//===-- DWARFASTParserClang.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include "DWARFASTParser.h" #include "DWARFASTParserClang.h" #include "DWARFDebugInfo.h" #include "DWARFDeclContext.h" #include "DWARFDefines.h" #include "SymbolFileDWARF.h" #include "SymbolFileDWARFDebugMap.h" #include "SymbolFileDWARFDwo.h" #include "UniqueDWARFASTType.h" #include "Plugins/ExpressionParser/Clang/ClangASTImporter.h" #include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h" #include "Plugins/ExpressionParser/Clang/ClangUtil.h" #include "Plugins/Language/ObjC/ObjCLanguage.h" #include "lldb/Core/Module.h" #include "lldb/Core/Value.h" #include "lldb/Host/Host.h" #include "lldb/Symbol/CompileUnit.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/SymbolFile.h" #include "lldb/Symbol/TypeList.h" #include "lldb/Symbol/TypeMap.h" #include "lldb/Symbol/VariableList.h" #include "lldb/Target/Language.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/StreamString.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Type.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Demangle/Demangle.h" #include #include #include #include //#define ENABLE_DEBUG_PRINTF // COMMENT OUT THIS LINE PRIOR TO CHECKIN #ifdef ENABLE_DEBUG_PRINTF #include #define DEBUG_PRINTF(fmt, ...) printf(fmt, __VA_ARGS__) #else #define DEBUG_PRINTF(fmt, ...) #endif using namespace lldb; using namespace lldb_private; using namespace lldb_private::dwarf; using namespace lldb_private::plugin::dwarf; DWARFASTParserClang::DWARFASTParserClang(TypeSystemClang &ast) : DWARFASTParser(Kind::DWARFASTParserClang), m_ast(ast), m_die_to_decl_ctx(), m_decl_ctx_to_die() {} DWARFASTParserClang::~DWARFASTParserClang() = default; static bool DeclKindIsCXXClass(clang::Decl::Kind decl_kind) { switch (decl_kind) { case clang::Decl::CXXRecord: case clang::Decl::ClassTemplateSpecialization: return true; default: break; } return false; } ClangASTImporter &DWARFASTParserClang::GetClangASTImporter() { if (!m_clang_ast_importer_up) { m_clang_ast_importer_up = std::make_unique(); } return *m_clang_ast_importer_up; } /// Detect a forward declaration that is nested in a DW_TAG_module. static bool IsClangModuleFwdDecl(const DWARFDIE &Die) { if (!Die.GetAttributeValueAsUnsigned(DW_AT_declaration, 0)) return false; auto Parent = Die.GetParent(); while (Parent.IsValid()) { if (Parent.Tag() == DW_TAG_module) return true; Parent = Parent.GetParent(); } return false; } static DWARFDIE GetContainingClangModuleDIE(const DWARFDIE &die) { if (die.IsValid()) { DWARFDIE top_module_die; // Now make sure this DIE is scoped in a DW_TAG_module tag and return true // if so for (DWARFDIE parent = die.GetParent(); parent.IsValid(); parent = parent.GetParent()) { const dw_tag_t tag = parent.Tag(); if (tag == DW_TAG_module) top_module_die = parent; else if (tag == DW_TAG_compile_unit || tag == DW_TAG_partial_unit) break; } return top_module_die; } return DWARFDIE(); } static lldb::ModuleSP GetContainingClangModule(const DWARFDIE &die) { if (die.IsValid()) { DWARFDIE clang_module_die = GetContainingClangModuleDIE(die); if (clang_module_die) { const char *module_name = clang_module_die.GetName(); if (module_name) return die.GetDWARF()->GetExternalModule( lldb_private::ConstString(module_name)); } } return lldb::ModuleSP(); } // Returns true if the given artificial field name should be ignored when // parsing the DWARF. static bool ShouldIgnoreArtificialField(llvm::StringRef FieldName) { return FieldName.starts_with("_vptr$") // gdb emit vtable pointer as "_vptr.classname" || FieldName.starts_with("_vptr."); } /// Returns true for C++ constructs represented by clang::CXXRecordDecl static bool TagIsRecordType(dw_tag_t tag) { switch (tag) { case DW_TAG_class_type: case DW_TAG_structure_type: case DW_TAG_union_type: return true; default: return false; } } TypeSP DWARFASTParserClang::ParseTypeFromClangModule(const SymbolContext &sc, const DWARFDIE &die, Log *log) { ModuleSP clang_module_sp = GetContainingClangModule(die); if (!clang_module_sp) return TypeSP(); // If this type comes from a Clang module, recursively look in the // DWARF section of the .pcm file in the module cache. Clang // generates DWO skeleton units as breadcrumbs to find them. std::vector die_context = die.GetDeclContext(); TypeQuery query(die_context, TypeQueryOptions::e_module_search | TypeQueryOptions::e_find_one); TypeResults results; // The type in the Clang module must have the same language as the current CU. query.AddLanguage(SymbolFileDWARF::GetLanguageFamily(*die.GetCU())); clang_module_sp->FindTypes(query, results); TypeSP pcm_type_sp = results.GetTypeMap().FirstType(); if (!pcm_type_sp) { // Since this type is defined in one of the Clang modules imported // by this symbol file, search all of them. Instead of calling // sym_file->FindTypes(), which would return this again, go straight // to the imported modules. auto &sym_file = die.GetCU()->GetSymbolFileDWARF(); // Well-formed clang modules never form cycles; guard against corrupted // ones by inserting the current file. results.AlreadySearched(&sym_file); sym_file.ForEachExternalModule( *sc.comp_unit, results.GetSearchedSymbolFiles(), [&](Module &module) { module.FindTypes(query, results); pcm_type_sp = results.GetTypeMap().FirstType(); return (bool)pcm_type_sp; }); } if (!pcm_type_sp) return TypeSP(); // We found a real definition for this type in the Clang module, so lets use // it and cache the fact that we found a complete type for this die. lldb_private::CompilerType pcm_type = pcm_type_sp->GetForwardCompilerType(); lldb_private::CompilerType type = GetClangASTImporter().CopyType(m_ast, pcm_type); if (!type) return TypeSP(); // Under normal operation pcm_type is a shallow forward declaration // that gets completed later. This is necessary to support cyclic // data structures. If, however, pcm_type is already complete (for // example, because it was loaded for a different target before), // the definition needs to be imported right away, too. // Type::ResolveClangType() effectively ignores the ResolveState // inside type_sp and only looks at IsDefined(), so it never calls // ClangASTImporter::ASTImporterDelegate::ImportDefinitionTo(), // which does extra work for Objective-C classes. This would result // in only the forward declaration to be visible. if (pcm_type.IsDefined()) GetClangASTImporter().RequireCompleteType(ClangUtil::GetQualType(type)); SymbolFileDWARF *dwarf = die.GetDWARF(); auto type_sp = dwarf->MakeType( die.GetID(), pcm_type_sp->GetName(), pcm_type_sp->GetByteSize(nullptr), nullptr, LLDB_INVALID_UID, Type::eEncodingInvalid, &pcm_type_sp->GetDeclaration(), type, Type::ResolveState::Forward, TypePayloadClang(GetOwningClangModule(die))); clang::TagDecl *tag_decl = TypeSystemClang::GetAsTagDecl(type); if (tag_decl) { LinkDeclContextToDIE(tag_decl, die); } else { clang::DeclContext *defn_decl_ctx = GetCachedClangDeclContextForDIE(die); if (defn_decl_ctx) LinkDeclContextToDIE(defn_decl_ctx, die); } return type_sp; } /// This function ensures we are able to add members (nested types, functions, /// etc.) to this type. It does so by starting its definition even if one cannot /// be found in the debug info. This means the type may need to be "forcibly /// completed" later -- see CompleteTypeFromDWARF). static void PrepareContextToReceiveMembers(TypeSystemClang &ast, ClangASTImporter &ast_importer, clang::DeclContext *decl_ctx, DWARFDIE die, const char *type_name_cstr) { auto *tag_decl_ctx = clang::dyn_cast(decl_ctx); if (!tag_decl_ctx) return; // Non-tag context are always ready. // We have already completed the type or it is already prepared. if (tag_decl_ctx->isCompleteDefinition() || tag_decl_ctx->isBeingDefined()) return; // If this tag was imported from another AST context (in the gmodules case), // we can complete the type by doing a full import. // If this type was not imported from an external AST, there's nothing to do. CompilerType type = ast.GetTypeForDecl(tag_decl_ctx); if (type && ast_importer.CanImport(type)) { auto qual_type = ClangUtil::GetQualType(type); if (ast_importer.RequireCompleteType(qual_type)) return; die.GetDWARF()->GetObjectFile()->GetModule()->ReportError( "Unable to complete the Decl context for DIE {0} at offset " "{1:x16}.\nPlease file a bug report.", type_name_cstr ? type_name_cstr : "", die.GetOffset()); } // We don't have a type definition and/or the import failed, but we need to // add members to it. Start the definition to make that possible. If the type // has no external storage we also have to complete the definition. Otherwise, // that will happen when we are asked to complete the type // (CompleteTypeFromDWARF). ast.StartTagDeclarationDefinition(type); if (!tag_decl_ctx->hasExternalLexicalStorage()) { ast.SetDeclIsForcefullyCompleted(tag_decl_ctx); ast.CompleteTagDeclarationDefinition(type); } } ParsedDWARFTypeAttributes::ParsedDWARFTypeAttributes(const DWARFDIE &die) { DWARFAttributes attributes = die.GetAttributes(); for (size_t i = 0; i < attributes.Size(); ++i) { dw_attr_t attr = attributes.AttributeAtIndex(i); DWARFFormValue form_value; if (!attributes.ExtractFormValueAtIndex(i, form_value)) continue; switch (attr) { default: break; case DW_AT_abstract_origin: abstract_origin = form_value; break; case DW_AT_accessibility: accessibility = DWARFASTParser::GetAccessTypeFromDWARF(form_value.Unsigned()); break; case DW_AT_artificial: is_artificial = form_value.Boolean(); break; case DW_AT_bit_stride: bit_stride = form_value.Unsigned(); break; case DW_AT_byte_size: byte_size = form_value.Unsigned(); break; case DW_AT_alignment: alignment = form_value.Unsigned(); break; case DW_AT_byte_stride: byte_stride = form_value.Unsigned(); break; case DW_AT_calling_convention: calling_convention = form_value.Unsigned(); break; case DW_AT_containing_type: containing_type = form_value; break; case DW_AT_decl_file: // die.GetCU() can differ if DW_AT_specification uses DW_FORM_ref_addr. decl.SetFile( attributes.CompileUnitAtIndex(i)->GetFile(form_value.Unsigned())); break; case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break; case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break; case DW_AT_declaration: is_forward_declaration = form_value.Boolean(); break; case DW_AT_encoding: encoding = form_value.Unsigned(); break; case DW_AT_enum_class: is_scoped_enum = form_value.Boolean(); break; case DW_AT_explicit: is_explicit = form_value.Boolean(); break; case DW_AT_external: if (form_value.Unsigned()) storage = clang::SC_Extern; break; case DW_AT_inline: is_inline = form_value.Boolean(); break; case DW_AT_linkage_name: case DW_AT_MIPS_linkage_name: mangled_name = form_value.AsCString(); break; case DW_AT_name: name.SetCString(form_value.AsCString()); break; case DW_AT_object_pointer: object_pointer = form_value.Reference(); break; case DW_AT_signature: signature = form_value; break; case DW_AT_specification: specification = form_value; break; case DW_AT_type: type = form_value; break; case DW_AT_virtuality: is_virtual = form_value.Boolean(); break; case DW_AT_APPLE_objc_complete_type: is_complete_objc_class = form_value.Signed(); break; case DW_AT_APPLE_objc_direct: is_objc_direct_call = true; break; case DW_AT_APPLE_runtime_class: class_language = (LanguageType)form_value.Signed(); break; case DW_AT_GNU_vector: is_vector = form_value.Boolean(); break; case DW_AT_export_symbols: exports_symbols = form_value.Boolean(); break; case DW_AT_rvalue_reference: ref_qual = clang::RQ_RValue; break; case DW_AT_reference: ref_qual = clang::RQ_LValue; break; } } } static std::string GetUnitName(const DWARFDIE &die) { if (DWARFUnit *unit = die.GetCU()) return unit->GetAbsolutePath().GetPath(); return ""; } TypeSP DWARFASTParserClang::ParseTypeFromDWARF(const SymbolContext &sc, const DWARFDIE &die, bool *type_is_new_ptr) { if (type_is_new_ptr) *type_is_new_ptr = false; if (!die) return nullptr; Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); SymbolFileDWARF *dwarf = die.GetDWARF(); if (log) { DWARFDIE context_die; clang::DeclContext *context = GetClangDeclContextContainingDIE(die, &context_die); dwarf->GetObjectFile()->GetModule()->LogMessage( log, "DWARFASTParserClang::ParseTypeFromDWARF " "(die = {0:x16}, decl_ctx = {1:p} (die " "{2:x16})) {3} ({4}) name = '{5}')", die.GetOffset(), static_cast(context), context_die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(), die.GetName()); } // Set a bit that lets us know that we are currently parsing this if (auto [it, inserted] = dwarf->GetDIEToType().try_emplace(die.GetDIE(), DIE_IS_BEING_PARSED); !inserted) { if (it->getSecond() == nullptr || it->getSecond() == DIE_IS_BEING_PARSED) return nullptr; return it->getSecond()->shared_from_this(); } ParsedDWARFTypeAttributes attrs(die); TypeSP type_sp; if (DWARFDIE signature_die = attrs.signature.Reference()) { type_sp = ParseTypeFromDWARF(sc, signature_die, type_is_new_ptr); if (type_sp) { if (clang::DeclContext *decl_ctx = GetCachedClangDeclContextForDIE(signature_die)) LinkDeclContextToDIE(decl_ctx, die); } } else { if (type_is_new_ptr) *type_is_new_ptr = true; const dw_tag_t tag = die.Tag(); switch (tag) { case DW_TAG_typedef: case DW_TAG_base_type: case DW_TAG_pointer_type: case DW_TAG_reference_type: case DW_TAG_rvalue_reference_type: case DW_TAG_const_type: case DW_TAG_restrict_type: case DW_TAG_volatile_type: case DW_TAG_LLVM_ptrauth_type: case DW_TAG_atomic_type: case DW_TAG_unspecified_type: type_sp = ParseTypeModifier(sc, die, attrs); break; case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_class_type: type_sp = ParseStructureLikeDIE(sc, die, attrs); break; case DW_TAG_enumeration_type: type_sp = ParseEnum(sc, die, attrs); break; case DW_TAG_inlined_subroutine: case DW_TAG_subprogram: case DW_TAG_subroutine_type: type_sp = ParseSubroutine(die, attrs); break; case DW_TAG_array_type: type_sp = ParseArrayType(die, attrs); break; case DW_TAG_ptr_to_member_type: type_sp = ParsePointerToMemberType(die, attrs); break; default: dwarf->GetObjectFile()->GetModule()->ReportError( "[{0:x16}]: unhandled type tag {1:x4} ({2}), " "please file a bug and " "attach the file at the start of this error message", die.GetOffset(), tag, DW_TAG_value_to_name(tag)); break; } UpdateSymbolContextScopeForType(sc, die, type_sp); } if (type_sp) { dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get(); } return type_sp; } static std::optional ExtractDataMemberLocation(DWARFDIE const &die, DWARFFormValue const &form_value, ModuleSP module_sp) { Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); // With DWARF 3 and later, if the value is an integer constant, // this form value is the offset in bytes from the beginning of // the containing entity. if (!form_value.BlockData()) return form_value.Unsigned(); Value initialValue(0); const