//===-- ProcessGDBRemote.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Host/Config.h" #include #include #if LLDB_ENABLE_POSIX #include #include #include #include #endif #include #if defined(__APPLE__) #include #endif #include #include #include "lldb/Breakpoint/Watchpoint.h" #include "lldb/Breakpoint/WatchpointAlgorithms.h" #include "lldb/Breakpoint/WatchpointResource.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Value.h" #include "lldb/DataFormatters/FormatManager.h" #include "lldb/Host/ConnectionFileDescriptor.h" #include "lldb/Host/FileSystem.h" #include "lldb/Host/HostThread.h" #include "lldb/Host/PosixApi.h" #include "lldb/Host/PseudoTerminal.h" #include "lldb/Host/StreamFile.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Host/XML.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Interpreter/CommandObject.h" #include "lldb/Interpreter/CommandObjectMultiword.h" #include "lldb/Interpreter/CommandReturnObject.h" #include "lldb/Interpreter/OptionArgParser.h" #include "lldb/Interpreter/OptionGroupBoolean.h" #include "lldb/Interpreter/OptionGroupUInt64.h" #include "lldb/Interpreter/OptionValueProperties.h" #include "lldb/Interpreter/Options.h" #include "lldb/Interpreter/Property.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/ABI.h" #include "lldb/Target/DynamicLoader.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/RegisterFlags.h" #include "lldb/Target/SystemRuntime.h" #include "lldb/Target/Target.h" #include "lldb/Target/TargetList.h" #include "lldb/Target/ThreadPlanCallFunction.h" #include "lldb/Utility/Args.h" #include "lldb/Utility/FileSpec.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/State.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/Timer.h" #include #include #include #include #include #include #include #include #include "GDBRemoteRegisterContext.h" #include "GDBRemoteRegisterFallback.h" #include "Plugins/Process/Utility/GDBRemoteSignals.h" #include "Plugins/Process/Utility/InferiorCallPOSIX.h" #include "Plugins/Process/Utility/StopInfoMachException.h" #include "ProcessGDBRemote.h" #include "ProcessGDBRemoteLog.h" #include "ThreadGDBRemote.h" #include "lldb/Host/Host.h" #include "lldb/Utility/StringExtractorGDBRemote.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/FormatAdapters.h" #include "llvm/Support/Threading.h" #include "llvm/Support/raw_ostream.h" #define DEBUGSERVER_BASENAME "debugserver" using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_gdb_remote; LLDB_PLUGIN_DEFINE(ProcessGDBRemote) namespace lldb { // Provide a function that can easily dump the packet history if we know a // ProcessGDBRemote * value (which we can get from logs or from debugging). We // need the function in the lldb namespace so it makes it into the final // executable since the LLDB shared library only exports stuff in the lldb // namespace. This allows you to attach with a debugger and call this function // and get the packet history dumped to a file. void DumpProcessGDBRemotePacketHistory(void *p, const char *path) { auto file = FileSystem::Instance().Open( FileSpec(path), File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate); if (!file) { llvm::consumeError(file.takeError()); return; } StreamFile stream(std::move(file.get())); ((Process *)p)->DumpPluginHistory(stream); } } // namespace lldb namespace { #define LLDB_PROPERTIES_processgdbremote #include "ProcessGDBRemoteProperties.inc" enum { #define LLDB_PROPERTIES_processgdbremote #include "ProcessGDBRemotePropertiesEnum.inc" }; class PluginProperties : public Properties { public: static llvm::StringRef GetSettingName() { return ProcessGDBRemote::GetPluginNameStatic(); } PluginProperties() : Properties() { m_collection_sp = std::make_shared(GetSettingName()); m_collection_sp->Initialize(g_processgdbremote_properties); } ~PluginProperties() override = default; uint64_t GetPacketTimeout() { const uint32_t idx = ePropertyPacketTimeout; return GetPropertyAtIndexAs( idx, g_processgdbremote_properties[idx].default_uint_value); } bool SetPacketTimeout(uint64_t timeout) { const uint32_t idx = ePropertyPacketTimeout; return SetPropertyAtIndex(idx, timeout); } FileSpec GetTargetDefinitionFile() const { const uint32_t idx = ePropertyTargetDefinitionFile; return GetPropertyAtIndexAs(idx, {}); } bool GetUseSVR4() const { const uint32_t idx = ePropertyUseSVR4; return GetPropertyAtIndexAs( idx, g_processgdbremote_properties[idx].default_uint_value != 0); } bool GetUseGPacketForReading() const { const uint32_t idx = ePropertyUseGPacketForReading; return GetPropertyAtIndexAs(idx, true); } }; } // namespace static PluginProperties &GetGlobalPluginProperties() { static PluginProperties g_settings; return g_settings; } // TODO Randomly assigning a port is unsafe. We should get an unused // ephemeral port from the kernel and make sure we reserve it before passing it // to debugserver. #if defined(__APPLE__) #define LOW_PORT (IPPORT_RESERVED) #define HIGH_PORT (IPPORT_HIFIRSTAUTO) #else #define LOW_PORT (1024u) #define HIGH_PORT (49151u) #endif llvm::StringRef ProcessGDBRemote::GetPluginDescriptionStatic() { return "GDB Remote protocol based debugging plug-in."; } void ProcessGDBRemote::Terminate() { PluginManager::UnregisterPlugin(ProcessGDBRemote::CreateInstance); } lldb::ProcessSP ProcessGDBRemote::CreateInstance( lldb::TargetSP target_sp, ListenerSP listener_sp, const FileSpec *crash_file_path, bool can_connect) { lldb::ProcessSP process_sp; if (crash_file_path == nullptr) process_sp = std::shared_ptr( new ProcessGDBRemote(target_sp, listener_sp)); return process_sp; } void ProcessGDBRemote::DumpPluginHistory(Stream &s) { GDBRemoteCommunicationClient &gdb_comm(GetGDBRemote()); gdb_comm.DumpHistory(s); } std::chrono::seconds ProcessGDBRemote::GetPacketTimeout() { return std::chrono::seconds(GetGlobalPluginProperties().GetPacketTimeout()); } ArchSpec ProcessGDBRemote::GetSystemArchitecture() { return m_gdb_comm.GetHostArchitecture(); } bool ProcessGDBRemote::CanDebug(lldb::TargetSP target_sp, bool plugin_specified_by_name) { if (plugin_specified_by_name) return true; // For now we are just making sure the file exists for a given module Module *exe_module = target_sp->GetExecutableModulePointer(); if (exe_module) { ObjectFile *exe_objfile = exe_module->GetObjectFile(); // We can't debug core files... switch (exe_objfile->GetType()) { case ObjectFile::eTypeInvalid: case ObjectFile::eTypeCoreFile: case ObjectFile::eTypeDebugInfo: case ObjectFile::eTypeObjectFile: case ObjectFile::eTypeSharedLibrary: case ObjectFile::eTypeStubLibrary: case ObjectFile::eTypeJIT: return false; case ObjectFile::eTypeExecutable: case ObjectFile::eTypeDynamicLinker: case ObjectFile::eTypeUnknown: break; } return FileSystem::Instance().Exists(exe_module->GetFileSpec()); } // However, if there is no executable module, we return true since we might // be preparing to attach. return true; } // ProcessGDBRemote constructor ProcessGDBRemote::ProcessGDBRemote(lldb::TargetSP target_sp, ListenerSP listener_sp) : Process(target_sp, listener_sp), m_debugserver_pid(LLDB_INVALID_PROCESS_ID), m_register_info_sp(nullptr), m_async_broadcaster(nullptr, "lldb.process.gdb-remote.async-broadcaster"), m_async_listener_sp( Listener::MakeListener("lldb.process.gdb-remote.async-listener")), m_async_thread_state_mutex(), m_thread_ids(), m_thread_pcs(), m_jstopinfo_sp(), m_jthreadsinfo_sp(), m_continue_c_tids(), m_continue_C_tids(), m_continue_s_tids(), m_continue_S_tids(), m_max_memory_size(0), m_remote_stub_max_memory_size(0), m_addr_to_mmap_size(), m_thread_create_bp_sp(), m_waiting_for_attach(false), m_command_sp(), m_breakpoint_pc_offset(0), m_initial_tid(LLDB_INVALID_THREAD_ID), m_allow_flash_writes(false), m_erased_flash_ranges(), m_vfork_in_progress_count(0) { m_async_broadcaster.SetEventName(eBroadcastBitAsyncThreadShouldExit, "async thread should exit"); m_async_broadcaster.SetEventName(eBroadcastBitAsyncContinue, "async thread continue"); m_async_broadcaster.SetEventName(eBroadcastBitAsyncThreadDidExit, "async thread did exit"); Log *log = GetLog(GDBRLog::Async); const uint32_t async_event_mask = eBroadcastBitAsyncContinue | eBroadcastBitAsyncThreadShouldExit; if (m_async_listener_sp->StartListeningForEvents( &m_async_broadcaster, async_event_mask) != async_event_mask) { LLDB_LOGF(log, "ProcessGDBRemote::%s failed to listen for " "m_async_broadcaster events", __FUNCTION__); } const uint64_t timeout_seconds = GetGlobalPluginProperties().GetPacketTimeout(); if (timeout_seconds > 0) m_gdb_comm.SetPacketTimeout(std::chrono::seconds(timeout_seconds)); m_use_g_packet_for_reading = GetGlobalPluginProperties().GetUseGPacketForReading(); } // Destructor ProcessGDBRemote::~ProcessGDBRemote() { // m_mach_process.UnregisterNotificationCallbacks (this); Clear(); // We need to call finalize on the process before destroying ourselves to // make sure all of the broadcaster cleanup goes as planned. If we destruct // this class, then Process::~Process() might have problems trying to fully // destroy the broadcaster. Finalize(true /* destructing */); // The general Finalize is going to try to destroy the process and that // SHOULD shut down the async thread. However, if we don't kill it it will // get stranded and its connection will go away so when it wakes up it will // crash. So kill it for sure here. StopAsyncThread(); KillDebugserverProcess(); } bool ProcessGDBRemote::ParsePythonTargetDefinition( const FileSpec &target_definition_fspec) { ScriptInterpreter *interpreter = GetTarget().GetDebugger().GetScriptInterpreter(); Status error; StructuredData::ObjectSP module_object_sp( interpreter->LoadPluginModule(target_definition_fspec, error)); if (module_object_sp) { StructuredData::DictionarySP target_definition_sp( interpreter->GetDynamicSettings(module_object_sp, &GetTarget(), "gdb-server-target-definition", error)); if (target_definition_sp) { StructuredData::ObjectSP target_object( target_definition_sp->GetValueForKey("host-info")); if (target_object) { if (auto host_info_dict = target_object->GetAsDictionary()) { StructuredData::ObjectSP triple_value = host_info_dict->GetValueForKey("triple"); if (auto triple_string_value = triple_value->GetAsString()) { std::string triple_string = std::string(triple_string_value->GetValue()); ArchSpec host_arch(triple_string.c_str()); if (!host_arch.IsCompatibleMatch(GetTarget().GetArchitecture())) { GetTarget().SetArchitecture(host_arch); } } } } m_breakpoint_pc_offset = 0; StructuredData::ObjectSP breakpoint_pc_offset_value = target_definition_sp->GetValueForKey("breakpoint-pc-offset"); if (breakpoint_pc_offset_value) { if (auto breakpoint_pc_int_value = breakpoint_pc_offset_value->GetAsSignedInteger()) m_breakpoint_pc_offset = breakpoint_pc_int_value->GetValue(); } if (m_register_info_sp->SetRegisterInfo( *target_definition_sp, GetTarget().GetArchitecture()) > 0) { return true; } } } return false; } static size_t SplitCommaSeparatedRegisterNumberString( const llvm::StringRef &comma_separated_register_numbers, std::vector ®nums, int base) { regnums.clear(); for (llvm::StringRef x : llvm::split(comma_separated_register_numbers, ',')) { uint32_t reg; if (llvm::to_integer(x, reg, base)) regnums.push_back(reg); } return regnums.size(); } void ProcessGDBRemote::BuildDynamicRegisterInfo(bool force) { if (!force && m_register_info_sp) return; m_register_info_sp = std::make_shared(); // Check if qHostInfo specified a specific packet timeout for this // connection. If so then lets update our setting so the user knows what the // timeout is and can see it. const auto host_packet_timeout = m_gdb_comm.GetHostDefaultPacketTimeout(); if (host_packet_timeout > std::chrono::seconds(0)) { GetGlobalPluginProperties().SetPacketTimeout(host_packet_timeout.count()); } // Register info search order: // 1 - Use the target definition python file if one is specified. // 2 - If the target definition doesn't have any of the info from the // target.xml (registers) then proceed to read the target.xml. // 3 - Fall back on the qRegisterInfo packets. // 4 - Use hardcoded defaults if available. FileSpec target_definition_fspec = GetGlobalPluginProperties().GetTargetDefinitionFile(); if (!FileSystem::Instance().Exists(target_definition_fspec)) { // If the filename doesn't exist, it may be a ~ not having been expanded - // try to resolve it. FileSystem::Instance().Resolve(target_definition_fspec); } if (target_definition_fspec) { // See if we can get register definitions from a python file if (ParsePythonTargetDefinition(target_definition_fspec)) return; Debugger::ReportError("target description file " + target_definition_fspec.GetPath() + " failed to parse", GetTarget().GetDebugger().GetID()); } const ArchSpec &target_arch = GetTarget().GetArchitecture(); const ArchSpec &remote_host_arch = m_gdb_comm.GetHostArchitecture(); const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture(); // Use the process' architecture instead of the host arch, if available ArchSpec arch_to_use; if (remote_process_arch.IsValid()) arch_to_use = remote_process_arch; else arch_to_use = remote_host_arch; if (!arch_to_use.IsValid()) arch_to_use = target_arch; if (GetGDBServerRegisterInfo(arch_to_use)) return; char packet[128]; std::vector registers; uint32_t reg_num = 0; for (StringExtractorGDBRemote::ResponseType response_type = StringExtractorGDBRemote::eResponse; response_type == StringExtractorGDBRemote::eResponse; ++reg_num) { const int packet_len = ::snprintf(packet, sizeof(packet), "qRegisterInfo%x", reg_num); assert(packet_len < (int)sizeof(packet)); UNUSED_IF_ASSERT_DISABLED(packet_len); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response) == GDBRemoteCommunication::PacketResult::Success) { response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { llvm::StringRef name; llvm::StringRef value; DynamicRegisterInfo::Register reg_info; while (response.GetNameColonValue(name, value)) { if (name == "name") { reg_info.name.SetString(value); } else if (name == "alt-name") { reg_info.alt_name.SetString(value); } else if (name == "bitsize") { if (!value.getAsInteger(0, reg_info.byte_size)) reg_info.byte_size /= CHAR_BIT; } else if (name == "offset") { value.getAsInteger(0, reg_info.byte_offset); } else if (name == "encoding") { const Encoding encoding = Args::StringToEncoding(value); if (encoding != eEncodingInvalid) reg_info.encoding = encoding; } else if (name == "format") { if (!OptionArgParser::ToFormat(value.str().c_str(), reg_info.format, nullptr) .Success()) reg_info.format = llvm::StringSwitch(value) .Case("binary", eFormatBinary) .Case("decimal", eFormatDecimal) .Case("hex", eFormatHex) .Case("float", eFormatFloat) .Case("vector-sint8", eFormatVectorOfSInt8) .Case("vector-uint8", eFormatVectorOfUInt8) .Case("vector-sint16", eFormatVectorOfSInt16) .Case("vector-uint16", eFormatVectorOfUInt16) .Case("vector-sint32", eFormatVectorOfSInt32) .Case("vector-uint32", eFormatVectorOfUInt32) .Case("vector-float32", eFormatVectorOfFloat32) .Case("vector-uint64", eFormatVectorOfUInt64) .Case("vector-uint128", eFormatVectorOfUInt128) .Default(eFormatInvalid); } else if (name == "set") { reg_info.set_name.SetString(value); } else if (name == "gcc" || name == "ehframe") { value.getAsInteger(0, reg_info.regnum_ehframe); } else if (name == "dwarf") { value.getAsInteger(0, reg_info.regnum_dwarf); } else if (name == "generic") { reg_info.regnum_generic = Args::StringToGenericRegister(value); } else if (name == "container-regs") { SplitCommaSeparatedRegisterNumberString(value, reg_info.value_regs, 16); } else if (name == "invalidate-regs") { SplitCommaSeparatedRegisterNumberString(value, reg_info.invalidate_regs, 16); } } assert(reg_info.byte_size != 0); registers.push_back(reg_info); } else { break; // ensure exit before reg_num is incremented } } else { break; } } if (registers.empty()) registers = GetFallbackRegisters(arch_to_use); AddRemoteRegisters(registers, arch_to_use); } Status ProcessGDBRemote::DoWillLaunch(lldb_private::Module *module) { return WillLaunchOrAttach(); } Status ProcessGDBRemote::DoWillAttachToProcessWithID(lldb::pid_t pid) { return WillLaunchOrAttach(); } Status ProcessGDBRemote::DoWillAttachToProcessWithName(const char *process_name, bool wait_for_launch) { return WillLaunchOrAttach(); } Status ProcessGDBRemote::DoConnectRemote(llvm::StringRef remote_url) { Log *log = GetLog(GDBRLog::Process); Status error(WillLaunchOrAttach()); if (error.Fail()) return error; error = ConnectToDebugserver(remote_url); if (error.Fail()) return error; StartAsyncThread(); lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID(); if (pid == LLDB_INVALID_PROCESS_ID) { // We don't have a valid process ID, so note that we are connected and // could now request to launch or attach, or get remote process listings... SetPrivateState(eStateConnected); } else { // We have a valid process SetID(pid); GetThreadList(); StringExtractorGDBRemote response; if (m_gdb_comm.GetStopReply(response)) { SetLastStopPacket(response); Target &target = GetTarget(); if (!target.GetArchitecture().IsValid()) { if (m_gdb_comm.GetProcessArchitecture().IsValid()) { target.SetArchitecture(m_gdb_comm.GetProcessArchitecture()); } else { if (m_gdb_comm.GetHostArchitecture().IsValid()) { target.SetArchitecture(m_gdb_comm.GetHostArchitecture()); } } } const StateType state = SetThreadStopInfo(response); if (state != eStateInvalid) { SetPrivateState(state); } else error.SetErrorStringWithFormat( "Process %" PRIu64 " was reported after connecting to " "'%s', but state was not stopped: %s", pid, remote_url.str().c_str(), StateAsCString(state)); } else error.SetErrorStringWithFormat("Process %" PRIu64 " was reported after connecting to '%s', " "but no stop reply packet was received", pid, remote_url.str().c_str()); } LLDB_LOGF(log, "ProcessGDBRemote::%s pid %" PRIu64 ": normalizing target architecture initial triple: %s " "(GetTarget().GetArchitecture().IsValid() %s, " "m_gdb_comm.GetHostArchitecture().IsValid(): %s)", __FUNCTION__, GetID(), GetTarget().GetArchitecture().GetTriple().getTriple().c_str(), GetTarget().GetArchitecture().IsValid() ? "true" : "false", m_gdb_comm.GetHostArchitecture().IsValid() ? "true" : "false"); if (error.Success() && !GetTarget().GetArchitecture().IsValid() && m_gdb_comm.GetHostArchitecture().IsValid()) { // Prefer the *process'* architecture over that of the *host*, if // available. if (m_gdb_comm.GetProcessArchitecture().IsValid()) GetTarget().SetArchitecture(m_gdb_comm.GetProcessArchitecture()); else GetTarget().SetArchitecture(m_gdb_comm.GetHostArchitecture()); } LLDB_LOGF(log, "ProcessGDBRemote::%s pid %" PRIu64 ": normalized target architecture triple: %s", __FUNCTION__, GetID(), GetTarget().GetArchitecture().GetTriple().getTriple().c_str()); return error; } Status ProcessGDBRemote::WillLaunchOrAttach() { Status error; m_stdio_communication.Clear(); return error; } // Process Control Status ProcessGDBRemote::DoLaunch(lldb_private::Module *exe_module, ProcessLaunchInfo &launch_info) { Log *log = GetLog(GDBRLog::Process); Status error; LLDB_LOGF(log, "ProcessGDBRemote::%s() entered", __FUNCTION__); uint32_t launch_flags = launch_info.GetFlags().Get(); FileSpec stdin_file_spec{}; FileSpec stdout_file_spec{}; FileSpec stderr_file_spec{}; FileSpec working_dir = launch_info.GetWorkingDirectory(); const FileAction *file_action; file_action = launch_info.GetFileActionForFD(STDIN_FILENO); if (file_action) { if (file_action->GetAction() == FileAction::eFileActionOpen) stdin_file_spec = file_action->GetFileSpec(); } file_action = launch_info.GetFileActionForFD(STDOUT_FILENO); if (file_action) { if (file_action->GetAction() == FileAction::eFileActionOpen) stdout_file_spec = file_action->GetFileSpec(); } file_action = launch_info.GetFileActionForFD(STDERR_FILENO); if (file_action) { if (file_action->GetAction() == FileAction::eFileActionOpen) stderr_file_spec = file_action->GetFileSpec(); } if (log) { if (stdin_file_spec || stdout_file_spec || stderr_file_spec) LLDB_LOGF(log, "ProcessGDBRemote::%s provided with STDIO paths via " "launch_info: stdin=%s, stdout=%s, stderr=%s", __FUNCTION__, stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "", stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "", stderr_file_spec ? stderr_file_spec.GetPath().c_str() : ""); else LLDB_LOGF(log, "ProcessGDBRemote::%s no STDIO paths given via launch_info", __FUNCTION__); } const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0; if (stdin_file_spec || disable_stdio) { // the inferior will be reading stdin from the specified file or stdio is // completely disabled m_stdin_forward = false; } else { m_stdin_forward = true; } // ::LogSetBitMask (GDBR_LOG_DEFAULT); // ::LogSetOptions (LLDB_LOG_OPTION_THREADSAFE | // LLDB_LOG_OPTION_PREPEND_TIMESTAMP | // LLDB_LOG_OPTION_PREPEND_PROC_AND_THREAD); // ::LogSetLogFile ("/dev/stdout"); error = EstablishConnectionIfNeeded(launch_info); if (error.Success()) { PseudoTerminal pty; const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0; PlatformSP platform_sp(GetTarget().GetPlatform()); if (disable_stdio) { // set to /dev/null unless redirected to a file above if (!stdin_file_spec) stdin_file_spec.SetFile(FileSystem::DEV_NULL, FileSpec::Style::native); if (!stdout_file_spec) stdout_file_spec.SetFile(FileSystem::DEV_NULL, FileSpec::Style::native); if (!stderr_file_spec) stderr_file_spec.SetFile(FileSystem::DEV_NULL, FileSpec::Style::native); } else if (platform_sp && platform_sp->IsHost()) { // If the debugserver is local and we aren't disabling STDIO, lets use // a pseudo terminal to instead of relying on the 'O' packets for stdio // since 'O' packets can really slow down debugging if the inferior // does a lot of output. if ((!stdin_file_spec || !stdout_file_spec || !stderr_file_spec) && !errorToBool(pty.OpenFirstAvailablePrimary(O_RDWR | O_NOCTTY))) { FileSpec secondary_name(pty.GetSecondaryName()); if (!stdin_file_spec) stdin_file_spec = secondary_name; if (!stdout_file_spec) stdout_file_spec = secondary_name; if (!stderr_file_spec) stderr_file_spec = secondary_name; } LLDB_LOGF( log, "ProcessGDBRemote::%s adjusted STDIO paths for local platform " "(IsHost() is true) using secondary: stdin=%s, stdout=%s, " "stderr=%s", __FUNCTION__, stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "", stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "", stderr_file_spec ? stderr_file_spec.GetPath().c_str() : ""); } LLDB_LOGF(log, "ProcessGDBRemote::%s final STDIO paths after all " "adjustments: stdin=%s, stdout=%s, stderr=%s", __FUNCTION__, stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "", stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "", stderr_file_spec ? stderr_file_spec.GetPath().c_str() : ""); if (stdin_file_spec) m_gdb_comm.SetSTDIN(stdin_file_spec); if (stdout_file_spec) m_gdb_comm.SetSTDOUT(stdout_file_spec); if (stderr_file_spec) m_gdb_comm.SetSTDERR(stderr_file_spec); m_gdb_comm.SetDisableASLR(launch_flags & eLaunchFlagDisableASLR); m_gdb_comm.SetDetachOnError(launch_flags & eLaunchFlagDetachOnError); m_gdb_comm.SendLaunchArchPacket( GetTarget().GetArchitecture().GetArchitectureName()); const char *launch_event_data = launch_info.GetLaunchEventData(); if (launch_event_data != nullptr && *launch_event_data != '\0') m_gdb_comm.SendLaunchEventDataPacket(launch_event_data); if (working_dir) { m_gdb_comm.SetWorkingDir(working_dir); } // Send the environment and the program + arguments after we connect m_gdb_comm.SendEnvironment(launch_info.GetEnvironment()); { // Scope for the scoped timeout object GDBRemoteCommunication::ScopedTimeout timeout(m_gdb_comm, std::chrono::seconds(10)); // Since we can't send argv0 separate from the executable path, we need to // make sure to use the actual executable path found in the launch_info... Args args = launch_info.GetArguments(); if (FileSpec exe_file = launch_info.GetExecutableFile()) args.ReplaceArgumentAtIndex(0, exe_file.GetPath(false)); if (llvm::Error err = m_gdb_comm.LaunchProcess(args)) { error.SetErrorStringWithFormatv("Cannot launch '{0}': {1}", args.GetArgumentAtIndex(0), llvm::fmt_consume(std::move(err))); } else { SetID(m_gdb_comm.GetCurrentProcessID()); } } if (GetID() == LLDB_INVALID_PROCESS_ID) { LLDB_LOGF(log, "failed to connect to debugserver: %s", error.AsCString()); KillDebugserverProcess(); return error; } StringExtractorGDBRemote response; if (m_gdb_comm.GetStopReply(response)) { SetLastStopPacket(response); const ArchSpec &process_arch = m_gdb_comm.GetProcessArchitecture(); if (process_arch.IsValid()) { GetTarget().MergeArchitecture(process_arch); } else { const ArchSpec &host_arch = m_gdb_comm.GetHostArchitecture(); if (host_arch.IsValid()) GetTarget().MergeArchitecture(host_arch); } SetPrivateState(SetThreadStopInfo(response)); if (!disable_stdio) { if (pty.GetPrimaryFileDescriptor() != PseudoTerminal::invalid_fd) SetSTDIOFileDescriptor(pty.ReleasePrimaryFileDescriptor()); } } } else { LLDB_LOGF(log, "failed to connect to debugserver: %s", error.AsCString()); } return error; } Status ProcessGDBRemote::ConnectToDebugserver(llvm::StringRef connect_url) { Status error; // Only connect if we have a valid connect URL Log *log = GetLog(GDBRLog::Process); if (!connect_url.empty()) { LLDB_LOGF(log, "ProcessGDBRemote::%s Connecting to %s", __FUNCTION__, connect_url.str().c_str()); std::unique_ptr conn_up( new ConnectionFileDescriptor()); if (conn_up) { const uint32_t max_retry_count = 50; uint32_t retry_count = 0; while (!m_gdb_comm.IsConnected()) { if (conn_up->Connect(connect_url, &error) == eConnectionStatusSuccess) { m_gdb_comm.SetConnection(std::move(conn_up)); break; } retry_count++; if (retry_count >= max_retry_count) break; std::this_thread::sleep_for(std::chrono::milliseconds(100)); } } } if (!m_gdb_comm.IsConnected()) { if (error.Success()) error.SetErrorString("not connected to remote gdb server"); return error; } // We always seem to be able to open a connection to a local port so we need // to make sure we can then send data to it. If we can't then we aren't // actually connected to anything, so try and do the handshake with the // remote GDB server and make sure that goes alright. if (!m_gdb_comm.HandshakeWithServer(&error)) { m_gdb_comm.Disconnect(); if (error.Success()) error.SetErrorString("not connected to remote gdb server"); return error; } m_gdb_comm.GetEchoSupported(); m_gdb_comm.GetThreadSuffixSupported(); m_gdb_comm.GetListThreadsInStopReplySupported(); m_gdb_comm.GetHostInfo(); m_gdb_comm.GetVContSupported('c'); m_gdb_comm.GetVAttachOrWaitSupported(); m_gdb_comm.EnableErrorStringInPacket(); // First dispatch any commands from the platform: auto handle_cmds = [&] (const Args &args) -> void { for (const Args::ArgEntry &entry : args) { StringExtractorGDBRemote response; m_gdb_comm.SendPacketAndWaitForResponse( entry.c_str(), response); } }; PlatformSP platform_sp = GetTarget().GetPlatform(); if (platform_sp) { handle_cmds(platform_sp->GetExtraStartupCommands()); } // Then dispatch any process commands: handle_cmds(GetExtraStartupCommands()); return error; } void ProcessGDBRemote::DidLaunchOrAttach(ArchSpec &process_arch) { Log *log = GetLog(GDBRLog::Process); BuildDynamicRegisterInfo(false); // See if the GDB server supports qHostInfo or qProcessInfo packets. Prefer // qProcessInfo as it will be more specific to our process. const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture(); if (remote_process_arch.IsValid()) { process_arch = remote_process_arch; LLDB_LOG(log, "gdb-remote had process architecture, using {0} {1}", process_arch.GetArchitectureName(), process_arch.GetTriple().getTriple()); } else { process_arch = m_gdb_comm.GetHostArchitecture(); LLDB_LOG(log, "gdb-remote did not have process architecture, using gdb-remote " "host architecture {0} {1}", process_arch.GetArchitectureName(), process_arch.GetTriple().getTriple()); } AddressableBits addressable_bits = m_gdb_comm.GetAddressableBits(); SetAddressableBitMasks(addressable_bits); if (process_arch.IsValid()) { const ArchSpec &target_arch = GetTarget().GetArchitecture(); if (target_arch.IsValid()) { LLDB_LOG(log, "analyzing target arch, currently {0} {1}", target_arch.GetArchitectureName(), target_arch.GetTriple().getTriple()); // If the remote host is ARM and we have apple as the vendor, then // ARM executables and shared libraries can have mixed ARM // architectures. // You can have an armv6 executable, and if the host is armv7, then the // system will load the best possible architecture for all shared // libraries it has, so we really need to take the remote host // architecture as our defacto architecture in this case. if ((process_arch.GetMachine() == llvm::Triple::arm || process_arch.GetMachine() == llvm::Triple::thumb) && process_arch.GetTriple().getVendor() == llvm::Triple::Apple) { GetTarget().SetArchitecture(process_arch); LLDB_LOG(log, "remote process is ARM/Apple, " "setting target arch to {0} {1}", process_arch.GetArchitectureName(), process_arch.GetTriple().getTriple()); } else { // Fill in what is missing in the triple const llvm::Triple &remote_triple = process_arch.GetTriple(); llvm::Triple new_target_triple = target_arch.GetTriple(); if (new_target_triple.getVendorName().size() == 0) { new_target_triple.setVendor(remote_triple.getVendor()); if (new_target_triple.getOSName().size() == 0) { new_target_triple.setOS(remote_triple.getOS()); if (new_target_triple.getEnvironmentName().size() == 0) new_target_triple.setEnvironment(remote_triple.getEnvironment()); } ArchSpec new_target_arch = target_arch; new_target_arch.SetTriple(new_target_triple); GetTarget().SetArchitecture(new_target_arch); } } LLDB_LOG(log, "final target arch after adjustments for remote architecture: " "{0} {1}", target_arch.GetArchitectureName(), target_arch.GetTriple().getTriple()); } else { // The target doesn't have a valid architecture yet, set it from the // architecture we got from the remote GDB server GetTarget().SetArchitecture(process_arch); } } // Target and Process are reasonably initailized; // load any binaries we have metadata for / set load address. LoadStubBinaries(); MaybeLoadExecutableModule(); // Find out which StructuredDataPlugins are supported by the debug monitor. // These plugins transmit data over async $J packets. if (StructuredData::Array *supported_packets = m_gdb_comm.GetSupportedStructuredDataPlugins()) MapSupportedStructuredDataPlugins(*supported_packets); // If connected to LLDB ("native-signals+"), use signal defs for // the remote platform. If connected to GDB, just use the standard set. if (!m_gdb_comm.UsesNativeSignals()) { SetUnixSignals(std::make_shared()); } else { PlatformSP platform_sp = GetTarget().GetPlatform(); if (platform_sp && platform_sp->IsConnected()) SetUnixSignals(platform_sp->GetUnixSignals()); else SetUnixSignals(UnixSignals::Create(GetTarget().GetArchitecture())); } } void ProcessGDBRemote::LoadStubBinaries() { // The remote stub may know about the "main binary" in // the context of a firmware debug session, and can // give us a UUID and an address/slide of where the // binary is loaded in memory. UUID standalone_uuid; addr_t standalone_value; bool standalone_value_is_offset; if (m_gdb_comm.GetProcessStandaloneBinary(standalone_uuid, standalone_value, standalone_value_is_offset)) { ModuleSP module_sp; if (standalone_uuid.IsValid()) { const bool force_symbol_search = true; const bool notify = true; const bool set_address_in_target = true; const bool allow_memory_image_last_resort = false; DynamicLoader::LoadBinaryWithUUIDAndAddress( this, "", standalone_uuid, standalone_value, standalone_value_is_offset, force_symbol_search, notify, set_address_in_target, allow_memory_image_last_resort); } } // The remote stub may know about a list of binaries to // force load into the process -- a firmware type situation // where multiple binaries are present in virtual memory, // and we are only given the addresses of the binaries. // Not intended for use with userland debugging, when we use // a DynamicLoader plugin that knows how to find the loaded // binaries, and will track updates as binaries are added. std::vector bin_addrs = m_gdb_comm.GetProcessStandaloneBinaries(); if (bin_addrs.size()) { UUID uuid; const bool value_is_slide = false; for (addr_t addr : bin_addrs) { const bool notify = true; // First see if this is a special platform // binary that may determine the DynamicLoader and // Platform to be used in this Process and Target. if (GetTarget() .GetDebugger() .GetPlatformList() .LoadPlatformBinaryAndSetup(this, addr, notify)) continue; const bool force_symbol_search = true; const bool set_address_in_target = true; const bool allow_memory_image_last_resort = false; // Second manually load this binary into the Target. DynamicLoader::LoadBinaryWithUUIDAndAddress( this, llvm::StringRef(), uuid, addr, value_is_slide, force_symbol_search, notify, set_address_in_target, allow_memory_image_last_resort); } } } void ProcessGDBRemote::MaybeLoadExecutableModule() { ModuleSP module_sp = GetTarget().GetExecutableModule(); if (!module_sp) return; std::optional offsets = m_gdb_comm.GetQOffsets(); if (!offsets) return; bool is_uniform = size_t(llvm::count(offsets->offsets, offsets->offsets[0])) == offsets->offsets.size(); if (!is_uniform) return; // TODO: Handle non-uniform responses. bool changed = false; module_sp->SetLoadAddress(GetTarget(), offsets->offsets[0], /*value_is_offset=*/true, changed); if (changed) { ModuleList list; list.Append(module_sp); m_process->GetTarget().ModulesDidLoad(list); } } void ProcessGDBRemote::DidLaunch() { ArchSpec process_arch; DidLaunchOrAttach(process_arch); } Status ProcessGDBRemote::DoAttachToProcessWithID( lldb::pid_t attach_pid, const ProcessAttachInfo &attach_info) { Log *log = GetLog(GDBRLog::Process); Status error; LLDB_LOGF(log, "ProcessGDBRemote::%s()", __FUNCTION__); // Clear out and clean up from any current state Clear(); if (attach_pid != LLDB_INVALID_PROCESS_ID) { error = EstablishConnectionIfNeeded(attach_info); if (error.Success()) { m_gdb_comm.SetDetachOnError(attach_info.GetDetachOnError()); char packet[64]; const int packet_len = ::snprintf(packet, sizeof(packet), "vAttach;%" PRIx64, attach_pid); SetID(attach_pid); auto data_sp = std::make_shared(llvm::StringRef(packet, packet_len)); m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncContinue, data_sp); } else SetExitStatus(-1, error.AsCString()); } return error; } Status ProcessGDBRemote::DoAttachToProcessWithName( const char *process_name, const ProcessAttachInfo &attach_info) { Status error; // Clear out and clean up from any current state Clear(); if (process_name && process_name[0]) { error = EstablishConnectionIfNeeded(attach_info); if (error.Success()) { StreamString packet; m_gdb_comm.SetDetachOnError(attach_info.GetDetachOnError()); if (attach_info.GetWaitForLaunch()) { if (!m_gdb_comm.GetVAttachOrWaitSupported()) { packet.PutCString("vAttachWait"); } else { if (attach_info.GetIgnoreExisting()) packet.PutCString("vAttachWait"); else packet.PutCString("vAttachOrWait"); } } else packet.PutCString("vAttachName"); packet.PutChar(';'); packet.PutBytesAsRawHex8(process_name, strlen(process_name), endian::InlHostByteOrder(), endian::InlHostByteOrder()); auto data_sp = std::make_shared(packet.GetString()); m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncContinue, data_sp); } else SetExitStatus(-1, error.AsCString()); } return error; } llvm::Expected ProcessGDBRemote::TraceSupported() { return m_gdb_comm.SendTraceSupported(GetInterruptTimeout()); } llvm::Error ProcessGDBRemote::TraceStop(const TraceStopRequest &request) { return m_gdb_comm.SendTraceStop(request, GetInterruptTimeout()); } llvm::Error ProcessGDBRemote::TraceStart(const llvm::json::Value &request) { return m_gdb_comm.SendTraceStart(request, GetInterruptTimeout()); } llvm::Expected ProcessGDBRemote::TraceGetState(llvm::StringRef type) { return m_gdb_comm.SendTraceGetState(type, GetInterruptTimeout()); } llvm::Expected> ProcessGDBRemote::TraceGetBinaryData(const TraceGetBinaryDataRequest &request) { return m_gdb_comm.SendTraceGetBinaryData(request, GetInterruptTimeout()); } void ProcessGDBRemote::DidExit() { // When we exit, disconnect from the GDB server communications m_gdb_comm.Disconnect(); } void ProcessGDBRemote::DidAttach(ArchSpec &process_arch) { // If you can figure out what the architecture is, fill it in here. process_arch.Clear(); DidLaunchOrAttach(process_arch); } Status ProcessGDBRemote::WillResume() { m_continue_c_tids.clear(); m_continue_C_tids.clear(); m_continue_s_tids.clear(); m_continue_S_tids.clear(); m_jstopinfo_sp.reset(); m_jthreadsinfo_sp.reset(); return Status(); } Status ProcessGDBRemote::DoResume() { Status error; Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::Resume()"); ListenerSP listener_sp( Listener::MakeListener("gdb-remote.resume-packet-sent")); if (listener_sp->StartListeningForEvents( &m_gdb_comm, GDBRemoteClientBase::eBroadcastBitRunPacketSent)) { listener_sp->StartListeningForEvents( &m_async_broadcaster, ProcessGDBRemote::eBroadcastBitAsyncThreadDidExit); const size_t num_threads = GetThreadList().GetSize(); StreamString continue_packet; bool continue_packet_error = false; if (m_gdb_comm.HasAnyVContSupport()) { std::string pid_prefix; if (m_gdb_comm.GetMultiprocessSupported()) pid_prefix = llvm::formatv("p{0:x-}.", GetID()); if (m_continue_c_tids.size() == num_threads || (m_continue_c_tids.empty() && m_continue_C_tids.empty() && m_continue_s_tids.empty() && m_continue_S_tids.empty())) { // All threads are continuing if (m_gdb_comm.GetMultiprocessSupported()) continue_packet.Format("vCont;c:{0}-1", pid_prefix); else continue_packet.PutCString("c"); } else { continue_packet.PutCString("vCont"); if (!m_continue_c_tids.empty()) { if (m_gdb_comm.GetVContSupported('c')) { for (tid_collection::const_iterator t_pos = m_continue_c_tids.begin(), t_end = m_continue_c_tids.end(); t_pos != t_end; ++t_pos) continue_packet.Format(";c:{0}{1:x-}", pid_prefix, *t_pos); } else continue_packet_error = true; } if (!continue_packet_error && !m_continue_C_tids.empty()) { if (m_gdb_comm.GetVContSupported('C')) { for (tid_sig_collection::const_iterator s_pos = m_continue_C_tids.begin(), s_end = m_continue_C_tids.end(); s_pos != s_end; ++s_pos) continue_packet.Format(";C{0:x-2}:{1}{2:x-}", s_pos->second, pid_prefix, s_pos->first); } else continue_packet_error = true; } if (!continue_packet_error && !m_continue_s_tids.empty()) { if (m_gdb_comm.GetVContSupported('s')) { for (tid_collection::const_iterator t_pos = m_continue_s_tids.begin(), t_end = m_continue_s_tids.end(); t_pos != t_end; ++t_pos) continue_packet.Format(";s:{0}{1:x-}", pid_prefix, *t_pos); } else continue_packet_error = true; } if (!continue_packet_error && !m_continue_S_tids.empty()) { if (m_gdb_comm.GetVContSupported('S')) { for (tid_sig_collection::const_iterator s_pos = m_continue_S_tids.begin(), s_end = m_continue_S_tids.end(); s_pos != s_end; ++s_pos) continue_packet.Format(";S{0:x-2}:{1}{2:x-}", s_pos->second, pid_prefix, s_pos->first); } else continue_packet_error = true; } if (continue_packet_error) continue_packet.Clear(); } } else continue_packet_error = true; if (continue_packet_error) { // Either no vCont support, or we tried to use part of the vCont packet // that wasn't supported by the remote GDB server. We need to try and // make a simple packet that can do our continue const size_t num_continue_c_tids = m_continue_c_tids.size(); const size_t num_continue_C_tids = m_continue_C_tids.size(); const size_t num_continue_s_tids = m_continue_s_tids.size(); const size_t num_continue_S_tids = m_continue_S_tids.size(); if (num_continue_c_tids > 0) { if (num_continue_c_tids == num_threads) { // All threads are resuming... m_gdb_comm.SetCurrentThreadForRun(-1); continue_packet.PutChar('c'); continue_packet_error = false; } else if (num_continue_c_tids == 1 && num_continue_C_tids == 0 && num_continue_s_tids == 0 && num_continue_S_tids == 0) { // Only one thread is continuing m_gdb_comm.SetCurrentThreadForRun(m_continue_c_tids.front()); continue_packet.PutChar('c'); continue_packet_error = false; } } if (continue_packet_error && num_continue_C_tids > 0) { if ((num_continue_C_tids + num_continue_c_tids) == num_threads && num_continue_C_tids > 0 && num_continue_s_tids == 0 && num_continue_S_tids == 0) { const int continue_signo = m_continue_C_tids.front().second; // Only one thread is continuing if (num_continue_C_tids > 1) { // More that one thread with a signal, yet we don't have vCont // support and we are being asked to resume each thread with a // signal, we need to make sure they are all the same signal, or we // can't issue the continue accurately with the current support... if (num_continue_C_tids > 1) { continue_packet_error = false; for (size_t i = 1; i < m_continue_C_tids.size(); ++i) { if (m_continue_C_tids[i].second != continue_signo) continue_packet_error = true; } } if (!continue_packet_error) m_gdb_comm.SetCurrentThreadForRun(-1); } else { // Set the continue thread ID continue_packet_error = false; m_gdb_comm.SetCurrentThreadForRun(m_continue_C_tids.front().first); } if (!continue_packet_error) { // Add threads continuing with the same signo... continue_packet.Printf("C%2.2x", continue_signo); } } } if (continue_packet_error && num_continue_s_tids > 0) { if (num_continue_s_tids == num_threads) { // All threads are resuming... m_gdb_comm.SetCurrentThreadForRun(-1); continue_packet.PutChar('s'); continue_packet_error = false; } else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 && num_continue_s_tids == 1 && num_continue_S_tids == 0) { // Only one thread is stepping m_gdb_comm.SetCurrentThreadForRun(m_continue_s_tids.front()); continue_packet.PutChar('s'); continue_packet_error = false; } } if (!continue_packet_error && num_continue_S_tids > 0) { if (num_continue_S_tids == num_threads) { const int step_signo = m_continue_S_tids.front().second; // Are all threads trying to step with the same signal? continue_packet_error = false; if (num_continue_S_tids > 1) { for (size_t i = 1; i < num_threads; ++i) { if (m_continue_S_tids[i].second != step_signo) continue_packet_error = true; } } if (!continue_packet_error) { // Add threads stepping with the same signo... m_gdb_comm.SetCurrentThreadForRun(-1); continue_packet.Printf("S%2.2x", step_signo); } } else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 && num_continue_s_tids == 0 && num_continue_S_tids == 1) { // Only one thread is stepping with signal m_gdb_comm.SetCurrentThreadForRun(m_continue_S_tids.front().first); continue_packet.Printf("S%2.2x", m_continue_S_tids.front().second); continue_packet_error = false; } } } if (continue_packet_error) { error.SetErrorString("can't make continue packet for this resume"); } else { EventSP event_sp; if (!m_async_thread.IsJoinable()) { error.SetErrorString("Trying to resume but the async thread is dead."); LLDB_LOGF(log, "ProcessGDBRemote::DoResume: Trying to resume but the " "async thread is dead."); return error; } auto data_sp = std::make_shared(continue_packet.GetString()); m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncContinue, data_sp); if (!listener_sp->GetEvent(event_sp, std::chrono::seconds(5))) { error.SetErrorString("Resume timed out."); LLDB_LOGF(log, "ProcessGDBRemote::DoResume: Resume timed out."); } else if (event_sp->BroadcasterIs(&m_async_broadcaster)) { error.SetErrorString("Broadcast continue, but the async thread was " "killed before we got an ack back."); LLDB_LOGF(log, "ProcessGDBRemote::DoResume: Broadcast continue, but the " "async thread was killed before we got an ack back."); return error; } } } return error; } void ProcessGDBRemote::ClearThreadIDList() { std::lock_guard guard(m_thread_list_real.GetMutex()); m_thread_ids.clear(); m_thread_pcs.clear(); } size_t ProcessGDBRemote::UpdateThreadIDsFromStopReplyThreadsValue( llvm::StringRef value) { m_thread_ids.clear(); lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID(); StringExtractorGDBRemote thread_ids{value}; do { auto pid_tid = thread_ids.GetPidTid(pid); if (pid_tid && pid_tid->first == pid) { lldb::tid_t tid = pid_tid->second; if (tid != LLDB_INVALID_THREAD_ID && tid != StringExtractorGDBRemote::AllProcesses) m_thread_ids.push_back(tid); } } while (thread_ids.GetChar() == ','); return m_thread_ids.size(); } size_t ProcessGDBRemote::UpdateThreadPCsFromStopReplyThreadsValue( llvm::StringRef value) { m_thread_pcs.clear(); for (llvm::StringRef x : llvm::split(value, ',')) { lldb::addr_t pc; if (llvm::to_integer(x, pc, 16)) m_thread_pcs.push_back(pc); } return m_thread_pcs.size(); } bool ProcessGDBRemote::UpdateThreadIDList() { std::lock_guard guard(m_thread_list_real.GetMutex()); if (m_jthreadsinfo_sp) { // If we have the JSON threads info, we can get the thread list from that StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray(); if (thread_infos && thread_infos->GetSize() > 0) { m_thread_ids.clear(); m_thread_pcs.clear(); thread_infos->ForEach([this](StructuredData::Object *object) -> bool { StructuredData::Dictionary *thread_dict = object->GetAsDictionary(); if (thread_dict) { // Set the thread stop info from the JSON dictionary SetThreadStopInfo(thread_dict); lldb::tid_t tid = LLDB_INVALID_THREAD_ID; if (thread_dict->GetValueForKeyAsInteger("tid", tid)) m_thread_ids.push_back(tid); } return true; // Keep iterating through all thread_info objects }); } if (!m_thread_ids.empty()) return true; } else { // See if we can get the thread IDs from the current stop reply packets // that might contain a "threads" key/value pair if (m_last_stop_packet) { // Get the thread stop info StringExtractorGDBRemote &stop_info = *m_last_stop_packet; const std::string &stop_info_str = std::string(stop_info.GetStringRef()); m_thread_pcs.clear(); const size_t thread_pcs_pos = stop_info_str.find(";thread-pcs:"); if (thread_pcs_pos != std::string::npos) { const size_t start = thread_pcs_pos + strlen(";thread-pcs:"); const size_t end = stop_info_str.find(';', start); if (end != std::string::npos) { std::string value = stop_info_str.substr(start, end - start); UpdateThreadPCsFromStopReplyThreadsValue(value); } } const size_t threads_pos = stop_info_str.find(";threads:"); if (threads_pos != std::string::npos) { const size_t start = threads_pos + strlen(";threads:"); const size_t end = stop_info_str.find(';', start); if (end != std::string::npos) { std::string value = stop_info_str.substr(start, end - start); if (UpdateThreadIDsFromStopReplyThreadsValue(value)) return true; } } } } bool sequence_mutex_unavailable = false; m_gdb_comm.GetCurrentThreadIDs(m_thread_ids, sequence_mutex_unavailable); if (sequence_mutex_unavailable) { return false; // We just didn't get the list } return true; } bool ProcessGDBRemote::DoUpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list) { // locker will keep a mutex locked until it goes out of scope Log *log = GetLog(GDBRLog::Thread); LLDB_LOGV(log, "pid = {0}", GetID()); size_t num_thread_ids = m_thread_ids.size(); // The "m_thread_ids" thread ID list should always be updated after each stop // reply packet, but in case it isn't, update it here. if (num_thread_ids == 0) { if (!UpdateThreadIDList()) return false; num_thread_ids = m_thread_ids.size(); } ThreadList old_thread_list_copy(old_thread_list); if (num_thread_ids > 0) { for (size_t i = 0; i < num_thread_ids; ++i) { tid_t tid = m_thread_ids[i]; ThreadSP thread_sp( old_thread_list_copy.RemoveThreadByProtocolID(tid, false)); if (!thread_sp) { thread_sp = std::make_shared(*this, tid); LLDB_LOGV(log, "Making new thread: {0} for thread ID: {1:x}.", thread_sp.get(), thread_sp->GetID()); } else { LLDB_LOGV(log, "Found old thread: {0} for thread ID: {1:x}.", thread_sp.get(), thread_sp->GetID()); } SetThreadPc(thread_sp, i); new_thread_list.AddThreadSortedByIndexID(thread_sp); } } // Whatever that is left in old_thread_list_copy are not present in // new_thread_list. Remove non-existent threads from internal id table. size_t old_num_thread_ids = old_thread_list_copy.GetSize(false); for (size_t i = 0; i < old_num_thread_ids; i++) { ThreadSP old_thread_sp(old_thread_list_copy.GetThreadAtIndex(i, false)); if (old_thread_sp) { lldb::tid_t old_thread_id = old_thread_sp->GetProtocolID(); m_thread_id_to_index_id_map.erase(old_thread_id); } } return true; } void ProcessGDBRemote::SetThreadPc(const ThreadSP &thread_sp, uint64_t index) { if (m_thread_ids.size() == m_thread_pcs.size() && thread_sp.get() && GetByteOrder() != eByteOrderInvalid) { ThreadGDBRemote *gdb_thread = static_cast(thread_sp.get()); RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext()); if (reg_ctx_sp) { uint32_t pc_regnum = reg_ctx_sp->ConvertRegisterKindToRegisterNumber( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); if (pc_regnum != LLDB_INVALID_REGNUM) { gdb_thread->PrivateSetRegisterValue(pc_regnum, m_thread_pcs[index]); } } } } bool ProcessGDBRemote::GetThreadStopInfoFromJSON( ThreadGDBRemote *thread, const StructuredData::ObjectSP &thread_infos_sp) { // See if we got thread stop infos for all threads via the "jThreadsInfo" // packet if (thread_infos_sp) { StructuredData::Array *thread_infos = thread_infos_sp->GetAsArray(); if (thread_infos) { lldb::tid_t tid; const size_t n = thread_infos->GetSize(); for (size_t i = 0; i < n; ++i) { StructuredData::Dictionary *thread_dict = thread_infos->GetItemAtIndex(i)->GetAsDictionary(); if (thread_dict) { if (thread_dict->GetValueForKeyAsInteger( "tid", tid, LLDB_INVALID_THREAD_ID)) { if (tid == thread->GetID()) return (bool)SetThreadStopInfo(thread_dict); } } } } } return false; } bool ProcessGDBRemote::CalculateThreadStopInfo(ThreadGDBRemote *thread) { // See if we got thread stop infos for all threads via the "jThreadsInfo" // packet if (GetThreadStopInfoFromJSON(thread, m_jthreadsinfo_sp)) return true; // See if we got thread stop info for any threads valid stop info reasons // threads via the "jstopinfo" packet stop reply packet key/value pair? if (m_jstopinfo_sp) { // If we have "jstopinfo" then we have stop descriptions for all threads // that have stop reasons, and if there is no entry for a thread, then it // has no stop reason. thread->GetRegisterContext()->InvalidateIfNeeded(true); if (!GetThreadStopInfoFromJSON(thread, m_jstopinfo_sp)) { // If a thread is stopped at a breakpoint site, set that as the stop // reason even if it hasn't executed the breakpoint instruction yet. // We will silently step over the breakpoint when we resume execution // and miss the fact that this thread hit the breakpoint. const size_t num_thread_ids = m_thread_ids.size(); for (size_t i = 0; i < num_thread_ids; i++) { if (m_thread_ids[i] == thread->GetID() && m_thread_pcs.size() > i) { addr_t pc = m_thread_pcs[i]; lldb::BreakpointSiteSP bp_site_sp = thread->GetProcess()->GetBreakpointSiteList().FindByAddress(pc); if (bp_site_sp) { if (bp_site_sp->ValidForThisThread(*thread)) { thread->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread, bp_site_sp->GetID())); return true; } } } } thread->SetStopInfo(StopInfoSP()); } return true; } // Fall back to using the qThreadStopInfo packet StringExtractorGDBRemote stop_packet; if (GetGDBRemote().GetThreadStopInfo(thread->GetProtocolID(), stop_packet)) return SetThreadStopInfo(stop_packet) == eStateStopped; return false; } void ProcessGDBRemote::ParseExpeditedRegisters( ExpeditedRegisterMap &expedited_register_map, ThreadSP thread_sp) { ThreadGDBRemote *gdb_thread = static_cast(thread_sp.get()); RegisterContextSP gdb_reg_ctx_sp(gdb_thread->GetRegisterContext()); for (const auto &pair : expedited_register_map) { StringExtractor reg_value_extractor(pair.second); WritableDataBufferSP buffer_sp( new DataBufferHeap(reg_value_extractor.GetStringRef().size() / 2, 0)); reg_value_extractor.GetHexBytes(buffer_sp->GetData(), '\xcc'); uint32_t lldb_regnum = gdb_reg_ctx_sp->ConvertRegisterKindToRegisterNumber( eRegisterKindProcessPlugin, pair.first); gdb_thread->PrivateSetRegisterValue(lldb_regnum, buffer_sp->GetData()); } } ThreadSP ProcessGDBRemote::SetThreadStopInfo( lldb::tid_t tid, ExpeditedRegisterMap &expedited_register_map, uint8_t signo, const std::string &thread_name, const std::string &reason, const std::string &description, uint32_t exc_type, const std::vector &exc_data, addr_t thread_dispatch_qaddr, bool queue_vars_valid, // Set to true if queue_name, queue_kind and // queue_serial are valid LazyBool associated_with_dispatch_queue, addr_t dispatch_queue_t, std::string &queue_name, QueueKind queue_kind, uint64_t queue_serial) { if (tid == LLDB_INVALID_THREAD_ID) return nullptr; ThreadSP thread_sp; // Scope for "locker" below { // m_thread_list_real does have its own mutex, but we need to hold onto the // mutex between the call to m_thread_list_real.FindThreadByID(...) and the // m_thread_list_real.AddThread(...) so it doesn't change on us std::lock_guard guard(m_thread_list_real.GetMutex()); thread_sp = m_thread_list_real.FindThreadByProtocolID(tid, false); if (!thread_sp) { // Create the thread if we need to thread_sp = std::make_shared(*this, tid); m_thread_list_real.AddThread(thread_sp); } } ThreadGDBRemote *gdb_thread = static_cast(thread_sp.get()); RegisterContextSP reg_ctx_sp(gdb_thread->GetRegisterContext()); reg_ctx_sp->InvalidateIfNeeded(true); auto iter = std::find(m_thread_ids.begin(), m_thread_ids.end(), tid); if (iter != m_thread_ids.end()) SetThreadPc(thread_sp, iter - m_thread_ids.begin()); ParseExpeditedRegisters(expedited_register_map, thread_sp); if (reg_ctx_sp->ReconfigureRegisterInfo()) { // Now we have changed the offsets of all the registers, so the values // will be corrupted. reg_ctx_sp->InvalidateAllRegisters(); // Expedited registers values will never contain registers that would be // resized by a reconfigure. So we are safe to continue using these // values. ParseExpeditedRegisters(expedited_register_map, thread_sp); } thread_sp->SetName(thread_name.empty() ? nullptr : thread_name.c_str()); gdb_thread->SetThreadDispatchQAddr(thread_dispatch_qaddr); // Check if the GDB server was able to provide the queue name, kind and serial // number if (queue_vars_valid) gdb_thread->SetQueueInfo(std::move(queue_name), queue_kind, queue_serial, dispatch_queue_t, associated_with_dispatch_queue); else gdb_thread->ClearQueueInfo(); gdb_thread->SetAssociatedWithLibdispatchQueue(associated_with_dispatch_queue); if (dispatch_queue_t != LLDB_INVALID_ADDRESS) gdb_thread->SetQueueLibdispatchQueueAddress(dispatch_queue_t); // Make sure we update our thread stop reason just once, but don't overwrite // the stop info for threads that haven't moved: StopInfoSP current_stop_info_sp = thread_sp->GetPrivateStopInfo(false); if (thread_sp->GetTemporaryResumeState() == eStateSuspended && current_stop_info_sp) { thread_sp->SetStopInfo(current_stop_info_sp); return thread_sp; } if (!thread_sp->StopInfoIsUpToDate()) { thread_sp->SetStopInfo(StopInfoSP()); // If there's a memory thread backed by this thread, we need to use it to // calculate StopInfo. if (ThreadSP memory_thread_sp = m_thread_list.GetBackingThread(thread_sp)) thread_sp = memory_thread_sp; if (exc_type != 0) { const size_t exc_data_size = exc_data.size(); thread_sp->SetStopInfo( StopInfoMachException::CreateStopReasonWithMachException( *thread_sp, exc_type, exc_data_size, exc_data_size >= 1 ? exc_data[0] : 0, exc_data_size >= 2 ? exc_data[1] : 0, exc_data_size >= 3 ? exc_data[2] : 0)); } else { bool handled = false; bool did_exec = false; // debugserver can send reason = "none" which is equivalent // to no reason. if (!reason.empty() && reason != "none") { if (reason == "trace") { addr_t pc = thread_sp->GetRegisterContext()->GetPC(); lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress( pc); // If the current pc is a breakpoint site then the StopInfo should be // set to Breakpoint Otherwise, it will be set to Trace. if (bp_site_sp && bp_site_sp->ValidForThisThread(*thread_sp)) { thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); } else thread_sp->SetStopInfo( StopInfo::CreateStopReasonToTrace(*thread_sp)); handled = true; } else if (reason == "breakpoint") { addr_t pc = thread_sp->GetRegisterContext()->GetPC(); lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress( pc); if (bp_site_sp) { // If the breakpoint is for this thread, then we'll report the hit, // but if it is for another thread, we can just report no reason. // We don't need to worry about stepping over the breakpoint here, // that will be taken care of when the thread resumes and notices // that there's a breakpoint under the pc. handled = true; if (bp_site_sp->ValidForThisThread(*thread_sp)) { thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); } else { StopInfoSP invalid_stop_info_sp; thread_sp->SetStopInfo(invalid_stop_info_sp); } } } else if (reason == "trap") { // Let the trap just use the standard signal stop reason below... } else if (reason == "watchpoint") { // We will have between 1 and 3 fields in the description. // // \a wp_addr which is the original start address that // lldb requested be watched, or an address that the // hardware reported. This address should be within the // range of a currently active watchpoint region - lldb // should be able to find a watchpoint with this address. // // \a wp_index is the hardware watchpoint register number. // // \a wp_hit_addr is the actual address reported by the hardware, // which may be outside the range of a region we are watching. // // On MIPS, we may get a false watchpoint exception where an // access to the same 8 byte granule as a watchpoint will trigger, // even if the access was not within the range of the watched // region. When we get a \a wp_hit_addr outside the range of any // set watchpoint, continue execution without making it visible to // the user. // // On ARM, a related issue where a large access that starts // before the watched region (and extends into the watched // region) may report a hit address before the watched region. // lldb will not find the "nearest" watchpoint to // disable/step/re-enable it, so one of the valid watchpoint // addresses should be provided as \a wp_addr. StringExtractor desc_extractor(description.c_str()); // FIXME NativeThreadLinux::SetStoppedByWatchpoint sends this // up as //
// but this is not reading the . Seems like it // wouldn't work on MIPS, where that third field is important. addr_t wp_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS); addr_t wp_hit_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS); watch_id_t watch_id = LLDB_INVALID_WATCH_ID; bool silently_continue = false; WatchpointResourceSP wp_resource_sp; if (wp_hit_addr != LLDB_INVALID_ADDRESS) { wp_resource_sp = m_watchpoint_resource_list.FindByAddress(wp_hit_addr); // On MIPS, \a wp_hit_addr outside the range of a watched // region means we should silently continue, it is a false hit. ArchSpec::Core core = GetTarget().GetArchitecture().GetCore(); if (!wp_resource_sp && core >= ArchSpec::kCore_mips_first && core <= ArchSpec::kCore_mips_last) silently_continue = true; } if (!wp_resource_sp && wp_addr != LLDB_INVALID_ADDRESS) wp_resource_sp = m_watchpoint_resource_list.FindByAddress(wp_addr); if (!wp_resource_sp) { Log *log(GetLog(GDBRLog::Watchpoints)); LLDB_LOGF(log, "failed to find watchpoint"); watch_id = LLDB_INVALID_SITE_ID; } else { // LWP_TODO: This is hardcoding a single Watchpoint in a // Resource, need to add // StopInfo::CreateStopReasonWithWatchpointResource which // represents all watchpoints that were tripped at this stop. watch_id = wp_resource_sp->GetConstituentAtIndex(0)->GetID(); } thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithWatchpointID( *thread_sp, watch_id, silently_continue)); handled = true; } else if (reason == "exception") { thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException( *thread_sp, description.c_str())); handled = true; } else if (reason == "exec") { did_exec = true; thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithExec(*thread_sp)); handled = true; } else if (reason == "processor trace") { thread_sp->SetStopInfo(StopInfo::CreateStopReasonProcessorTrace( *thread_sp, description.c_str())); } else if (reason == "fork") { StringExtractor desc_extractor(description.c_str()); lldb::pid_t child_pid = desc_extractor.GetU64(LLDB_INVALID_PROCESS_ID); lldb::tid_t child_tid = desc_extractor.GetU64(LLDB_INVALID_THREAD_ID); thread_sp->SetStopInfo( StopInfo::CreateStopReasonFork(*thread_sp, child_pid, child_tid)); handled = true; } else if (reason == "vfork") { StringExtractor desc_extractor(description.c_str()); lldb::pid_t child_pid = desc_extractor.GetU64(LLDB_INVALID_PROCESS_ID); lldb::tid_t child_tid = desc_extractor.GetU64(LLDB_INVALID_THREAD_ID); thread_sp->SetStopInfo(StopInfo::CreateStopReasonVFork( *thread_sp, child_pid, child_tid)); handled = true; } else if (reason == "vforkdone") { thread_sp->SetStopInfo( StopInfo::CreateStopReasonVForkDone(*thread_sp)); handled = true; } } else if (!signo) { addr_t pc = thread_sp->GetRegisterContext()->GetPC(); lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(pc); // If a thread is stopped at a breakpoint site, set that as the stop // reason even if it hasn't executed the breakpoint instruction yet. // We will silently step over the breakpoint when we resume execution // and miss the fact that this thread hit the breakpoint. if (bp_site_sp && bp_site_sp->ValidForThisThread(*thread_sp)) { thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); handled = true; } } if (!handled && signo && !did_exec) { if (signo == SIGTRAP) { // Currently we are going to assume SIGTRAP means we are either // hitting a breakpoint or hardware single stepping. handled = true; addr_t pc = thread_sp->GetRegisterContext()->GetPC() + m_breakpoint_pc_offset; lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress( pc); if (bp_site_sp) { // If the breakpoint is for this thread, then we'll report the hit, // but if it is for another thread, we can just report no reason. // We don't need to worry about stepping over the breakpoint here, // that will be taken care of when the thread resumes and notices // that there's a breakpoint under the pc. if (bp_site_sp->ValidForThisThread(*thread_sp)) { if (m_breakpoint_pc_offset != 0) thread_sp->GetRegisterContext()->SetPC(pc); thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); } else { StopInfoSP invalid_stop_info_sp; thread_sp->SetStopInfo(invalid_stop_info_sp); } } else { // If we were stepping then assume the stop was the result of the // trace. If we were not stepping then report the SIGTRAP. // FIXME: We are still missing the case where we single step over a // trap instruction. if (thread_sp->GetTemporaryResumeState() == eStateStepping) thread_sp->SetStopInfo( StopInfo::CreateStopReasonToTrace(*thread_sp)); else thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal( *thread_sp, signo, description.c_str())); } } if (!handled) thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal( *thread_sp, signo, description.c_str())); } if (!description.empty()) { lldb::StopInfoSP stop_info_sp(thread_sp->GetStopInfo()); if (stop_info_sp) { const char *stop_info_desc = stop_info_sp->GetDescription(); if (!stop_info_desc || !stop_info_desc[0]) stop_info_sp->SetDescription(description.c_str()); } else { thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException( *thread_sp, description.c_str())); } } } } return thread_sp; } lldb::ThreadSP ProcessGDBRemote::SetThreadStopInfo(StructuredData::Dictionary *thread_dict) { static constexpr llvm::StringLiteral g_key_tid("tid"); static constexpr llvm::StringLiteral g_key_name("name"); static constexpr llvm::StringLiteral g_key_reason("reason"); static constexpr llvm::StringLiteral g_key_metype("metype"); static constexpr llvm::StringLiteral g_key_medata("medata"); static constexpr llvm::StringLiteral g_key_qaddr("qaddr"); static constexpr llvm::StringLiteral g_key_dispatch_queue_t( "dispatch_queue_t"); static constexpr llvm::StringLiteral g_key_associated_with_dispatch_queue( "associated_with_dispatch_queue"); static constexpr llvm::StringLiteral g_key_queue_name("qname"); static constexpr llvm::StringLiteral g_key_queue_kind("qkind"); static constexpr llvm::StringLiteral g_key_queue_serial_number("qserialnum"); static constexpr llvm::StringLiteral g_key_registers("registers"); static constexpr llvm::StringLiteral g_key_memory("memory"); static constexpr llvm::StringLiteral g_key_description("description"); static constexpr llvm::StringLiteral g_key_signal("signal"); // Stop with signal and thread info lldb::tid_t tid = LLDB_INVALID_THREAD_ID; uint8_t signo = 0; std::string value; std::string thread_name; std::string reason; std::string description; uint32_t exc_type = 0; std::vector exc_data; addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS; ExpeditedRegisterMap expedited_register_map; bool queue_vars_valid = false; addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS; LazyBool associated_with_dispatch_queue = eLazyBoolCalculate; std::string queue_name; QueueKind queue_kind = eQueueKindUnknown; uint64_t queue_serial_number = 0; // Iterate through all of the thread dictionary key/value pairs from the // structured data dictionary // FIXME: we're silently ignoring invalid data here thread_dict->ForEach([this, &tid, &expedited_register_map, &thread_name, &signo, &reason, &description, &exc_type, &exc_data, &thread_dispatch_qaddr, &queue_vars_valid, &associated_with_dispatch_queue, &dispatch_queue_t, &queue_name, &queue_kind, &queue_serial_number]( llvm::StringRef key, StructuredData::Object *object) -> bool { if (key == g_key_tid) { // thread in big endian hex tid = object->GetUnsignedIntegerValue(LLDB_INVALID_THREAD_ID); } else if (key == g_key_metype) { // exception type in big endian hex exc_type = object->GetUnsignedIntegerValue(0); } else if (key == g_key_medata) { // exception data in big endian hex StructuredData::Array *array = object->GetAsArray(); if (array) { array->ForEach([&exc_data](StructuredData::Object *object) -> bool { exc_data.push_back(object->GetUnsignedIntegerValue()); return true; // Keep iterating through all array items }); } } else if (key == g_key_name) { thread_name = std::string(object->GetStringValue()); } else if (key == g_key_qaddr) { thread_dispatch_qaddr = object->GetUnsignedIntegerValue(LLDB_INVALID_ADDRESS); } else if (key == g_key_queue_name) { queue_vars_valid = true; queue_name = std::string(object->GetStringValue()); } else if (key == g_key_queue_kind) { std::string queue_kind_str = std::string(object->GetStringValue()); if (queue_kind_str == "serial") { queue_vars_valid = true; queue_kind = eQueueKindSerial; } else if (queue_kind_str == "concurrent") { queue_vars_valid = true; queue_kind = eQueueKindConcurrent; } } else if (key == g_key_queue_serial_number) { queue_serial_number = object->GetUnsignedIntegerValue(0); if (queue_serial_number != 0) queue_vars_valid = true; } else if (key == g_key_dispatch_queue_t) { dispatch_queue_t = object->GetUnsignedIntegerValue(0); if (dispatch_queue_t != 0 && dispatch_queue_t != LLDB_INVALID_ADDRESS) queue_vars_valid = true; } else if (key == g_key_associated_with_dispatch_queue) { queue_vars_valid = true; bool associated = object->GetBooleanValue(); if (associated) associated_with_dispatch_queue = eLazyBoolYes; else associated_with_dispatch_queue = eLazyBoolNo; } else if (key == g_key_reason) { reason = std::string(object->GetStringValue()); } else if (key == g_key_description) { description = std::string(object->GetStringValue()); } else if (key == g_key_registers) { StructuredData::Dictionary *registers_dict = object->GetAsDictionary(); if (registers_dict) { registers_dict->ForEach( [&expedited_register_map](llvm::StringRef key, StructuredData::Object *object) -> bool { uint32_t reg; if (llvm::to_integer(key, reg)) expedited_register_map[reg] = std::string(object->GetStringValue()); return true; // Keep iterating through all array items }); } } else if (key == g_key_memory) { StructuredData::Array *array = object->GetAsArray(); if (array) { array->ForEach([this](StructuredData::Object *object) -> bool { StructuredData::Dictionary *mem_cache_dict = object->GetAsDictionary(); if (mem_cache_dict) { lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS; if (mem_cache_dict->GetValueForKeyAsInteger( "address", mem_cache_addr)) { if (mem_cache_addr != LLDB_INVALID_ADDRESS) { llvm::StringRef str; if (mem_cache_dict->GetValueForKeyAsString("bytes", str)) { StringExtractor bytes(str); bytes.SetFilePos(0); const size_t byte_size = bytes.GetStringRef().size() / 2; WritableDataBufferSP data_buffer_sp( new DataBufferHeap(byte_size, 0)); const size_t bytes_copied = bytes.GetHexBytes(data_buffer_sp->GetData(), 0); if (bytes_copied == byte_size) m_memory_cache.AddL1CacheData(mem_cache_addr, data_buffer_sp); } } } } return true; // Keep iterating through all array items }); } } else if (key == g_key_signal) signo = object->GetUnsignedIntegerValue(LLDB_INVALID_SIGNAL_NUMBER); return true; // Keep iterating through all dictionary key/value pairs }); return SetThreadStopInfo(tid, expedited_register_map, signo, thread_name, reason, description, exc_type, exc_data, thread_dispatch_qaddr, queue_vars_valid, associated_with_dispatch_queue, dispatch_queue_t, queue_name, queue_kind, queue_serial_number); } StateType ProcessGDBRemote::SetThreadStopInfo(StringExtractor &stop_packet) { lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID(); stop_packet.SetFilePos(0); const char stop_type = stop_packet.GetChar(); switch (stop_type) { case 'T': case 'S': { // This is a bit of a hack, but it is required. If we did exec, we need to // clear our thread lists and also know to rebuild our dynamic register // info before we lookup and threads and populate the expedited register // values so we need to know this right away so we can cleanup and update // our registers. const uint32_t stop_id = GetStopID(); if (stop_id == 0) { // Our first stop, make sure we have a process ID, and also make sure we // know about our registers if (GetID() == LLDB_INVALID_PROCESS_ID && pid != LLDB_INVALID_PROCESS_ID) SetID(pid); BuildDynamicRegisterInfo(true); } // Stop with signal and thread info lldb::pid_t stop_pid = LLDB_INVALID_PROCESS_ID; lldb::tid_t tid = LLDB_INVALID_THREAD_ID; const uint8_t signo = stop_packet.GetHexU8(); llvm::StringRef key; llvm::StringRef value; std::string thread_name; std::string reason; std::string description; uint32_t exc_type = 0; std::vector exc_data; addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS; bool queue_vars_valid = false; // says if locals below that start with "queue_" are valid addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS; LazyBool associated_with_dispatch_queue = eLazyBoolCalculate; std::string queue_name; QueueKind queue_kind = eQueueKindUnknown; uint64_t queue_serial_number = 0; ExpeditedRegisterMap expedited_register_map; AddressableBits addressable_bits; while (stop_packet.GetNameColonValue(key, value)) { if (key.compare("metype") == 0) { // exception type in big endian hex value.getAsInteger(16, exc_type); } else if (key.compare("medata") == 0) { // exception data in big endian hex uint64_t x; value.getAsInteger(16, x); exc_data.push_back(x); } else if (key.compare("thread") == 0) { // thread-id StringExtractorGDBRemote thread_id{value}; auto pid_tid = thread_id.GetPidTid(pid); if (pid_tid) { stop_pid = pid_tid->first; tid = pid_tid->second; } else tid = LLDB_INVALID_THREAD_ID; } else if (key.compare("threads") == 0) { std::lock_guard guard( m_thread_list_real.GetMutex()); UpdateThreadIDsFromStopReplyThreadsValue(value); } else if (key.compare("thread-pcs") == 0) { m_thread_pcs.clear(); // A comma separated list of all threads in the current // process that includes the thread for this stop reply packet lldb::addr_t pc; while (!value.empty()) { llvm::StringRef pc_str; std::tie(pc_str, value) = value.split(','); if (pc_str.getAsInteger(16, pc)) pc = LLDB_INVALID_ADDRESS; m_thread_pcs.push_back(pc); } } else if (key.compare("jstopinfo") == 0) { StringExtractor json_extractor(value); std::string json; // Now convert the HEX bytes into a string value json_extractor.GetHexByteString(json); // This JSON contains thread IDs and thread stop info for all threads. // It doesn't contain expedited registers, memory or queue info. m_jstopinfo_sp = StructuredData::ParseJSON(json); } else if (key.compare("hexname") == 0) { StringExtractor name_extractor(value); std::string name; // Now convert the HEX bytes into a string value name_extractor.GetHexByteString(thread_name); } else if (key.compare("name") == 0) { thread_name = std::string(value); } else if (key.compare("qaddr") == 0) { value.getAsInteger(16, thread_dispatch_qaddr); } else if (key.compare("dispatch_queue_t") == 0) { queue_vars_valid = true; value.getAsInteger(16, dispatch_queue_t); } else if (key.compare("qname") == 0) { queue_vars_valid = true; StringExtractor name_extractor(value); // Now convert the HEX bytes into a string value name_extractor.GetHexByteString(queue_name); } else if (key.compare("qkind") == 0) { queue_kind = llvm::StringSwitch(value) .Case("serial", eQueueKindSerial) .Case("concurrent", eQueueKindConcurrent) .Default(eQueueKindUnknown); queue_vars_valid = queue_kind != eQueueKindUnknown; } else if (key.compare("qserialnum") == 0) { if (!value.getAsInteger(0, queue_serial_number)) queue_vars_valid = true; } else if (key.compare("reason") == 0) { reason = std::string(value); } else if (key.compare("description") == 0) { StringExtractor desc_extractor(value); // Now convert the HEX bytes into a string value desc_extractor.GetHexByteString(description); } else if (key.compare("memory") == 0) { // Expedited memory. GDB servers can choose to send back expedited // memory that can populate the L1 memory cache in the process so that // things like the frame pointer backchain can be expedited. This will // help stack backtracing be more efficient by not having to send as // many memory read requests down the remote GDB server. // Key/value pair format: memory:=; // is a number whose base will be interpreted by the prefix: // "0x[0-9a-fA-F]+" for hex // "0[0-7]+" for octal // "[1-9]+" for decimal // is native endian ASCII hex bytes just like the register // values llvm::StringRef addr_str, bytes_str; std::tie(addr_str, bytes_str) = value.split('='); if (!addr_str.empty() && !bytes_str.empty()) { lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS; if (!addr_str.getAsInteger(0, mem_cache_addr)) { StringExtractor bytes(bytes_str); const size_t byte_size = bytes.GetBytesLeft() / 2; WritableDataBufferSP data_buffer_sp( new DataBufferHeap(byte_size, 0)); const size_t bytes_copied = bytes.GetHexBytes(data_buffer_sp->GetData(), 0); if (bytes_copied == byte_size) m_memory_cache.AddL1CacheData(mem_cache_addr, data_buffer_sp); } } } else if (key.compare("watch") == 0 || key.compare("rwatch") == 0 || key.compare("awatch") == 0) { // Support standard GDB remote stop reply packet 'TAAwatch:addr' lldb::addr_t wp_addr = LLDB_INVALID_ADDRESS; value.getAsInteger(16, wp_addr); WatchpointResourceSP wp_resource_sp = m_watchpoint_resource_list.FindByAddress(wp_addr); // Rewrite gdb standard watch/rwatch/awatch to // "reason:watchpoint" + "description:ADDR", // which is parsed in SetThreadStopInfo. reason = "watchpoint"; StreamString ostr; ostr.Printf("%" PRIu64, wp_addr); description = std::string(ostr.GetString()); } else if (key.compare("library") == 0) { auto error = LoadModules(); if (error) { Log *log(GetLog(GDBRLog::Process)); LLDB_LOG_ERROR(log, std::move(error), "Failed to load modules: {0}"); } } else if (key.compare("fork") == 0 || key.compare("vfork") == 0) { // fork includes child pid/tid in thread-id format StringExtractorGDBRemote thread_id{value}; auto pid_tid = thread_id.GetPidTid(LLDB_INVALID_PROCESS_ID); if (!pid_tid) { Log *log(GetLog(GDBRLog::Process)); LLDB_LOG(log, "Invalid PID/TID to fork: {0}", value); pid_tid = {{LLDB_INVALID_PROCESS_ID, LLDB_INVALID_THREAD_ID}}; } reason = key.str(); StreamString ostr; ostr.Printf("%" PRIu64 " %" PRIu64, pid_tid->first, pid_tid->second); description = std::string(ostr.GetString()); } else if (key.compare("addressing_bits") == 0) { uint64_t addressing_bits; if (!value.getAsInteger(0, addressing_bits)) { addressable_bits.SetAddressableBits(addressing_bits); } } else if (key.compare("low_mem_addressing_bits") == 0) { uint64_t addressing_bits; if (!value.getAsInteger(0, addressing_bits)) { addressable_bits.SetLowmemAddressableBits(addressing_bits); } } else if (key.compare("high_mem_addressing_bits") == 0) { uint64_t addressing_bits; if (!value.getAsInteger(0, addressing_bits)) { addressable_bits.SetHighmemAddressableBits(addressing_bits); } } else if (key.size() == 2 && ::isxdigit(key[0]) && ::isxdigit(key[1])) { uint32_t reg = UINT32_MAX; if (!key.getAsInteger(16, reg)) expedited_register_map[reg] = std::string(std::move(value)); } } if (stop_pid != LLDB_INVALID_PROCESS_ID && stop_pid != pid) { Log *log = GetLog(GDBRLog::Process); LLDB_LOG(log, "Received stop for incorrect PID = {0} (inferior PID = {1})", stop_pid, pid); return eStateInvalid; } if (tid == LLDB_INVALID_THREAD_ID) { // A thread id may be invalid if the response is old style 'S' packet // which does not provide the // thread information. So update the thread list and choose the first // one. UpdateThreadIDList(); if (!m_thread_ids.empty()) { tid = m_thread_ids.front(); } } SetAddressableBitMasks(addressable_bits); ThreadSP thread_sp = SetThreadStopInfo( tid, expedited_register_map, signo, thread_name, reason, description, exc_type, exc_data, thread_dispatch_qaddr, queue_vars_valid, associated_with_dispatch_queue, dispatch_queue_t, queue_name, queue_kind, queue_serial_number); return eStateStopped; } break; case 'W': case 'X': // process exited return eStateExited; default: break; } return eStateInvalid; } void ProcessGDBRemote::RefreshStateAfterStop() { std::lock_guard guard(m_thread_list_real.GetMutex()); m_thread_ids.clear(); m_thread_pcs.clear(); // Set the thread stop info. It might have a "threads" key whose value is a // list of all thread IDs in the current process, so m_thread_ids might get // set. // Check to see if SetThreadStopInfo() filled in m_thread_ids? if (m_thread_ids.empty()) { // No, we need to fetch the thread list manually UpdateThreadIDList(); } // We might set some stop info's so make sure the thread list is up to // date before we do that or we might overwrite what was computed here. UpdateThreadListIfNeeded(); if (m_last_stop_packet) SetThreadStopInfo(*m_last_stop_packet); m_last_stop_packet.reset(); // If we have queried for a default thread id if (m_initial_tid != LLDB_INVALID_THREAD_ID) { m_thread_list.SetSelectedThreadByID(m_initial_tid); m_initial_tid = LLDB_INVALID_THREAD_ID; } // Let all threads recover from stopping and do any clean up based on the // previous thread state (if any). m_thread_list_real.RefreshStateAfterStop(); } Status ProcessGDBRemote::DoHalt(bool &caused_stop) { Status error; if (m_public_state.GetValue() == eStateAttaching) { // We are being asked to halt during an attach. We used to just close our // file handle and debugserver will go away, but with remote proxies, it // is better to send a positive signal, so let's send the interrupt first... caused_stop = m_gdb_comm.Interrupt(GetInterruptTimeout()); m_gdb_comm.Disconnect(); } else caused_stop = m_gdb_comm.Interrupt(GetInterruptTimeout()); return error; } Status ProcessGDBRemote::DoDetach(bool keep_stopped) { Status error; Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::DoDetach(keep_stopped: %i)", keep_stopped); error = m_gdb_comm.Detach(keep_stopped); if (log) { if (error.Success()) log->PutCString( "ProcessGDBRemote::DoDetach() detach packet sent successfully"); else LLDB_LOGF(log, "ProcessGDBRemote::DoDetach() detach packet send failed: %s", error.AsCString() ? error.AsCString() : ""); } if (!error.Success()) return error; // Sleep for one second to let the process get all detached... StopAsyncThread(); SetPrivateState(eStateDetached); ResumePrivateStateThread(); // KillDebugserverProcess (); return error; } Status ProcessGDBRemote::DoDestroy() { Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::DoDestroy()"); // Interrupt if our inferior is running... int exit_status = SIGABRT; std::string exit_string; if (m_gdb_comm.IsConnected()) { if (m_public_state.GetValue() != eStateAttaching) { llvm::Expected kill_res = m_gdb_comm.KillProcess(GetID()); if (kill_res) { exit_status = kill_res.get(); #if defined(__APPLE__) // For Native processes on Mac OS X, we launch through the Host // Platform, then hand the process off to debugserver, which becomes // the parent process through "PT_ATTACH". Then when we go to kill // the process on Mac OS X we call ptrace(PT_KILL) to kill it, then // we call waitpid which returns with no error and the correct // status. But amusingly enough that doesn't seem to actually reap // the process, but instead it is left around as a Zombie. Probably // the kernel is in the process of switching ownership back to lldb // which was the original parent, and gets confused in the handoff. // Anyway, so call waitpid here to finally reap it. PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp && platform_sp->IsHost()) { int status; ::pid_t reap_pid; reap_pid = waitpid(GetID(), &status, WNOHANG); LLDB_LOGF(log, "Reaped pid: %d, status: %d.\n", reap_pid, status); } #endif ClearThreadIDList(); exit_string.assign("killed"); } else { exit_string.assign(llvm::toString(kill_res.takeError())); } } else { exit_string.assign("killed or interrupted while attaching."); } } else { // If we missed setting the exit status on the way out, do it here. // NB set exit status can be called multiple times, the first one sets the // status. exit_string.assign("destroying when not connected to debugserver"); } SetExitStatus(exit_status, exit_string.c_str()); StopAsyncThread(); KillDebugserverProcess(); return Status(); } void ProcessGDBRemote::SetLastStopPacket( const StringExtractorGDBRemote &response) { const bool did_exec = response.GetStringRef().find(";reason:exec;") != std::string::npos; if (did_exec) { Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::SetLastStopPacket () - detected exec"); m_thread_list_real.Clear(); m_thread_list.Clear(); BuildDynamicRegisterInfo(true); m_gdb_comm.ResetDiscoverableSettings(did_exec); } m_last_stop_packet = response; } void ProcessGDBRemote::SetUnixSignals(const UnixSignalsSP &signals_sp) { Process::SetUnixSignals(std::make_shared(signals_sp)); } // Process Queries bool ProcessGDBRemote::IsAlive() { return m_gdb_comm.IsConnected() && Process::IsAlive(); } addr_t ProcessGDBRemote::GetImageInfoAddress() { // request the link map address via the $qShlibInfoAddr packet lldb::addr_t addr = m_gdb_comm.GetShlibInfoAddr(); // the loaded module list can also provides a link map address if (addr == LLDB_INVALID_ADDRESS) { llvm::Expected list = GetLoadedModuleList(); if (!list) { Log *log = GetLog(GDBRLog::Process); LLDB_LOG_ERROR(log, list.takeError(), "Failed to read module list: {0}."); } else { addr = list->m_link_map; } } return addr; } void ProcessGDBRemote::WillPublicStop() { // See if the GDB remote client supports the JSON threads info. If so, we // gather stop info for all threads, expedited registers, expedited memory, // runtime queue information (iOS and MacOSX only), and more. Expediting // memory will help stack backtracing be much faster. Expediting registers // will make sure we don't have to read the thread registers for GPRs. m_jthreadsinfo_sp = m_gdb_comm.GetThreadsInfo(); if (m_jthreadsinfo_sp) { // Now set the stop info for each thread and also expedite any registers // and memory that was in the jThreadsInfo response. StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray(); if (thread_infos) { const size_t n = thread_infos->GetSize(); for (size_t i = 0; i < n; ++i) { StructuredData::Dictionary *thread_dict = thread_infos->GetItemAtIndex(i)->GetAsDictionary(); if (thread_dict) SetThreadStopInfo(thread_dict); } } } } // Process Memory size_t ProcessGDBRemote::DoReadMemory(addr_t addr, void *buf, size_t size, Status &error) { GetMaxMemorySize(); bool binary_memory_read = m_gdb_comm.GetxPacketSupported(); // M and m packets take 2 bytes for 1 byte of memory size_t max_memory_size = binary_memory_read ? m_max_memory_size : m_max_memory_size / 2; if (size > max_memory_size) { // Keep memory read sizes down to a sane limit. This function will be // called multiple times in order to complete the task by // lldb_private::Process so it is ok to do this. size = max_memory_size; } char packet[64]; int packet_len; packet_len = ::snprintf(packet, sizeof(packet), "%c%" PRIx64 ",%" PRIx64, binary_memory_read ? 