZERO, FD_SET are not supported on windows #ifndef _WIN32 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); SetIsRunning(true); while (true) { { std::lock_guard guard(m_mutex); if (GetIsDone()) break; } SelectHelper select_helper; select_helper.FDSetRead(read_fd); select_helper.FDSetRead(pipe_read_fd); Status error = select_helper.Select(); if (error.Fail()) break; char ch = 0; size_t n; if (select_helper.FDIsSetRead(read_fd)) { n = 1; if (m_read_file.Read(&ch, n).Success() && n == 1) { if (m_write_file.Write(&ch, n).Fail() || n != 1) break; } else break; } if (select_helper.FDIsSetRead(pipe_read_fd)) { size_t bytes_read; // Consume the interrupt byte Status error = m_pipe.Read(&ch, 1, bytes_read); if (error.Success()) { if (ch == 'q') break; if (ch == 'i') if (StateIsRunningState(m_process->GetState())) m_process->SendAsyncInterrupt(); } } } SetIsRunning(false); #endif } void Cancel() override { std::lock_guard guard(m_mutex); SetIsDone(true); // Only write to our pipe to cancel if we are in // IOHandlerProcessSTDIO::Run(). We can end up with a python command that // is being run from the command interpreter: // // (lldb) step_process_thousands_of_times // // In this case the command interpreter will be in the middle of handling // the command and if the process pushes and pops the IOHandler thousands // of times, we can end up writing to m_pipe without ever consuming the // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up // deadlocking when the pipe gets fed up and blocks until data is consumed. if (m_is_running) { char ch = 'q'; // Send 'q' for quit size_t bytes_written = 0; m_pipe.Write(&ch, 1, bytes_written); } } bool Interrupt() override { // Do only things that are safe to do in an interrupt context (like in a // SIGINT handler), like write 1 byte to a file descriptor. This will // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte // that was written to the pipe and then call // m_process->SendAsyncInterrupt() from a much safer location in code. if (m_active) { char ch = 'i'; // Send 'i' for interrupt size_t bytes_written = 0; Status result = m_pipe.Write(&ch, 1, bytes_written); return result.Success(); } else { // This IOHandler might be pushed on the stack, but not being run // currently so do the right thing if we aren't actively watching for // STDIN by sending the interrupt to the process. Otherwise the write to // the pipe above would do nothing. This can happen when the command // interpreter is running and gets a "expression ...". It will be on the // IOHandler thread and sending the input is complete to the delegate // which will cause the expression to run, which will push the process IO // handler, but not run it. if (StateIsRunningState(m_process->GetState())) { m_process->SendAsyncInterrupt(); return true; } } return false; } void GotEOF() override {} protected: Process *m_process; NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB NativeFile m_write_file; // Write to this file (usually the primary pty for // getting io to debuggee) Pipe m_pipe; std::mutex m_mutex; bool m_is_running = false; }; void Process::SetSTDIOFileDescriptor(int fd) { // First set up the Read Thread for reading/handling process I/O m_stdio_communication.SetConnection( std::make_unique(fd, true)); if (m_stdio_communication.IsConnected()) { m_stdio_communication.SetReadThreadBytesReceivedCallback( STDIOReadThreadBytesReceived, this); m_stdio_communication.StartReadThread(); // Now read thread is set up, set up input reader. { std::lock_guard guard(m_process_input_reader_mutex); if (!m_process_input_reader) m_process_input_reader = std::make_shared(this, fd); } } } bool Process::ProcessIOHandlerIsActive() { std::lock_guard guard(m_process_input_reader_mutex); IOHandlerSP io_handler_sp(m_process_input_reader); if (io_handler_sp) return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); return false; } bool Process::PushProcessIOHandler() { std::lock_guard guard(m_process_input_reader_mutex); IOHandlerSP io_handler_sp(m_process_input_reader); if (io_handler_sp) { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); io_handler_sp->SetIsDone(false); // If we evaluate an utility function, then we don't cancel the current // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the // existing IOHandler that potentially provides the user interface (e.g. // the IOHandler for Editline). bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, cancel_top_handler); return true; } return false; } bool Process::PopProcessIOHandler() { std::lock_guard guard(m_process_input_reader_mutex); IOHandlerSP io_handler_sp(m_process_input_reader); if (io_handler_sp) return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); return false; } // The process needs to know about installed plug-ins void Process::SettingsInitialize() { Thread::SettingsInitialize(); } void Process::SettingsTerminate() { Thread::SettingsTerminate(); } namespace { // RestorePlanState is used to record the "is private", "is controlling" and // "okay // to discard" fields of the plan we are running, and reset it on Clean or on // destruction. It will only reset the state once, so you can call Clean and // then monkey with the state and it won't get reset on you again. class RestorePlanState { public: RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) : m_thread_plan_sp(thread_plan_sp) { if (m_thread_plan_sp) { m_private = m_thread_plan_sp->GetPrivate(); m_is_controlling = m_thread_plan_sp->IsControllingPlan(); m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); } } ~RestorePlanState() { Clean(); } void Clean() { if (!m_already_reset && m_thread_plan_sp) { m_already_reset = true; m_thread_plan_sp->SetPrivate(m_private); m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); } } private: lldb::ThreadPlanSP m_thread_plan_sp; bool m_already_reset = false; bool m_private = false; bool m_is_controlling = false; bool m_okay_to_discard = false; }; } // anonymous namespace static microseconds GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { const milliseconds default_one_thread_timeout(250); // If the overall wait is forever, then we don't need to worry about it. if (!options.GetTimeout()) { return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() : default_one_thread_timeout; } // If the one thread timeout is set, use it. if (options.GetOneThreadTimeout()) return *options.GetOneThreadTimeout(); // Otherwise use half the total timeout, bounded by the // default_one_thread_timeout. return std::min(default_one_thread_timeout, *options.GetTimeout() / 2); } static Timeout GetExpressionTimeout(const EvaluateExpressionOptions &options, bool before_first_timeout) { // If we are going to run all threads the whole time, or if we are only going // to run one thread, we can just return the overall timeout. if (!options.GetStopOthers() || !options.GetTryAllThreads()) return options.GetTimeout(); if (before_first_timeout) return GetOneThreadExpressionTimeout(options); if (!options.GetTimeout()) return std::nullopt; else return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); } static std::optional HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, RestorePlanState &restorer, const EventSP &event_sp, EventSP &event_to_broadcast_sp, const EvaluateExpressionOptions &options, bool handle_interrupts) { Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); ThreadSP thread_sp = thread_plan_sp->GetTarget() .GetProcessSP() ->GetThreadList() .FindThreadByID(thread_id); if (!thread_sp) { LLDB_LOG(log, "The thread on which we were running the " "expression: tid = {0}, exited while " "the expression was running.", thread_id); return eExpressionThreadVanished; } ThreadPlanSP plan = thread_sp->GetCompletedPlan(); if (plan == thread_plan_sp && plan->PlanSucceeded()) { LLDB_LOG(log, "execution completed successfully"); // Restore the plan state so it will get reported as intended when we are // done. restorer.Clean(); return eExpressionCompleted; } StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && stop_info_sp->ShouldNotify(event_sp.get())) { LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); if (!options.DoesIgnoreBreakpoints()) { // Restore the plan state and then force Private to false. We are going // to stop because of this plan so we need it to become a public plan or // it won't report correctly when we continue to its termination later // on. restorer.Clean(); thread_plan_sp->SetPrivate(false); event_to_broadcast_sp = event_sp; } return eExpressionHitBreakpoint; } if (!handle_interrupts && Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) return std::nullopt; LLDB_LOG(log, "thread plan did not successfully complete"); if (!options.DoesUnwindOnError()) event_to_broadcast_sp = event_sp; return eExpressionInterrupted; } ExpressionResults Process::RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp, const EvaluateExpressionOptions &options, DiagnosticManager &diagnostic_manager) { ExpressionResults return_value = eExpressionSetupError; std::lock_guard run_thread_plan_locker(m_run_thread_plan_lock); if (!thread_plan_sp) { diagnostic_manager.PutString( lldb::eSeverityError, "RunThreadPlan called with empty thread plan."); return eExpressionSetupError; } if (!thread_plan_sp->ValidatePlan(nullptr)) { diagnostic_manager.PutString( lldb::eSeverityError, "RunThreadPlan called with an invalid thread plan."); return eExpressionSetupError; } if (exe_ctx.GetProcessPtr() != this) { diagnostic_manager.PutString(lldb::eSeverityError, "RunThreadPlan called on wrong process."); return eExpressionSetupError; } Thread *thread = exe_ctx.GetThreadPtr(); if (thread == nullptr) { diagnostic_manager.PutString(lldb::eSeverityError, "RunThreadPlan called with invalid thread."); return eExpressionSetupError; } // Record the thread's id so we can tell when a thread we were using // to run the expression exits during the expression evaluation. lldb::tid_t expr_thread_id = thread->GetID(); // We need to change some of the thread plan attributes for the thread plan // runner. This will restore them when we are done: RestorePlanState thread_plan_restorer(thread_plan_sp); // We rely on the thread plan we are running returning "PlanCompleted" if // when it successfully completes. For that to be true the plan can't be // private - since private plans suppress themselves in the GetCompletedPlan // call. thread_plan_sp->SetPrivate(false); // The plans run with RunThreadPlan also need to be terminal controlling plans // or when they are done we will end up asking the plan above us whether we // should stop, which may give the wrong answer. thread_plan_sp->SetIsControllingPlan(true); thread_plan_sp->SetOkayToDiscard(false); // If we are running some utility expression for LLDB, we now have to mark // this in the ProcesModID of this process. This RAII takes care of marking // and reverting the mark it once we are done running the expression. UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); if (m_private_state.GetValue() != eStateStopped) { diagnostic_manager.PutString( lldb::eSeverityError, "RunThreadPlan called while the private state was not stopped."); return eExpressionSetupError; } // Save the thread & frame from the exe_ctx for restoration after we run const uint32_t thread_idx_id = thread->GetIndexID(); StackFrameSP selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); if (!selected_frame_sp) { thread->SetSelectedFrame(nullptr); selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); if (!selected_frame_sp) { diagnostic_manager.Printf( lldb::eSeverityError, "RunThreadPlan called without a selected frame on thread %d", thread_idx_id); return eExpressionSetupError; } } // Make sure the timeout values make sense. The one thread timeout needs to // be smaller than the overall timeout. if (options.GetOneThreadTimeout() && options.GetTimeout() && *options.GetTimeout() < *options.GetOneThreadTimeout()) { diagnostic_manager.PutString(lldb::eSeverityError, "RunThreadPlan called with one thread " "timeout greater than total timeout"); return eExpressionSetupError; } StackID ctx_frame_id = selected_frame_sp->GetStackID(); // N.B. Running the target may unset the currently selected thread and frame. // We don't want to do that either, so we should arrange to reset them as // well. lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); uint32_t selected_tid; StackID selected_stack_id; if (selected_thread_sp) { selected_tid = selected_thread_sp->GetIndexID(); selected_stack_id = selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame) ->GetStackID(); } else { selected_tid = LLDB_INVALID_THREAD_ID; } HostThread backup_private_state_thread; lldb::StateType old_state = eStateInvalid; lldb::ThreadPlanSP stopper_base_plan_sp; Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { // Yikes, we are running on the private state thread! So we can't wait for // public events on this thread, since we are the thread that is generating // public events. The simplest thing to do is to spin up a temporary thread // to handle private state thread events while we are fielding public // events here. LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " "another state thread to handle the events."); backup_private_state_thread = m_private_state_thread; // One other bit of business: we want to run just this thread plan and // anything it pushes, and then stop, returning control here. But in the // normal course of things, the plan above us on the stack would be given a // shot at the stop event before deciding to stop, and we don't want that. // So we insert a "stopper" base plan on the stack before the plan we want // to run. Since base plans always stop and return control to the user, // that will do just what we want. stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); thread->QueueThreadPlan(stopper_base_plan_sp, false); // Have to make sure our public state is stopped, since otherwise the // reporting logic below doesn't work correctly. old_state = m_public_state.GetValue(); m_public_state.SetValueNoLock(eStateStopped); // Now spin up the private state thread: StartPrivateStateThread(true); } thread->QueueThreadPlan( thread_plan_sp, false); // This used to pass "true" does that make sense? if (options.GetDebug()) { // In this case, we aren't actually going to run, we just want to stop // right away. Flush this thread so we will refetch the stacks and show the // correct backtrace. // FIXME: To make this prettier we should invent some stop reason for this, // but that // is only cosmetic, and this functionality is only of use to lldb // developers who can live with not pretty... thread->Flush(); return eExpressionStoppedForDebug; } ListenerSP listener_sp( Listener::MakeListener("lldb.process.listener.run-thread-plan")); lldb::EventSP event_to_broadcast_sp; { // This process event hijacker Hijacks the Public events and its destructor // makes sure that the process events get restored on exit to the function. // // If the event needs to propagate beyond the hijacker (e.g., the process // exits during execution), then the event is put into // event_to_broadcast_sp for rebroadcasting. ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); if (log) { StreamString s; thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); LLDB_LOGF(log, "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 " to run thread plan \"%s\".", thread_idx_id, expr_thread_id, s.GetData()); } bool got_event; lldb::EventSP event_sp; lldb::StateType stop_state = lldb::eStateInvalid; bool before_first_timeout = true; // This is set to false the first time // that we have to halt the target. bool do_resume = true; bool handle_running_event = true; // This is just for accounting: uint32_t num_resumes = 0; // If we are going to run all threads the whole time, or if we are only // going to run one thread, then we don't need the first timeout. So we // pretend we are after the first timeout already. if (!options.GetStopOthers() || !options.GetTryAllThreads()) before_first_timeout = false; LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", options.GetStopOthers(), options.GetTryAllThreads(), before_first_timeout); // This isn't going to work if there are unfetched events on the queue. Are // there cases where we might want to run the remaining events here, and // then try to call the function? That's probably being too tricky for our // own good. Event *other_events = listener_sp->PeekAtNextEvent(); if (other_events != nullptr) { diagnostic_manager.PutString( lldb::eSeverityError, "RunThreadPlan called with pending events on the queue."); return eExpressionSetupError; } // We also need to make sure that the next event is delivered. We might be // calling a function as part of a thread plan, in which case the last // delivered event could be the running event, and we don't want event // coalescing to cause us to lose OUR running event... ForceNextEventDelivery(); // This while loop must exit out the bottom, there's cleanup that we need to do // when we are done. So don't call return anywhere within it. #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT // It's pretty much impossible to write test cases for things like: One // thread timeout expires, I go to halt, but the process already stopped on // the function call stop breakpoint. Turning on this define will make us // not fetch the first event till after the halt. So if you run a quick // function, it will have completed, and the completion event will be // waiting, when you interrupt for halt. The expression evaluation should // still succeed. bool miss_first_event = true; #endif while (true) { // We usually want to resume the process if we get to the top of the // loop. The only exception is if we get two running events with no // intervening stop, which can happen, we will just wait for then next // stop event. LLDB_LOGF(log, "Top of while loop: do_resume: %i handle_running_event: %i " "before_first_timeout: %i.", do_resume, handle_running_event, before_first_timeout); if (do_resume || handle_running_event) { // Do the initial resume and wait for the running event before going // further. if (do_resume) { num_resumes++; Status resume_error = PrivateResume(); if (!resume_error.Success()) { diagnostic_manager.Printf( lldb::eSeverityError, "couldn't resume inferior the %d time: \"%s\".", num_resumes, resume_error.AsCString()); return_value = eExpressionSetupError; break; } } got_event = listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); if (!got_event) { LLDB_LOGF(log, "Process::RunThreadPlan(): didn't get any event after " "resume %" PRIu32 ", exiting.", num_resumes); diagnostic_manager.Printf(lldb::eSeverityError, "didn't get any event after resume %" PRIu32 ", exiting.", num_resumes); return_value = eExpressionSetupError; break; } stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (stop_state != eStateRunning) { bool restarted = false; if (stop_state == eStateStopped) { restarted = Process::ProcessEventData::GetRestartedFromEvent( event_sp.get()); LLDB_LOGF( log, "Process::RunThreadPlan(): didn't get running event after " "resume %d, got %s instead (restarted: %i, do_resume: %i, " "handle_running_event: %i).", num_resumes, StateAsCString(stop_state), restarted, do_resume, handle_running_event); } if (restarted) { // This is probably an overabundance of caution, I don't think I // should ever get a stopped & restarted event here. But if I do, // the best thing is to Halt and then get out of here. const bool clear_thread_plans = false; const bool use_run_lock = false; Halt(clear_thread_plans, use_run_lock); } diagnostic_manager.Printf( lldb::eSeverityError, "didn't get running event after initial resume, got %s instead.", StateAsCString(stop_state)); return_value = eExpressionSetupError; break; } if (log) log->PutCString("Process::RunThreadPlan(): resuming succeeded."); // We need to call the function synchronously, so spin waiting for it // to return. If we get interrupted while executing, we're going to // lose our context, and won't be able to gather the result at this // point. We set the timeout AFTER the resume, since the resume takes // some time and we don't want to charge that to the timeout. } else { if (log) log->PutCString("Process::RunThreadPlan(): waiting for next event."); } do_resume = true; handle_running_event = true; // Now wait for the process to stop again: event_sp.reset(); Timeout timeout = GetExpressionTimeout(options, before_first_timeout); if (log) { if (timeout) { auto now = system_clock::now(); LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait - now is %s - " "endpoint is %s", llvm::to_string(now).c_str(), llvm::to_string(now + *timeout).c_str()); } else { LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); } } #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT // See comment above... if (miss_first_event) { std::this_thread::sleep_for(std::chrono::milliseconds(1)); miss_first_event = false; got_event = false; } else #endif got_event = listener_sp->GetEvent(event_sp, timeout); if (got_event) { if (event_sp) { bool keep_going = false; if (event_sp->GetType() == eBroadcastBitInterrupt) { const bool clear_thread_plans = false; const bool use_run_lock = false; Halt(clear_thread_plans, use_run_lock); return_value = eExpressionInterrupted; diagnostic_manager.PutString(lldb::eSeverityInfo, "execution halted by user interrupt."); LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " "eBroadcastBitInterrupted, exiting."); break; } else { stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); LLDB_LOGF(log, "Process::RunThreadPlan(): in while loop, got event: %s.", StateAsCString(stop_state)); switch (stop_state) { case lldb::eStateStopped: { if (Process::ProcessEventData::GetRestartedFromEvent( event_sp.get())) { // If we were restarted, we just need to go back up to fetch // another event. LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " "restart, so we'll continue waiting."); keep_going = true; do_resume = false; handle_running_event = true; } else { const bool handle_interrupts = true; return_value = *HandleStoppedEvent( expr_thread_id, thread_plan_sp, thread_plan_restorer, event_sp, event_to_broadcast_sp, options, handle_interrupts); if (return_value == eExpressionThreadVanished) keep_going = false; } } break; case lldb::eStateRunning: // This shouldn't really happen, but sometimes we do get two // running events without an intervening stop, and in that case // we should just go back to waiting for the stop. do_resume = false; keep_going = true; handle_running_event = false; break; default: LLDB_LOGF(log, "Process::RunThreadPlan(): execution stopped with " "unexpected state: %s.", StateAsCString(stop_state)); if (stop_state == eStateExited) event_to_broadcast_sp = event_sp; diagnostic_manager.PutString( lldb::eSeverityError, "execution stopped with unexpected state."); return_value = eExpressionInterrupted; break; } } if (keep_going) continue; else break; } else { if (log) log->PutCString("Process::RunThreadPlan(): got_event was true, but " "the event pointer was null. How odd..."); return_value = eExpressionInterrupted; break; } } else { // If we didn't get an event that means we've timed out... We will // interrupt the process here. Depending on what we were asked to do // we will either exit, or try with all threads running for the same // timeout. if (log) { if (options.GetTryAllThreads()) { if (before_first_timeout) { LLDB_LOG(log, "Running function with one thread timeout timed out."); } else LLDB_LOG(log, "Restarting function with all threads enabled and " "timeout: {0} timed out, abandoning execution.", timeout); } else LLDB_LOG(log, "Running function with timeout: {0} timed out, " "abandoning execution.", timeout); } // It is possible that between the time we issued the Halt, and we get // around to calling Halt the target could have stopped. That's fine, // Halt will figure that out and send the appropriate Stopped event. // BUT it is also possible that we stopped & restarted (e.g. hit a // signal with "stop" set to false.) In // that case, we'll get the stopped & restarted event, and we should go // back to waiting for the Halt's stopped event. That's what this // while loop does. bool back_to_top = true; uint32_t try_halt_again = 0; bool do_halt = true; const uint32_t num_retries = 5; while (try_halt_again < num_retries) { Status halt_error; if (do_halt) { LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); const bool clear_thread_plans = false; const bool use_run_lock = false; Halt(clear_thread_plans, use_run_lock); } if (halt_error.Success()) { if (log) log->PutCString("Process::RunThreadPlan(): Halt succeeded."); got_event = listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); if (got_event) { stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (log) { LLDB_LOGF(log, "Process::RunThreadPlan(): Stopped with event: %s", StateAsCString(stop_state)); if (stop_state == lldb::eStateStopped && Process::ProcessEventData::GetInterruptedFromEvent( event_sp.get())) log->PutCString(" Event was the Halt interruption event."); } if (stop_state == lldb::eStateStopped) { if (Process::ProcessEventData::GetRestartedFromEvent( event_sp.get())) { if (log) log->PutCString("Process::RunThreadPlan(): Went to halt " "but got a restarted event, there must be " "an un-restarted stopped event so try " "again... " "Exiting wait loop."); try_halt_again++; do_halt = false; continue; } // Between the time we initiated the Halt and the time we // delivered it, the process could have already finished its // job. Check that here: const bool handle_interrupts = false; if (auto result = HandleStoppedEvent( expr_thread_id, thread_plan_sp, thread_plan_restorer, event_sp, event_to_broadcast_sp, options, handle_interrupts)) { return_value = *result; back_to_top = false; break; } if (!options.GetTryAllThreads()) { if (log) log->PutCString("Process::RunThreadPlan(): try_all_threads " "was false, we stopped so now we're " "quitting."); return_value = eExpressionInterrupted; back_to_top = false; break; } if (before_first_timeout) { // Set all the other threads to run, and return to the top of // the loop, which will continue; before_first_timeout = false; thread_plan_sp->SetStopOthers(false); if (log) log->PutCString( "Process::RunThreadPlan(): about to resume."); back_to_top = true; break; } else { // Running all threads failed, so return Interrupted. if (log) log->PutCString("Process::RunThreadPlan(): running all " "threads timed out."); return_value = eExpressionInterrupted; back_to_top = false; break; } } } else { if (log) log->PutCString("Process::RunThreadPlan(): halt said it " "succeeded, but I got no event. " "I'm getting out of here passing Interrupted."); return_value = eExpressionInterrupted; back_to_top = false; break; } } else { try_halt_again++; continue; } } if (!back_to_top || try_halt_again > num_retries) break; else continue; } } // END WAIT LOOP // If we had to start up a temporary private state thread to run this // thread plan, shut it down now. if (backup_private_state_thread.IsJoinable()) { StopPrivateStateThread(); Status error; m_private_state_thread = backup_private_state_thread; if (stopper_base_plan_sp) { thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); } if (old_state != eStateInvalid) m_public_state.SetValueNoLock(old_state); } // If our thread went away on us, we need to get out of here without // doing any more work. We don't have to clean up the thread plan, that // will have happened when the Thread was destroyed. if (return_value == eExpressionThreadVanished) { return return_value; } if (return_value != eExpressionCompleted && log) { // Print a backtrace into the log so we can figure out where we are: StreamString s; s.PutCString("Thread state after unsuccessful completion: \n"); thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); log->PutString(s.GetString()); } // Restore the thread state if we are going to discard the plan execution. // There are three cases where this could happen: 1) The execution // successfully completed 2) We hit a breakpoint, and ignore_breakpoints // was true 3) We got some other error, and discard_on_error was true bool should_unwind = (return_value == eExpressionInterrupted && options.DoesUnwindOnError()) || (return_value == eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints()); if (return_value == eExpressionCompleted || should_unwind) { thread_plan_sp->RestoreThreadState(); } // Now do some processing on the results of the run: if (return_value == eExpressionInterrupted || return_value == eExpressionHitBreakpoint) { if (log) { StreamString s; if (event_sp) event_sp->Dump(&s); else { log->PutCString("Process::RunThreadPlan(): Stop event that " "interrupted us is NULL."); } StreamString ts; const char *event_explanation = nullptr; do { if (!event_sp) { event_explanation = ""; break; } else if (event_sp->GetType() == eBroadcastBitInterrupt) { event_explanation = ""; break; } else { const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent( event_sp.get()); if (!event_data) { event_explanation = ""; break; } Process *process = event_data->GetProcessSP().get(); if (!process) { event_explanation = ""; break; } ThreadList &thread_list = process->GetThreadList(); uint32_t num_threads = thread_list.GetSize(); uint32_t thread_index; ts.Printf("<%u threads> ", num_threads); for (thread_index = 0; thread_index < num_threads; ++thread_index) { Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); if (!thread) { ts.Printf(" "); continue; } ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); RegisterContext *register_context = thread->GetRegisterContext().get(); if (register_context) ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); else ts.Printf("[ip unknown] "); // Show the private stop info here, the public stop info will be // from the last natural stop. lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); if (stop_info_sp) { const char *stop_desc = stop_info_sp->GetDescription(); if (stop_desc) ts.PutCString(stop_desc); } ts.Printf(">"); } event_explanation = ts.GetData(); } } while (false); if (event_explanation) LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s %s", s.GetData(), event_explanation); else LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", s.GetData()); } if (should_unwind) { LLDB_LOGF(log, "Process::RunThreadPlan: ExecutionInterrupted - " "discarding thread plans up to %p.", static_cast(thread_plan_sp.get())); thread->DiscardThreadPlansUpToPlan(thread_plan_sp); } else { LLDB_LOGF(log, "Process::RunThreadPlan: ExecutionInterrupted - for " "plan: %p not discarding.", static_cast(thread_plan_sp.get())); } } else if (return_value == eExpressionSetupError) { if (log) log->PutCString("Process::RunThreadPlan(): execution