DWARFDataExtractor &debug_info_data = die.GetData(); uint32_t block_length = form_value.Unsigned(); uint32_t block_offset = form_value.BlockData() - debug_info_data.GetDataStart(); llvm::Expected memberOffset = DWARFExpression::Evaluate( /*ExecutionContext=*/nullptr, /*RegisterContext=*/nullptr, module_sp, DataExtractor(debug_info_data, block_offset, block_length), die.GetCU(), eRegisterKindDWARF, &initialValue, nullptr); if (!memberOffset) { LLDB_LOG_ERROR(log, memberOffset.takeError(), "ExtractDataMemberLocation failed: {0}"); return {}; } return memberOffset->ResolveValue(nullptr).UInt(); } static TypePayloadClang GetPtrAuthMofidierPayload(const DWARFDIE &die) { auto getAttr = [&](llvm::dwarf::Attribute Attr, unsigned defaultValue = 0) { return die.GetAttributeValueAsUnsigned(Attr, defaultValue); }; const unsigned key = getAttr(DW_AT_LLVM_ptrauth_key); const bool addr_disc = getAttr(DW_AT_LLVM_ptrauth_address_discriminated); const unsigned extra = getAttr(DW_AT_LLVM_ptrauth_extra_discriminator); const bool isapointer = getAttr(DW_AT_LLVM_ptrauth_isa_pointer); const bool authenticates_null_values = getAttr(DW_AT_LLVM_ptrauth_authenticates_null_values); const unsigned authentication_mode_int = getAttr( DW_AT_LLVM_ptrauth_authentication_mode, static_cast(clang::PointerAuthenticationMode::SignAndAuth)); clang::PointerAuthenticationMode authentication_mode = clang::PointerAuthenticationMode::SignAndAuth; if (authentication_mode_int >= static_cast(clang::PointerAuthenticationMode::None) && authentication_mode_int <= static_cast( clang::PointerAuthenticationMode::SignAndAuth)) { authentication_mode = static_cast(authentication_mode_int); } else { die.GetDWARF()->GetObjectFile()->GetModule()->ReportError( "[{0:x16}]: invalid pointer authentication mode method {1:x4}", die.GetOffset(), authentication_mode_int); } auto ptr_auth = clang::PointerAuthQualifier::Create( key, addr_disc, extra, authentication_mode, isapointer, authenticates_null_values); return TypePayloadClang(ptr_auth.getAsOpaqueValue()); } lldb::TypeSP DWARFASTParserClang::ParseTypeModifier(const SymbolContext &sc, const DWARFDIE &die, ParsedDWARFTypeAttributes &attrs) { Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); SymbolFileDWARF *dwarf = die.GetDWARF(); const dw_tag_t tag = die.Tag(); LanguageType cu_language = SymbolFileDWARF::GetLanguage(*die.GetCU()); Type::ResolveState resolve_state = Type::ResolveState::Unresolved; Type::EncodingDataType encoding_data_type = Type::eEncodingIsUID; TypePayloadClang payload(GetOwningClangModule(die)); TypeSP type_sp; CompilerType clang_type; if (tag == DW_TAG_typedef) { // DeclContext will be populated when the clang type is materialized in // Type::ResolveCompilerType. PrepareContextToReceiveMembers( m_ast, GetClangASTImporter(), GetClangDeclContextContainingDIE(die, nullptr), die, attrs.name.GetCString()); if (attrs.type.IsValid()) { // Try to parse a typedef from the (DWARF embedded in the) Clang // module file first as modules can contain typedef'ed // structures that have no names like: // // typedef struct { int a; } Foo; // // In this case we will have a structure with no name and a // typedef named "Foo" that points to this unnamed // structure. The name in the typedef is the only identifier for // the struct, so always try to get typedefs from Clang modules // if possible. // // The type_sp returned will be empty if the typedef doesn't // exist in a module file, so it is cheap to call this function // just to check. // // If we don't do this we end up creating a TypeSP that says // this is a typedef to type 0x123 (the DW_AT_type value would // be 0x123 in the DW_TAG_typedef), and this is the unnamed // structure type. We will have a hard time tracking down an // unnammed structure type in the module debug info, so we make // sure we don't get into this situation by always resolving // typedefs from the module. const DWARFDIE encoding_die = attrs.type.Reference(); // First make sure that the die that this is typedef'ed to _is_ // just a declaration (DW_AT_declaration == 1), not a full // definition since template types can't be represented in // modules since only concrete instances of templates are ever // emitted and modules won't contain those if (encoding_die && encoding_die.GetAttributeValueAsUnsigned(DW_AT_declaration, 0) == 1) { type_sp = ParseTypeFromClangModule(sc, die, log); if (type_sp) return type_sp; } } } DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\") type => 0x%8.8lx\n", die.GetID(), DW_TAG_value_to_name(tag), type_name_cstr, encoding_uid.Reference()); switch (tag) { default: break; case DW_TAG_unspecified_type: if (attrs.name == "nullptr_t" || attrs.name == "decltype(nullptr)") { resolve_state = Type::ResolveState::Full; clang_type = m_ast.GetBasicType(eBasicTypeNullPtr); break; } // Fall through to base type below in case we can handle the type // there... [[fallthrough]]; case DW_TAG_base_type: resolve_state = Type::ResolveState::Full; clang_type = m_ast.GetBuiltinTypeForDWARFEncodingAndBitSize( attrs.name.GetStringRef(), attrs.encoding, attrs.byte_size.value_or(0) * 8); break; case DW_TAG_pointer_type: encoding_data_type = Type::eEncodingIsPointerUID; break; case DW_TAG_reference_type: encoding_data_type = Type::eEncodingIsLValueReferenceUID; break; case DW_TAG_rvalue_reference_type: encoding_data_type = Type::eEncodingIsRValueReferenceUID; break; case DW_TAG_typedef: encoding_data_type = Type::eEncodingIsTypedefUID; break; case DW_TAG_const_type: encoding_data_type = Type::eEncodingIsConstUID; break; case DW_TAG_restrict_type: encoding_data_type = Type::eEncodingIsRestrictUID; break; case DW_TAG_volatile_type: encoding_data_type = Type::eEncodingIsVolatileUID; break; case DW_TAG_LLVM_ptrauth_type: encoding_data_type = Type::eEncodingIsLLVMPtrAuthUID; payload = GetPtrAuthMofidierPayload(die); break; case DW_TAG_atomic_type: encoding_data_type = Type::eEncodingIsAtomicUID; break; } if (!clang_type && (encoding_data_type == Type::eEncodingIsPointerUID || encoding_data_type == Type::eEncodingIsTypedefUID)) { if (tag == DW_TAG_pointer_type) { DWARFDIE target_die = die.GetReferencedDIE(DW_AT_type); if (target_die.GetAttributeValueAsUnsigned(DW_AT_APPLE_block, 0)) { // Blocks have a __FuncPtr inside them which is a pointer to a // function of the proper type. for (DWARFDIE child_die : target_die.children()) { if (!strcmp(child_die.GetAttributeValueAsString(DW_AT_name, ""), "__FuncPtr")) { DWARFDIE function_pointer_type = child_die.GetReferencedDIE(DW_AT_type); if (function_pointer_type) { DWARFDIE function_type = function_pointer_type.GetReferencedDIE(DW_AT_type); bool function_type_is_new_pointer; TypeSP lldb_function_type_sp = ParseTypeFromDWARF( sc, function_type, &function_type_is_new_pointer); if (lldb_function_type_sp) { clang_type = m_ast.CreateBlockPointerType( lldb_function_type_sp->GetForwardCompilerType()); encoding_data_type = Type::eEncodingIsUID; attrs.type.Clear(); resolve_state = Type::ResolveState::Full; } } break; } } } } if (cu_language == eLanguageTypeObjC || cu_language == eLanguageTypeObjC_plus_plus) { if (attrs.name) { if (attrs.name == "id") { if (log) dwarf->GetObjectFile()->GetModule()->LogMessage( log, "SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' " "is Objective-C 'id' built-in type.", die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(), die.GetName()); clang_type = m_ast.GetBasicType(eBasicTypeObjCID); encoding_data_type = Type::eEncodingIsUID; attrs.type.Clear(); resolve_state = Type::ResolveState::Full; } else if (attrs.name == "Class") { if (log) dwarf->GetObjectFile()->GetModule()->LogMessage( log, "SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' " "is Objective-C 'Class' built-in type.", die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(), die.GetName()); clang_type = m_ast.GetBasicType(eBasicTypeObjCClass); encoding_data_type = Type::eEncodingIsUID; attrs.type.Clear(); resolve_state = Type::ResolveState::Full; } else if (attrs.name == "SEL") { if (log) dwarf->GetObjectFile()->GetModule()->LogMessage( log, "SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' " "is Objective-C 'selector' built-in type.", die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(), die.GetName()); clang_type = m_ast.GetBasicType(eBasicTypeObjCSel); encoding_data_type = Type::eEncodingIsUID; attrs.type.Clear(); resolve_state = Type::ResolveState::Full; } } else if (encoding_data_type == Type::eEncodingIsPointerUID && attrs.type.IsValid()) { // Clang sometimes erroneously emits id as objc_object*. In that // case we fix up the type to "id". const DWARFDIE encoding_die = attrs.type.Reference(); if (encoding_die && encoding_die.Tag() == DW_TAG_structure_type) { llvm::StringRef struct_name = encoding_die.GetName(); if (struct_name == "objc_object") { if (log) dwarf->GetObjectFile()->GetModule()->LogMessage( log, "SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' " "is 'objc_object*', which we overrode to 'id'.", die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(), die.GetName()); clang_type = m_ast.GetBasicType(eBasicTypeObjCID); encoding_data_type = Type::eEncodingIsUID; attrs.type.Clear(); resolve_state = Type::ResolveState::Full; } } } } } return dwarf->MakeType(die.GetID(), attrs.name, attrs.byte_size, nullptr, attrs.type.Reference().GetID(), encoding_data_type, &attrs.decl, clang_type, resolve_state, payload); } std::string DWARFASTParserClang::GetDIEClassTemplateParams(const DWARFDIE &die) { if (llvm::StringRef(die.GetName()).contains("<")) return {}; TypeSystemClang::TemplateParameterInfos template_param_infos; if (ParseTemplateParameterInfos(die, template_param_infos)) return m_ast.PrintTemplateParams(template_param_infos); return {}; } void DWARFASTParserClang::MapDeclDIEToDefDIE( const lldb_private::plugin::dwarf::DWARFDIE &decl_die, const lldb_private::plugin::dwarf::DWARFDIE &def_die) { LinkDeclContextToDIE(GetCachedClangDeclContextForDIE(decl_die), def_die); SymbolFileDWARF *dwarf = def_die.GetDWARF(); ParsedDWARFTypeAttributes decl_attrs(decl_die); ParsedDWARFTypeAttributes def_attrs(def_die); ConstString unique_typename(decl_attrs.name); Declaration decl_declaration(decl_attrs.decl); GetUniqueTypeNameAndDeclaration( decl_die, SymbolFileDWARF::GetLanguage(*decl_die.GetCU()), unique_typename, decl_declaration); if (UniqueDWARFASTType *unique_ast_entry_type = dwarf->GetUniqueDWARFASTTypeMap().Find( unique_typename, decl_die, decl_declaration, decl_attrs.byte_size.value_or(0), decl_attrs.is_forward_declaration)) { unique_ast_entry_type->UpdateToDefDIE(def_die, def_attrs.decl, def_attrs.byte_size.value_or(0)); } else if (Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups)) { const dw_tag_t tag = decl_die.Tag(); LLDB_LOG(log, "Failed to find {0:x16} {1} ({2}) type \"{3}\" in " "UniqueDWARFASTTypeMap", decl_die.GetID(), DW_TAG_value_to_name(tag), tag, unique_typename); } } TypeSP DWARFASTParserClang::ParseEnum(const SymbolContext &sc, const DWARFDIE &decl_die, ParsedDWARFTypeAttributes &attrs) { Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); SymbolFileDWARF *dwarf = decl_die.GetDWARF(); const dw_tag_t tag = decl_die.Tag(); DWARFDIE def_die; if (attrs.is_forward_declaration) { if (TypeSP type_sp = ParseTypeFromClangModule(sc, decl_die, log)) return type_sp; def_die = dwarf->FindDefinitionDIE(decl_die); if (!def_die) { SymbolFileDWARFDebugMap *debug_map_symfile = dwarf->GetDebugMapSymfile(); if (debug_map_symfile) { // We weren't able to find a full declaration in this DWARF, // see if we have a declaration anywhere else... def_die = debug_map_symfile->FindDefinitionDIE(decl_die); } } if (log) { dwarf->GetObjectFile()->GetModule()->LogMessage( log, "SymbolFileDWARF({0:p}) - {1:x16}}: {2} ({3}) type \"{4}\" is a " "forward declaration, complete DIE is {5}", static_cast(this), decl_die.GetID(), DW_TAG_value_to_name(tag), tag, attrs.name.GetCString(), def_die ? llvm::utohexstr(def_die.GetID()) : "not found"); } } if (def_die) { if (auto [it, inserted] = dwarf->GetDIEToType().try_emplace( def_die.GetDIE(), DIE_IS_BEING_PARSED); !inserted) { if (it->getSecond() == nullptr || it->getSecond() == DIE_IS_BEING_PARSED) return nullptr; return it->getSecond()->shared_from_this(); } attrs = ParsedDWARFTypeAttributes(def_die); } else { // No definition found. Proceed with the declaration die. We can use it to // create a forward-declared type. def_die = decl_die; } CompilerType enumerator_clang_type; if (attrs.type.IsValid()) { Type *enumerator_type = dwarf->ResolveTypeUID(attrs.type.Reference(), true); if (enumerator_type) enumerator_clang_type = enumerator_type->GetFullCompilerType(); } if (!enumerator_clang_type) { if (attrs.byte_size) { enumerator_clang_type = m_ast.GetBuiltinTypeForDWARFEncodingAndBitSize( "", DW_ATE_signed, *attrs.byte_size * 8); } else { enumerator_clang_type = m_ast.GetBasicType(eBasicTypeInt); } } CompilerType clang_type = m_ast.CreateEnumerationType( attrs.name.GetStringRef(), GetClangDeclContextContainingDIE(def_die, nullptr), GetOwningClangModule(def_die), attrs.decl, enumerator_clang_type, attrs.is_scoped_enum); TypeSP type_sp = dwarf->MakeType(def_die.GetID(), attrs.name, attrs.byte_size, nullptr, attrs.type.Reference().GetID(), Type::eEncodingIsUID, &attrs.decl, clang_type, Type::ResolveState::Forward, TypePayloadClang(GetOwningClangModule(def_die))); clang::DeclContext *type_decl_ctx = TypeSystemClang::GetDeclContextForType(clang_type); LinkDeclContextToDIE(type_decl_ctx, decl_die); if (decl_die != def_die) { LinkDeclContextToDIE(type_decl_ctx, def_die); dwarf->GetDIEToType()[def_die.GetDIE()] = type_sp.get(); // Declaration DIE is inserted into the type map in ParseTypeFromDWARF } if (TypeSystemClang::StartTagDeclarationDefinition(clang_type)) { if (def_die.HasChildren()) { bool is_signed = false; enumerator_clang_type.IsIntegerType(is_signed); ParseChildEnumerators(clang_type, is_signed, type_sp->GetByteSize(nullptr).value_or(0), def_die); } TypeSystemClang::CompleteTagDeclarationDefinition(clang_type); } else { dwarf->GetObjectFile()->GetModule()->ReportError( "DWARF DIE at {0:x16} named \"{1}\" was not able to start its " "definition.