'x' : 'm', (uint64_t)addr, (uint64_t)size); assert(packet_len + 1 < (int)sizeof(packet)); UNUSED_IF_ASSERT_DISABLED(packet_len); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response, GetInterruptTimeout()) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsNormalResponse()) { error.Clear(); if (binary_memory_read) { // The lower level GDBRemoteCommunication packet receive layer has // already de-quoted any 0x7d character escaping that was present in // the packet size_t data_received_size = response.GetBytesLeft(); if (data_received_size > size) { // Don't write past the end of BUF if the remote debug server gave us // too much data for some reason. data_received_size = size; } memcpy(buf, response.GetStringRef().data(), data_received_size); return data_received_size; } else { return response.GetHexBytes( llvm::MutableArrayRef((uint8_t *)buf, size), '\xdd'); } } else if (response.IsErrorResponse()) error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, addr); else if (response.IsUnsupportedResponse()) error.SetErrorStringWithFormat( "GDB server does not support reading memory"); else error.SetErrorStringWithFormat( "unexpected response to GDB server memory read packet '%s': '%s'", packet, response.GetStringRef().data()); } else { error.SetErrorStringWithFormat("failed to send packet: '%s'", packet); } return 0; } bool ProcessGDBRemote::SupportsMemoryTagging() { return m_gdb_comm.GetMemoryTaggingSupported(); } llvm::Expected> ProcessGDBRemote::DoReadMemoryTags(lldb::addr_t addr, size_t len, int32_t type) { // By this point ReadMemoryTags has validated that tagging is enabled // for this target/process/address. DataBufferSP buffer_sp = m_gdb_comm.ReadMemoryTags(addr, len, type); if (!buffer_sp) { return llvm::createStringError(llvm::inconvertibleErrorCode(), "Error reading memory tags from remote"); } // Return the raw tag data llvm::ArrayRef tag_data = buffer_sp->GetData(); std::vector got; got.reserve(tag_data.size()); std::copy(tag_data.begin(), tag_data.end(), std::back_inserter(got)); return got; } Status ProcessGDBRemote::DoWriteMemoryTags(lldb::addr_t addr, size_t len, int32_t type, const std::vector &tags) { // By now WriteMemoryTags should have validated that tagging is enabled // for this target/process. return m_gdb_comm.WriteMemoryTags(addr, len, type, tags); } Status ProcessGDBRemote::WriteObjectFile( std::vector entries) { Status error; // Sort the entries by address because some writes, like those to flash // memory, must happen in order of increasing address. std::stable_sort( std::begin(entries), std::end(entries), [](const ObjectFile::LoadableData a, const ObjectFile::LoadableData b) { return a.Dest < b.Dest; }); m_allow_flash_writes = true; error = Process::WriteObjectFile(entries); if (error.Success()) error = FlashDone(); else // Even though some of the writing failed, try to send a flash done if some // of the writing succeeded so the flash state is reset to normal, but // don't stomp on the error status that was set in the write failure since // that's the one we want to report back. FlashDone(); m_allow_flash_writes = false; return error; } bool ProcessGDBRemote::HasErased(FlashRange range) { auto size = m_erased_flash_ranges.GetSize(); for (size_t i = 0; i < size; ++i) if (m_erased_flash_ranges.GetEntryAtIndex(i)->Contains(range)) return true; return false; } Status ProcessGDBRemote::FlashErase(lldb::addr_t addr, size_t size) { Status status; MemoryRegionInfo region; status = GetMemoryRegionInfo(addr, region); if (!status.Success()) return status; // The gdb spec doesn't say if erasures are allowed across multiple regions, // but we'll disallow it to be safe and to keep the logic simple by worring // about only one region's block size. DoMemoryWrite is this function's // primary user, and it can easily keep writes within a single memory region if (addr + size > region.GetRange().GetRangeEnd()) { status.SetErrorString("Unable to erase flash in multiple regions"); return status; } uint64_t blocksize = region.GetBlocksize(); if (blocksize == 0) { status.SetErrorString("Unable to erase flash because blocksize is 0"); return status; } // Erasures can only be done on block boundary adresses, so round down addr // and round up size lldb::addr_t block_start_addr = addr - (addr % blocksize); size += (addr - block_start_addr); if ((size % blocksize) != 0) size += (blocksize - size % blocksize); FlashRange range(block_start_addr, size); if (HasErased(range)) return status; // We haven't erased the entire range, but we may have erased part of it. // (e.g., block A is already erased and range starts in A and ends in B). So, // adjust range if necessary to exclude already erased blocks. if (!m_erased_flash_ranges.IsEmpty()) { // Assuming that writes and erasures are done in increasing addr order, // because that is a requirement of the vFlashWrite command. Therefore, we // only need to look at the last range in the list for overlap. const auto &last_range = *m_erased_flash_ranges.Back(); if (range.GetRangeBase() < last_range.GetRangeEnd()) { auto overlap = last_range.GetRangeEnd() - range.GetRangeBase(); // overlap will be less than range.GetByteSize() or else HasErased() // would have been true range.SetByteSize(range.GetByteSize() - overlap); range.SetRangeBase(range.GetRangeBase() + overlap); } } StreamString packet; packet.Printf("vFlashErase:%" PRIx64 ",%" PRIx64, range.GetRangeBase(), (uint64_t)range.GetByteSize()); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response, GetInterruptTimeout()) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) { m_erased_flash_ranges.Insert(range, true); } else { if (response.IsErrorResponse()) status.SetErrorStringWithFormat("flash erase failed for 0x%" PRIx64, addr); else if (response.IsUnsupportedResponse()) status.SetErrorStringWithFormat("GDB server does not support flashing"); else status.SetErrorStringWithFormat( "unexpected response to GDB server flash erase packet '%s': '%s'", packet.GetData(), response.GetStringRef().data()); } } else { status.SetErrorStringWithFormat("failed to send packet: '%s'", packet.GetData()); } return status; } Status ProcessGDBRemote::FlashDone() { Status status; // If we haven't erased any blocks, then we must not have written anything // either, so there is no need to actually send a vFlashDone command if (m_erased_flash_ranges.IsEmpty()) return status; StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse("vFlashDone", response, GetInterruptTimeout()) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) { m_erased_flash_ranges.Clear(); } else { if (response.IsErrorResponse()) status.SetErrorStringWithFormat("flash done failed"); else if (response.IsUnsupportedResponse()) status.SetErrorStringWithFormat("GDB server does not support flashing"); else status.SetErrorStringWithFormat( "unexpected response to GDB server flash done packet: '%s'", response.GetStringRef().data()); } } else { status.SetErrorStringWithFormat("failed to send flash done packet"); } return status; } size_t ProcessGDBRemote::DoWriteMemory(addr_t addr, const void *buf, size_t size, Status &error) { GetMaxMemorySize(); // M and m packets take 2 bytes for 1 byte of memory size_t max_memory_size = m_max_memory_size / 2; if (size > max_memory_size) { // Keep memory read sizes down to a sane limit. This function will be // called multiple times in order to complete the task by // lldb_private::Process so it is ok to do this. size = max_memory_size; } StreamGDBRemote packet; MemoryRegionInfo region; Status region_status = GetMemoryRegionInfo(addr, region); bool is_flash = region_status.Success() && region.GetFlash() == MemoryRegionInfo::eYes; if (is_flash) { if (!m_allow_flash_writes) { error.SetErrorString("Writing to flash memory is not allowed"); return 0; } // Keep the write within a flash memory region if (addr + size > region.GetRange().GetRangeEnd()) size = region.GetRange().GetRangeEnd() - addr; // Flash memory must be erased before it can be written error = FlashErase(addr, size); if (!error.Success()) return 0; packet.Printf("vFlashWrite:%" PRIx64 ":", addr); packet.PutEscapedBytes(buf, size); } else { packet.Printf("M%" PRIx64 ",%" PRIx64 ":", addr, (uint64_t)size); packet.PutBytesAsRawHex8(buf, size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); } StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response, GetInterruptTimeout()) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) { error.Clear(); return size; } else if (response.IsErrorResponse()) error.SetErrorStringWithFormat("memory write failed for 0x%" PRIx64, addr); else if (response.IsUnsupportedResponse()) error.SetErrorStringWithFormat( "GDB server does not support writing memory"); else error.SetErrorStringWithFormat( "unexpected response to GDB server memory write packet '%s': '%s'", packet.GetData(), response.GetStringRef().data()); } else { error.SetErrorStringWithFormat("failed to send packet: '%s'", packet.GetData()); } return 0; } lldb::addr_t ProcessGDBRemote::DoAllocateMemory(size_t size, uint32_t permissions, Status &error) { Log *log = GetLog(LLDBLog::Process | LLDBLog::Expressions); addr_t allocated_addr = LLDB_INVALID_ADDRESS; if (m_gdb_comm.SupportsAllocDeallocMemory() != eLazyBoolNo) { allocated_addr = m_gdb_comm.AllocateMemory(size, permissions); if (allocated_addr != LLDB_INVALID_ADDRESS || m_gdb_comm.SupportsAllocDeallocMemory() == eLazyBoolYes) return allocated_addr; } if (m_gdb_comm.SupportsAllocDeallocMemory() == eLazyBoolNo) { // Call mmap() to create memory in the inferior.. unsigned prot = 0; if (permissions & lldb::ePermissionsReadable) prot |= eMmapProtRead; if (permissions & lldb::ePermissionsWritable) prot |= eMmapProtWrite; if (permissions & lldb::ePermissionsExecutable) prot |= eMmapProtExec; if (InferiorCallMmap(this, allocated_addr, 0, size, prot, eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) m_addr_to_mmap_size[allocated_addr] = size; else { allocated_addr = LLDB_INVALID_ADDRESS; LLDB_LOGF(log, "ProcessGDBRemote::%s no direct stub support for memory " "allocation, and InferiorCallMmap also failed - is stub " "missing register context save/restore capability?", __FUNCTION__); } } if (allocated_addr == LLDB_INVALID_ADDRESS) error.SetErrorStringWithFormat( "unable to allocate %" PRIu64 " bytes of memory with permissions %s", (uint64_t)size, GetPermissionsAsCString(permissions)); else error.Clear(); return allocated_addr; } Status ProcessGDBRemote::DoGetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info) { Status error(m_gdb_comm.GetMemoryRegionInfo(load_addr, region_info)); return error; } std::optional ProcessGDBRemote::GetWatchpointSlotCount() { return m_gdb_comm.GetWatchpointSlotCount(); } std::optional ProcessGDBRemote::DoGetWatchpointReportedAfter() { return m_gdb_comm.GetWatchpointReportedAfter(); } Status ProcessGDBRemote::DoDeallocateMemory(lldb::addr_t addr) { Status error; LazyBool supported = m_gdb_comm.SupportsAllocDeallocMemory(); switch (supported) { case eLazyBoolCalculate: // We should never be deallocating memory without allocating memory first // so we should never get eLazyBoolCalculate error.SetErrorString( "tried to deallocate memory without ever allocating memory"); break; case eLazyBoolYes: if (!m_gdb_comm.DeallocateMemory(addr)) error.SetErrorStringWithFormat( "unable to deallocate memory at 0x%" PRIx64, addr); break; case eLazyBoolNo: // Call munmap() to deallocate memory in the inferior.. { MMapMap::iterator pos = m_addr_to_mmap_size.find(addr); if (pos != m_addr_to_mmap_size.end() && InferiorCallMunmap(this, addr, pos->second)) m_addr_to_mmap_size.erase(pos); else error.SetErrorStringWithFormat( "unable to deallocate memory at 0x%" PRIx64, addr); } break; } return error; } // Process STDIO size_t ProcessGDBRemote::PutSTDIN(const char *src, size_t src_len, Status &error) { if (m_stdio_communication.IsConnected()) { ConnectionStatus status; m_stdio_communication.WriteAll(src, src_len, status, nullptr); } else if (m_stdin_forward) { m_gdb_comm.SendStdinNotification(src, src_len); } return 0; } Status ProcessGDBRemote::EnableBreakpointSite(BreakpointSite *bp_site) { Status error; assert(bp_site != nullptr); // Get logging info Log *log = GetLog(GDBRLog::Breakpoints); user_id_t site_id = bp_site->GetID(); // Get the breakpoint address const addr_t addr = bp_site->GetLoadAddress(); // Log that a breakpoint was requested LLDB_LOGF(log, "ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64 ") address = 0x%" PRIx64, site_id, (uint64_t)addr); // Breakpoint already exists and is enabled if (bp_site->IsEnabled()) { LLDB_LOGF(log, "ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64 ") address = 0x%" PRIx64 " -- SUCCESS (already enabled)", site_id, (uint64_t)addr); return error; } // Get the software breakpoint trap opcode size const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site); // SupportsGDBStoppointPacket() simply checks a boolean, indicating if this // breakpoint type is supported by the remote stub. These are set to true by // default, and later set to false only after we receive an unimplemented // response when sending a breakpoint packet. This means initially that // unless we were specifically instructed to use a hardware breakpoint, LLDB // will attempt to set a software breakpoint. HardwareRequired() also queries // a boolean variable which indicates if the user specifically asked for // hardware breakpoints. If true then we will skip over software // breakpoints. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware) && (!bp_site->HardwareRequired())) { // Try to send off a software breakpoint packet ($Z0) uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket( eBreakpointSoftware, true, addr, bp_op_size, GetInterruptTimeout()); if (error_no == 0) { // The breakpoint was placed successfully bp_site->SetEnabled(true); bp_site->SetType(BreakpointSite::eExternal); return error; } // SendGDBStoppointTypePacket() will return an error if it was unable to // set this breakpoint. We need to differentiate between a error specific // to placing this breakpoint or if we have learned that this breakpoint // type is unsupported. To do this, we must test the support boolean for // this breakpoint type to see if it now indicates that this breakpoint // type is unsupported. If they are still supported then we should return // with the error code. If they are now unsupported, then we would like to // fall through and try another form of breakpoint. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware)) { if (error_no != UINT8_MAX) error.SetErrorStringWithFormat( "error: %d sending the breakpoint request", error_no); else error.SetErrorString("error sending the breakpoint request"); return error; } // We reach here when software breakpoints have been found to be // unsupported. For future calls to set a breakpoint, we will not attempt // to set a breakpoint with a type that is known not to be supported. LLDB_LOGF(log, "Software breakpoints are unsupported"); // So we will fall through and try a hardware breakpoint } // The process of setting a hardware breakpoint is much the same as above. // We check the supported boolean for this breakpoint type, and if it is // thought to be supported then we will try to set this breakpoint with a // hardware breakpoint. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) { // Try to send off a hardware breakpoint packet ($Z1) uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket( eBreakpointHardware, true, addr, bp_op_size, GetInterruptTimeout()); if (error_no == 0) { // The breakpoint was placed successfully bp_site->SetEnabled(true); bp_site->SetType(BreakpointSite::eHardware); return error; } // Check if the error was something other then an unsupported breakpoint // type if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) { // Unable to set this hardware breakpoint if (error_no != UINT8_MAX) error.SetErrorStringWithFormat( "error: %d sending the hardware breakpoint request " "(hardware breakpoint resources might be exhausted or unavailable)", error_no); else error.SetErrorString("error sending the hardware breakpoint request " "(hardware breakpoint resources " "might be exhausted or unavailable)"); return error; } // We will reach here when the stub gives an unsupported response to a // hardware breakpoint LLDB_LOGF(log, "Hardware breakpoints are unsupported"); // Finally we will falling through to a #trap style breakpoint } // Don't fall through when hardware breakpoints were specifically requested if (bp_site->HardwareRequired()) { error.SetErrorString("hardware breakpoints are not supported"); return error; } // As a last resort we want to place a manual breakpoint. An instruction is // placed into the process memory using memory write packets. return EnableSoftwareBreakpoint(bp_site); } Status ProcessGDBRemote::DisableBreakpointSite(BreakpointSite *bp_site) { Status error; assert(bp_site != nullptr); addr_t addr = bp_site->GetLoadAddress(); user_id_t site_id = bp_site->GetID(); Log *log = GetLog(GDBRLog::Breakpoints); LLDB_LOGF(log, "ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64 ") addr = 0x%8.8" PRIx64, site_id, (uint64_t)addr); if (bp_site->IsEnabled()) { const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site); BreakpointSite::Type bp_type = bp_site->GetType(); switch (bp_type) { case BreakpointSite::eSoftware: error = DisableSoftwareBreakpoint(bp_site); break; case BreakpointSite::eHardware: if (m_gdb_comm.SendGDBStoppointTypePacket(eBreakpointHardware, false, addr, bp_op_size, GetInterruptTimeout())) error.SetErrorToGenericError(); break; case BreakpointSite::eExternal: { if (m_gdb_comm.SendGDBStoppointTypePacket(eBreakpointSoftware, false, addr, bp_op_size, GetInterruptTimeout())) error.SetErrorToGenericError(); } break; } if (error.Success()) bp_site->SetEnabled(false); } else { LLDB_LOGF(log, "ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64 ") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)", site_id, (uint64_t)addr); return error; } if (error.Success()) error.SetErrorToGenericError(); return error; } // Pre-requisite: wp != NULL. static GDBStoppointType GetGDBStoppointType(const WatchpointResourceSP &wp_res_sp) { assert(wp_res_sp); bool read = wp_res_sp->WatchpointResourceRead(); bool write = wp_res_sp->WatchpointResourceWrite(); assert((read || write) && "WatchpointResource type is neither read nor write"); if (read && write) return eWatchpointReadWrite; else if (read) return eWatchpointRead; else return eWatchpointWrite; } Status ProcessGDBRemote::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { Status error; if (!wp_sp) { error.SetErrorString("No watchpoint specified"); return error; } user_id_t watchID = wp_sp->GetID(); addr_t addr = wp_sp->GetLoadAddress(); Log *log(GetLog(GDBRLog::Watchpoints)); LLDB_LOGF(log, "ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64 ")", watchID); if (wp_sp->IsEnabled()) { LLDB_LOGF(log, "ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64 ") addr = 0x%8.8" PRIx64 ": watchpoint already enabled.", watchID, (uint64_t)addr); return error; } bool read = wp_sp->WatchpointRead(); bool write = wp_sp->WatchpointWrite() || wp_sp->WatchpointModify(); size_t size = wp_sp->GetByteSize(); ArchSpec target_arch = GetTarget().GetArchitecture(); WatchpointHardwareFeature supported_features = m_gdb_comm.GetSupportedWatchpointTypes(); std::vector resources = WatchpointAlgorithms::AtomizeWatchpointRequest( addr, size, read, write, supported_features, target_arch); // LWP_TODO: Now that we know the WP Resources needed to implement this // Watchpoint, we need to look at currently allocated Resources in the // Process and if they match, or are within the same memory granule, or // overlapping memory ranges, then we need to combine them. e.g. one // Watchpoint watching 1 byte at 0x1002 and a second watchpoint watching 1 // byte at 0x1003, they must use the same hardware watchpoint register // (Resource) to watch them. // This may mean that an existing resource changes its type (read to // read+write) or address range it is watching, in which case the old // watchpoint needs to be disabled and the new Resource addr/size/type // watchpoint enabled. // If we modify a shared Resource to accomodate this newly added Watchpoint, // and we are unable to set all of the Resources for it in the inferior, we // will return an error for this Watchpoint and the shared Resource should // be restored. e.g. this Watchpoint requires three Resources, one which // is shared with another Watchpoint. We extend the shared Resouce to // handle both Watchpoints and we try to set two new ones. But if we don't // have sufficient watchpoint register for all 3, we need to show an error // for creating this Watchpoint and we should reset the shared Resource to // its original configuration because it is no longer shared. bool set_all_resources = true; std::vector succesfully_set_resources; for (const auto &wp_res_sp : resources) { addr_t addr = wp_res_sp->GetLoadAddress(); size_t size = wp_res_sp->GetByteSize(); GDBStoppointType type = GetGDBStoppointType(wp_res_sp); if (!m_gdb_comm.SupportsGDBStoppointPacket(type) || m_gdb_comm.SendGDBStoppointTypePacket(type, true, addr, size, GetInterruptTimeout())) { set_all_resources = false; break; } else { succesfully_set_resources.push_back(wp_res_sp); } } if (set_all_resources) { wp_sp->SetEnabled(true, notify); for (const auto &wp_res_sp : resources) { // LWP_TODO: If we expanded/reused an existing Resource, // it's already in the WatchpointResourceList. wp_res_sp->AddConstituent(wp_sp); m_watchpoint_resource_list.Add(wp_res_sp); } return error; } else { // We failed to allocate one of the resources. Unset all // of the new resources we did successfully set in the // process. for (const auto &wp_res_sp : succesfully_set_resources) { addr_t addr = wp_res_sp->GetLoadAddress(); size_t size = wp_res_sp->GetByteSize(); GDBStoppointType type = GetGDBStoppointType(wp_res_sp); m_gdb_comm.SendGDBStoppointTypePacket(type, false, addr, size, GetInterruptTimeout()); } error.SetErrorString("Setting one of the watchpoint resources failed"); } return error; } Status ProcessGDBRemote::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { Status error; if (!wp_sp) { error.SetErrorString("Watchpoint argument was NULL."); return error; } user_id_t watchID = wp_sp->GetID(); Log *log(GetLog(GDBRLog::Watchpoints)); addr_t addr = wp_sp->GetLoadAddress(); LLDB_LOGF(log, "ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64 ") addr = 0x%8.8" PRIx64, watchID, (uint64_t)addr); if (!wp_sp->IsEnabled()) { LLDB_LOGF(log, "ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64 ") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)", watchID, (uint64_t)addr); // See also 'class WatchpointSentry' within StopInfo.cpp. This disabling // attempt might come from the user-supplied actions, we'll route it in // order for the watchpoint object to intelligently process this action. wp_sp->SetEnabled(false, notify); return error; } if (wp_sp->IsHardware()) { bool disabled_all = true; std::vector unused_resources; for (const auto &wp_res_sp : m_watchpoint_resource_list.Sites()) { if (wp_res_sp->ConstituentsContains(wp_sp)) { GDBStoppointType type = GetGDBStoppointType(wp_res_sp); addr_t addr = wp_res_sp->GetLoadAddress(); size_t size = wp_res_sp->GetByteSize(); if (m_gdb_comm.SendGDBStoppointTypePacket(type, false, addr, size, GetInterruptTimeout())) { disabled_all = false; } else { wp_res_sp->RemoveConstituent(wp_sp); if (wp_res_sp->GetNumberOfConstituents() == 0) unused_resources.push_back(wp_res_sp); } } } for (auto &wp_res_sp : unused_resources) m_watchpoint_resource_list.Remove(wp_res_sp->GetID()); wp_sp->SetEnabled(false, notify); if (!disabled_all) error.SetErrorString("Failure disabling one of the watchpoint locations"); } return error; } void ProcessGDBRemote::Clear() { m_thread_list_real.Clear(); m_thread_list.Clear(); } Status ProcessGDBRemote::DoSignal(int signo) { Status error; Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::DoSignal (signal = %d)", signo); if (!m_gdb_comm.SendAsyncSignal(signo, GetInterruptTimeout())) error.SetErrorStringWithFormat("failed to send signal %i", signo); return error; } Status ProcessGDBRemote::EstablishConnectionIfNeeded(const ProcessInfo &process_info) { // Make sure we aren't already connected? if (m_gdb_comm.IsConnected()) return Status(); PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp && !platform_sp->IsHost()) return Status("Lost debug server connection"); auto error = LaunchAndConnectToDebugserver(process_info); if (error.Fail()) { const char *error_string = error.AsCString(); if (error_string == nullptr) error_string = "unable to launch " DEBUGSERVER_BASENAME; } return error; } #if !defined(_WIN32) #define USE_SOCKETPAIR_FOR_LOCAL_CONNECTION 1 #endif #ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION static bool SetCloexecFlag(int fd) { #if defined(FD_CLOEXEC) int flags = ::fcntl(fd, F_GETFD); if (flags == -1) return false; return (::fcntl(fd, F_SETFD, flags | FD_CLOEXEC) == 0); #else return false; #endif } #endif Status ProcessGDBRemote::LaunchAndConnectToDebugserver( const ProcessInfo &process_info) { using namespace std::placeholders; // For _1, _2, etc. Status error; if (m_debugserver_pid == LLDB_INVALID_PROCESS_ID) { // If we locate debugserver, keep that located version around static FileSpec g_debugserver_file_spec; ProcessLaunchInfo debugserver_launch_info; // Make debugserver run in its own session so signals generated by special // terminal key sequences (^C) don't affect debugserver. debugserver_launch_info.SetLaunchInSeparateProcessGroup(true); const std::weak_ptr this_wp = std::static_pointer_cast(shared_from_this()); debugserver_launch_info.SetMonitorProcessCallback( std::bind(MonitorDebugserverProcess, this_wp, _1, _2, _3)); debugserver_launch_info.SetUserID(process_info.GetUserID()); #if defined(__APPLE__) // On macOS 11, we need to support x86_64 applications translated to // arm64. We check whether a binary is translated and spawn the correct // debugserver accordingly. int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, static_cast(process_info.GetProcessID()) }; struct kinfo_proc processInfo; size_t bufsize = sizeof(processInfo); if (sysctl(mib, (unsigned)(sizeof(mib)/sizeof(int)), &processInfo, &bufsize, NULL, 0) == 0 && bufsize > 0) { if (processInfo.kp_proc.p_flag & P_TRANSLATED) { FileSpec rosetta_debugserver("/Library/Apple/usr/libexec/oah/debugserver"); debugserver_launch_info.SetExecutableFile(rosetta_debugserver, false); } } #endif int communication_fd = -1; #ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION // Use a socketpair on non-Windows systems for security and performance // reasons. int sockets[2]; /* the pair of socket descriptors */ if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) == -1) { error.SetErrorToErrno(); return error; } int our_socket = sockets[0]; int gdb_socket = sockets[1]; auto cleanup_our = llvm::make_scope_exit([&]() { close(our_socket); }); auto cleanup_gdb = llvm::make_scope_exit([&]() { close(gdb_socket); }); // Don't let any child processes inherit our communication socket SetCloexecFlag(our_socket); communication_fd = gdb_socket; #endif error = m_gdb_comm.StartDebugserverProcess( nullptr, GetTarget().GetPlatform().get(), debugserver_launch_info, nullptr, nullptr, communication_fd); if (error.Success()) m_debugserver_pid = debugserver_launch_info.GetProcessID(); else m_debugserver_pid = LLDB_INVALID_PROCESS_ID; if (m_debugserver_pid != LLDB_INVALID_PROCESS_ID) { #ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION // Our process spawned correctly, we can now set our connection to use // our end of the socket pair cleanup_our.release(); m_gdb_comm.SetConnection( std::make_unique(our_socket, true)); #endif StartAsyncThread(); } if (error.Fail()) { Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "failed to start debugserver process: %s", error.AsCString()); return error; } if (m_gdb_comm.IsConnected()) { // Finish the connection process by doing the handshake without // connecting (send NULL URL) error = ConnectToDebugserver(""); } else { error.SetErrorString("connection failed"); } } return error; } void ProcessGDBRemote::MonitorDebugserverProcess( std::weak_ptr process_wp, lldb::pid_t debugserver_pid, int signo, // Zero for no signal int exit_status // Exit value of process if signal is zero ) { // "debugserver_pid" argument passed in is the process ID for debugserver // that we are tracking... Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::%s(process_wp, pid=%" PRIu64 ", signo=%i (0x%x), exit_status=%i)", __FUNCTION__, debugserver_pid, signo, signo, exit_status); std::shared_ptr process_sp = process_wp.lock(); LLDB_LOGF(log, "ProcessGDBRemote::%s(process = %p)", __FUNCTION__, static_cast(process_sp.get())); if (!process_sp || process_sp->m_debugserver_pid != debugserver_pid) return; // Sleep for a half a second to make sure our inferior process has time to // set its exit status before we set it incorrectly when both the debugserver // and the inferior process shut down. std::this_thread::sleep_for(std::chrono::milliseconds(500)); // If our process hasn't yet exited, debugserver might have died. If the // process did exit, then we are reaping it. const StateType state = process_sp->GetState(); if (state != eStateInvalid && state != eStateUnloaded && state != eStateExited && state != eStateDetached) { StreamString stream; if (signo == 0) stream.Format(DEBUGSERVER_BASENAME " died with an exit status of {0:x8}", exit_status); else { llvm::StringRef signal_name = process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); const char *format_str = DEBUGSERVER_BASENAME " died with signal {0}"; if (!signal_name.empty()) stream.Format(format_str, signal_name); else stream.Format(format_str, signo); } process_sp->SetExitStatus(-1, stream.GetString()); } // Debugserver has exited we need to let our ProcessGDBRemote know that it no // longer has a debugserver instance process_sp->m_debugserver_pid = LLDB_INVALID_PROCESS_ID; } void ProcessGDBRemote::KillDebugserverProcess() { m_gdb_comm.Disconnect(); if (m_debugserver_pid != LLDB_INVALID_PROCESS_ID) { Host::Kill(m_debugserver_pid, SIGINT); m_debugserver_pid = LLDB_INVALID_PROCESS_ID; } } void ProcessGDBRemote::Initialize() { static llvm::once_flag g_once_flag; llvm::call_once(g_once_flag, []() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, DebuggerInitialize); }); } void ProcessGDBRemote::DebuggerInitialize(Debugger &debugger) { if (!PluginManager::GetSettingForProcessPlugin( debugger, PluginProperties::GetSettingName())) { const bool is_global_setting = true; PluginManager::CreateSettingForProcessPlugin( debugger, GetGlobalPluginProperties().GetValueProperties(), "Properties for the gdb-remote process plug-in.", is_global_setting); } } bool ProcessGDBRemote::StartAsyncThread() { Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::%s ()", __FUNCTION__); std::lock_guard guard(m_async_thread_state_mutex); if (!m_async_thread.IsJoinable()) { // Create a thread that watches our internal state and controls which // events make it to clients (into the DCProcess event queue). llvm::Expected async_thread = ThreadLauncher::LaunchThread("", [this] { return ProcessGDBRemote::AsyncThread(); }); if (!async_thread) { LLDB_LOG_ERROR(GetLog(LLDBLog::Host), async_thread.takeError(), "failed to launch host thread: {0}"); return false; } m_async_thread = *async_thread; } else LLDB_LOGF(log, "ProcessGDBRemote::%s () - Called when Async thread was " "already running.", __FUNCTION__); return m_async_thread.IsJoinable(); } void ProcessGDBRemote::StopAsyncThread() { Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::%s ()", __FUNCTION__); std::lock_guard guard(m_async_thread_state_mutex); if (m_async_thread.IsJoinable()) { m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncThreadShouldExit); // This will shut down the async thread. m_gdb_comm.Disconnect(); // Disconnect from the debug server. // Stop the stdio thread m_async_thread.Join(nullptr); m_async_thread.Reset(); } else LLDB_LOGF( log, "ProcessGDBRemote::%s () - Called when Async thread was not running.", __FUNCTION__); } thread_result_t ProcessGDBRemote::AsyncThread() { Log *log = GetLog(GDBRLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") thread starting...", __FUNCTION__, GetID()); EventSP event_sp; // We need to ignore any packets that come in after we have // have decided the process has exited. There are some // situations, for instance when we try to interrupt a running // process and the interrupt fails, where another packet might // get delivered after we've decided to give up on the process. // But once we've decided we are done with the process we will // not be in a state to do anything useful with new packets. // So it is safer to simply ignore any remaining packets by // explicitly checking for eStateExited before reentering the // fetch loop. bool done = false; while (!done && GetPrivateState() != eStateExited) { LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") listener.WaitForEvent (NULL, event_sp)...", __FUNCTION__, GetID()); if (m_async_listener_sp->GetEvent(event_sp, std::nullopt)) { const uint32_t event_type = event_sp->GetType(); if (event_sp->BroadcasterIs(&m_async_broadcaster)) { LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") Got an event of type: %d...", __FUNCTION__, GetID(), event_type); switch (event_type) { case eBroadcastBitAsyncContinue: { const EventDataBytes *continue_packet = EventDataBytes::GetEventDataFromEvent(event_sp.get()); if (continue_packet) { const char *continue_cstr = (const char *)continue_packet->GetBytes(); const size_t continue_cstr_len = continue_packet->GetByteSize(); LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") got eBroadcastBitAsyncContinue: %s", __FUNCTION__, GetID(), continue_cstr); if (::strstr(continue_cstr, "vAttach") == nullptr) SetPrivateState(eStateRunning); StringExtractorGDBRemote response; StateType stop_state = GetGDBRemote().SendContinuePacketAndWaitForResponse( *this, *GetUnixSignals(), llvm::StringRef(continue_cstr, continue_cstr_len), GetInterruptTimeout(), response); // We need to immediately clear the thread ID list so we are sure // to get a valid list of threads. The thread ID list might be // contained within the "response", or the stop reply packet that // caused the stop. So clear it now before we give the stop reply // packet to the process using the // SetLastStopPacket()... ClearThreadIDList(); switch (stop_state) { case eStateStopped: case eStateCrashed: case eStateSuspended: SetLastStopPacket(response); SetPrivateState(stop_state); break; case eStateExited: { SetLastStopPacket(response); ClearThreadIDList(); response.SetFilePos(1); int exit_status = response.GetHexU8(); std::string desc_string; if (response.GetBytesLeft() > 0 && response.GetChar('-') == ';') { llvm::StringRef desc_str; llvm::StringRef desc_token; while (response.GetNameColonValue(desc_token, desc_str)) { if (desc_token != "description") continue; StringExtractor extractor(desc_str); extractor.GetHexByteString(desc_string); } } SetExitStatus(exit_status, desc_string.c_str()); done = true; break; } case eStateInvalid: { // Check to see if we were trying to attach and if we got back // the "E87" error code from debugserver -- this indicates that // the process is not debuggable. Return a slightly more // helpful error message about why the attach failed. if (::strstr(continue_cstr, "vAttach") != nullptr && response.GetError() == 0x87) { SetExitStatus(-1, "cannot attach to process due to " "System Integrity Protection"); } else if (::strstr(continue_cstr, "vAttach") != nullptr && response.GetStatus().Fail()) { SetExitStatus(-1, response.GetStatus().AsCString()); } else { SetExitStatus(-1, "lost connection"); } done = true; break; } default: SetPrivateState(stop_state); break; } // switch(stop_state) } // if (continue_packet) } // case eBroadcastBitAsyncContinue break; case eBroadcastBitAsyncThreadShouldExit: LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") got eBroadcastBitAsyncThreadShouldExit...", __FUNCTION__, GetID()); done = true; break; default: LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") got unknown event 0x%8.8x", __FUNCTION__, GetID(), event_type); done = true; break; } } } else { LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") listener.WaitForEvent (NULL, event_sp) => false", __FUNCTION__, GetID()); done = true; } } LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") thread exiting...", __FUNCTION__, GetID()); return {}; } // uint32_t // ProcessGDBRemote::ListProcessesMatchingName (const char *name, StringList // &matches, std::vector &pids) //{ // // If we are planning to launch the debugserver remotely, then we need to // fire up a debugserver // // process and ask it for the list of processes. But if we are local, we // can let the Host do it. // if (m_local_debugserver) // { // return Host::ListProcessesMatchingName (name, matches, pids); // } // else // { // // FIXME: Implement talking to the remote debugserver. // return 0; // } // //} // bool ProcessGDBRemote::NewThreadNotifyBreakpointHit( void *baton, StoppointCallbackContext *context, lldb::user_id_t break_id, lldb::user_id_t break_loc_id) { // I don't think I have to do anything here, just make sure I notice the new // thread when it starts to // run so I can stop it if that's what I want to do. Log *log = GetLog(LLDBLog::Step); LLDB_LOGF(log, "Hit New Thread Notification breakpoint."); return false; } Status ProcessGDBRemote::UpdateAutomaticSignalFiltering() { Log *log = GetLog(GDBRLog::Process); LLDB_LOG(log, "Check if need to update ignored signals"); // QPassSignals package is not supported by the server, there is no way we // can ignore any signals on server side. if (!m_gdb_comm.GetQPassSignalsSupported()) return Status(); // No signals, nothing to send. if (m_unix_signals_sp == nullptr) return Status(); // Signals' version hasn't changed, no need to send anything. uint64_t new_signals_version = m_unix_signals_sp->GetVersion(); if (new_signals_version == m_last_signals_version) { LLDB_LOG(log, "Signals' version hasn't changed. version={0}", m_last_signals_version); return Status(); } auto signals_to_ignore = m_unix_signals_sp->GetFilteredSignals(false, false, false); Status error = m_gdb_comm.SendSignalsToIgnore(signals_to_ignore); LLDB_LOG(log, "Signals' version changed. old version={0}, new version={1}, " "signals ignored={2}, update result={3}", m_last_signals_version, new_signals_version, signals_to_ignore.size(), error); if (error.Success()) m_last_signals_version = new_signals_version; return error; } bool ProcessGDBRemote::StartNoticingNewThreads() { Log *log = GetLog(LLDBLog::Step); if (m_thread_create_bp_sp) { if (log && log->GetVerbose()) LLDB_LOGF(log, "Enabled noticing new thread breakpoint."); m_thread_create_bp_sp->SetEnabled(true); } else { PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp) { m_thread_create_bp_sp = platform_sp->SetThreadCreationBreakpoint(GetTarget()); if (m_thread_create_bp_sp) { if (log && log->GetVerbose()) LLDB_LOGF( log, "Successfully created new thread notification breakpoint %i", m_thread_create_bp_sp->GetID()); m_thread_create_bp_sp->SetCallback( ProcessGDBRemote::NewThreadNotifyBreakpointHit, this, true); } else { LLDB_LOGF(log, "Failed to create new thread notification breakpoint."); } } } return m_thread_create_bp_sp.get() != nullptr; } bool ProcessGDBRemote::StopNoticingNewThreads() { Log *log = GetLog(LLDBLog::Step); if (log && log->GetVerbose()) LLDB_LOGF(log, "Disabling new thread notification breakpoint."); if (m_thread_create_bp_sp) m_thread_create_bp_sp->SetEnabled(false); return true; } DynamicLoader *ProcessGDBRemote::GetDynamicLoader() { if (m_dyld_up.get() == nullptr) m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); return m_dyld_up.get(); } Status ProcessGDBRemote::SendEventData(const char *data) { int return_value; bool was_supported; Status error; return_value = m_gdb_comm.SendLaunchEventDataPacket(data, &was_supported); if (return_value != 0) { if (!was_supported) error.SetErrorString("Sending events is not supported for this