set up error."); if (options.DoesUnwindOnError()) { thread->DiscardThreadPlansUpToPlan(thread_plan_sp); } } else { if (thread->IsThreadPlanDone(thread_plan_sp.get())) { if (log) log->PutCString("Process::RunThreadPlan(): thread plan is done"); return_value = eExpressionCompleted; } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { if (log) log->PutCString( "Process::RunThreadPlan(): thread plan was discarded"); return_value = eExpressionDiscarded; } else { if (log) log->PutCString( "Process::RunThreadPlan(): thread plan stopped in mid course"); if (options.DoesUnwindOnError() && thread_plan_sp) { if (log) log->PutCString("Process::RunThreadPlan(): discarding thread plan " "'cause unwind_on_error is set."); thread->DiscardThreadPlansUpToPlan(thread_plan_sp); } } } // Thread we ran the function in may have gone away because we ran the // target Check that it's still there, and if it is put it back in the // context. Also restore the frame in the context if it is still present. thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); if (thread) { exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); } // Also restore the current process'es selected frame & thread, since this // function calling may be done behind the user's back. if (selected_tid != LLDB_INVALID_THREAD_ID) { if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && selected_stack_id.IsValid()) { // We were able to restore the selected thread, now restore the frame: std::lock_guard guard(GetThreadList().GetMutex()); StackFrameSP old_frame_sp = GetThreadList().GetSelectedThread()->GetFrameWithStackID( selected_stack_id); if (old_frame_sp) GetThreadList().GetSelectedThread()->SetSelectedFrame( old_frame_sp.get()); } } } // If the process exited during the run of the thread plan, notify everyone. if (event_to_broadcast_sp) { if (log) log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); BroadcastEvent(event_to_broadcast_sp); } return return_value; } const char *Process::ExecutionResultAsCString(ExpressionResults result) { const char *result_name = ""; switch (result) { case eExpressionCompleted: result_name = "eExpressionCompleted"; break; case eExpressionDiscarded: result_name = "eExpressionDiscarded"; break; case eExpressionInterrupted: result_name = "eExpressionInterrupted"; break; case eExpressionHitBreakpoint: result_name = "eExpressionHitBreakpoint"; break; case eExpressionSetupError: result_name = "eExpressionSetupError"; break; case eExpressionParseError: result_name = "eExpressionParseError"; break; case eExpressionResultUnavailable: result_name = "eExpressionResultUnavailable"; break; case eExpressionTimedOut: result_name = "eExpressionTimedOut"; break; case eExpressionStoppedForDebug: result_name = "eExpressionStoppedForDebug"; break; case eExpressionThreadVanished: result_name = "eExpressionThreadVanished"; } return result_name; } void Process::GetStatus(Stream &strm) { const StateType state = GetState(); if (StateIsStoppedState(state, false)) { if (state == eStateExited) { int exit_status = GetExitStatus(); const char *exit_description = GetExitDescription(); strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", GetID(), exit_status, exit_status, exit_description ? exit_description : ""); } else { if (state == eStateConnected) strm.Printf("Connected to remote target.\n"); else strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); } } else { strm.Printf("Process %" PRIu64 " is running.\n", GetID()); } } size_t Process::GetThreadStatus(Stream &strm, bool only_threads_with_stop_reason, uint32_t start_frame, uint32_t num_frames, uint32_t num_frames_with_source, bool stop_format) { size_t num_thread_infos_dumped = 0; // You can't hold the thread list lock while calling Thread::GetStatus. That // very well might run code (e.g. if we need it to get return values or // arguments.) For that to work the process has to be able to acquire it. // So instead copy the thread ID's, and look them up one by one: uint32_t num_threads; std::vector thread_id_array; // Scope for thread list locker; { std::lock_guard guard(GetThreadList().GetMutex()); ThreadList &curr_thread_list = GetThreadList(); num_threads = curr_thread_list.GetSize(); uint32_t idx; thread_id_array.resize(num_threads); for (idx = 0; idx < num_threads; ++idx) thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); } for (uint32_t i = 0; i < num_threads; i++) { ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); if (thread_sp) { if (only_threads_with_stop_reason) { StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); if (!stop_info_sp || !stop_info_sp->IsValid()) continue; } thread_sp->GetStatus(strm, start_frame, num_frames, num_frames_with_source, stop_format); ++num_thread_infos_dumped; } else { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 " vanished while running Thread::GetStatus."); } } return num_thread_infos_dumped; } void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); } bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), region.GetByteSize()); } void Process::AddPreResumeAction(PreResumeActionCallback callback, void *baton) { m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); } bool Process::RunPreResumeActions() { bool result = true; while (!m_pre_resume_actions.empty()) { struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); m_pre_resume_actions.pop_back(); bool this_result = action.callback(action.baton); if (result) result = this_result; } return result; } void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) { PreResumeCallbackAndBaton element(callback, baton); auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); if (found_iter != m_pre_resume_actions.end()) { m_pre_resume_actions.erase(found_iter); } } ProcessRunLock &Process::GetRunLock() { if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) return m_private_run_lock; else return m_public_run_lock; } bool Process::CurrentThreadIsPrivateStateThread() { return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); } void Process::Flush() { m_thread_list.Flush(); m_extended_thread_list.Flush(); m_extended_thread_stop_id = 0; m_queue_list.Clear(); m_queue_list_stop_id = 0; } lldb::addr_t Process::GetCodeAddressMask() { if (uint32_t num_bits_setting = GetVirtualAddressableBits()) return AddressableBits::AddressableBitToMask(num_bits_setting); return m_code_address_mask; } lldb::addr_t Process::GetDataAddressMask() { if (uint32_t num_bits_setting = GetVirtualAddressableBits()) return AddressableBits::AddressableBitToMask(num_bits_setting); return m_data_address_mask; } lldb::addr_t Process::GetHighmemCodeAddressMask() { if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) return AddressableBits::AddressableBitToMask(num_bits_setting); if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) return m_highmem_code_address_mask; return GetCodeAddressMask(); } lldb::addr_t Process::GetHighmemDataAddressMask() { if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) return AddressableBits::AddressableBitToMask(num_bits_setting); if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) return m_highmem_data_address_mask; return GetDataAddressMask(); } void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { LLDB_LOG(GetLog(LLDBLog::Process), "Setting Process code address mask to {0:x}", code_address_mask); m_code_address_mask = code_address_mask; } void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { LLDB_LOG(GetLog(LLDBLog::Process), "Setting Process data address mask to {0:x}", data_address_mask); m_data_address_mask = data_address_mask; } void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { LLDB_LOG(GetLog(LLDBLog::Process), "Setting Process highmem code address mask to {0:x}", code_address_mask); m_highmem_code_address_mask = code_address_mask; } void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { LLDB_LOG(GetLog(LLDBLog::Process), "Setting Process highmem data address mask to {0:x}", data_address_mask); m_highmem_data_address_mask = data_address_mask; } addr_t Process::FixCodeAddress(addr_t addr) { if (ABISP abi_sp = GetABI()) addr = abi_sp->FixCodeAddress(addr); return addr; } addr_t Process::FixDataAddress(addr_t addr) { if (ABISP abi_sp = GetABI()) addr = abi_sp->FixDataAddress(addr); return addr; } addr_t Process::FixAnyAddress(addr_t addr) { if (ABISP abi_sp = GetABI()) addr = abi_sp->FixAnyAddress(addr); return addr; } void Process::DidExec() { Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "Process::%s()", __FUNCTION__); Target &target = GetTarget(); target.CleanupProcess(); target.ClearModules(false); m_dynamic_checkers_up.reset(); m_abi_sp.reset(); m_system_runtime_up.reset(); m_os_up.reset(); m_dyld_up.reset(); m_jit_loaders_up.reset(); m_image_tokens.clear(); // After an exec, the inferior is a new process and these memory regions are // no longer allocated. m_allocated_memory_cache.Clear(/*deallocte_memory=*/false); { std::lock_guard guard(m_language_runtimes_mutex); m_language_runtimes.clear(); } m_instrumentation_runtimes.clear(); m_thread_list.DiscardThreadPlans(); m_memory_cache.Clear(true); DoDidExec(); CompleteAttach(); // Flush the process (threads and all stack frames) after running // CompleteAttach() in case the dynamic loader loaded things in new // locations. Flush(); // After we figure out what was loaded/unloaded in CompleteAttach, we need to // let the target know so it can do any cleanup it needs to. target.DidExec(); } addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { if (address == nullptr) { error.SetErrorString("Invalid address argument"); return LLDB_INVALID_ADDRESS; } addr_t function_addr = LLDB_INVALID_ADDRESS; addr_t addr = address->GetLoadAddress(&GetTarget()); std::map::const_iterator iter = m_resolved_indirect_addresses.find(addr); if (iter != m_resolved_indirect_addresses.end()) { function_addr = (*iter).second; } else { if (!CallVoidArgVoidPtrReturn(address, function_addr)) { Symbol *symbol = address->CalculateSymbolContextSymbol(); error.SetErrorStringWithFormat( "Unable to call resolver for indirect function %s", symbol ? symbol->GetName().AsCString() : ""); function_addr = LLDB_INVALID_ADDRESS; } else { if (ABISP abi_sp = GetABI()) function_addr = abi_sp->FixCodeAddress(function_addr); m_resolved_indirect_addresses.insert( std::pair(addr, function_addr)); } } return function_addr; } void Process::ModulesDidLoad(ModuleList &module_list) { // Inform the system runtime of the modified modules. SystemRuntime *sys_runtime = GetSystemRuntime(); if (sys_runtime) sys_runtime->ModulesDidLoad(module_list); GetJITLoaders().ModulesDidLoad(module_list); // Give the instrumentation runtimes a chance to be created before informing // them of the modified modules. InstrumentationRuntime::ModulesDidLoad(module_list, this, m_instrumentation_runtimes); for (auto &runtime : m_instrumentation_runtimes) runtime.second->ModulesDidLoad(module_list); // Give the language runtimes a chance to be created before informing them of // the modified modules. for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) runtime->ModulesDidLoad(module_list); } // If we don't have an operating system plug-in, try to load one since // loading shared libraries might cause a new one to try and load if (!m_os_up) LoadOperatingSystemPlugin(false); // Inform the structured-data plugins of the modified modules. for (auto &pair : m_structured_data_plugin_map) { if (pair.second) pair.second->ModulesDidLoad(*this, module_list); } } void Process::PrintWarningOptimization(const SymbolContext &sc) { if (!GetWarningsOptimization()) return; if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) return; sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); } void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { if (!GetWarningsUnsupportedLanguage()) return; if (!sc.module_sp) return; LanguageType language = sc.GetLanguage(); if (language == eLanguageTypeUnknown || language == lldb::eLanguageTypeAssembly || language == lldb::eLanguageTypeMipsAssembler) return; LanguageSet plugins = PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); if (plugins[language]) return; sc.module_sp->ReportWarningUnsupportedLanguage( language, GetTarget().GetDebugger().GetID()); } bool Process::GetProcessInfo(ProcessInstanceInfo &info) { info.Clear(); PlatformSP platform_sp = GetTarget().GetPlatform(); if (!platform_sp) return false; return platform_sp->GetProcessInfo(GetID(), info); } ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { ThreadCollectionSP threads; const MemoryHistorySP &memory_history = MemoryHistory::FindPlugin(shared_from_this()); if (!memory_history) { return threads; } threads = std::make_shared( memory_history->GetHistoryThreads(addr)); return threads; } InstrumentationRuntimeSP Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { InstrumentationRuntimeCollection::iterator pos; pos = m_instrumentation_runtimes.find(type); if (pos == m_instrumentation_runtimes.end()) { return InstrumentationRuntimeSP(); } else return (*pos).second; } bool Process::GetModuleSpec(const FileSpec &module_file_spec, const ArchSpec &arch, ModuleSpec &module_spec) { module_spec.Clear(); return false; } size_t Process::AddImageToken(lldb::addr_t image_ptr) { m_image_tokens.push_back(image_ptr); return m_image_tokens.size() - 1; } lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { if (token < m_image_tokens.size()) return m_image_tokens[token]; return LLDB_INVALID_IMAGE_TOKEN; } void Process::ResetImageToken(size_t token) { if (token < m_image_tokens.size()) m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; } Address Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, AddressRange range_bounds) { Target &target = GetTarget(); DisassemblerSP disassembler_sp; InstructionList *insn_list = nullptr; Address retval = default_stop_addr; if (!target.GetUseFastStepping()) return retval; if (!default_stop_addr.IsValid()) return retval; const char *plugin_name = nullptr; const char *flavor = nullptr; disassembler_sp = Disassembler::DisassembleRange( target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); if (disassembler_sp) insn_list = &disassembler_sp->GetInstructionList(); if (insn_list == nullptr) { return retval; } size_t insn_offset = insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); if (insn_offset == UINT32_MAX) { return retval; } uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( insn_offset, false /* ignore_calls*/, nullptr); if (branch_index == UINT32_MAX) { return retval; } if (branch_index > insn_offset) { Address next_branch_insn_address = insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); if (next_branch_insn_address.IsValid() && range_bounds.ContainsFileAddress(next_branch_insn_address)) { retval = next_branch_insn_address; } } return retval; } Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, MemoryRegionInfo &range_info) { if (const lldb::ABISP &abi = GetABI()) load_addr = abi->FixAnyAddress(load_addr); return DoGetMemoryRegionInfo(load_addr, range_info); } Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { Status error; lldb::addr_t range_end = 0; const lldb::ABISP &abi = GetABI(); region_list.clear(); do { lldb_private::MemoryRegionInfo region_info; error = GetMemoryRegionInfo(range_end, region_info); // GetMemoryRegionInfo should only return an error if it is unimplemented. if (error.Fail()) { region_list.clear(); break; } // We only check the end address, not start and end, because we assume that // the start will not have non-address bits until the first unmappable // region. We will have exited the loop by that point because the previous // region, the last mappable region, will have non-address bits in its end // address. range_end = region_info.GetRange().GetRangeEnd(); if (region_info.GetMapped() == MemoryRegionInfo::eYes) { region_list.push_back(std::move(region_info)); } } while ( // For a process with no non-address bits, all address bits // set means the end of memory. range_end != LLDB_INVALID_ADDRESS && // If we have non-address bits and some are set then the end // is at or beyond the end of mappable memory. !