\nPlease file a bug and attach the file at the " "start of this error message", def_die.GetOffset(), attrs.name.GetCString()); } return type_sp; } static clang::CallingConv ConvertDWARFCallingConventionToClang(const ParsedDWARFTypeAttributes &attrs) { switch (attrs.calling_convention) { case llvm::dwarf::DW_CC_normal: return clang::CC_C; case llvm::dwarf::DW_CC_BORLAND_stdcall: return clang::CC_X86StdCall; case llvm::dwarf::DW_CC_BORLAND_msfastcall: return clang::CC_X86FastCall; case llvm::dwarf::DW_CC_LLVM_vectorcall: return clang::CC_X86VectorCall; case llvm::dwarf::DW_CC_BORLAND_pascal: return clang::CC_X86Pascal; case llvm::dwarf::DW_CC_LLVM_Win64: return clang::CC_Win64; case llvm::dwarf::DW_CC_LLVM_X86_64SysV: return clang::CC_X86_64SysV; case llvm::dwarf::DW_CC_LLVM_X86RegCall: return clang::CC_X86RegCall; default: break; } Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); LLDB_LOG(log, "Unsupported DW_AT_calling_convention value: {0}", attrs.calling_convention); // Use the default calling convention as a fallback. return clang::CC_C; } bool DWARFASTParserClang::ParseObjCMethod( const ObjCLanguage::MethodName &objc_method, const DWARFDIE &die, CompilerType clang_type, const ParsedDWARFTypeAttributes &attrs, bool is_variadic) { SymbolFileDWARF *dwarf = die.GetDWARF(); assert(dwarf); const auto tag = die.Tag(); ConstString class_name(objc_method.GetClassName()); if (!class_name) return false; TypeSP complete_objc_class_type_sp = dwarf->FindCompleteObjCDefinitionTypeForDIE(DWARFDIE(), class_name, false); if (!complete_objc_class_type_sp) return false; CompilerType type_clang_forward_type = complete_objc_class_type_sp->GetForwardCompilerType(); if (!type_clang_forward_type) return false; if (!TypeSystemClang::IsObjCObjectOrInterfaceType(type_clang_forward_type)) return false; clang::ObjCMethodDecl *objc_method_decl = m_ast.AddMethodToObjCObjectType( type_clang_forward_type, attrs.name.GetCString(), clang_type, attrs.is_artificial, is_variadic, attrs.is_objc_direct_call); if (!objc_method_decl) { dwarf->GetObjectFile()->GetModule()->ReportError( "[{0:x16}]: invalid Objective-C method {1:x4} ({2}), " "please file a bug and attach the file at the start of " "this error message", die.GetOffset(), tag, DW_TAG_value_to_name(tag)); return false; } LinkDeclContextToDIE(objc_method_decl, die); m_ast.SetMetadataAsUserID(objc_method_decl, die.GetID()); return true; } std::pair DWARFASTParserClang::ParseCXXMethod( const DWARFDIE &die, CompilerType clang_type, const ParsedDWARFTypeAttributes &attrs, const DWARFDIE &decl_ctx_die, bool is_static, bool &ignore_containing_context) { Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); SymbolFileDWARF *dwarf = die.GetDWARF(); assert(dwarf); Type *class_type = dwarf->ResolveType(decl_ctx_die); if (!class_type) return {}; if (class_type->GetID() != decl_ctx_die.GetID() || IsClangModuleFwdDecl(decl_ctx_die)) { // We uniqued the parent class of this function to another // class so we now need to associate all dies under // "decl_ctx_die" to DIEs in the DIE for "class_type"... if (DWARFDIE class_type_die = dwarf->GetDIE(class_type->GetID())) { std::vector failures; CopyUniqueClassMethodTypes(decl_ctx_die, class_type_die, class_type, failures); // FIXME do something with these failures that's // smarter than just dropping them on the ground. // Unfortunately classes don't like having stuff added // to them after their definitions are complete... Type *type_ptr = dwarf->GetDIEToType().lookup(die.GetDIE()); if (type_ptr && type_ptr != DIE_IS_BEING_PARSED) return {true, type_ptr->shared_from_this()}; } } if (attrs.specification.IsValid()) { // We have a specification which we are going to base our // function prototype off of, so we need this type to be // completed so that the m_die_to_decl_ctx for the method in // the specification has a valid clang decl context. class_type->GetForwardCompilerType(); // If we have a specification, then the function type should // have been made with the specification and not with this // die. DWARFDIE spec_die = attrs.specification.Reference(); clang::DeclContext *spec_clang_decl_ctx = GetClangDeclContextForDIE(spec_die); if (spec_clang_decl_ctx) LinkDeclContextToDIE(spec_clang_decl_ctx, die); else dwarf->GetObjectFile()->GetModule()->ReportWarning( "{0:x8}: DW_AT_specification({1:x16}" ") has no decl\n", die.GetID(), spec_die.GetOffset()); return {true, nullptr}; } if (attrs.abstract_origin.IsValid()) { // We have a specification which we are going to base our // function prototype off of, so we need this type to be // completed so that the m_die_to_decl_ctx for the method in // the abstract origin has a valid clang decl context. class_type->GetForwardCompilerType(); DWARFDIE abs_die = attrs.abstract_origin.Reference(); clang::DeclContext *abs_clang_decl_ctx = GetClangDeclContextForDIE(abs_die); if (abs_clang_decl_ctx) LinkDeclContextToDIE(abs_clang_decl_ctx, die); else dwarf->GetObjectFile()->GetModule()->ReportWarning( "{0:x8}: DW_AT_abstract_origin({1:x16}" ") has no decl\n", die.GetID(), abs_die.GetOffset()); return {true, nullptr}; } CompilerType class_opaque_type = class_type->GetForwardCompilerType(); if (!TypeSystemClang::IsCXXClassType(class_opaque_type)) return {}; PrepareContextToReceiveMembers( m_ast, GetClangASTImporter(), TypeSystemClang::GetDeclContextForType(class_opaque_type), die, attrs.name.GetCString()); // We have a C++ member function with no children (this pointer!) and clang // will get mad if we try and make a function that isn't well formed in the // DWARF, so we will just skip it... if (!is_static && !die.HasChildren()) return {true, nullptr}; const bool is_attr_used = false; // Neither GCC 4.2 nor clang++ currently set a valid // accessibility in the DWARF for C++ methods... // Default to public for now... const auto accessibility = attrs.accessibility == eAccessNone ? eAccessPublic : attrs.accessibility; clang::CXXMethodDecl *cxx_method_decl = m_ast.AddMethodToCXXRecordType( class_opaque_type.GetOpaqueQualType(), attrs.name.GetCString(), attrs.mangled_name, clang_type, accessibility, attrs.is_virtual, is_static, attrs.is_inline, attrs.is_explicit, is_attr_used, attrs.is_artificial); if (cxx_method_decl) { LinkDeclContextToDIE(cxx_method_decl, die); ClangASTMetadata metadata; metadata.SetUserID(die.GetID()); char const *object_pointer_name = attrs.object_pointer ? attrs.object_pointer.GetName() : nullptr; if (object_pointer_name) { metadata.SetObjectPtrName(object_pointer_name); LLDB_LOGF(log, "Setting object pointer name: %s on method object %p.\n", object_pointer_name, static_cast(cxx_method_decl)); } m_ast.SetMetadata(cxx_method_decl, metadata); } else { ignore_containing_context = true; } // Artificial methods are always handled even when we // don't create a new declaration for them. const bool type_handled = cxx_method_decl != nullptr || attrs.is_artificial; return {type_handled, nullptr}; } TypeSP DWARFASTParserClang::ParseSubroutine(const DWARFDIE &die, const ParsedDWARFTypeAttributes &attrs) { Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); SymbolFileDWARF *dwarf = die.GetDWARF(); const dw_tag_t tag = die.Tag(); bool is_variadic = false; bool is_static = false; bool has_template_params = false; unsigned type_quals = 0; DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\")\n", die.GetID(), DW_TAG_value_to_name(tag), type_name_cstr); CompilerType return_clang_type; Type *func_type = nullptr; if (attrs.type.IsValid()) func_type = dwarf->ResolveTypeUID(attrs.type.Reference(), true); if (func_type) return_clang_type = func_type->GetForwardCompilerType(); else return_clang_type = m_ast.GetBasicType(eBasicTypeVoid); std::vector function_param_types; std::vector function_param_decls; // Parse the function children for the parameters DWARFDIE decl_ctx_die; clang::DeclContext *containing_decl_ctx = GetClangDeclContextContainingDIE(die, &decl_ctx_die); const clang::Decl::Kind containing_decl_kind = containing_decl_ctx->getDeclKind(); bool is_cxx_method = DeclKindIsCXXClass(containing_decl_kind); // Start off static. This will be set to false in // ParseChildParameters(...) if we find a "this" parameters as the // first parameter if (is_cxx_method) { is_static = true; } if (die.HasChildren()) { bool skip_artificial = true; ParseChildParameters(containing_decl_ctx, die, skip_artificial, is_static, is_variadic, has_template_params, function_param_types, function_param_decls, type_quals); } bool ignore_containing_context = false; // Check for templatized class member functions. If we had any // DW_TAG_template_type_parameter or DW_TAG_template_value_parameter // the DW_TAG_subprogram DIE, then we can't let this become a method in // a class. Why? Because templatized functions are only emitted if one // of the templatized methods is used in the current compile unit and // we will end up with classes that may or may not include these member // functions and this means one class won't match another class // definition and it affects our ability to use a class in the clang // expression parser. So for the greater good, we currently must not // allow any template member functions in a class definition. if (is_cxx_method && has_template_params) { ignore_containing_context = true; is_cxx_method = false; } clang::CallingConv calling_convention = ConvertDWARFCallingConventionToClang(attrs); // clang_type will get the function prototype clang type after this // call CompilerType clang_type = m_ast.CreateFunctionType(return_clang_type, function_param_types.data(), function_param_types.size(), is_variadic, type_quals, calling_convention, attrs.ref_qual); if (attrs.name) { bool type_handled = false; if (tag == DW_TAG_subprogram || tag == DW_TAG_inlined_subroutine) { if (std::optional objc_method = ObjCLanguage::MethodName::Create(attrs.name.GetStringRef(), true)) { type_handled = ParseObjCMethod(*objc_method, die, clang_type, attrs, is_variadic); } else if (is_cxx_method) { auto [handled, type_sp] = ParseCXXMethod(die, clang_type, attrs, decl_ctx_die, is_static, ignore_containing_context); if (type_sp) return type_sp; type_handled = handled; } } if (!type_handled) { clang::FunctionDecl *function_decl = nullptr; clang::FunctionDecl *template_function_decl = nullptr; if (attrs.abstract_origin.IsValid()) { DWARFDIE abs_die = attrs.abstract_origin.Reference(); if (dwarf->ResolveType(abs_die)) { function_decl = llvm::dyn_cast_or_null( GetCachedClangDeclContextForDIE(abs_die)); if (function_decl) { LinkDeclContextToDIE(function_decl, die); } } } if (!function_decl) { char *name_buf = nullptr; llvm::StringRef name = attrs.name.GetStringRef(); // We currently generate function templates with template parameters in // their name. In order to get closer to the AST that clang generates // we want to strip these from the name when creating the AST. if (attrs.mangled_name) { llvm::ItaniumPartialDemangler D; if (!D.partialDemangle(attrs.mangled_name)) { name_buf = D.getFunctionBaseName(nullptr, nullptr); name = name_buf; } } // We just have a function that isn't part of a class function_decl = m_ast.CreateFunctionDeclaration( ignore_containing_context ? m_ast.GetTranslationUnitDecl() : containing_decl_ctx, GetOwningClangModule(die), name, clang_type, attrs.storage, attrs.is_inline); std::free(name_buf); if (has_template_params) { TypeSystemClang::TemplateParameterInfos template_param_infos; ParseTemplateParameterInfos(die, template_param_infos); template_function_decl = m_ast.CreateFunctionDeclaration( ignore_containing_context ? m_ast.GetTranslationUnitDecl() : containing_decl_ctx, GetOwningClangModule(die), attrs.name.GetStringRef(), clang_type, attrs.storage, attrs.is_inline); clang::FunctionTemplateDecl *func_template_decl = m_ast.CreateFunctionTemplateDecl( containing_decl_ctx, GetOwningClangModule(die), template_function_decl, template_param_infos); m_ast.CreateFunctionTemplateSpecializationInfo( template_function_decl, func_template_decl, template_param_infos); } lldbassert(function_decl); if (function_decl) { // Attach an asm() label to the FunctionDecl. // This ensures that clang::CodeGen emits function calls // using symbols that are mangled according to the DW_AT_linkage_name. // If we didn't do this, the external symbols wouldn't exactly // match the mangled name LLDB knows about and the IRExecutionUnit // would have to fall back to searching object files for // approximately matching function names. The motivating // example is generating calls to ABI-tagged template functions. // This is done separately for member functions in // AddMethodToCXXRecordType. if (attrs.mangled_name) function_decl->addAttr(clang::AsmLabelAttr::CreateImplicit( m_ast.getASTContext(), attrs.mangled_name, /*literal=*/false)); LinkDeclContextToDIE(function_decl, die); if (!function_param_decls.empty()) { m_ast.SetFunctionParameters(function_decl, function_param_decls); if (template_function_decl) m_ast.SetFunctionParameters(template_function_decl, function_param_decls); } ClangASTMetadata metadata; metadata.SetUserID(die.GetID()); char const *object_pointer_name = attrs.object_pointer ? attrs.object_pointer.GetName() : nullptr; if (object_pointer_name) { metadata.SetObjectPtrName(object_pointer_name); LLDB_LOGF(log, "Setting object pointer name: %s on function " "object %p.", object_pointer_name, static_cast(function_decl)); } m_ast.SetMetadata(function_decl, metadata); } } } } return dwarf->MakeType( die.GetID(), attrs.name, std::nullopt, nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, &attrs.decl, clang_type, Type::ResolveState::Full); } TypeSP DWARFASTParserClang::ParseArrayType(const DWARFDIE &die, const ParsedDWARFTypeAttributes &attrs) { SymbolFileDWARF *dwarf = die.GetDWARF(); DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\")\n", die.GetID(), DW_TAG_value_to_name(tag), type_name_cstr); DWARFDIE type_die = attrs.type.Reference(); Type *element_type = dwarf->ResolveTypeUID(type_die, true); if (!element_type) return nullptr; std::optional array_info = ParseChildArrayInfo(die); uint32_t byte_stride = attrs.byte_stride; uint32_t bit_stride = attrs.bit_stride; if (array_info) { byte_stride = array_info->byte_stride; bit_stride = array_info->bit_stride; } if (byte_stride == 0 && bit_stride == 0) byte_stride = element_type->GetByteSize(nullptr).value_or(0); CompilerType array_element_type = element_type->GetForwardCompilerType(); TypeSystemClang::RequireCompleteType(array_element_type); uint64_t array_element_bit_stride = byte_stride * 8 + bit_stride; CompilerType clang_type; if (array_info && array_info->element_orders.size() > 0) { uint64_t num_elements = 0; auto end = array_info->element_orders.rend(); for (auto pos = array_info->element_orders.rbegin(); pos != end; ++pos) { num_elements = *pos; clang_type = m_ast.CreateArrayType(array_element_type, num_elements, attrs.is_vector); array_element_type = clang_type; array_element_bit_stride = num_elements ? array_element_bit_stride * num_elements : array_element_bit_stride; } } else { clang_type = m_ast.CreateArrayType(array_element_type, 0, attrs.is_vector); } ConstString empty_name; TypeSP type_sp = dwarf->MakeType(die.GetID(), empty_name, array_element_bit_stride / 8, nullptr, type_die.GetID(), Type::eEncodingIsUID, &attrs.decl, clang_type, Type::ResolveState::Full); type_sp->SetEncodingType(element_type); const clang::Type *type = ClangUtil::GetQualType(clang_type).getTypePtr(); m_ast.SetMetadataAsUserID(type, die.GetID()); return