process."); else error.SetErrorStringWithFormat("Error sending event data: %d.", return_value); } return error; } DataExtractor ProcessGDBRemote::GetAuxvData() { DataBufferSP buf; if (m_gdb_comm.GetQXferAuxvReadSupported()) { llvm::Expected response = m_gdb_comm.ReadExtFeature("auxv", ""); if (response) buf = std::make_shared(response->c_str(), response->length()); else LLDB_LOG_ERROR(GetLog(GDBRLog::Process), response.takeError(), "{0}"); } return DataExtractor(buf, GetByteOrder(), GetAddressByteSize()); } StructuredData::ObjectSP ProcessGDBRemote::GetExtendedInfoForThread(lldb::tid_t tid) { StructuredData::ObjectSP object_sp; if (m_gdb_comm.GetThreadExtendedInfoSupported()) { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); SystemRuntime *runtime = GetSystemRuntime(); if (runtime) { runtime->AddThreadExtendedInfoPacketHints(args_dict); } args_dict->GetAsDictionary()->AddIntegerItem("thread", tid); StreamString packet; packet << "jThreadExtendedInfo:"; args_dict->Dump(packet, false); // FIXME the final character of a JSON dictionary, '}', is the escape // character in gdb-remote binary mode. lldb currently doesn't escape // these characters in its packet output -- so we add the quoted version of // the } character here manually in case we talk to a debugserver which un- // escapes the characters at packet read time. packet << (char)(0x7d ^ 0x20); StringExtractorGDBRemote response; response.SetResponseValidatorToJSON(); if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) == GDBRemoteCommunication::PacketResult::Success) { StringExtractorGDBRemote::ResponseType response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { if (!response.Empty()) { object_sp = StructuredData::ParseJSON(response.GetStringRef()); } } } } return object_sp; } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos( lldb::addr_t image_list_address, lldb::addr_t image_count) { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); args_dict->GetAsDictionary()->AddIntegerItem("image_list_address", image_list_address); args_dict->GetAsDictionary()->AddIntegerItem("image_count", image_count); return GetLoadedDynamicLibrariesInfos_sender(args_dict); } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos() { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); args_dict->GetAsDictionary()->AddBooleanItem("fetch_all_solibs", true); return GetLoadedDynamicLibrariesInfos_sender(args_dict); } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos( const std::vector &load_addresses) { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); StructuredData::ArraySP addresses(new StructuredData::Array); for (auto addr : load_addresses) addresses->AddIntegerItem(addr); args_dict->GetAsDictionary()->AddItem("solib_addresses", addresses); return GetLoadedDynamicLibrariesInfos_sender(args_dict); } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos_sender( StructuredData::ObjectSP args_dict) { StructuredData::ObjectSP object_sp; if (m_gdb_comm.GetLoadedDynamicLibrariesInfosSupported()) { // Scope for the scoped timeout object GDBRemoteCommunication::ScopedTimeout timeout(m_gdb_comm, std::chrono::seconds(10)); StreamString packet; packet << "jGetLoadedDynamicLibrariesInfos:"; args_dict->Dump(packet, false); // FIXME the final character of a JSON dictionary, '}', is the escape // character in gdb-remote binary mode. lldb currently doesn't escape // these characters in its packet output -- so we add the quoted version of // the } character here manually in case we talk to a debugserver which un- // escapes the characters at packet read time. packet << (char)(0x7d ^ 0x20); StringExtractorGDBRemote response; response.SetResponseValidatorToJSON(); if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) == GDBRemoteCommunication::PacketResult::Success) { StringExtractorGDBRemote::ResponseType response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { if (!response.Empty()) { object_sp = StructuredData::ParseJSON(response.GetStringRef()); } } } } return object_sp; } StructuredData::ObjectSP ProcessGDBRemote::GetDynamicLoaderProcessState() { StructuredData::ObjectSP object_sp; StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); if (m_gdb_comm.GetDynamicLoaderProcessStateSupported()) { StringExtractorGDBRemote response; response.SetResponseValidatorToJSON(); if (m_gdb_comm.SendPacketAndWaitForResponse("jGetDyldProcessState", response) == GDBRemoteCommunication::PacketResult::Success) { StringExtractorGDBRemote::ResponseType response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { if (!response.Empty()) { object_sp = StructuredData::ParseJSON(response.GetStringRef()); } } } } return object_sp; } StructuredData::ObjectSP ProcessGDBRemote::GetSharedCacheInfo() { StructuredData::ObjectSP object_sp; StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); if (m_gdb_comm.GetSharedCacheInfoSupported()) { StreamString packet; packet << "jGetSharedCacheInfo:"; args_dict->Dump(packet, false); // FIXME the final character of a JSON dictionary, '}', is the escape // character in gdb-remote binary mode. lldb currently doesn't escape // these characters in its packet output -- so we add the quoted version of // the } character here manually in case we talk to a debugserver which un- // escapes the characters at packet read time. packet << (char)(0x7d ^ 0x20); StringExtractorGDBRemote response; response.SetResponseValidatorToJSON(); if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) == GDBRemoteCommunication::PacketResult::Success) { StringExtractorGDBRemote::ResponseType response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { if (!response.Empty()) { object_sp = StructuredData::ParseJSON(response.GetStringRef()); } } } } return object_sp; } Status ProcessGDBRemote::ConfigureStructuredData( llvm::StringRef type_name, const StructuredData::ObjectSP &config_sp) { return m_gdb_comm.ConfigureRemoteStructuredData(type_name, config_sp); } // Establish the largest memory read/write payloads we should use. If the // remote stub has a max packet size, stay under that size. // // If the remote stub's max packet size is crazy large, use a reasonable // largeish default. // // If the remote stub doesn't advertise a max packet size, use a conservative // default. void ProcessGDBRemote::GetMaxMemorySize() { const uint64_t reasonable_largeish_default = 128 * 1024; const uint64_t conservative_default = 512; if (m_max_memory_size == 0) { uint64_t stub_max_size = m_gdb_comm.GetRemoteMaxPacketSize(); if (stub_max_size != UINT64_MAX && stub_max_size != 0) { // Save the stub's claimed maximum packet size m_remote_stub_max_memory_size = stub_max_size; // Even if the stub says it can support ginormous packets, don't exceed // our reasonable largeish default packet size. if (stub_max_size > reasonable_largeish_default) { stub_max_size = reasonable_largeish_default; } // Memory packet have other overheads too like Maddr,size:#NN Instead of // calculating the bytes taken by size and addr every time, we take a // maximum guess here. if (stub_max_size > 70) stub_max_size -= 32 + 32 + 6; else { // In unlikely scenario that max packet size is less then 70, we will // hope that data being written is small enough to fit. Log *log(GetLog(GDBRLog::Comm | GDBRLog::Memory)); if (log) log->Warning("Packet size is too small. " "LLDB may face problems while writing memory"); } m_max_memory_size = stub_max_size; } else { m_max_memory_size = conservative_default; } } } void ProcessGDBRemote::SetUserSpecifiedMaxMemoryTransferSize( uint64_t user_specified_max) { if (user_specified_max != 0) { GetMaxMemorySize(); if (m_remote_stub_max_memory_size != 0) { if (m_remote_stub_max_memory_size < user_specified_max) { m_max_memory_size = m_remote_stub_max_memory_size; // user specified a // packet size too // big, go as big // as the remote stub says we can go. } else { m_max_memory_size = user_specified_max; // user's packet size is good } } else { m_max_memory_size = user_specified_max; // user's packet size is probably fine } } } bool ProcessGDBRemote::GetModuleSpec(const FileSpec &module_file_spec, const ArchSpec &arch, ModuleSpec &module_spec) { Log *log = GetLog(LLDBLog::Platform); const ModuleCacheKey key(module_file_spec.GetPath(), arch.GetTriple().getTriple()); auto cached = m_cached_module_specs.find(key); if (cached != m_cached_module_specs.end()) { module_spec = cached->second; return bool(module_spec); } if (!m_gdb_comm.GetModuleInfo(module_file_spec, arch, module_spec)) { LLDB_LOGF(log, "ProcessGDBRemote::%s - failed to get module info for %s:%s", __FUNCTION__, module_file_spec.GetPath().c_str(), arch.GetTriple().getTriple().c_str()); return false; } if (log) { StreamString stream; module_spec.Dump(stream); LLDB_LOGF(log, "ProcessGDBRemote::%s - got module info for (%s:%s) : %s", __FUNCTION__, module_file_spec.GetPath().c_str(), arch.GetTriple().getTriple().c_str(), stream.GetData()); } m_cached_module_specs[key] = module_spec; return true; } void ProcessGDBRemote::PrefetchModuleSpecs( llvm::ArrayRef module_file_specs, const llvm::Triple &triple) { auto module_specs = m_gdb_comm.GetModulesInfo(module_file_specs, triple); if (module_specs) { for (const FileSpec &spec : module_file_specs) m_cached_module_specs[ModuleCacheKey(spec.GetPath(), triple.getTriple())] = ModuleSpec(); for (const ModuleSpec &spec : *module_specs) m_cached_module_specs[ModuleCacheKey(spec.GetFileSpec().GetPath(), triple.getTriple())] = spec; } } llvm::VersionTuple ProcessGDBRemote::GetHostOSVersion() { return m_gdb_comm.GetOSVersion(); } llvm::VersionTuple ProcessGDBRemote::GetHostMacCatalystVersion() { return m_gdb_comm.GetMacCatalystVersion(); } namespace { typedef std::vector stringVec; typedef std::vector GDBServerRegisterVec; struct RegisterSetInfo { ConstString name; }; typedef std::map RegisterSetMap; struct GdbServerTargetInfo { std::string arch; std::string osabi; stringVec includes; RegisterSetMap reg_set_map; }; static FieldEnum::Enumerators ParseEnumEvalues(const XMLNode &enum_node) { Log *log(GetLog(GDBRLog::Process)); // We will use the last instance of each value. Also we preserve the order // of declaration in the XML, as it may not be numerical. // For example, hardware may intially release with two states that softwware // can read from a register field: // 0 = startup, 1 = running // If in a future hardware release, the designers added a pre-startup state: // 0 = startup, 1 = running, 2 = pre-startup // Now it makes more sense to list them in this logical order as opposed to // numerical order: // 2 = pre-startup, 1 = startup, 0 = startup // This only matters for "register info" but let's trust what the server // chose regardless. std::map enumerators; enum_node.ForEachChildElementWithName( "evalue", [&enumerators, &log](const XMLNode &enumerator_node) { std::optional name; std::optional value; enumerator_node.ForEachAttribute( [&name, &value, &log](const llvm::StringRef &attr_name, const llvm::StringRef &attr_value) { if (attr_name == "name") { if (attr_value.size()) name = attr_value; else LLDB_LOG(log, "ProcessGDBRemote::ParseEnumEvalues " "Ignoring empty name in evalue"); } else if (attr_name == "value") { uint64_t parsed_value = 0; if (llvm::to_integer(attr_value, parsed_value)) value = parsed_value; else LLDB_LOG(log, "ProcessGDBRemote::ParseEnumEvalues " "Invalid value \"{0}\" in " "evalue", attr_value.data()); } else LLDB_LOG(log, "ProcessGDBRemote::ParseEnumEvalues Ignoring " "unknown attribute " "\"{0}\" in evalue", attr_name.data()); // Keep walking attributes. return true; }); if (value && name) enumerators.insert_or_assign( *value, FieldEnum::Enumerator(*value, name->str())); // Find all evalue elements. return true; }); FieldEnum::Enumerators final_enumerators; for (auto [_, enumerator] : enumerators) final_enumerators.push_back(enumerator); return final_enumerators; } static void ParseEnums(XMLNode feature_node, llvm::StringMap> ®isters_enum_types) { Log *log(GetLog(GDBRLog::Process)); // The top level element is "(id, enumerators)); } } // Find all elements. return true; }); } static std::vector ParseFlagsFields( XMLNode flags_node, unsigned size, const llvm::StringMap> ®isters_enum_types) { Log *log(GetLog(GDBRLog::Process)); const unsigned max_start_bit = size * 8 - 1; // Process the fields of this set of flags. std::vector fields; flags_node.ForEachChildElementWithName("field", [&fields, max_start_bit, &log, ®isters_enum_types]( const XMLNode &field_node) { std::optional name; std::optional start; std::optional end; std::optional type; field_node.ForEachAttribute([&name, &start, &end, &type, max_start_bit, &log](const llvm::StringRef &attr_name, const llvm::StringRef &attr_value) { // Note that XML in general requires that each of these attributes only // appears once, so we don't have to handle that here. if (attr_name == "name") { LLDB_LOG( log, "ProcessGDBRemote::ParseFlagsFields Found field node name \"{0}\"", attr_value.data()); name = attr_value; } else if (attr_name == "start") { unsigned parsed_start = 0; if (llvm::to_integer(attr_value, parsed_start)) { if (parsed_start > max_start_bit) { LLDB_LOG(log, "ProcessGDBRemote::ParseFlagsFields Invalid start {0} in " "field node, " "cannot be > {1}", parsed_start, max_start_bit); } else start = parsed_start; } else { LLDB_LOG( log, "ProcessGDBRemote::ParseFlagsFields Invalid start \"{0}\" in " "field node", attr_value.data()); } } else if (attr_name == "end") { unsigned parsed_end = 0; if (llvm::to_integer(attr_value, parsed_end)) if (parsed_end > max_start_bit) { LLDB_LOG(log, "ProcessGDBRemote::ParseFlagsFields Invalid end {0} in " "field node, " "cannot be > {1}", parsed_end, max_start_bit); } else end = parsed_end; else { LLDB_LOG(log, "ProcessGDBRemote::ParseFlagsFields Invalid end \"{0}\" in " "field node", attr_value.data()); } } else if (attr_name == "type") { type = attr_value; } else { LLDB_LOG( log, "ProcessGDBRemote::ParseFlagsFields Ignoring unknown attribute " "\"{0}\" in field node", attr_name.data()); } return true; // Walk all attributes of the field. }); if (name && start && end) { if (*start > *end) LLDB_LOG( log, "ProcessGDBRemote::ParseFlagsFields Start {0} > end {1} in field " "\"{2}\", ignoring", *start, *end, name->data()); else { if (RegisterFlags::Field::GetSizeInBits(*start, *end) > 64) LLDB_LOG(log, "ProcessGDBRemote::ParseFlagsFields Ignoring field \"{2}\" " "that has " "size > 64 bits, this is not supported", name->data()); else { // A field's type may be set to the name of an enum type. const FieldEnum *enum_type = nullptr; if (type && !type->empty()) { auto found = registers_enum_types.find(*type); if (found != registers_enum_types.end()) { enum_type = found->second.get(); // No enumerator can exceed the range of the field itself. uint64_t max_value = RegisterFlags::Field::GetMaxValue(*start, *end); for (const auto &enumerator : enum_type->GetEnumerators()) { if (enumerator.m_value > max_value) { enum_type = nullptr; LLDB_LOG( log, "ProcessGDBRemote::ParseFlagsFields In enum \"{0}\" " "evalue \"{1}\" with value {2} exceeds the maximum value " "of field \"{3}\" ({4}), ignoring enum", type->data(), enumerator.m_name, enumerator.m_value, name->data(), max_value); break; } } } else { LLDB_LOG(log, "ProcessGDBRemote::ParseFlagsFields Could not find type " "\"{0}\" " "for field \"{1}\", ignoring", type->data(), name->data()); } } fields.push_back( RegisterFlags::Field(name->str(), *start, *end, enum_type)); } } } return true; // Iterate all "field" nodes. }); return fields; } void ParseFlags( XMLNode feature_node, llvm::StringMap> ®isters_flags_types, const llvm::StringMap> ®isters_enum_types) { Log *log(GetLog(GDBRLog::Process)); feature_node.ForEachChildElementWithName( "flags", [&log, ®isters_flags_types, ®isters_enum_types](const XMLNode &flags_node) -> bool { LLDB_LOG(log, "ProcessGDBRemote::ParseFlags Found flags node \"{0}\"", flags_node.GetAttributeValue("id").c_str()); std::optional id; std::optional size; flags_node.ForEachAttribute( [&id, &size, &log](const llvm::StringRef &name, const llvm::StringRef &value) { if (name == "id") { id = value; } else if (name == "size") { unsigned parsed_size = 0; if (llvm::to_integer(value, parsed_size)) size = parsed_size; else { LLDB_LOG(log, "ProcessGDBRemote::ParseFlags Invalid size \"{0}\" " "in flags node", value.data()); } } else { LLDB_LOG(log, "ProcessGDBRemote::ParseFlags Ignoring unknown " "attribute \"{0}\" in flags node", name.data()); } return true; // Walk all attributes. }); if (id && size) { // Process the fields of this set of flags. std::vector fields = ParseFlagsFields(flags_node, *size, registers_enum_types); if (fields.size()) { // Sort so that the fields with the MSBs are first. std::sort(fields.rbegin(), fields.rend()); std::vector::const_iterator overlap = std::adjacent_find(fields.begin(), fields.end(), [](const RegisterFlags::Field &lhs, const RegisterFlags::Field &rhs) { return lhs.Overlaps(rhs); }); // If no fields overlap, use them. if (overlap == fields.end()) { if (registers_flags_types.contains(*id)) { // In theory you could define some flag set, use it with a // register then redefine it. We do not know if anyone does // that, or what they would expect to happen in that case. // // LLDB chooses to take the first definition and ignore the rest // as waiting until everything has been processed is more // expensive and difficult. This means that pointers to flag // sets in the register info remain valid if later the flag set // is redefined. If we allowed redefinitions, LLDB would crash // when you tried to print a register that used the original // definition. LLDB_LOG( log, "ProcessGDBRemote::ParseFlags Definition of flags " "\"{0}\" shadows " "previous definition, using original definition instead.", id->data()); } else { registers_flags_types.insert_or_assign( *id, std::make_unique(id->str(), *size, std::move(fields))); } } else { // If any fields overlap, ignore the whole set of flags. std::vector::const_iterator next = std::next(overlap); LLDB_LOG( log, "ProcessGDBRemote::ParseFlags Ignoring flags because fields " "{0} (start: {1} end: {2}) and {3} (start: {4} end: {5}) " "overlap.", overlap->GetName().c_str(), overlap->GetStart(), overlap->GetEnd(), next->GetName().c_str(), next->GetStart(), next->GetEnd()); } } else { LLDB_LOG( log, "ProcessGDBRemote::ParseFlags Ignoring definition of flags " "\"{0}\" because it contains no fields.", id->data()); } } return true; // Keep iterating through all "flags" elements. }); } bool ParseRegisters( XMLNode feature_node, GdbServerTargetInfo &target_info, std::vector ®isters, llvm::StringMap> ®isters_flags_types, llvm::StringMap> ®isters_enum_types) { if (!feature_node) return false; Log *log(GetLog(GDBRLog::Process)); // Enums first because they are referenced by fields in the flags. ParseEnums(feature_node, registers_enum_types); for (const auto &enum_type : registers_enum_types) enum_type.second->DumpToLog(log); ParseFlags(feature_node, registers_flags_types, registers_enum_types); for (const auto &flags : registers_flags_types) flags.second->DumpToLog(log); feature_node.ForEachChildElementWithName( "reg", [&target_info, ®isters, ®isters_flags_types, log](const XMLNode ®_node) -> bool { std::string gdb_group; std::string gdb_type; DynamicRegisterInfo::Register reg_info; bool encoding_set = false; bool format_set = false; // FIXME: we're silently ignoring invalid data here reg_node.ForEachAttribute([&target_info, &gdb_group, &gdb_type, &encoding_set, &format_set, ®_info, log](const llvm::StringRef &name, const llvm::StringRef &value) -> bool { if (name == "name") { reg_info.name.SetString(value); } else if (name == "bitsize") { if (llvm::to_integer(value, reg_info.byte_size)) reg_info.byte_size = llvm::divideCeil(reg_info.byte_size, CHAR_BIT); } else if (name == "type") { gdb_type = value.str(); } else if (name == "group") { gdb_group = value.str(); } else if (name == "regnum") { llvm::to_integer(value, reg_info.regnum_remote); } else if (name == "offset") { llvm::to_integer(value, reg_info.byte_offset); } else if (name == "altname") { reg_info.alt_name.SetString(value); } else if (name == "encoding") { encoding_set = true; reg_info.encoding = Args::StringToEncoding(value, eEncodingUint); } else if (name == "format") { format_set = true; if (!OptionArgParser::ToFormat(value.data(), reg_info.format, nullptr) .Success()) reg_info.format = llvm::StringSwitch(value) .Case("vector-sint8", eFormatVectorOfSInt8) .Case("vector-uint8", eFormatVectorOfUInt8) .Case("vector-sint16", eFormatVectorOfSInt16) .Case("vector-uint16", eFormatVectorOfUInt16) .Case("vector-sint32", eFormatVectorOfSInt32) .Case("vector-uint32", eFormatVectorOfUInt32) .Case("vector-float32", eFormatVectorOfFloat32) .Case("vector-uint64", eFormatVectorOfUInt64) .Case("vector-uint128", eFormatVectorOfUInt128) .Default(eFormatInvalid); } else if (name == "group_id") { uint32_t set_id = UINT32_MAX; llvm::to_integer(value, set_id); RegisterSetMap::const_iterator pos = target_info.reg_set_map.find(set_id); if (pos != target_info.reg_set_map.end()) reg_info.set_name = pos->second.name; } else if (name == "gcc_regnum" || name == "ehframe_regnum") { llvm::to_integer(value, reg_info.regnum_ehframe); } else if (name == "dwarf_regnum") { llvm::to_integer(value, reg_info.regnum_dwarf); } else if (name == "generic") { reg_info.regnum_generic = Args::StringToGenericRegister(value); } else if (name == "value_regnums") { SplitCommaSeparatedRegisterNumberString(value, reg_info.value_regs, 0); } else if (name == "invalidate_regnums") { SplitCommaSeparatedRegisterNumberString( value, reg_info.invalidate_regs, 0); } else { LLDB_LOGF(log, "ProcessGDBRemote::ParseRegisters unhandled reg " "attribute %s = %s", name.data(), value.data()); } return true; // Keep iterating through all attributes }); if (!gdb_type.empty()) { // gdb_type could reference some flags type defined in XML. llvm::StringMap>::iterator it = registers_flags_types.find(gdb_type); if (it != registers_flags_types.end()) { auto flags_type = it->second.get(); if (reg_info.byte_size == flags_type->GetSize()) reg_info.flags_type = flags_type; else LLDB_LOGF(log, "ProcessGDBRemote::ParseRegisters Size of register " "flags %s (%d bytes) for " "register %s does not match the register size (%d " "bytes). Ignoring this set of flags.", flags_type->GetID().c_str(), flags_type->GetSize(), reg_info.name.AsCString(), reg_info.byte_size); } // There's a slim chance that the gdb_type name is both a flags type // and a simple type. Just in case, look for that too (setting both // does no harm). if (!gdb_type.empty() && !