(abi && (abi->FixAnyAddress(range_end) != range_end))); return error; } Status Process::ConfigureStructuredData(llvm::StringRef type_name, const StructuredData::ObjectSP &config_sp) { // If you get this, the Process-derived class needs to implement a method to // enable an already-reported asynchronous structured data feature. See // ProcessGDBRemote for an example implementation over gdb-remote. return Status("unimplemented"); } void Process::MapSupportedStructuredDataPlugins( const StructuredData::Array &supported_type_names) { Log *log = GetLog(LLDBLog::Process); // Bail out early if there are no type names to map. if (supported_type_names.GetSize() == 0) { LLDB_LOG(log, "no structured data types supported"); return; } // These StringRefs are backed by the input parameter. std::set type_names; LLDB_LOG(log, "the process supports the following async structured data types:"); supported_type_names.ForEach( [&type_names, &log](StructuredData::Object *object) { // There shouldn't be null objects in the array. if (!object) return false; // All type names should be strings. const llvm::StringRef type_name = object->GetStringValue(); if (type_name.empty()) return false; type_names.insert(type_name); LLDB_LOG(log, "- {0}", type_name); return true; }); // For each StructuredDataPlugin, if the plugin handles any of the types in // the supported_type_names, map that type name to that plugin. Stop when // we've consumed all the type names. // FIXME: should we return an error if there are type names nobody // supports? for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { auto create_instance = PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( plugin_index); if (!create_instance) break; // Create the plugin. StructuredDataPluginSP plugin_sp = (*create_instance)(*this); if (!plugin_sp) { // This plugin doesn't think it can work with the process. Move on to the // next. continue; } // For any of the remaining type names, map any that this plugin supports. std::vector names_to_remove; for (llvm::StringRef type_name : type_names) { if (plugin_sp->SupportsStructuredDataType(type_name)) { m_structured_data_plugin_map.insert( std::make_pair(type_name, plugin_sp)); names_to_remove.push_back(type_name); LLDB_LOG(log, "using plugin {0} for type name {1}", plugin_sp->GetPluginName(), type_name); } } // Remove the type names that were consumed by this plugin. for (llvm::StringRef type_name : names_to_remove) type_names.erase(type_name); } } bool Process::RouteAsyncStructuredData( const StructuredData::ObjectSP object_sp) { // Nothing to do if there's no data. if (!object_sp) return false; // The contract is this must be a dictionary, so we can look up the routing // key via the top-level 'type' string value within the dictionary. StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); if (!dictionary) return false; // Grab the async structured type name (i.e. the feature/plugin name). llvm::StringRef type_name; if (!dictionary->GetValueForKeyAsString("type", type_name)) return false; // Check if there's a plugin registered for this type name. auto find_it = m_structured_data_plugin_map.find(type_name); if (find_it == m_structured_data_plugin_map.end()) { // We don't have a mapping for this structured data type. return false; } // Route the structured data to the plugin. find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); return true; } Status Process::UpdateAutomaticSignalFiltering() { // Default implementation does nothign. // No automatic signal filtering to speak of. return Status(); } UtilityFunction *Process::GetLoadImageUtilityFunction( Platform *platform, llvm::function_ref()> factory) { if (platform != GetTarget().GetPlatform().get()) return nullptr; llvm::call_once(m_dlopen_utility_func_flag_once, [&] { m_dlopen_utility_func_up = factory(); }); return m_dlopen_utility_func_up.get(); } llvm::Expected Process::TraceSupported() { if (!IsLiveDebugSession()) return llvm::createStringError(llvm::inconvertibleErrorCode(), "Can't trace a non-live process."); return llvm::make_error(); } bool Process::CallVoidArgVoidPtrReturn(const Address *address, addr_t &returned_func, bool trap_exceptions) { Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); if (thread == nullptr || address == nullptr) return false; EvaluateExpressionOptions options; options.SetStopOthers(true); options.SetUnwindOnError(true); options.SetIgnoreBreakpoints(true); options.SetTryAllThreads(true); options.SetDebug(false); options.SetTimeout(GetUtilityExpressionTimeout()); options.SetTrapExceptions(trap_exceptions); auto type_system_or_err = GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); if (!type_system_or_err) { llvm::consumeError(type_system_or_err.takeError()); return false; } auto ts = *type_system_or_err; if (!ts) return false; CompilerType void_ptr_type = ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( *thread, *address, void_ptr_type, llvm::ArrayRef(), options)); if (call_plan_sp) { DiagnosticManager diagnostics; StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); if (frame) { ExecutionContext exe_ctx; frame->CalculateExecutionContext(exe_ctx); ExpressionResults result = RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); if (result == eExpressionCompleted) { returned_func = call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( LLDB_INVALID_ADDRESS); if (GetAddressByteSize() == 4) { if (returned_func == UINT32_MAX) return false; } else if (GetAddressByteSize() == 8) { if (returned_func == UINT64_MAX) return false; } return true; } } } return false; } llvm::Expected Process::GetMemoryTagManager() { Architecture *arch = GetTarget().GetArchitecturePlugin(); const MemoryTagManager *tag_manager = arch ? arch->GetMemoryTagManager() : nullptr; if (!arch || !tag_manager) { return llvm::createStringError( llvm::inconvertibleErrorCode(), "This architecture does not support memory tagging"); } if (!SupportsMemoryTagging()) { return llvm::createStringError(llvm::inconvertibleErrorCode(), "Process does not support memory tagging"); } return tag_manager; } llvm::Expected> Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { llvm::Expected tag_manager_or_err = GetMemoryTagManager(); if (!tag_manager_or_err) return tag_manager_or_err.takeError(); const MemoryTagManager *tag_manager = *tag_manager_or_err; llvm::Expected> tag_data = DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); if (!tag_data) return tag_data.takeError(); return tag_manager->UnpackTagsData(*tag_data, len / tag_manager->GetGranuleSize()); } Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, const std::vector &tags) { llvm::Expected tag_manager_or_err = GetMemoryTagManager(); if (!tag_manager_or_err) return Status(tag_manager_or_err.takeError()); const MemoryTagManager *tag_manager = *tag_manager_or_err; llvm::Expected> packed_tags = tag_manager->PackTags(tags); if (!packed_tags) { return Status(packed_tags.takeError()); } return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), *packed_tags); } // Create a