type_sp; } TypeSP DWARFASTParserClang::ParsePointerToMemberType( const DWARFDIE &die, const ParsedDWARFTypeAttributes &attrs) { SymbolFileDWARF *dwarf = die.GetDWARF(); Type *pointee_type = dwarf->ResolveTypeUID(attrs.type.Reference(), true); Type *class_type = dwarf->ResolveTypeUID(attrs.containing_type.Reference(), true); // Check to make sure pointers are not NULL before attempting to // dereference them. if ((class_type == nullptr) || (pointee_type == nullptr)) return nullptr; CompilerType pointee_clang_type = pointee_type->GetForwardCompilerType(); CompilerType class_clang_type = class_type->GetForwardCompilerType(); CompilerType clang_type = TypeSystemClang::CreateMemberPointerType( class_clang_type, pointee_clang_type); if (std::optional clang_type_size = clang_type.GetByteSize(nullptr)) { return dwarf->MakeType(die.GetID(), attrs.name, *clang_type_size, nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, nullptr, clang_type, Type::ResolveState::Forward); } return nullptr; } void DWARFASTParserClang::ParseInheritance( const DWARFDIE &die, const DWARFDIE &parent_die, const CompilerType class_clang_type, const AccessType default_accessibility, const lldb::ModuleSP &module_sp, std::vector> &base_classes, ClangASTImporter::LayoutInfo &layout_info) { auto ast = class_clang_type.GetTypeSystem().dyn_cast_or_null(); if (ast == nullptr) return; // TODO: implement DW_TAG_inheritance type parsing. DWARFAttributes attributes = die.GetAttributes(); if (attributes.Size() == 0) return; DWARFFormValue encoding_form; AccessType accessibility = default_accessibility; bool is_virtual = false; bool is_base_of_class = true; off_t member_byte_offset = 0; for (uint32_t i = 0; i < attributes.Size(); ++i) { const dw_attr_t attr = attributes.AttributeAtIndex(i); DWARFFormValue form_value; if (attributes.ExtractFormValueAtIndex(i, form_value)) { switch (attr) { case DW_AT_type: encoding_form = form_value; break; case DW_AT_data_member_location: if (auto maybe_offset = ExtractDataMemberLocation(die, form_value, module_sp)) member_byte_offset = *maybe_offset; break; case DW_AT_accessibility: accessibility = DWARFASTParser::GetAccessTypeFromDWARF(form_value.Unsigned()); break; case DW_AT_virtuality: is_virtual = form_value.Boolean(); break; default: break; } } } Type *base_class_type = die.ResolveTypeUID(encoding_form.Reference()); if (base_class_type == nullptr) { module_sp->ReportError("{0:x16}: DW_TAG_inheritance failed to " "resolve the base class at {1:x16}" " from enclosing type {2:x16}. \nPlease file " "a bug and attach the file at the start of " "this error message", die.GetOffset(), encoding_form.Reference().GetOffset(), parent_die.GetOffset()); return; } CompilerType base_class_clang_type = base_class_type->GetFullCompilerType(); assert(base_class_clang_type); if (TypeSystemClang::IsObjCObjectOrInterfaceType(class_clang_type)) { ast->SetObjCSuperClass(class_clang_type, base_class_clang_type); return; } std::unique_ptr result = ast->CreateBaseClassSpecifier(base_class_clang_type.GetOpaqueQualType(), accessibility, is_virtual, is_base_of_class); if (!result) return; base_classes.push_back(std::move(result)); if (is_virtual) { // Do not specify any offset for virtual inheritance. The DWARF // produced by clang doesn't give us a constant offset, but gives // us a DWARF expressions that requires an actual object in memory. // the DW_AT_data_member_location for a virtual base class looks // like: // DW_AT_data_member_location( DW_OP_dup, DW_OP_deref, // DW_OP_constu(0x00000018), DW_OP_minus, DW_OP_deref, // DW_OP_plus ) // Given this, there is really no valid response we can give to // clang for virtual base class offsets, and this should eventually // be removed from LayoutRecordType() in the external // AST source in clang. } else { layout_info.base_offsets.insert(std::make_pair( ast->GetAsCXXRecordDecl(base_class_clang_type.GetOpaqueQualType()), clang::CharUnits::fromQuantity(member_byte_offset))); } } TypeSP DWARFASTParserClang::UpdateSymbolContextScopeForType( const SymbolContext &sc, const DWARFDIE &die, TypeSP type_sp) { if (!type_sp) return type_sp; DWARFDIE sc_parent_die = SymbolFileDWARF::GetParentSymbolContextDIE(die); dw_tag_t sc_parent_tag = sc_parent_die.Tag(); SymbolContextScope *symbol_context_scope = nullptr; if (sc_parent_tag == DW_TAG_compile_unit || sc_parent_tag == DW_TAG_partial_unit) { symbol_context_scope = sc.comp_unit; } else if (sc.function != nullptr && sc_parent_die) { symbol_context_scope = sc.function->GetBlock(true).FindBlockByID(sc_parent_die.GetID()); if (symbol_context_scope == nullptr) symbol_context_scope = sc.function; } else { symbol_context_scope = sc.module_sp.get(); } if (symbol_context_scope != nullptr) type_sp->SetSymbolContextScope(symbol_context_scope); return type_sp; } void DWARFASTParserClang::GetUniqueTypeNameAndDeclaration( const lldb_private::plugin::dwarf::DWARFDIE &die, lldb::LanguageType language, lldb_private::ConstString &unique_typename, lldb_private::Declaration &decl_declaration) { // For C++, we rely solely upon the one definition rule that says // only one thing can exist at a given decl context. We ignore the // file and line that things are declared on. if (!die.IsValid() || !Language::LanguageIsCPlusPlus(language) || unique_typename.IsEmpty()) return; decl_declaration.Clear(); std::string qualified_name; DWARFDIE parent_decl_ctx_die = die.GetParentDeclContextDIE(); // TODO: change this to get the correct decl context parent.... while (parent_decl_ctx_die) { // The name may not contain template parameters due to // -gsimple-template-names; we must reconstruct the full name from child // template parameter dies via GetDIEClassTemplateParams(). const dw_tag_t parent_tag = parent_decl_ctx_die.Tag(); switch (parent_tag) { case DW_TAG_namespace: { if (const char *namespace_name = parent_decl_ctx_die.GetName()) { qualified_name.insert(0, "::"); qualified_name.insert(0, namespace_name); } else { qualified_name.insert(0, "(anonymous namespace)::"); } parent_decl_ctx_die = parent_decl_ctx_die.GetParentDeclContextDIE(); break; } case DW_TAG_class_type: case DW_TAG_structure_type: case DW_TAG_union_type: { if (const char *class_union_struct_name = parent_decl_ctx_die.GetName()) { qualified_name.insert( 0, GetDIEClassTemplateParams(parent_decl_ctx_die)); qualified_name.insert(0, "::"); qualified_name.insert(0, class_union_struct_name); } parent_decl_ctx_die = parent_decl_ctx_die.GetParentDeclContextDIE(); break; } default: parent_decl_ctx_die.Clear(); break; } } if (qualified_name.empty()) qualified_name.append("::"); qualified_name.append(unique_typename.GetCString()); qualified_name.append(GetDIEClassTemplateParams(die)); unique_typename = ConstString(qualified_name); } TypeSP DWARFASTParserClang::ParseStructureLikeDIE(const SymbolContext &sc, const DWARFDIE &die, ParsedDWARFTypeAttributes &attrs) { CompilerType clang_type; const dw_tag_t tag = die.Tag(); SymbolFileDWARF *dwarf = die.GetDWARF(); LanguageType cu_language = SymbolFileDWARF::GetLanguage(*die.GetCU()); Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); ConstString unique_typename(attrs.name); Declaration unique_decl(attrs.decl); uint64_t byte_size = attrs.byte_size.value_or(0); if (attrs.byte_size && *attrs.byte_size == 0 && attrs.name && !die.HasChildren() && cu_language == eLanguageTypeObjC) { // Work around an issue with clang at the moment where forward // declarations for objective C classes are emitted as: // DW_TAG_structure_type [2] // DW_AT_name( "ForwardObjcClass" ) // DW_AT_byte_size( 0x00 ) // DW_AT_decl_file( "..." ) // DW_AT_decl_line( 1 ) // // Note that there is no DW_AT_declaration and there are no children, // and the byte size is zero. attrs.is_forward_declaration = true; } if (attrs.name) { GetUniqueTypeNameAndDeclaration(die, cu_language, unique_typename, unique_decl); if (UniqueDWARFASTType *unique_ast_entry_type = dwarf->GetUniqueDWARFASTTypeMap().Find( unique_typename, die, unique_decl, byte_size, attrs.is_forward_declaration)) { if (TypeSP type_sp = unique_ast_entry_type->m_type_sp) { dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get(); LinkDeclContextToDIE( GetCachedClangDeclContextForDIE(unique_ast_entry_type->m_die), die); // If the DIE being parsed in this function is a definition and the // entry in the map is a declaration, then we need to update the entry // to point to the definition DIE. if (!attrs.is_forward_declaration && unique_ast_entry_type->m_is_forward_declaration) { unique_ast_entry_type->UpdateToDefDIE(die, unique_decl, byte_size); clang_type = type_sp->GetForwardCompilerType(); CompilerType compiler_type_no_qualifiers = ClangUtil::RemoveFastQualifiers(clang_type); dwarf->GetForwardDeclCompilerTypeToDIE().insert_or_assign( compiler_type_no_qualifiers.GetOpaqueQualType(), *die.GetDIERef()); } return type_sp; } } } DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\")\n", die.GetID(), DW_TAG_value_to_name(tag), type_name_cstr); int tag_decl_kind = -1; AccessType default_accessibility = eAccessNone; if (tag == DW_TAG_structure_type) { tag_decl_kind = llvm::to_underlying(clang::TagTypeKind::Struct); default_accessibility = eAccessPublic; } else if (tag == DW_TAG_union_type) { tag_decl_kind = llvm::to_underlying(clang::TagTypeKind::Union); default_accessibility = eAccessPublic; } else if (tag == DW_TAG_class_type) { tag_decl_kind = llvm::to_underlying(clang::TagTypeKind::Class); default_accessibility = eAccessPrivate; } if ((attrs.class_language == eLanguageTypeObjC || attrs.class_language == eLanguageTypeObjC_plus_plus) && !attrs.is_complete_objc_class && die.Supports_DW_AT_APPLE_objc_complete_type()) { // We have a valid eSymbolTypeObjCClass class symbol whose name // matches the current objective C class that we are trying to find // and this DIE isn't the complete definition (we checked // is_complete_objc_class above and know it is false), so the real // definition is in here somewhere TypeSP type_sp = dwarf->FindCompleteObjCDefinitionTypeForDIE(die, attrs.name, true); if (!type_sp) { SymbolFileDWARFDebugMap *debug_map_symfile = dwarf->GetDebugMapSymfile(); if (debug_map_symfile) { // We weren't able to find a full declaration in this DWARF, // see if we have a declaration anywhere else... type_sp = debug_map_symfile->FindCompleteObjCDefinitionTypeForDIE( die, attrs.name, true); } } if (type_sp) { if (log) { dwarf->GetObjectFile()->GetModule()->LogMessage( log, "SymbolFileDWARF({0:p}) - {1:x16}: {2} ({3}) type \"{4}\" is an " "incomplete objc type, complete type is {5:x8}", static_cast(this), die.GetID(), DW_TAG_value_to_name(tag), tag, attrs.name.GetCString(), type_sp->GetID()); } return type_sp; } } if (attrs.is_forward_declaration) { // See if the type comes from a Clang module and if so, track down // that type. TypeSP type_sp = ParseTypeFromClangModule(sc, die, log); if (type_sp) return type_sp; } assert(tag_decl_kind != -1); UNUSED_IF_ASSERT_DISABLED(tag_decl_kind); clang::DeclContext *containing_decl_ctx = GetClangDeclContextContainingDIE(die, nullptr); PrepareContextToReceiveMembers(m_ast, GetClangASTImporter(), containing_decl_ctx, die, attrs.name.GetCString()); if (attrs.accessibility == eAccessNone && containing_decl_ctx) { // Check the decl context that contains this class/struct/union. If // it is a class we must give it an accessibility. const clang::Decl::Kind containing_decl_kind = containing_decl_ctx->getDeclKind(); if (DeclKindIsCXXClass(containing_decl_kind)) attrs.accessibility = default_accessibility; } ClangASTMetadata metadata; metadata.SetUserID(die.GetID()); metadata.SetIsDynamicCXXType(dwarf->ClassOrStructIsVirtual(die)); TypeSystemClang::TemplateParameterInfos template_param_infos; if (ParseTemplateParameterInfos(die, template_param_infos)) { clang::ClassTemplateDecl *class_template_decl = m_ast.ParseClassTemplateDecl( containing_decl_ctx, GetOwningClangModule(die), attrs.accessibility, attrs.name.GetCString(), tag_decl_kind, template_param_infos); if (!class_template_decl) { if (log) { dwarf->GetObjectFile()->GetModule()->LogMessage( log, "SymbolFileDWARF({0:p}) - {1:x16}: {2} ({3}) type \"{4}\" " "clang::ClassTemplateDecl failed to return a decl.", static_cast(this), die.GetID(), DW_TAG_value_to_name(tag), tag, attrs.name.GetCString()); } return TypeSP(); } clang::ClassTemplateSpecializationDecl *class_specialization_decl = m_ast.CreateClassTemplateSpecializationDecl( containing_decl_ctx, GetOwningClangModule(die), class_template_decl, tag_decl_kind, template_param_infos); clang_type = m_ast.CreateClassTemplateSpecializationType(class_specialization_decl); m_ast.SetMetadata(class_template_decl, metadata); m_ast.SetMetadata(class_specialization_decl, metadata); } if (!clang_type) { clang_type = m_ast.CreateRecordType( containing_decl_ctx, GetOwningClangModule(die), attrs.accessibility, attrs.name.GetCString(), tag_decl_kind, attrs.class_language, &metadata, attrs.exports_symbols); } TypeSP type_sp = dwarf->MakeType( die.GetID(), attrs.name, attrs.byte_size, nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, &attrs.decl, clang_type, Type::ResolveState::Forward, TypePayloadClang(OptionalClangModuleID(), attrs.is_complete_objc_class)); // Store a forward declaration to this class type in case any // parameters in any class methods need it for the clang types for // function prototypes. clang::DeclContext *type_decl_ctx = TypeSystemClang::GetDeclContextForType(clang_type); LinkDeclContextToDIE(type_decl_ctx, die); // UniqueDWARFASTType is large, so don't create a local variables on the // stack, put it on the heap. This function is often called recursively and // clang isn't good at sharing the stack space for variables in different // blocks. auto unique_ast_entry_up = std::make_unique(); // Add our type to the unique type map so we don't end up creating many // copies of the same type over and over in the ASTContext for our // module unique_ast_entry_up->m_type_sp = type_sp; unique_ast_entry_up->m_die = die; unique_ast_entry_up->m_declaration = unique_decl; unique_ast_entry_up->m_byte_size = byte_size; unique_ast_entry_up->m_is_forward_declaration = attrs.is_forward_declaration; dwarf->GetUniqueDWARFASTTypeMap().Insert(unique_typename, *unique_ast_entry_up); // Leave this as a forward declaration until we need to know the // details of the type. lldb_private::Type will automatically call // the SymbolFile virtual function // "SymbolFileDWARF::CompleteType(Type *)" When the definition // needs to be defined. bool inserted = dwarf->GetForwardDeclCompilerTypeToDIE() .try_emplace( ClangUtil::RemoveFastQualifiers(clang_type).GetOpaqueQualType(), *die.GetDIERef()) .second; assert(inserted && "Type already in the forward declaration map!"); (void)inserted; m_ast.SetHasExternalStorage(clang_type.GetOpaqueQualType(), true); // If