//===-- ABI.cpp -----------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Target/ABI.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Value.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Expression/ExpressionVariable.h" #include "lldb/Symbol/CompilerType.h" #include "lldb/Symbol/TypeSystem.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "llvm/MC/TargetRegistry.h" #include using namespace lldb; using namespace lldb_private; ABISP ABI::FindPlugin(lldb::ProcessSP process_sp, const ArchSpec &arch) { ABISP abi_sp; ABICreateInstance create_callback; for (uint32_t idx = 0; (create_callback = PluginManager::GetABICreateCallbackAtIndex(idx)) != nullptr; ++idx) { abi_sp = create_callback(process_sp, arch); if (abi_sp) return abi_sp; } abi_sp.reset(); return abi_sp; } ABI::~ABI() = default; bool RegInfoBasedABI::GetRegisterInfoByName(llvm::StringRef name, RegisterInfo &info) { uint32_t count = 0; const RegisterInfo *register_info_array = GetRegisterInfoArray(count); if (register_info_array) { uint32_t i; for (i = 0; i < count; ++i) { const char *reg_name = register_info_array[i].name; if (reg_name == name) { info = register_info_array[i]; return true; } } for (i = 0; i < count; ++i) { const char *reg_alt_name = register_info_array[i].alt_name; if (reg_alt_name == name) { info = register_info_array[i]; return true; } } } return false; } ValueObjectSP ABI::GetReturnValueObject(Thread &thread, CompilerType &ast_type, bool persistent) const { if (!ast_type.IsValid()) return ValueObjectSP(); ValueObjectSP return_valobj_sp; return_valobj_sp = GetReturnValueObjectImpl(thread, ast_type); if (!return_valobj_sp) return return_valobj_sp; // Now turn this into a persistent variable. // FIXME: This code is duplicated from Target::EvaluateExpression, and it is // used in similar form in a couple // of other places. Figure out the correct Create function to do all this // work. if (persistent) { Target &target = *thread.CalculateTarget(); PersistentExpressionState *persistent_expression_state = target.GetPersistentExpressionStateForLanguage( ast_type.GetMinimumLanguage()); if (!persistent_expression_state) return {}; ConstString persistent_variable_name = persistent_expression_state->GetNextPersistentVariableName(); lldb::ValueObjectSP const_valobj_sp; // Check in case our value is already a constant value if (return_valobj_sp->GetIsConstant()) { const_valobj_sp = return_valobj_sp; const_valobj_sp->SetName(persistent_variable_name); } else const_valobj_sp = return_valobj_sp->CreateConstantValue(persistent_variable_name); lldb::ValueObjectSP live_valobj_sp = return_valobj_sp; return_valobj_sp = const_valobj_sp; ExpressionVariableSP expr_variable_sp( persistent_expression_state->CreatePersistentVariable( return_valobj_sp)); assert(expr_variable_sp); // Set flags and live data as appropriate const Value &result_value = live_valobj_sp->GetValue(); switch (result_value.GetValueType()) { case Value::ValueType::Invalid: return {}; case Value::ValueType::HostAddress: case Value::ValueType::FileAddress: // we odon't do anything with these for now break; case Value::ValueType::Scalar: expr_variable_sp->m_flags |= ExpressionVariable::EVIsFreezeDried; expr_variable_sp->m_flags |= ExpressionVariable::EVIsLLDBAllocated; expr_variable_sp->m_flags |= ExpressionVariable::EVNeedsAllocation; break; case Value::ValueType::LoadAddress: expr_variable_sp->m_live_sp = live_valobj_sp; expr_variable_sp->m_flags |= ExpressionVariable::EVIsProgramReference; break; } return_valobj_sp = expr_variable_sp->GetValueObject(); } return return_valobj_sp; } addr_t ABI::FixCodeAddress(lldb::addr_t pc) { ProcessSP process_sp(GetProcessSP()); addr_t mask = process_sp->GetCodeAddressMask(); if (mask == LLDB_INVALID_ADDRESS_MASK) return pc; // Assume the high bit is used for addressing, which // may not be correct on all architectures e.g. AArch64 // where Top Byte Ignore mode is often used to store // metadata in the top byte, and b55 is the bit used for // differentiating between low- and high-memory addresses. // That target's ABIs need to override this method. bool is_highmem = pc & (1ULL << 63); return is_highmem ? pc | mask : pc & (~mask); } addr_t ABI::FixDataAddress(lldb::addr_t pc) { ProcessSP process_sp(GetProcessSP()); addr_t mask = process_sp->GetDataAddressMask(); if (mask == LLDB_INVALID_ADDRESS_MASK) return pc; // Assume the high bit is