CoreFileMemoryRange from a MemoryRegionInfo static Process::CoreFileMemoryRange CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { const addr_t addr = region.GetRange().GetRangeBase(); llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); return {range, region.GetLLDBPermissions()}; } // Add dirty pages to the core file ranges and return true if dirty pages // were added. Return false if the dirty page information is not valid or in // the region. static bool AddDirtyPages(const MemoryRegionInfo ®ion, Process::CoreFileMemoryRanges &ranges) { const auto &dirty_page_list = region.GetDirtyPageList(); if (!dirty_page_list) return false; const uint32_t lldb_permissions = region.GetLLDBPermissions(); const addr_t page_size = region.GetPageSize(); if (page_size == 0) return false; llvm::AddressRange range(0, 0); for (addr_t page_addr : *dirty_page_list) { if (range.empty()) { // No range yet, initialize the range with the current dirty page. range = llvm::AddressRange(page_addr, page_addr + page_size); } else { if (range.end() == page_addr) { // Combine consective ranges. range = llvm::AddressRange(range.start(), page_addr + page_size); } else { // Add previous contiguous range and init the new range with the // current dirty page. ranges.push_back({range, lldb_permissions}); range = llvm::AddressRange(page_addr, page_addr + page_size); } } } // The last range if (!range.empty()) ranges.push_back({range, lldb_permissions}); return true; } // Given a region, add the region to \a ranges. // // Only add the region if it isn't empty and if it has some permissions. // If \a try_dirty_pages is true, then try to add only the dirty pages for a // given region. If the region has dirty page information, only dirty pages // will be added to \a ranges, else the entire range will be added to \a // ranges. static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, Process::CoreFileMemoryRanges &ranges) { // Don't add empty ranges. if (region.GetRange().GetByteSize() == 0) return; // Don't add ranges with no read permissions. if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) return; if (try_dirty_pages && AddDirtyPages(region, ranges)) return; ranges.push_back(CreateCoreFileMemoryRange(region)); } static void SaveOffRegionsWithStackPointers( Process &process, const MemoryRegionInfos ®ions, Process::CoreFileMemoryRanges &ranges, std::set &stack_ends) { const bool try_dirty_pages = true; // Before we take any dump, we want to save off the used portions of the // stacks and mark those memory regions as saved. This prevents us from saving // the unused portion of the stack below the stack pointer. Saving space on // the dump. for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { if (!thread_sp) continue; StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0); if (!frame_sp) continue; RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); if (!reg_ctx_sp) continue; const addr_t sp = reg_ctx_sp->GetSP(); const size_t red_zone = process.GetABI()->GetRedZoneSize(); lldb_private::MemoryRegionInfo sp_region; if (process.GetMemoryRegionInfo(sp, sp_region).Success()) { const size_t stack_head = (sp - red_zone); const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head; sp_region.GetRange().SetRangeBase(stack_head); sp_region.GetRange().SetByteSize(stack_size); stack_ends.insert(sp_region.GetRange().GetRangeEnd()); AddRegion(sp_region, try_dirty_pages, ranges); } } } // Save all memory regions that are not empty or have at least some permissions // for a full core file style. static void GetCoreFileSaveRangesFull(Process &process, const MemoryRegionInfos ®ions, Process::CoreFileMemoryRanges &ranges, std::set &stack_ends) { // Don't add only dirty pages, add full regions. const bool try_dirty_pages = false; for (const auto ®ion : regions) if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) AddRegion(region, try_dirty_pages, ranges); } // Save only the dirty pages to the core file. Make sure the process has at // least some dirty pages, as some OS versions don't support reporting what // pages are dirty within an memory region. If no memory regions have dirty // page information fall back to saving out all ranges with write permissions. static void GetCoreFileSaveRangesDirtyOnly( Process &process, const MemoryRegionInfos ®ions, Process::CoreFileMemoryRanges &ranges, std::set &stack_ends) { // Iterate over the regions and find all dirty pages. bool have_dirty_page_info = false; for (const auto ®ion : regions) { if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && AddDirtyPages(region, ranges)) have_dirty_page_info = true; } if (!have_dirty_page_info) { // We didn't find support for reporting dirty pages from the process // plug-in so fall back to any region with write access permissions. const bool try_dirty_pages = false; for (const auto ®ion : regions) if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && region.GetWritable() == MemoryRegionInfo::eYes) AddRegion(region, try_dirty_pages, ranges); } } // Save all thread stacks to the core file. Some OS versions support reporting // when a memory region is stack related. We check on this information, but we // also use the stack pointers of each thread and add those in case the OS // doesn't support reporting stack memory. This function also attempts to only // emit dirty pages from the stack if the memory regions support reporting // dirty regions as this will make the core file smaller. If the process // doesn't support dirty regions, then it will fall back to adding the full // stack region. static void GetCoreFileSaveRangesStackOnly( Process &process, const MemoryRegionInfos ®ions, Process::CoreFileMemoryRanges &ranges, std::set &stack_ends) { const bool try_dirty_pages = true; // Some platforms support annotating the region information that tell us that // it comes from a thread stack. So look for those regions first. for (const auto ®ion : regions) { // Save all the stack memory ranges not associated with a stack pointer. if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && region.IsStackMemory() == MemoryRegionInfo::eYes) AddRegion(region, try_dirty_pages, ranges); } } Status Process::CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style, CoreFileMemoryRanges &ranges) { lldb_private::MemoryRegionInfos regions; Status err = GetMemoryRegions(regions); if (err.Fail()) return err; if (regions.empty()) return Status("failed to get any valid memory regions from the process"); if (core_style == eSaveCoreUnspecified) return Status("callers must set the core_style to something other than " "eSaveCoreUnspecified"); std::set stack_ends; SaveOffRegionsWithStackPointers(*this, regions, ranges, stack_ends); switch (core_style) { case eSaveCoreUnspecified: break; case eSaveCoreFull: GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends); break; case eSaveCoreDirtyOnly: GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends); break; case eSaveCoreStackOnly: GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends); break; } if (err.Fail()) return err; if (ranges.empty()) return Status("no valid address ranges found for core style"); return Status(); // Success! } void Process::SetAddressableBitMasks(AddressableBits bit_masks) { uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) return; if (low_memory_addr_bits != 0) { addr_t low_addr_mask = AddressableBits::AddressableBitToMask(low_memory_addr_bits); SetCodeAddressMask(low_addr_mask); SetDataAddressMask(low_addr_mask); } if (high_memory_addr_bits != 0) { addr_t high_addr_mask = AddressableBits::AddressableBitToMask(high_memory_addr_bits); SetHighmemCodeAddressMask(high_addr_mask); SetHighmemDataAddressMask(high_addr_mask); } }