we made a clang type, set the trivial abi if applicable: We only // do this for pass by value - which implies the Trivial ABI. There // isn't a way to assert that something that would normally be pass by // value is pass by reference, so we ignore that attribute if set. if (attrs.calling_convention == llvm::dwarf::DW_CC_pass_by_value) { clang::CXXRecordDecl *record_decl = m_ast.GetAsCXXRecordDecl(clang_type.GetOpaqueQualType()); if (record_decl && record_decl->getDefinition()) { record_decl->setHasTrivialSpecialMemberForCall(); } } if (attrs.calling_convention == llvm::dwarf::DW_CC_pass_by_reference) { clang::CXXRecordDecl *record_decl = m_ast.GetAsCXXRecordDecl(clang_type.GetOpaqueQualType()); if (record_decl) record_decl->setArgPassingRestrictions( clang::RecordArgPassingKind::CannotPassInRegs); } return type_sp; } // DWARF parsing functions class DWARFASTParserClang::DelayedAddObjCClassProperty { public: DelayedAddObjCClassProperty( const CompilerType &class_opaque_type, const char *property_name, const CompilerType &property_opaque_type, // The property type is only // required if you don't have an // ivar decl const char *property_setter_name, const char *property_getter_name, uint32_t property_attributes, const ClangASTMetadata *metadata) : m_class_opaque_type(class_opaque_type), m_property_name(property_name), m_property_opaque_type(property_opaque_type), m_property_setter_name(property_setter_name), m_property_getter_name(property_getter_name), m_property_attributes(property_attributes) { if (metadata != nullptr) { m_metadata_up = std::make_unique(); *m_metadata_up = *metadata; } } DelayedAddObjCClassProperty(const DelayedAddObjCClassProperty &rhs) { *this = rhs; } DelayedAddObjCClassProperty & operator=(const DelayedAddObjCClassProperty &rhs) { m_class_opaque_type = rhs.m_class_opaque_type; m_property_name = rhs.m_property_name; m_property_opaque_type = rhs.m_property_opaque_type; m_property_setter_name = rhs.m_property_setter_name; m_property_getter_name = rhs.m_property_getter_name; m_property_attributes = rhs.m_property_attributes; if (rhs.m_metadata_up) { m_metadata_up = std::make_unique(); *m_metadata_up = *rhs.m_metadata_up; } return *this; } bool Finalize() { return TypeSystemClang::AddObjCClassProperty( m_class_opaque_type, m_property_name, m_property_opaque_type, /*ivar_decl=*/nullptr, m_property_setter_name, m_property_getter_name, m_property_attributes, m_metadata_up.get()); } private: CompilerType m_class_opaque_type; const char *m_property_name; CompilerType m_property_opaque_type; const char *m_property_setter_name; const char *m_property_getter_name; uint32_t m_property_attributes; std::unique_ptr m_metadata_up; }; bool DWARFASTParserClang::ParseTemplateDIE( const DWARFDIE &die, TypeSystemClang::TemplateParameterInfos &template_param_infos) { const dw_tag_t tag = die.Tag(); bool is_template_template_argument = false; switch (tag) { case DW_TAG_GNU_template_parameter_pack: { template_param_infos.SetParameterPack( std::make_unique()); for (DWARFDIE child_die : die.children()) { if (!ParseTemplateDIE(child_die, template_param_infos.GetParameterPack())) return false; } if (const char *name = die.GetName()) { template_param_infos.SetPackName(name); } return true; } case DW_TAG_GNU_template_template_param: is_template_template_argument = true; [[fallthrough]]; case DW_TAG_template_type_parameter: case DW_TAG_template_value_parameter: { DWARFAttributes attributes = die.GetAttributes(); if (attributes.Size() == 0) return true; const char *name = nullptr; const char *template_name = nullptr; CompilerType clang_type; uint64_t uval64 = 0; bool uval64_valid = false; bool is_default_template_arg = false; DWARFFormValue form_value; for (size_t i = 0; i < attributes.Size(); ++i) { const dw_attr_t attr = attributes.AttributeAtIndex(i); switch (attr) { case DW_AT_name: if (attributes.ExtractFormValueAtIndex(i, form_value)) name = form_value.AsCString(); break; case DW_AT_GNU_template_name: if (attributes.ExtractFormValueAtIndex(i, form_value)) template_name = form_value.AsCString(); break; case DW_AT_type: if (attributes.ExtractFormValueAtIndex(i, form_value)) { Type *lldb_type = die.ResolveTypeUID(form_value.Reference()); if (lldb_type) clang_type = lldb_type->GetForwardCompilerType(); } break; case DW_AT_const_value: if (attributes.ExtractFormValueAtIndex(i, form_value)) { uval64_valid = true; uval64 = form_value.Unsigned(); } break; case DW_AT_default_value: if (attributes.ExtractFormValueAtIndex(i, form_value)) is_default_template_arg = form_value.Boolean(); break; default: break; } } clang::ASTContext &ast = m_ast.getASTContext(); if (!clang_type) clang_type = m_ast.GetBasicType(eBasicTypeVoid); if (!is_template_template_argument) { bool is_signed = false; // Get the signed value for any integer or enumeration if available clang_type.IsIntegerOrEnumerationType(is_signed); if (name && !name[0]) name = nullptr; if (tag == DW_TAG_template_value_parameter && uval64_valid) { std::optional size = clang_type.GetBitSize(nullptr); if (!size) return false; llvm::APInt apint(*size, uval64, is_signed); template_param_infos.InsertArg( name, clang::TemplateArgument(ast, llvm::APSInt(apint, !is_signed), ClangUtil::GetQualType(clang_type), is_default_template_arg)); } else { template_param_infos.InsertArg( name, clang::TemplateArgument(ClangUtil::GetQualType(clang_type), /*isNullPtr*/ false, is_default_template_arg)); } } else { auto *tplt_type = m_ast.CreateTemplateTemplateParmDecl(template_name); template_param_infos.InsertArg( name, clang::TemplateArgument(clang::TemplateName(tplt_type), is_default_template_arg)); } } return true; default: break; } return false; } bool DWARFASTParserClang::ParseTemplateParameterInfos( const DWARFDIE &parent_die, TypeSystemClang::TemplateParameterInfos &template_param_infos) { if (!parent_die) return false; for (DWARFDIE die : parent_die.children()) { const dw_tag_t tag = die.Tag(); switch (tag) { case DW_TAG_template_type_parameter: case DW_TAG_template_value_parameter: case DW_TAG_GNU_template_parameter_pack: case DW_TAG_GNU_template_template_param: ParseTemplateDIE(die, template_param_infos); break; default: break; } } return !template_param_infos.IsEmpty() || template_param_infos.hasParameterPack(); } bool DWARFASTParserClang::CompleteRecordType(const DWARFDIE &die, lldb_private::Type *type, CompilerType &clang_type) { const dw_tag_t tag = die.Tag(); SymbolFileDWARF *dwarf = die.GetDWARF(); ClangASTImporter::LayoutInfo layout_info; std::vector contained_type_dies; if (die.GetAttributeValueAsUnsigned(DW_AT_declaration, 0)) return false; // No definition, cannot complete. // Start the definition if the type is not being defined already. This can // happen (e.g.) when adding nested types to a class type -- see // PrepareContextToReceiveMembers. if (!clang_type.IsBeingDefined()) TypeSystemClang::StartTagDeclarationDefinition(clang_type); AccessType default_accessibility = eAccessNone; if (tag == DW_TAG_structure_type) { default_accessibility = eAccessPublic; } else if (tag == DW_TAG_union_type) { default_accessibility = eAccessPublic; } else if (tag == DW_TAG_class_type) { default_accessibility = eAccessPrivate; } std::vector> bases; // Parse members and base classes first std::vector member_function_dies; DelayedPropertyList delayed_properties; ParseChildMembers(die, clang_type, bases, member_function_dies, contained_type_dies, delayed_properties, default_accessibility, layout_info); // Now parse any methods if there were any... for (const DWARFDIE &die : member_function_dies) dwarf->ResolveType(die); if (TypeSystemClang::IsObjCObjectOrInterfaceType(clang_type)) { ConstString class_name(clang_type.GetTypeName()); if (class_name) { dwarf->GetObjCMethods(class_name, [&](DWARFDIE method_die) { method_die.ResolveType(); return true; }); for (DelayedAddObjCClassProperty &property : delayed_properties) property.Finalize(); } } if (!bases.empty()) { // Make sure all base classes refer to complete types and not forward // declarations. If we don't do this, clang will crash with an // assertion in the call to clang_type.TransferBaseClasses() for (const auto &base_class : bases) { clang::TypeSourceInfo *type_source_info = base_class->getTypeSourceInfo(); if (type_source_info) TypeSystemClang::RequireCompleteType( m_ast.GetType(type_source_info->getType())); } m_ast.TransferBaseClasses(clang_type.GetOpaqueQualType(), std::move(bases)); } m_ast.AddMethodOverridesForCXXRecordType(clang_type.GetOpaqueQualType()); TypeSystemClang::BuildIndirectFields(clang_type); TypeSystemClang::CompleteTagDeclarationDefinition(clang_type); if (type) layout_info.bit_size = type->GetByteSize(nullptr).value_or(0) * 8; if (layout_info.bit_size == 0) layout_info.bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8; if (layout_info.alignment == 0) layout_info.alignment = die.GetAttributeValueAsUnsigned(llvm::dwarf::DW_AT_alignment, 0) * 8; clang::CXXRecordDecl *record_decl = m_ast.GetAsCXXRecordDecl(clang_type.GetOpaqueQualType()); if (record_decl) GetClangASTImporter().SetRecordLayout(record_decl, layout_info); // Now parse all contained types inside of the class. We make forward // declarations to all classes, but we need the CXXRecordDecl to have decls // for all contained types because we don't get asked for them via the // external AST support. for (const DWARFDIE &die : contained_type_dies) dwarf->ResolveType(die); return (bool)clang_type; } bool DWARFASTParserClang::CompleteEnumType(const DWARFDIE &die, lldb_private::Type *type, CompilerType &clang_type) { if (TypeSystemClang::StartTagDeclarationDefinition(clang_type)) { if (die.HasChildren()) { bool is_signed = false; clang_type.IsIntegerType(is_signed); ParseChildEnumerators(clang_type, is_signed, type->GetByteSize(nullptr).value_or(0), die); } TypeSystemClang::CompleteTagDeclarationDefinition(clang_type); } return (bool)clang_type; } bool DWARFASTParserClang::CompleteTypeFromDWARF(const DWARFDIE &die, lldb_private::Type *type, CompilerType &clang_type) { SymbolFileDWARF *dwarf = die.GetDWARF(); std::lock_guard guard( dwarf->GetObjectFile()->GetModule()->GetMutex()); // Disable external storage for this type so we don't get anymore // clang::ExternalASTSource queries for this type. m_ast.SetHasExternalStorage(clang_type.GetOpaqueQualType(), false); if (!die) return false; const dw_tag_t tag = die.Tag(); assert(clang_type); switch (tag) { case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_class_type: CompleteRecordType(die, type, clang_type); break; case DW_TAG_enumeration_type: CompleteEnumType(die, type, clang_type); break; default: assert(false && "not a forward clang type decl!"); break; } // If the type is still not fully defined at this point, it means we weren't // able to find its definition. We must forcefully complete it to preserve // clang AST invariants. if (clang_type.IsBeingDefined()) { TypeSystemClang::CompleteTagDeclarationDefinition(clang_type); m_ast.SetDeclIsForcefullyCompleted(ClangUtil::GetAsTagDecl(clang_type)); } return true; } void DWARFASTParserClang::EnsureAllDIEsInDeclContextHaveBeenParsed( lldb_private::CompilerDeclContext decl_context) { auto opaque_decl_ctx = (clang::DeclContext *)decl_context.GetOpaqueDeclContext(); for (auto it = m_decl_ctx_to_die.find(opaque_decl_ctx); it != m_decl_ctx_to_die.end() && it->first == opaque_decl_ctx; it = m_decl_ctx_to_die.erase(it)) for (DWARFDIE decl : it->second.children()) GetClangDeclForDIE(decl); } CompilerDecl DWARFASTParserClang::GetDeclForUIDFromDWARF(const DWARFDIE &die) { clang::Decl *clang_decl = GetClangDeclForDIE(die); if (clang_decl != nullptr) return m_ast.GetCompilerDecl(clang_decl); return {}; } CompilerDeclContext DWARFASTParserClang::GetDeclContextForUIDFromDWARF(const DWARFDIE &die) { clang::DeclContext *clang_decl_ctx = GetClangDeclContextForDIE(die); if (clang_decl_ctx) return m_ast.CreateDeclContext(clang_decl_ctx); return {}; } CompilerDeclContext DWARFASTParserClang::GetDeclContextContainingUIDFromDWARF(const DWARFDIE &die) { clang::DeclContext *clang_decl_ctx = GetClangDeclContextContainingDIE(die, nullptr); if (clang_decl_ctx) return m_ast.CreateDeclContext(clang_decl_ctx); return {}; } size_t DWARFASTParserClang::ParseChildEnumerators( lldb_private::CompilerType &clang_type, bool is_signed, uint32_t enumerator_byte_size, const DWARFDIE &parent_die) { if (!parent_die) return 0; size_t enumerators_added = 0; for (DWARFDIE die : parent_die.children()) { const dw_tag_t tag = die.Tag(); if (tag != DW_TAG_enumerator) continue; DWARFAttributes attributes = die.GetAttributes(); if (attributes.Size() == 0) continue; const char *name = nullptr; bool got_value = false; int64_t enum_value = 0; Declaration decl; for (size_t i = 0; i < attributes.Size(); ++i) { const dw_attr_t attr = attributes.AttributeAtIndex(i); DWARFFormValue form_value; if (attributes.ExtractFormValueAtIndex(i, form_value)) { switch (attr) { case DW_AT_const_value: got_value = true; if (is_signed) enum_value = form_value.Signed(); else enum_value = form_value.Unsigned(); break; case DW_AT_name: name = form_value.AsCString(); break; case DW_AT_description: default: case DW_AT_decl_file: decl.SetFile( attributes.CompileUnitAtIndex(i)->GetFile(form_value.Unsigned())); break; case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break; case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break; case DW_AT_sibling: break; } } } if (name && name[0] && got_value) { m_ast.AddEnumerationValueToEnumerationType( clang_type, decl, name, enum_value, enumerator_byte_size * 8); ++enumerators_added; } } return enumerators_added; } ConstString DWARFASTParserClang::ConstructDemangledNameFromDWARF(const DWARFDIE &die) { bool is_static = false; bool is_variadic = false; bool has_template_params = false; unsigned type_quals = 0; std::vector param_types; std::vector param_decls; StreamString sstr; DWARFDeclContext decl_ctx = die.GetDWARFDeclContext(); sstr << decl_ctx.GetQualifiedName(); clang::DeclContext *containing_decl_ctx = GetClangDeclContextContainingDIE(die, nullptr); ParseChildParameters(containing_decl_ctx, die, true, is_static, is_variadic, has_template_params, param_types, param_decls, type_quals); sstr << "("; for (size_t i = 0; i < param_types.size(); i++) { if (i > 0) sstr << ", "; sstr << param_types[i].GetTypeName(); } if (is_variadic) sstr << ", ..."; sstr << ")"; if (type_quals & clang::Qualifiers::Const) sstr << " const"; return ConstString(sstr.GetString()); } Function * DWARFASTParserClang::ParseFunctionFromDWARF(CompileUnit &comp_unit, const DWARFDIE &die, const AddressRange &func_range) { assert(func_range.GetBaseAddress().IsValid()); DWARFRangeList func_ranges; const char *name = nullptr; const char *mangled = nullptr; std::optional decl_file; std::optional