used for addressing, which // may not be correct on all architectures e.g. AArch64 // where Top Byte Ignore mode is often used to store // metadata in the top byte, and b55 is the bit used for // differentiating between low- and high-memory addresses. // That target's ABIs need to override this method. bool is_highmem = pc & (1ULL << 63); return is_highmem ? pc | mask : pc & (~mask); } ValueObjectSP ABI::GetReturnValueObject(Thread &thread, llvm::Type &ast_type, bool persistent) const { ValueObjectSP return_valobj_sp; return_valobj_sp = GetReturnValueObjectImpl(thread, ast_type); return return_valobj_sp; } // specialized to work with llvm IR types // // for now we will specify a default implementation so that we don't need to // modify other ABIs lldb::ValueObjectSP ABI::GetReturnValueObjectImpl(Thread &thread, llvm::Type &ir_type) const { ValueObjectSP return_valobj_sp; /* this is a dummy and will only be called if an ABI does not override this */ return return_valobj_sp; } bool ABI::PrepareTrivialCall(Thread &thread, lldb::addr_t sp, lldb::addr_t functionAddress, lldb::addr_t returnAddress, llvm::Type &returntype, llvm::ArrayRef args) const { // dummy prepare trivial call llvm_unreachable("Should never get here!"); } bool ABI::GetFallbackRegisterLocation( const RegisterInfo *reg_info, UnwindPlan::Row::RegisterLocation &unwind_regloc) { // Did the UnwindPlan fail to give us the caller's stack pointer? The stack // pointer is defined to be the same as THIS frame's CFA, so return the CFA // value as the caller's stack pointer. This is true on x86-32/x86-64 at // least. if (reg_info->kinds[eRegisterKindGeneric] == LLDB_REGNUM_GENERIC_SP) { unwind_regloc.SetIsCFAPlusOffset(0); return true; } // If a volatile register is being requested, we don't want to forward the // next frame's register contents up the stack -- the register is not // retrievable at this frame. if (RegisterIsVolatile(reg_info)) { unwind_regloc.SetUndefined(); return true; } return false; } std::unique_ptr ABI::MakeMCRegisterInfo(const ArchSpec &arch) { std::string triple = arch.GetTriple().getTriple(); std::string lookup_error; const llvm::Target *target = llvm::TargetRegistry::lookupTarget(triple, lookup_error); if (!target) { LLDB_LOG(GetLog(LLDBLog::Process), "Failed to create an llvm target for {0}: {1}", triple, lookup_error); return nullptr; } std::unique_ptr info_up( target->createMCRegInfo(triple)); assert(info_up); return info_up; } void RegInfoBasedABI::AugmentRegisterInfo( std::vector ®s) { for (DynamicRegisterInfo::Register &info : regs) { if (info.regnum_ehframe != LLDB_INVALID_REGNUM && info.regnum_dwarf != LLDB_INVALID_REGNUM) continue; RegisterInfo abi_info; if (!GetRegisterInfoByName(info.name.GetStringRef(), abi_info)) continue; if (info.regnum_ehframe == LLDB_INVALID_REGNUM) info.regnum_ehframe = abi_info.kinds[eRegisterKindEHFrame]; if (info.regnum_dwarf == LLDB_INVALID_REGNUM) info.regnum_dwarf = abi_info.kinds[eRegisterKindDWARF]; if (info.regnum_generic == LLDB_INVALID_REGNUM) info.regnum_generic = abi_info.kinds[eRegisterKindGeneric]; } } void MCBasedABI::AugmentRegisterInfo( std::vector ®s) { for (DynamicRegisterInfo::Register &info : regs) { uint32_t eh, dwarf; std::tie(eh, dwarf) = GetEHAndDWARFNums(info.name.GetStringRef()); if (info.regnum_ehframe == LLDB_INVALID_REGNUM) info.regnum_ehframe = eh; if (info.regnum_dwarf == LLDB_INVALID_REGNUM) info.regnum_dwarf = dwarf; if (info.regnum_generic == LLDB_INVALID_REGNUM) info.regnum_generic = GetGenericNum(info.name.GetStringRef()); } } std::pair MCBasedABI::GetEHAndDWARFNums(llvm::StringRef name) { std::string mc_name = GetMCName(name.str()); for (char &c : mc_name) c = std::toupper(c); int eh = -1; int dwarf = -1; for (unsigned reg = 0; reg < m_mc_register_info_up->getNumRegs(); ++reg) { if (m_mc_register_info_up->getName(reg) == mc_name) { eh = m_mc_register_info_up->getDwarfRegNum(reg, /*isEH=*/true); dwarf = m_mc_register_info_up->getDwarfRegNum(reg, /*isEH=*/false); break; } } return std::pair(eh == -1 ? LLDB_INVALID_REGNUM : eh, dwarf == -1 ? LLDB_INVALID_REGNUM : dwarf); } void MCBasedABI::MapRegisterName(std::string &name, llvm::StringRef from_prefix, llvm::StringRef to_prefix) { llvm::StringRef name_ref = name; if (!name_ref.consume_front(from_prefix)) return; uint64_t _; if (name_ref.empty() || to_integer(name_ref, _, 10)) name = (to_prefix + name_ref).str(); }