decl_line; std::optional decl_column; std::optional call_file; std::optional call_line; std::optional call_column; DWARFExpressionList frame_base; const dw_tag_t tag = die.Tag(); if (tag != DW_TAG_subprogram) return nullptr; if (die.GetDIENamesAndRanges(name, mangled, func_ranges, decl_file, decl_line, decl_column, call_file, call_line, call_column, &frame_base)) { Mangled func_name; if (mangled) func_name.SetValue(ConstString(mangled)); else if ((die.GetParent().Tag() == DW_TAG_compile_unit || die.GetParent().Tag() == DW_TAG_partial_unit) && Language::LanguageIsCPlusPlus( SymbolFileDWARF::GetLanguage(*die.GetCU())) && !Language::LanguageIsObjC( SymbolFileDWARF::GetLanguage(*die.GetCU())) && name && strcmp(name, "main") != 0) { // If the mangled name is not present in the DWARF, generate the // demangled name using the decl context. We skip if the function is // "main" as its name is never mangled. func_name.SetValue(ConstructDemangledNameFromDWARF(die)); } else func_name.SetValue(ConstString(name)); FunctionSP func_sp; std::unique_ptr decl_up; if (decl_file || decl_line || decl_column) decl_up = std::make_unique( die.GetCU()->GetFile(decl_file ? *decl_file : 0), decl_line ? *decl_line : 0, decl_column ? *decl_column : 0); SymbolFileDWARF *dwarf = die.GetDWARF(); // Supply the type _only_ if it has already been parsed Type *func_type = dwarf->GetDIEToType().lookup(die.GetDIE()); assert(func_type == nullptr || func_type != DIE_IS_BEING_PARSED); const user_id_t func_user_id = die.GetID(); func_sp = std::make_shared(&comp_unit, func_user_id, // UserID is the DIE offset func_user_id, func_name, func_type, func_range); // first address range if (func_sp.get() != nullptr) { if (frame_base.IsValid()) func_sp->GetFrameBaseExpression() = frame_base; comp_unit.AddFunction(func_sp); return func_sp.get(); } } return nullptr; } namespace { /// Parsed form of all attributes that are relevant for parsing Objective-C /// properties. struct PropertyAttributes { explicit PropertyAttributes(const DWARFDIE &die); const char *prop_name = nullptr; const char *prop_getter_name = nullptr; const char *prop_setter_name = nullptr; /// \see clang::ObjCPropertyAttribute uint32_t prop_attributes = 0; }; struct DiscriminantValue { explicit DiscriminantValue(const DWARFDIE &die, ModuleSP module_sp); uint32_t byte_offset; uint32_t byte_size; DWARFFormValue type_ref; }; struct VariantMember { explicit VariantMember(DWARFDIE &die, ModuleSP module_sp); bool IsDefault() const; std::optional discr_value; DWARFFormValue type_ref; ConstString variant_name; uint32_t byte_offset; ConstString GetName() const; }; struct VariantPart { explicit VariantPart(const DWARFDIE &die, const DWARFDIE &parent_die, ModuleSP module_sp); std::vector &members(); DiscriminantValue &discriminant(); private: std::vector _members; DiscriminantValue _discriminant; }; } // namespace ConstString VariantMember::GetName() const { return this->variant_name; } bool VariantMember::IsDefault() const { return !discr_value; } VariantMember::VariantMember(DWARFDIE &die, lldb::ModuleSP module_sp) { assert(die.Tag() == llvm::dwarf::DW_TAG_variant); this->discr_value = die.GetAttributeValueAsOptionalUnsigned(DW_AT_discr_value); for (auto child_die : die.children()) { switch (child_die.Tag()) { case llvm::dwarf::DW_TAG_member: { DWARFAttributes attributes = child_die.GetAttributes(); for (std::size_t i = 0; i < attributes.Size(); ++i) { DWARFFormValue form_value; const dw_attr_t attr = attributes.AttributeAtIndex(i); if (attributes.ExtractFormValueAtIndex(i, form_value)) { switch (attr) { case DW_AT_name: variant_name = ConstString(form_value.AsCString()); break; case DW_AT_type: type_ref = form_value; break; case DW_AT_data_member_location: if (auto maybe_offset = ExtractDataMemberLocation(die, form_value, module_sp)) byte_offset = *maybe_offset; break; default: break; } } } break; } default: break; } break; } } DiscriminantValue::DiscriminantValue(const DWARFDIE &die, ModuleSP module_sp) { auto referenced_die = die.GetReferencedDIE(DW_AT_discr); DWARFAttributes attributes = referenced_die.GetAttributes(); for (std::size_t i = 0; i < attributes.Size(); ++i) { const dw_attr_t attr = attributes.AttributeAtIndex(i); DWARFFormValue form_value; if (attributes.ExtractFormValueAtIndex(i, form_value)) { switch (attr) { case DW_AT_type: type_ref = form_value; break; case DW_AT_data_member_location: if (auto maybe_offset = ExtractDataMemberLocation(die, form_value, module_sp)) byte_offset = *maybe_offset; break; default: break; } } } } VariantPart::VariantPart(const DWARFDIE &die, const DWARFDIE &parent_die, lldb::ModuleSP module_sp) : _members(), _discriminant(die, module_sp) { for (auto child : die.children()) { if (child.Tag() == llvm::dwarf::DW_TAG_variant) { _members.push_back(VariantMember(child, module_sp)); } } } std::vector &VariantPart::members() { return this->_members; } DiscriminantValue &VariantPart::discriminant() { return this->_discriminant; } DWARFASTParserClang::MemberAttributes::MemberAttributes( const DWARFDIE &die, const DWARFDIE &parent_die, ModuleSP module_sp) { DWARFAttributes attributes = die.GetAttributes(); for (size_t i = 0; i < attributes.Size(); ++i) { const dw_attr_t attr = attributes.AttributeAtIndex(i); DWARFFormValue form_value; if (attributes.ExtractFormValueAtIndex(i, form_value)) { switch (attr) { case DW_AT_name: name = form_value.AsCString(); break; case DW_AT_type: encoding_form = form_value; break; case DW_AT_bit_offset: bit_offset = form_value.Signed(); break; case DW_AT_bit_size: bit_size = form_value.Unsigned(); break; case DW_AT_byte_size: byte_size = form_value.Unsigned(); break; case DW_AT_const_value: const_value_form = form_value; break; case DW_AT_data_bit_offset: data_bit_offset = form_value.Unsigned(); break; case DW_AT_data_member_location: if (auto maybe_offset = ExtractDataMemberLocation(die, form_value, module_sp)) member_byte_offset = *maybe_offset; break; case DW_AT_accessibility: accessibility = DWARFASTParser::GetAccessTypeFromDWARF(form_value.Unsigned()); break; case DW_AT_artificial: is_artificial = form_value.Boolean(); break; case DW_AT_declaration: is_declaration = form_value.Boolean(); break; default: break; } } } // Clang has a DWARF generation bug where sometimes it represents // fields that are references with bad byte size and bit size/offset // information such as: // // DW_AT_byte_size( 0x00 ) // DW_AT_bit_size( 0x40 ) // DW_AT_bit_offset( 0xffffffffffffffc0 ) // // So check the bit offset to make sure it is sane, and if the values // are not sane, remove them. If we don't do this then we will end up // with a crash if we try to use this type in an expression when clang // becomes unhappy with its recycled debug info. if (byte_size.value_or(0) == 0 && bit_offset < 0) { bit_size = 0; bit_offset = 0; } } PropertyAttributes::PropertyAttributes(const DWARFDIE &die) { DWARFAttributes attributes = die.GetAttributes(); for (size_t i = 0; i < attributes.Size(); ++i) { const dw_attr_t attr = attributes.AttributeAtIndex(i); DWARFFormValue form_value; if (attributes.ExtractFormValueAtIndex(i, form_value)) { switch (attr) { case DW_AT_APPLE_property_name: prop_name = form_value.AsCString(); break; case DW_AT_APPLE_property_getter: prop_getter_name = form_value.AsCString(); break; case DW_AT_APPLE_property_setter: prop_setter_name = form_value.AsCString(); break; case DW_AT_APPLE_property_attribute: prop_attributes = form_value.Unsigned(); break; default: break; } } } if (!prop_name) return; ConstString fixed_setter; // Check if the property getter/setter were provided as full names. // We want basenames, so we extract them. if (prop_getter_name && prop_getter_name[0] == '-') { std::optional prop_getter_method = ObjCLanguage::MethodName::Create(prop_getter_name, true); if (prop_getter_method) prop_getter_name = ConstString(prop_getter_method->GetSelector()).GetCString(); } if (prop_setter_name && prop_setter_name[0] == '-') { std::optional prop_setter_method = ObjCLanguage::MethodName::Create(prop_setter_name, true); if (prop_setter_method) prop_setter_name = ConstString(prop_setter_method->GetSelector()).GetCString(); } // If the names haven't been provided, they need to be filled in. if (!prop_getter_name) prop_getter_name = prop_name; if (!prop_setter_name && prop_name[0] && !(prop_attributes & DW_APPLE_PROPERTY_readonly)) { StreamString ss; ss.Printf("set%c%s:", toupper(prop_name[0]), &prop_name[1]); fixed_setter.SetString(ss.GetString()); prop_setter_name = fixed_setter.GetCString(); } } void DWARFASTParserClang::ParseObjCProperty( const DWARFDIE &die, const DWARFDIE &parent_die, const lldb_private::CompilerType &class_clang_type, DelayedPropertyList &delayed_properties) { // This function can only parse DW_TAG_APPLE_property. assert(die.Tag() == DW_TAG_APPLE_property); ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule(); const MemberAttributes attrs(die, parent_die, module_sp); const PropertyAttributes propAttrs(die); if (!propAttrs.prop_name) { module_sp->ReportError("{0:x8}: DW_TAG_APPLE_property has no name.", die.GetID()); return; } Type *member_type = die.ResolveTypeUID(attrs.encoding_form.Reference()); if (!member_type) { module_sp->ReportError( "{0:x8}: DW_TAG_APPLE_property '{1}' refers to type {2:x16}" " which was unable to be parsed", die.GetID(), propAttrs.prop_name, attrs.encoding_form.Reference().GetOffset()); return; } ClangASTMetadata metadata; metadata.SetUserID(die.GetID()); delayed_properties.push_back(DelayedAddObjCClassProperty( class_clang_type, propAttrs.prop_name, member_type->GetLayoutCompilerType(), propAttrs.prop_setter_name, propAttrs.prop_getter_name, propAttrs.prop_attributes, &metadata)); } llvm::Expected DWARFASTParserClang::ExtractIntFromFormValue( const CompilerType &int_type, const DWARFFormValue &form_value) const { clang::QualType qt = ClangUtil::GetQualType(int_type); assert(qt->isIntegralOrEnumerationType()); auto ts_ptr = int_type.GetTypeSystem().dyn_cast_or_null(); if (!ts_ptr) return llvm::createStringError(llvm::inconvertibleErrorCode(), "TypeSystem not clang"); TypeSystemClang &ts = *ts_ptr; clang::ASTContext &ast = ts.getASTContext(); const unsigned type_bits = ast.getIntWidth(qt); const bool is_unsigned = qt->isUnsignedIntegerType(); // The maximum int size supported at the moment by this function. Limited // by the uint64_t return type of DWARFFormValue::Signed/Unsigned. constexpr std::size_t max_bit_size = 64; // For values bigger than 64 bit (e.g. __int128_t values), // DWARFFormValue's Signed/Unsigned functions will return wrong results so // emit an error for now. if (type_bits > max_bit_size) { auto msg = llvm::formatv("Can only parse integers with up to {0} bits, but " "given integer has {1} bits.", max_bit_size, type_bits); return llvm::createStringError(llvm::inconvertibleErrorCode(), msg.str()); } // Construct an APInt with the maximum bit size and the given integer. llvm::APInt result(max_bit_size, form_value.Unsigned(), !is_unsigned); // Calculate how many bits are required to represent the input value. // For unsigned types, take the number of active bits in the APInt. // For signed types, ask APInt how many bits are required to represent the // signed integer. const unsigned required_bits = is_unsigned ? result.getActiveBits() : result.getSignificantBits(); // If the input value doesn't fit into the integer type, return an error. if (required_bits > type_bits) { std::string value_as_str = is_unsigned ? std::to_string(form_value.Unsigned()) : std::to_string(form_value.Signed()); auto msg = llvm::formatv("Can't store {0} value {1} in integer with {2} " "bits.", (is_unsigned ? "unsigned" : "signed"), value_as_str, type_bits); return llvm::createStringError(llvm::inconvertibleErrorCode(), msg.str()); } // Trim the result to the bit width our the int type. if (result.getBitWidth() > type_bits) result = result.trunc(type_bits); return result; } void DWARFASTParserClang::CreateStaticMemberVariable( const DWARFDIE &die, const MemberAttributes &attrs, const lldb_private::CompilerType &class_clang_type) { Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups); assert(die.Tag() == DW_TAG_member || die.Tag() == DW_TAG_variable); Type *var_type = die.ResolveTypeUID(attrs.encoding_form.Reference()); if (!var_type) return; auto accessibility = attrs.accessibility == eAccessNone ? eAccessPublic : attrs.accessibility; CompilerType ct = var_type->GetForwardCompilerType(); clang::VarDecl *v = TypeSystemClang::AddVariableToRecordType( class_clang_type, attrs.name, ct, accessibility); if (!v) { LLDB_LOG(log, "Failed to add variable to the record type"); return; } bool unused; // TODO: Support float/double static members as well. if (!ct.IsIntegerOrEnumerationType(unused) || !attrs.const_value_form) return; llvm::Expected const_value_or_err = ExtractIntFromFormValue(ct, *attrs.const_value_form); if (!const_value_or_err) { LLDB_LOG_ERROR(log, const_value_or_err.takeError(), "Failed to add const value to variable {1}: {0}", v->getQualifiedNameAsString()); return; } TypeSystemClang::SetIntegerInitializerForVariable(v, *const_value_or_err); } void DWARFASTParserClang::ParseSingleMember( const DWARFDIE &die, const DWARFDIE &parent_die, const lldb_private::CompilerType &class_clang_type, lldb::AccessType default_accessibility, lldb_private::ClangASTImporter::LayoutInfo &layout_info, FieldInfo &last_field_info) { // This function can only parse DW_TAG_member. assert(die.Tag() == DW_TAG_member); ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule(); const dw_tag_t tag = die.Tag(); // Get the parent byte size so we can verify any members will fit const uint64_t parent_byte_size = parent_die.GetAttributeValueAsUnsigned(DW_AT_byte_size, UINT64_MAX); const uint64_t parent_bit_size = parent_byte_size == UINT64_MAX ? UINT64_MAX : parent_byte_size * 8; const MemberAttributes attrs(die, parent_die, module_sp); // Handle static members, which are typically members without // locations. However, GCC doesn't emit DW_AT_data_member_location // for any union members (regardless of linkage). // Non-normative text pre-DWARFv5 recommends marking static // data members with an DW_AT_external flag. Clang emits this consistently // whereas GCC emits it only for static data members if not part of an // anonymous namespace. The flag that is consistently emitted for static // data members is DW_AT_declaration, so we check it instead. // The following block is only necessary to support DWARFv4 and earlier. // Starting with DWARFv5, static data members are marked DW_AT_variable so we // can consistently detect them on both GCC and Clang without below heuristic. if (attrs.member_byte_offset == UINT32_MAX && attrs.data_bit_offset == UINT64_MAX && attrs.is_declaration) { CreateStaticMemberVariable(die, attrs, class_clang_type); return; } Type *member_type = die.ResolveTypeUID(attrs.encoding_form.Reference()); if (!member_type) { if (attrs.name) module_sp->ReportError( "{0:x8}: DW_TAG_member '{1}' refers to type {2:x16}" " which was unable to be parsed", die.GetID(), attrs.name, attrs.encoding_form.Reference().GetOffset()); else module_sp->ReportError("{0:x8}: DW_TAG_member refers to type {1:x16}" " which was unable to be parsed", die.GetID(), attrs.encoding_form.Reference().GetOffset()); return; } const uint64_t character_width = 8; const uint64_t word_width = 32; CompilerType member_clang_type = member_type->GetLayoutCompilerType(); const auto accessibility = attrs.accessibility == eAccessNone ? default_accessibility : attrs.accessibility; uint64_t field_bit_offset = (attrs.member_byte_offset == UINT32_MAX ? 0 : (attrs.member_byte_offset * 8ULL)); if (attrs.bit_size > 0) { FieldInfo this_field_info; this_field_info.bit_offset = field_bit_offset; this_field_info.bit_size = attrs.bit_size; if (attrs.data_bit_offset != UINT64_MAX) { this_field_info.bit_offset = attrs.data_bit_offset; } else { auto byte_size = attrs.byte_size; if (!byte_size) byte_size = member_type->GetByteSize(nullptr); ObjectFile *objfile = die.GetDWARF()->GetObjectFile(); if (objfile->GetByteOrder() == eByteOrderLittle) { this_field_info.bit_offset += byte_size.value_or(0) * 8; this_field_info.bit_offset -= (attrs.bit_offset + attrs.bit_size); } else { this_field_info.bit_offset += attrs.bit_offset; } } // The ObjC runtime knows the byte offset but we still need to provide // the bit-offset in the layout. It just means something different then // what it does in C and C++. So we skip this check for ObjC types. // // We also skip this for fields of a union since they will all have a // zero offset. if (!TypeSystemClang::IsObjCObjectOrInterfaceType(class_clang_type) && !(parent_die.Tag() == DW_TAG_union_type && this_field_info.bit_offset == 0) && ((this_field_info.bit_offset >= parent_bit_size) || (last_field_info.IsBitfield() && !last_field_info.NextBitfieldOffsetIsValid( this_field_info.bit_offset)))) { ObjectFile *objfile = die.GetDWARF()->GetObjectFile(); objfile->GetModule()->ReportWarning( "{0:x16}: {1} ({2}) bitfield named \"{3}\" has invalid " "bit offset ({4:x8}) member will be ignored. Please file a bug " "against the " "compiler and include the preprocessed output for {5}\n", die.GetID(), DW_TAG_value_to_name(tag), tag, attrs.name, this_field_info.bit_offset, GetUnitName(parent_die).c_str()); return; } // Update the field bit offset we will report for layout field_bit_offset = this_field_info.bit_offset; // Objective-C has invalid DW_AT_bit_offset values in older // versions of clang, so we have to be careful and only insert // unnamed bitfields if we have a new enough clang. bool detect_unnamed_bitfields = true; if (TypeSystemClang::IsObjCObjectOrInterfaceType(class_clang_type)) detect_unnamed_bitfields = die.GetCU()->Supports_unnamed_objc_bitfields(); if (detect_unnamed_bitfields) { std::optional unnamed_field_info; uint64_t last_field_end = last_field_info.bit_offset + last_field_info.bit_size; if (!last_field_info.IsBitfield()) { // The last field was not a bit-field... // but if it did take up the entire word then we need to extend // last_field_end so the bit-field does not step into the last // fields padding. if (last_field_end != 0 && ((last_field_end % word_width) != 0)) last_field_end += word_width - (last_field_end % word_width); } if (ShouldCreateUnnamedBitfield(last_field_info, last_field_end, this_field_info, layout_info)) { unnamed_field_info = FieldInfo{}; unnamed_field_info->bit_size = this_field_info.bit_offset - last_field_end; unnamed_field_info->bit_offset = last_field_end; } if (unnamed_field_info) { clang::FieldDecl *unnamed_bitfield_decl = TypeSystemClang::AddFieldToRecordType( class_clang_type, llvm::StringRef(), m_ast.GetBuiltinTypeForEncodingAndBitSize(eEncodingSint, word_width), accessibility, unnamed_field_info->bit_size); layout_info.field_offsets.insert(std::make_pair( unnamed_bitfield_decl, unnamed_field_info->bit_offset)); } } last_field_info = this_field_info; last_field_info.SetIsBitfield(true); } else { last_field_info.bit_offset = field_bit_offset; if (std::optional clang_type_size = member_type->GetByteSize(nullptr)) { last_field_info.bit_size = *clang_type_size * character_width; } last_field_info.SetIsBitfield(false); } // Don't turn artificial members such as vtable pointers into real FieldDecls // in our AST. Clang will re-create those articial members and they would // otherwise just overlap in the layout with the FieldDecls we add here. // This needs to be done after updating FieldInfo which keeps track of where // field start/end so we don't later try to fill the space of this // artificial member with (unnamed bitfield) padding. if (attrs.is_artificial && ShouldIgnoreArtificialField(attrs.name)) { last_field_info.SetIsArtificial(true); return; } if (!member_clang_type.IsCompleteType()) member_clang_type.GetCompleteType(); { // Older versions of clang emit the same DWARF for array[0] and array[1]. If // the current field is at the end of the structure, then there is // definitely no room for extra elements and we override the type to // array[0]. This was fixed by f454dfb6b5af. CompilerType member_array_element_type; uint64_t member_array_size; bool member_array_is_incomplete; if (member_clang_type.IsArrayType(&member_array_element_type, &member_array_size, &member_array_is_incomplete) && !member_array_is_incomplete) { uint64_t parent_byte_size = parent_die.GetAttributeValueAsUnsigned(DW_AT_byte_size, UINT64_MAX); if (attrs.member_byte_offset >= parent_byte_size) { if (member_array_size != 1 && (member_array_size != 0 || attrs.member_byte_offset > parent_byte_size)) { module_sp->ReportError( "{0:x8}: DW_TAG_member '{1}' refers to type {2:x16}" " which extends beyond the bounds of {3:x8}", die.GetID(), attrs.name, attrs.encoding_form.Reference().GetOffset(), parent_die.GetID()); } member_clang_type = m_ast.CreateArrayType(member_array_element_type, 0, false); } } } TypeSystemClang::RequireCompleteType(member_clang_type); clang::FieldDecl *field_decl = TypeSystemClang::AddFieldToRecordType( class_clang_type, attrs.name, member_clang_type, accessibility, attrs.bit_size); m_ast.SetMetadataAsUserID(field_decl, die.GetID()); layout_info.field_offsets.insert( std::make_pair(field_decl, field_bit_offset)); } bool DWARFASTParserClang::ParseChildMembers( const DWARFDIE &parent_die, CompilerType &class_clang_type, std::vector> &base_classes, std::vector &member_function_dies, std::vector &contained_type_dies, DelayedPropertyList &delayed_properties, const AccessType default_accessibility, ClangASTImporter::LayoutInfo &layout_info) { if (!parent_die) return false; FieldInfo last_field_info; ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule(); auto ts = class_clang_type.GetTypeSystem(); auto ast = ts.dyn_cast_or_null(); if (ast == nullptr) return false; for (DWARFDIE die : parent_die.children()) { dw_tag_t tag = die.Tag(); switch (tag) { case DW_TAG_APPLE_property: ParseObjCProperty(die, parent_die, class_clang_type, delayed_properties); break; case DW_TAG_variant_part: if (die.GetCU()->GetDWARFLanguageType() == eLanguageTypeRust) { ParseRustVariantPart(die, parent_die, class_clang_type, default_accessibility, layout_info); } break; case DW_TAG_variable: { const MemberAttributes attrs(die, parent_die, module_sp); CreateStaticMemberVariable(die, attrs, class_clang_type); } break; case DW_TAG_member: ParseSingleMember(die, parent_die, class_clang_type, default_accessibility, layout_info, last_field_info); break; case DW_TAG_subprogram: // Let the type parsing code handle this one for us. member_function_dies.push_back(die); break; case DW_TAG_inheritance: ParseInheritance(die, parent_die, class_clang_type, default_accessibility, module_sp, base_classes, layout_info); break; default: if (llvm::dwarf::isType(tag)) contained_type_dies.push_back(die); break; } } return true; } size_t DWARFASTParserClang::ParseChildParameters( clang::DeclContext *containing_decl_ctx, const DWARFDIE &parent_die, bool skip_artificial, bool &is_static, bool &is_variadic, bool &has_template_params, std::vector &function_param_types, std::vector &function_param_decls, unsigned &type_quals) { if (!parent_die) return 0; size_t arg_idx = 0; for (DWARFDIE die : parent_die.children()) { const dw_tag_t tag = die.Tag(); switch (tag) { case DW_TAG_formal_parameter: { DWARFAttributes attributes = die.GetAttributes(); if (attributes.Size() == 0) { arg_idx++; break; } const char *name = nullptr; DWARFFormValue param_type_die_form; bool is_artificial = false; // one of None, Auto, Register, Extern, Static, PrivateExtern clang::StorageClass storage = clang::SC_None; uint32_t i; for (i = 0; i < attributes.Size(); ++i) { const dw_attr_t attr = attributes.AttributeAtIndex(i); DWARFFormValue form_value; if (attributes.ExtractFormValueAtIndex(i, form_value)) { switch (attr) { case DW_AT_name: name = form_value.AsCString(); break; case DW_AT_type: param_type_die_form = form_value; break; case DW_AT_artificial: is_artificial = form_value.Boolean(); break; case DW_AT_location: case DW_AT_const_value: case DW_AT_default_value: case DW_AT_description: case DW_AT_endianity: case DW_AT_is_optional: case DW_AT_segment: case DW_AT_variable_parameter: default: case DW_AT_abstract_origin: case DW_AT_sibling: break; } } } bool skip = false; if (skip_artificial && is_artificial) { // In order to determine if a C++ member function is "const" we // have to look at the const-ness of "this"... if (arg_idx == 0 && DeclKindIsCXXClass(containing_decl_ctx->getDeclKind()) && // Often times compilers omit the "this" name for the // specification DIEs, so we can't rely upon the name being in // the formal parameter DIE... (name == nullptr || ::strcmp(name, "this") == 0)) { Type *this_type = die.ResolveTypeUID(param_type_die_form.Reference()); if (this_type) { uint32_t encoding_mask = this_type->GetEncodingMask(); if (encoding_mask & Type::eEncodingIsPointerUID) { is_static = false; if (encoding_mask & (1u << Type::eEncodingIsConstUID)) type_quals |= clang::Qualifiers::Const; if (encoding_mask & (1u << Type::eEncodingIsVolatileUID)) type_quals |= clang::Qualifiers::Volatile; } } } skip = true; } if (!skip) { Type *type = die.ResolveTypeUID(param_type_die_form.Reference()); if (type) { function_param_types.push_back(type->GetForwardCompilerType()); clang::ParmVarDecl *param_var_decl = m_ast.CreateParameterDeclaration( containing_decl_ctx, GetOwningClangModule(die), name, type->GetForwardCompilerType(), storage); assert(param_var_decl); function_param_decls.push_back(param_var_decl); m_ast.SetMetadataAsUserID(param_var_decl, die.GetID()); } } arg_idx++; } break; case DW_TAG_unspecified_parameters: is_variadic = true; break; case DW_TAG_template_type_parameter: case DW_TAG_template_value_parameter: case DW_TAG_GNU_template_parameter_pack: // The one caller of this was never using the template_param_infos, and // the local variable was taking up a large amount of stack space in // SymbolFileDWARF::ParseType() so this was removed. If we ever need the // template params back, we can add them back. // ParseTemplateDIE (dwarf_cu, die, template_param_infos); has_template_params = true; break; default: break; } } return arg_idx; } clang::Decl *DWARFASTParserClang::GetClangDeclForDIE(const DWARFDIE &die) { if (!die) return nullptr; switch (die.Tag()) { case DW_TAG_constant: case DW_TAG_formal_parameter: case DW_TAG_imported_declaration: case DW_TAG_imported_module: break; case DW_TAG_variable: // This means 'die' is a C++ static data member. // We don't want to create decls for such members // here. if (auto parent = die.GetParent(); parent.IsValid() && TagIsRecordType(parent.Tag())) return nullptr; break; default: return nullptr; } DIEToDeclMap::iterator cache_pos = m_die_to_decl.find(die.GetDIE()); if (cache_pos != m_die_to_decl.end()) return cache_pos->second; if (DWARFDIE spec_die = die.GetReferencedDIE(DW_AT_specification)) { clang::Decl *decl = GetClangDeclForDIE(spec_die); m_die_to_decl[die.GetDIE()] = decl; return decl; } if (DWARFDIE abstract_origin_die = die.GetReferencedDIE(DW_AT_abstract_origin)) { clang::Decl *decl = GetClangDeclForDIE(abstract_origin_die); m_die_to_decl[die.GetDIE()] = decl; return decl; } clang::Decl *decl = nullptr; switch (die.Tag()) { case DW_TAG_variable: case DW_TAG_constant: case DW_TAG_formal_parameter: { SymbolFileDWARF *dwarf = die.GetDWARF(); Type *type = GetTypeForDIE(die); if (dwarf && type) { const char *name = die.GetName(); clang::DeclContext *decl_context = TypeSystemClang::DeclContextGetAsDeclContext( dwarf->GetDeclContextContainingUID(die.GetID())); decl = m_ast.CreateVariableDeclaration( decl_context, GetOwningClangModule(die), name, ClangUtil::GetQualType(type->GetForwardCompilerType())); } break; } case DW_TAG_imported_declaration: { SymbolFileDWARF *dwarf = die.GetDWARF(); DWARFDIE imported_uid = die.GetAttributeValueAsReferenceDIE(DW_AT_import); if (imported_uid) { CompilerDecl imported_decl = SymbolFileDWARF::GetDecl(imported_uid); if (imported_decl) { clang::DeclContext *decl_context = TypeSystemClang::DeclContextGetAsDeclContext( dwarf->GetDeclContextContainingUID(die.GetID())); if (clang::NamedDecl *clang_imported_decl = llvm::dyn_cast( (clang::Decl *)imported_decl.GetOpaqueDecl())) decl = m_ast.CreateUsingDeclaration( decl_context, OptionalClangModuleID(), clang_imported_decl); } } break; } case DW_TAG_imported_module: { SymbolFileDWARF *dwarf = die.GetDWARF(); DWARFDIE imported_uid = die.GetAttributeValueAsReferenceDIE(DW_AT_import); if (imported_uid) { CompilerDeclContext imported_decl_ctx = SymbolFileDWARF::GetDeclContext(imported_uid); if (imported_decl_ctx) { clang::DeclContext *decl_context = TypeSystemClang::DeclContextGetAsDeclContext( dwarf->GetDeclContextContainingUID(die.GetID())); if (clang::NamespaceDecl *ns_decl = TypeSystemClang::DeclContextGetAsNamespaceDecl( imported_decl_ctx)) decl = m_ast.CreateUsingDirectiveDeclaration( decl_context, OptionalClangModuleID(), ns_decl); } } break; } default: break; } m_die_to_decl[die.GetDIE()] = decl; return decl; } clang::DeclContext * DWARFASTParserClang::GetClangDeclContextForDIE(const DWARFDIE &die) { if (die) { clang::DeclContext *decl_ctx = GetCachedClangDeclContextForDIE(die); if (decl_ctx) return decl_ctx; bool try_parsing_type = true; switch (die.Tag()) { case DW_TAG_compile_unit: case DW_TAG_partial_unit: decl_ctx = m_ast.GetTranslationUnitDecl(); try_parsing_type = false; break; case DW_TAG_namespace: decl_ctx = ResolveNamespaceDIE(die); try_parsing_type = false; break; case DW_TAG_imported_declaration: decl_ctx = ResolveImportedDeclarationDIE(die); try_parsing_type = false; break; case DW_TAG_lexical_block: decl_ctx = GetDeclContextForBlock(die); try_parsing_type = false; break; default: break; } if (decl_ctx == nullptr && try_parsing_type) { Type *type = die.GetDWARF()->ResolveType(die); if (type) decl_ctx = GetCachedClangDeclContextForDIE(die); } if (decl_ctx) { LinkDeclContextToDIE(decl_ctx, die); return decl_ctx; } } return nullptr; } OptionalClangModuleID DWARFASTParserClang::GetOwningClangModule(const DWARFDIE &die) { if (!die.IsValid()) return {}; for (DWARFDIE parent = die.GetParent(); parent.IsValid(); parent = parent.GetParent()) { const dw_tag_t tag = parent.Tag(); if (tag == DW_TAG_module) { DWARFDIE module_die = parent; auto it = m_die_to_module.find(module_die.GetDIE()); if (it != m_die_to_module.end()) return it->second; const char *name = module_die.GetAttributeValueAsString(DW_AT_name, nullptr); if (!name) return {}; OptionalClangModuleID id = m_ast.GetOrCreateClangModule(name, GetOwningClangModule(module_die)); m_die_to_module.insert({module_die.GetDIE(), id}); return id; } } return {}; } static bool IsSubroutine(const DWARFDIE &die) { switch (die.Tag()) { case DW_TAG_subprogram: case DW_TAG_inlined_subroutine: return true; default: return false; } } static DWARFDIE GetContainingFunctionWithAbstractOrigin(const DWARFDIE &die) { for (DWARFDIE candidate = die; candidate; candidate = candidate.GetParent()) { if (IsSubroutine(candidate)) { if (candidate.GetReferencedDIE(DW_AT_abstract_origin)) { return candidate; } else { return DWARFDIE(); } } } assert(0 && "Shouldn't call GetContainingFunctionWithAbstractOrigin on " "something not in a function"); return DWARFDIE(); } static DWARFDIE FindAnyChildWithAbstractOrigin(const DWARFDIE &context) { for (DWARFDIE candidate : context.children()) { if (candidate.GetReferencedDIE(DW_AT_abstract_origin)) { return candidate; } } return DWARFDIE(); } static DWARFDIE FindFirstChildWithAbstractOrigin(const DWARFDIE &block, const DWARFDIE &function) { assert(IsSubroutine(function)); for (DWARFDIE context = block; context != function.GetParent(); context = context.GetParent()) { assert(!IsSubroutine(context) || context == function); if (DWARFDIE child = FindAnyChildWithAbstractOrigin(context)) { return child; } } return DWARFDIE(); } clang::DeclContext * DWARFASTParserClang::GetDeclContextForBlock(const DWARFDIE &die) { assert(die.Tag() == DW_TAG_lexical_block); DWARFDIE containing_function_with_abstract_origin = GetContainingFunctionWithAbstractOrigin(die); if (!containing_function_with_abstract_origin) { return (clang::DeclContext *)ResolveBlockDIE(die); } DWARFDIE child = FindFirstChildWithAbstractOrigin( die, containing_function_with_abstract_origin); CompilerDeclContext decl_context = GetDeclContextContainingUIDFromDWARF(child); return (clang::DeclContext *)decl_context.GetOpaqueDeclContext(); } clang::BlockDecl *DWARFASTParserClang::ResolveBlockDIE(const DWARFDIE &die) { if (die && die.Tag() == DW_TAG_lexical_block) { clang::BlockDecl *decl = llvm::cast_or_null(m_die_to_decl_ctx[die.GetDIE()]); if (!decl) { DWARFDIE decl_context_die; clang::DeclContext *decl_context = GetClangDeclContextContainingDIE(die, &decl_context_die); decl = m_ast.CreateBlockDeclaration(decl_context, GetOwningClangModule(die)); if (decl) LinkDeclContextToDIE((clang::DeclContext *)decl, die); } return decl; } return nullptr; } clang::NamespaceDecl * DWARFASTParserClang::ResolveNamespaceDIE(const DWARFDIE &die) { if (die && die.Tag() == DW_TAG_namespace) { // See if we already parsed this namespace DIE and associated it with a // uniqued namespace declaration clang::NamespaceDecl *namespace_decl = static_cast(m_die_to_decl_ctx[die.GetDIE()]); if (namespace_decl) return namespace_decl; else { const char *namespace_name = die.GetName(); clang::DeclContext *containing_decl_ctx = GetClangDeclContextContainingDIE(die, nullptr); bool is_inline = die.GetAttributeValueAsUnsigned(DW_AT_export_symbols, 0) != 0; namespace_decl = m_ast.GetUniqueNamespaceDeclaration( namespace_name, containing_decl_ctx, GetOwningClangModule(die), is_inline); if (namespace_decl) LinkDeclContextToDIE((clang::DeclContext *)namespace_decl, die); return namespace_decl; } } return nullptr; } clang::NamespaceDecl * DWARFASTParserClang::ResolveImportedDeclarationDIE(const DWARFDIE &die) { assert(die && die.Tag() == DW_TAG_imported_declaration); // See if we cached a NamespaceDecl for this imported declaration // already auto it = m_die_to_decl_ctx.find(die.GetDIE()); if (it != m_die_to_decl_ctx.end()) return static_cast(it->getSecond()); clang::NamespaceDecl *namespace_decl = nullptr; const DWARFDIE imported_uid = die.GetAttributeValueAsReferenceDIE(DW_AT_import); if (!imported_uid) return nullptr; switch (imported_uid.Tag()) { case DW_TAG_imported_declaration: namespace_decl = ResolveImportedDeclarationDIE(imported_uid); break; case DW_TAG_namespace: namespace_decl = ResolveNamespaceDIE(imported_uid); break; default: return nullptr; } if (!namespace_decl) return nullptr; LinkDeclContextToDIE(namespace_decl, die); return namespace_decl; } clang::DeclContext *DWARFASTParserClang::GetClangDeclContextContainingDIE( const DWARFDIE &die, DWARFDIE *decl_ctx_die_copy) { SymbolFileDWARF *dwarf = die.GetDWARF(); DWARFDIE decl_ctx_die = dwarf->GetDeclContextDIEContainingDIE(die); if (decl_ctx_die_copy) *decl_ctx_die_copy = decl_ctx_die; if (decl_ctx_die) { clang::DeclContext *clang_decl_ctx = GetClangDeclContextForDIE(decl_ctx_die); if (clang_decl_ctx) return clang_decl_ctx; } return m_ast.GetTranslationUnitDecl(); } clang::DeclContext * DWARFASTParserClang::GetCachedClangDeclContextForDIE(const DWARFDIE &die) { if (die) { DIEToDeclContextMap::iterator pos = m_die_to_decl_ctx.find(die.GetDIE()); if (pos != m_die_to_decl_ctx.end()) return pos->second; } return nullptr; } void DWARFASTParserClang::LinkDeclContextToDIE(clang::DeclContext *decl_ctx, const DWARFDIE &die) { m_die_to_decl_ctx[die.GetDIE()] = decl_ctx; // There can be many DIEs for a single decl context // m_decl_ctx_to_die[decl_ctx].insert(die.GetDIE()); m_decl_ctx_to_die.insert(std::make_pair(decl_ctx, die)); } bool DWARFASTParserClang::CopyUniqueClassMethodTypes( const DWARFDIE &src_class_die, const DWARFDIE &dst_class_die, lldb_private::Type *class_type, std::vector &failures) { if (!class_type || !src_class_die || !dst_class_die) return false; if (src_class_die.Tag() != dst_class_die.Tag()) return false; // We need to complete the class type so we can get all of the method types // parsed so we can then unique those types to their equivalent counterparts // in "dst_cu" and "dst_class_die" class_type->GetFullCompilerType(); auto gather = [](DWARFDIE die, UniqueCStringMap &map, UniqueCStringMap &map_artificial) { if (die.Tag() != DW_TAG_subprogram) return; // Make sure this is a declaration and not a concrete instance by looking // for DW_AT_declaration set to 1. Sometimes concrete function instances are // placed inside the class definitions and shouldn't be included in the list // of things that are tracking here. if (die.GetAttributeValueAsUnsigned(DW_AT_declaration, 0) != 1) return; if (const char *name = die.GetMangledName()) { ConstString const_name(name); if (die.GetAttributeValueAsUnsigned(DW_AT_artificial, 0)) map_artificial.Append(const_name, die); else map.Append(const_name, die); } }; UniqueCStringMap src_name_to_die; UniqueCStringMap dst_name_to_die; UniqueCStringMap src_name_to_die_artificial; UniqueCStringMap dst_name_to_die_artificial; for (DWARFDIE src_die = src_class_die.GetFirstChild(); src_die.IsValid(); src_die = src_die.GetSibling()) { gather(src_die, src_name_to_die, src_name_to_die_artificial); } for (DWARFDIE dst_die = dst_class_die.GetFirstChild(); dst_die.IsValid(); dst_die = dst_die.GetSibling()) { gather(dst_die, dst_name_to_die, dst_name_to_die_artificial); } const uint32_t src_size = src_name_to_die.GetSize(); const uint32_t dst_size = dst_name_to_die.GetSize(); // Is everything kosher so we can go through the members at top speed? bool fast_path = true; if (src_size != dst_size) fast_path = false; uint32_t idx; if (fast_path) { for (idx = 0; idx < src_size; ++idx) { DWARFDIE src_die = src_name_to_die.GetValueAtIndexUnchecked(idx); DWARFDIE dst_die = dst_name_to_die.GetValueAtIndexUnchecked(idx); if (src_die.Tag() != dst_die.Tag()) fast_path = false; const char *src_name = src_die.GetMangledName(); const char *dst_name = dst_die.GetMangledName(); // Make sure the names match if (src_name == dst_name || (strcmp(src_name, dst_name) == 0)) continue; fast_path = false; } } DWARFASTParserClang *src_dwarf_ast_parser = static_cast( SymbolFileDWARF::GetDWARFParser(*src_class_die.GetCU())); DWARFASTParserClang *dst_dwarf_ast_parser = static_cast( SymbolFileDWARF::GetDWARFParser(*dst_class_die.GetCU())); auto link = [&](DWARFDIE src, DWARFDIE dst) { SymbolFileDWARF::DIEToTypePtr &die_to_type = dst_class_die.GetDWARF()->GetDIEToType(); clang::DeclContext *dst_decl_ctx = dst_dwarf_ast_parser->m_die_to_decl_ctx[dst.GetDIE()]; if (dst_decl_ctx) src_dwarf_ast_parser->LinkDeclContextToDIE(dst_decl_ctx, src); if (Type *src_child_type = die_to_type.lookup(src.GetDIE())) die_to_type[dst.GetDIE()] = src_child_type; }; // Now do the work of linking the DeclContexts and Types. if (fast_path) { // We can do this quickly. Just run across the tables index-for-index // since we know each node has matching names and tags. for (idx = 0; idx < src_size; ++idx) { link(src_name_to_die.GetValueAtIndexUnchecked(idx), dst_name_to_die.GetValueAtIndexUnchecked(idx)); } } else { // We must do this slowly. For each member of the destination, look up a // member in the source with the same name, check its tag, and unique them // if everything matches up. Report failures. if (!src_name_to_die.IsEmpty() && !dst_name_to_die.IsEmpty()) { src_name_to_die.Sort(); for (idx = 0; idx < dst_size; ++idx) { ConstString dst_name = dst_name_to_die.GetCStringAtIndex(idx); DWARFDIE dst_die = dst_name_to_die.GetValueAtIndexUnchecked(idx); DWARFDIE src_die = src_name_to_die.Find(dst_name, DWARFDIE()); if (src_die && (src_die.Tag() == dst_die.Tag())) link(src_die, dst_die); else failures.push_back(dst_die); } } } const uint32_t src_size_artificial = src_name_to_die_artificial.GetSize(); const uint32_t dst_size_artificial = dst_name_to_die_artificial.GetSize(); if (src_size_artificial && dst_size_artificial) { dst_name_to_die_artificial.Sort(); for (idx = 0; idx < src_size_artificial; ++idx) { ConstString src_name_artificial = src_name_to_die_artificial.GetCStringAtIndex(idx); DWARFDIE src_die = src_name_to_die_artificial.GetValueAtIndexUnchecked(idx); DWARFDIE dst_die = dst_name_to_die_artificial.Find(src_name_artificial, DWARFDIE()); // Both classes have the artificial types, link them if (dst_die) link(src_die, dst_die); } } if (dst_size_artificial) { for (idx = 0; idx < dst_size_artificial; ++idx) { failures.push_back( dst_name_to_die_artificial.GetValueAtIndexUnchecked(idx)); } } return !failures.empty(); } bool DWARFASTParserClang::ShouldCreateUnnamedBitfield( FieldInfo const &last_field_info, uint64_t last_field_end, FieldInfo const &this_field_info, lldb_private::ClangASTImporter::LayoutInfo const &layout_info) const { // If we have a gap between the last_field_end and the current // field we have an unnamed bit-field. if (this_field_info.bit_offset <= last_field_end) return false; // If we have a base class, we assume there is no unnamed // bit-field if either of the following is true: // (a) this is the first field since the gap can be // attributed to the members from the base class. // FIXME: This assumption is not correct if the first field of // the derived class is indeed an unnamed bit-field. We currently // do not have the machinary to track the offset of the last field // of classes we have seen before, so we are not handling this case. // (b) Or, the first member of the derived class was a vtable pointer. // In this case we don't want to create an unnamed bitfield either // since those will be inserted by clang later. const bool have_base = layout_info.base_offsets.size() != 0; const bool this_is_first_field = last_field_info.bit_offset == 0 && last_field_info.bit_size == 0; const bool first_field_is_vptr = last_field_info.bit_offset == 0 && last_field_info.IsArtificial(); if (have_base && (this_is_first_field || first_field_is_vptr)) return false; return true; } void DWARFASTParserClang::ParseRustVariantPart( DWARFDIE &die, const DWARFDIE &parent_die, CompilerType &class_clang_type, const lldb::AccessType default_accesibility, ClangASTImporter::LayoutInfo &layout_info) { assert(die.Tag() == llvm::dwarf::DW_TAG_variant_part); assert(SymbolFileDWARF::GetLanguage(*die.GetCU()) == LanguageType::eLanguageTypeRust); ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule(); VariantPart variants(die, parent_die, module_sp); auto discriminant_type = die.ResolveTypeUID(variants.discriminant().type_ref.Reference()); auto decl_context = m_ast.GetDeclContextForType(class_clang_type); auto inner_holder = m_ast.CreateRecordType( decl_context, OptionalClangModuleID(), lldb::eAccessPublic, std::string( llvm::formatv("{0}$Inner", class_clang_type.GetTypeName(false))), llvm::to_underlying(clang::TagTypeKind::Union), lldb::eLanguageTypeRust); m_ast.StartTagDeclarationDefinition(inner_holder); m_ast.SetIsPacked(inner_holder); for (auto member : variants.members()) { auto has_discriminant = !member.IsDefault(); auto member_type = die.ResolveTypeUID(member.type_ref.Reference()); auto field_type = m_ast.CreateRecordType( m_ast.GetDeclContextForType(inner_holder), OptionalClangModuleID(), lldb::eAccessPublic, std::string(llvm::formatv("{0}$Variant", member.GetName())), llvm::to_underlying(clang::TagTypeKind::Struct), lldb::eLanguageTypeRust); m_ast.StartTagDeclarationDefinition(field_type); auto offset = member.byte_offset; if (has_discriminant) { m_ast.AddFieldToRecordType( field_type, "$discr$", discriminant_type->GetFullCompilerType(), lldb::eAccessPublic, variants.discriminant().byte_offset); offset += discriminant_type->GetByteSize(nullptr).value_or(0); } m_ast.AddFieldToRecordType(field_type, "value", member_type->GetFullCompilerType(), lldb::eAccessPublic, offset * 8); m_ast.CompleteTagDeclarationDefinition(field_type); auto name = has_discriminant ? llvm::formatv("$variant${0}", member.discr_value.value()) : std::string("$variant$"); auto variant_decl = m_ast.AddFieldToRecordType(inner_holder, llvm::StringRef(name), field_type, default_accesibility, 0); layout_info.field_offsets.insert({variant_decl, 0}); } auto inner_field = m_ast.AddFieldToRecordType(class_clang_type, llvm::StringRef("$variants$"), inner_holder, eAccessPublic, 0); m_ast.CompleteTagDeclarationDefinition(inner_holder); layout_info.field_offsets.insert({inner_field, 0}); }