(encoding_set || format_set)) { if (llvm::StringRef(gdb_type).starts_with("int")) { reg_info.format = eFormatHex; reg_info.encoding = eEncodingUint; } else if (gdb_type == "data_ptr" || gdb_type == "code_ptr") { reg_info.format = eFormatAddressInfo; reg_info.encoding = eEncodingUint; } else if (gdb_type == "float") { reg_info.format = eFormatFloat; reg_info.encoding = eEncodingIEEE754; } else if (gdb_type == "aarch64v" || llvm::StringRef(gdb_type).starts_with("vec") || gdb_type == "i387_ext" || gdb_type == "uint128") { // lldb doesn't handle 128-bit uints correctly (for ymm*h), so // treat them as vector (similarly to xmm/ymm) reg_info.format = eFormatVectorOfUInt8; reg_info.encoding = eEncodingVector; } else { LLDB_LOGF( log, "ProcessGDBRemote::ParseRegisters Could not determine lldb" "format and encoding for gdb type %s", gdb_type.c_str()); } } } // Only update the register set name if we didn't get a "reg_set" // attribute. "set_name" will be empty if we didn't have a "reg_set" // attribute. if (!reg_info.set_name) { if (!gdb_group.empty()) { reg_info.set_name.SetCString(gdb_group.c_str()); } else { // If no register group name provided anywhere, // we'll create a 'general' register set reg_info.set_name.SetCString("general"); } } if (reg_info.byte_size == 0) { LLDB_LOGF(log, "ProcessGDBRemote::%s Skipping zero bitsize register %s", __FUNCTION__, reg_info.name.AsCString()); } else registers.push_back(reg_info); return true; // Keep iterating through all "reg" elements }); return true; } } // namespace // This method fetches a register description feature xml file from // the remote stub and adds registers/register groupsets/architecture // information to the current process. It will call itself recursively // for nested register definition files. It returns true if it was able // to fetch and parse an xml file. bool ProcessGDBRemote::GetGDBServerRegisterInfoXMLAndProcess( ArchSpec &arch_to_use, std::string xml_filename, std::vector ®isters) { // request the target xml file llvm::Expected raw = m_gdb_comm.ReadExtFeature("features", xml_filename); if (errorToBool(raw.takeError())) return false; XMLDocument xml_document; if (xml_document.ParseMemory(raw->c_str(), raw->size(), xml_filename.c_str())) { GdbServerTargetInfo target_info; std::vector feature_nodes; // The top level feature XML file will start with a tag. XMLNode target_node = xml_document.GetRootElement("target"); if (target_node) { target_node.ForEachChildElement([&target_info, &feature_nodes]( const XMLNode &node) -> bool { llvm::StringRef name = node.GetName(); if (name == "architecture") { node.GetElementText(target_info.arch); } else if (name == "osabi") { node.GetElementText(target_info.osabi); } else if (name == "xi:include" || name == "include") { std::string href = node.GetAttributeValue("href"); if (!href.empty()) target_info.includes.push_back(href); } else if (name == "feature") { feature_nodes.push_back(node); } else if (name == "groups") { node.ForEachChildElementWithName( "group", [&target_info](const XMLNode &node) -> bool { uint32_t set_id = UINT32_MAX; RegisterSetInfo set_info; node.ForEachAttribute( [&set_id, &set_info](const llvm::StringRef &name, const llvm::StringRef &value) -> bool { // FIXME: we're silently ignoring invalid data here if (name == "id") llvm::to_integer(value, set_id); if (name == "name") set_info.name = ConstString(value); return true; // Keep iterating through all attributes }); if (set_id != UINT32_MAX) target_info.reg_set_map[set_id] = set_info; return true; // Keep iterating through all "group" elements }); } return true; // Keep iterating through all children of the target_node }); } else { // In an included XML feature file, we're already "inside" the // tag of the initial XML file; this included file will likely only have // a tag. Need to check for any more included files in this // element. XMLNode feature_node = xml_document.GetRootElement("feature"); if (feature_node) { feature_nodes.push_back(feature_node); feature_node.ForEachChildElement([&target_info]( const XMLNode &node) -> bool { llvm::StringRef name = node.GetName(); if (name == "xi:include" || name == "include") { std::string href = node.GetAttributeValue("href"); if (!href.empty()) target_info.includes.push_back(href); } return true; }); } } // gdbserver does not implement the LLDB packets used to determine host // or process architecture. If that is the case, attempt to use // the field from target.xml, e.g.: // // i386:x86-64 (seen from VMWare ESXi) // arm (seen from Segger JLink on unspecified // arm board) if (!arch_to_use.IsValid() && !target_info.arch.empty()) { // We don't have any information about vendor or OS. arch_to_use.SetTriple(llvm::StringSwitch(target_info.arch) .Case("i386:x86-64", "x86_64") .Case("riscv:rv64", "riscv64") .Case("riscv:rv32", "riscv32") .Default(target_info.arch) + "--"); if (arch_to_use.IsValid()) GetTarget().MergeArchitecture(arch_to_use); } if (arch_to_use.IsValid()) { for (auto &feature_node : feature_nodes) { ParseRegisters(feature_node, target_info, registers, m_registers_flags_types, m_registers_enum_types); } for (const auto &include : target_info.includes) { GetGDBServerRegisterInfoXMLAndProcess(arch_to_use, include, registers); } } } else { return false; } return true; } void ProcessGDBRemote::AddRemoteRegisters( std::vector ®isters, const ArchSpec &arch_to_use) { std::map remote_to_local_map; uint32_t remote_regnum = 0; for (auto it : llvm::enumerate(registers)) { DynamicRegisterInfo::Register &remote_reg_info = it.value(); // Assign successive remote regnums if missing. if (remote_reg_info.regnum_remote == LLDB_INVALID_REGNUM) remote_reg_info.regnum_remote = remote_regnum; // Create a mapping from remote to local regnos. remote_to_local_map[remote_reg_info.regnum_remote] = it.index(); remote_regnum = remote_reg_info.regnum_remote + 1; } for (DynamicRegisterInfo::Register &remote_reg_info : registers) { auto proc_to_lldb = [&remote_to_local_map](uint32_t process_regnum) { auto lldb_regit = remote_to_local_map.find(process_regnum); return lldb_regit != remote_to_local_map.end() ? lldb_regit->second : LLDB_INVALID_REGNUM; }; llvm::transform(remote_reg_info.value_regs, remote_reg_info.value_regs.begin(), proc_to_lldb); llvm::transform(remote_reg_info.invalidate_regs, remote_reg_info.invalidate_regs.begin(), proc_to_lldb); } // Don't use Process::GetABI, this code gets called from DidAttach, and // in that context we haven't set the Target's architecture yet, so the // ABI is also potentially incorrect. if (ABISP abi_sp = ABI::FindPlugin(shared_from_this(), arch_to_use)) abi_sp->AugmentRegisterInfo(registers); m_register_info_sp->SetRegisterInfo(std::move(registers), arch_to_use); } // query the target of gdb-remote for extended target information returns // true on success (got register definitions), false on failure (did not). bool ProcessGDBRemote::GetGDBServerRegisterInfo(ArchSpec &arch_to_use) { // Make sure LLDB has an XML parser it can use first if (!XMLDocument::XMLEnabled()) return false; // check that we have extended feature read support if (!m_gdb_comm.GetQXferFeaturesReadSupported()) return false; // These hold register type information for the whole of target.xml. // target.xml may include further documents that // GetGDBServerRegisterInfoXMLAndProcess will recurse to fetch and process. // That's why we clear the cache here, and not in // GetGDBServerRegisterInfoXMLAndProcess. To prevent it being cleared on every // include read. m_registers_flags_types.clear(); m_registers_enum_types.clear(); std::vector registers; if (GetGDBServerRegisterInfoXMLAndProcess(arch_to_use, "target.xml", registers) && // Target XML is not required to include register information. !registers.empty()) AddRemoteRegisters(registers, arch_to_use); return m_register_info_sp->GetNumRegisters() > 0; } llvm::Expected ProcessGDBRemote::GetLoadedModuleList() { // Make sure LLDB has an XML parser it can use first if (!XMLDocument::XMLEnabled()) return llvm::createStringError(llvm::inconvertibleErrorCode(), "XML parsing not available"); Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "ProcessGDBRemote::%s", __FUNCTION__); LoadedModuleInfoList list; GDBRemoteCommunicationClient &comm = m_gdb_comm; bool can_use_svr4 = GetGlobalPluginProperties().GetUseSVR4(); // check that we have extended feature read support if (can_use_svr4 && comm.GetQXferLibrariesSVR4ReadSupported()) { // request the loaded library list llvm::Expected raw = comm.ReadExtFeature("libraries-svr4", ""); if (!raw) return raw.takeError(); // parse the xml file in memory LLDB_LOGF(log, "parsing: %s", raw->c_str()); XMLDocument doc; if (!doc.ParseMemory(raw->c_str(), raw->size(), "noname.xml")) return llvm::createStringError(llvm::inconvertibleErrorCode(), "Error reading noname.xml"); XMLNode root_element = doc.GetRootElement("library-list-svr4"); if (!root_element) return llvm::createStringError( llvm::inconvertibleErrorCode(), "Error finding library-list-svr4 xml element"); // main link map structure std::string main_lm = root_element.GetAttributeValue("main-lm"); // FIXME: we're silently ignoring invalid data here if (!main_lm.empty()) llvm::to_integer(main_lm, list.m_link_map); root_element.ForEachChildElementWithName( "library", [log, &list](const XMLNode &library) -> bool { LoadedModuleInfoList::LoadedModuleInfo module; // FIXME: we're silently ignoring invalid data here library.ForEachAttribute( [&module](const llvm::StringRef &name, const llvm::StringRef &value) -> bool { uint64_t uint_value = LLDB_INVALID_ADDRESS; if (name == "name") module.set_name(value.str()); else if (name == "lm") { // the address of the link_map struct. llvm::to_integer(value, uint_value); module.set_link_map(uint_value); } else if (name == "l_addr") { // the displacement as read from the field 'l_addr' of the // link_map struct. llvm::to_integer(value, uint_value); module.set_base(uint_value); // base address is always a displacement, not an absolute // value. module.set_base_is_offset(true); } else if (name == "l_ld") { // the memory address of the libraries PT_DYNAMIC section. llvm::to_integer(value, uint_value); module.set_dynamic(uint_value); } return true; // Keep iterating over all properties of "library" }); if (log) { std::string name; lldb::addr_t lm = 0, base = 0, ld = 0; bool base_is_offset; module.get_name(name); module.get_link_map(lm); module.get_base(base); module.get_base_is_offset(base_is_offset); module.get_dynamic(ld); LLDB_LOGF(log, "found (link_map:0x%08" PRIx64 ", base:0x%08" PRIx64 "[%s], ld:0x%08" PRIx64 ", name:'%s')", lm, base, (base_is_offset ? "offset" : "absolute"), ld, name.c_str()); } list.add(module); return true; // Keep iterating over all "library" elements in the root // node }); if (log) LLDB_LOGF(log, "found %" PRId32 " modules in total", (int)list.m_list.size()); return list; } else if (comm.GetQXferLibrariesReadSupported()) { // request the loaded library list llvm::Expected raw = comm.ReadExtFeature("libraries", ""); if (!raw) return raw.takeError(); LLDB_LOGF(log, "parsing: %s", raw->c_str()); XMLDocument doc; if (!doc.ParseMemory(raw->c_str(), raw->size(), "noname.xml")) return llvm::createStringError(llvm::inconvertibleErrorCode(), "Error reading noname.xml"); XMLNode root_element = doc.GetRootElement("library-list"); if (!root_element) return llvm::createStringError(llvm::inconvertibleErrorCode(), "Error finding library-list xml element"); // FIXME: we're silently ignoring invalid data here root_element.ForEachChildElementWithName( "library", [log, &list](const XMLNode &library) -> bool { LoadedModuleInfoList::LoadedModuleInfo module; std::string name = library.GetAttributeValue("name"); module.set_name(name); // The base address of a given library will be the address of its // first section. Most remotes send only one section for Windows // targets for example. const XMLNode §ion = library.FindFirstChildElementWithName("section"); std::string address = section.GetAttributeValue("address"); uint64_t address_value = LLDB_INVALID_ADDRESS; llvm::to_integer(address, address_value); module.set_base(address_value); // These addresses are absolute values. module.set_base_is_offset(false); if (log) { std::string name; lldb::addr_t base = 0; bool base_is_offset; module.get_name(name); module.get_base(base); module.get_base_is_offset(base_is_offset); LLDB_LOGF(log, "found (base:0x%08" PRIx64 "[%s], name:'%s')", base, (base_is_offset ? "offset" : "absolute"), name.c_str()); } list.add(module); return true; // Keep iterating over all "library" elements in the root // node }); if (log) LLDB_LOGF(log, "found %" PRId32 " modules in total", (int)list.m_list.size()); return list; } else { return llvm::createStringError(llvm::inconvertibleErrorCode(), "Remote libraries not supported"); } } lldb::ModuleSP ProcessGDBRemote::LoadModuleAtAddress(const FileSpec &file, lldb::addr_t link_map, lldb::addr_t base_addr, bool value_is_offset) { DynamicLoader *loader = GetDynamicLoader(); if (!loader) return nullptr; return loader->LoadModuleAtAddress(file, link_map, base_addr, value_is_offset); } llvm::Error ProcessGDBRemote::LoadModules() { using lldb_private::process_gdb_remote::ProcessGDBRemote; // request a list of loaded libraries from GDBServer llvm::Expected module_list = GetLoadedModuleList(); if (!module_list) return module_list.takeError(); // get a list of all the modules ModuleList new_modules; for (LoadedModuleInfoList::LoadedModuleInfo &modInfo : module_list->m_list) { std::string mod_name; lldb::addr_t mod_base; lldb::addr_t link_map; bool mod_base_is_offset; bool valid = true; valid &= modInfo.get_name(mod_name); valid &= modInfo.get_base(mod_base); valid &= modInfo.get_base_is_offset(mod_base_is_offset); if (!valid) continue; if (!modInfo.get_link_map(link_map)) link_map = LLDB_INVALID_ADDRESS; FileSpec file(mod_name); FileSystem::Instance().Resolve(file); lldb::ModuleSP module_sp = LoadModuleAtAddress(file, link_map, mod_base, mod_base_is_offset); if (module_sp.get()) new_modules.Append(module_sp); } if (new_modules.GetSize() > 0) { ModuleList removed_modules; Target &target = GetTarget(); ModuleList &loaded_modules = m_process->GetTarget().GetImages(); for (size_t i = 0; i < loaded_modules.GetSize(); ++i) { const lldb::ModuleSP loaded_module = loaded_modules.GetModuleAtIndex(i); bool found = false; for (size_t j = 0; j < new_modules.GetSize(); ++j) { if (new_modules.GetModuleAtIndex(j).get() == loaded_module.get()) found = true; } // The main executable will never be included in libraries-svr4, don't // remove it if (!found && loaded_module.get() != target.GetExecutableModulePointer()) { removed_modules.Append(loaded_module); } } loaded_modules.Remove(removed_modules); m_process->GetTarget().ModulesDidUnload(removed_modules, false); new_modules.ForEach([&target](const lldb::ModuleSP module_sp) -> bool { lldb_private::ObjectFile *obj = module_sp->GetObjectFile(); if (!obj) return true; if (obj->GetType() != ObjectFile::Type::eTypeExecutable) return true; lldb::ModuleSP module_copy_sp = module_sp; target.SetExecutableModule(module_copy_sp, eLoadDependentsNo); return false; }); loaded_modules.AppendIfNeeded(new_modules); m_process->GetTarget().ModulesDidLoad(new_modules); } return llvm::ErrorSuccess(); } Status ProcessGDBRemote::GetFileLoadAddress(const FileSpec &file, bool &is_loaded, lldb::addr_t &load_addr) { is_loaded = false; load_addr = LLDB_INVALID_ADDRESS; std::string file_path = file.GetPath(false); if (file_path.empty()) return Status("Empty file name specified"); StreamString packet; packet.PutCString("qFileLoadAddress:"); packet.PutStringAsRawHex8(file_path); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) != GDBRemoteCommunication::PacketResult::Success) return Status("Sending qFileLoadAddress packet failed"); if (response.IsErrorResponse()) { if (response.GetError() == 1) { // The file is not loaded into the inferior is_loaded = false; load_addr = LLDB_INVALID_ADDRESS; return Status(); } return Status( "Fetching file load address from remote server returned an error"); } if (response.IsNormalResponse()) { is_loaded = true; load_addr = response.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); return Status(); } return Status( "Unknown error happened during sending the load address packet"); } void ProcessGDBRemote::ModulesDidLoad(ModuleList &module_list) { // We must call the lldb_private::Process::ModulesDidLoad () first before we // do anything Process::ModulesDidLoad(module_list); // After loading shared libraries, we can ask our remote GDB server if it // needs any symbols. m_gdb_comm.ServeSymbolLookups(this); } void ProcessGDBRemote::HandleAsyncStdout(llvm::StringRef out) { AppendSTDOUT(out.data(), out.size()); } static const char *end_delimiter = "--end--;"; static const int end_delimiter_len = 8; void ProcessGDBRemote::HandleAsyncMisc(llvm::StringRef data) { std::string input = data.str(); // '1' to move beyond 'A' if (m_partial_profile_data.length() > 0) { m_partial_profile_data.append(input); input = m_partial_profile_data; m_partial_profile_data.clear(); } size_t found, pos = 0, len = input.length(); while ((found = input.find(end_delimiter, pos)) != std::string::npos) { StringExtractorGDBRemote profileDataExtractor( input.substr(pos, found).c_str()); std::string profile_data = HarmonizeThreadIdsForProfileData(profileDataExtractor); BroadcastAsyncProfileData(profile_data); pos = found + end_delimiter_len; } if (pos < len) { // Last incomplete chunk. m_partial_profile_data = input.substr(pos); } } std::string ProcessGDBRemote::HarmonizeThreadIdsForProfileData( StringExtractorGDBRemote &profileDataExtractor) { std::map new_thread_id_to_used_usec_map; std::string output; llvm::raw_string_ostream output_stream(output); llvm::StringRef name, value; // Going to assuming thread_used_usec comes first, else bail out. while (profileDataExtractor.GetNameColonValue(name, value)) { if (name.compare("thread_used_id") == 0) { StringExtractor threadIDHexExtractor(value); uint64_t thread_id = threadIDHexExtractor.GetHexMaxU64(false, 0); bool has_used_usec = false; uint32_t curr_used_usec = 0; llvm::StringRef usec_name, usec_value; uint32_t input_file_pos = profileDataExtractor.GetFilePos(); if (profileDataExtractor.GetNameColonValue(usec_name, usec_value)) { if (usec_name == "thread_used_usec") { has_used_usec = true; usec_value.getAsInteger(0, curr_used_usec); } else { // We didn't find what we want, it is probably an older version. Bail // out. profileDataExtractor.SetFilePos(input_file_pos); } } if (has_used_usec) { uint32_t prev_used_usec = 0; std::map::iterator iterator = m_thread_id_to_used_usec_map.find(thread_id); if (iterator != m_thread_id_to_used_usec_map.end()) { prev_used_usec = m_thread_id_to_used_usec_map[thread_id]; } uint32_t real_used_usec = curr_used_usec - prev_used_usec; // A good first time record is one that runs for at least 0.25 sec bool good_first_time = (prev_used_usec == 0) && (real_used_usec > 250000); bool good_subsequent_time = (prev_used_usec > 0) && ((real_used_usec > 0) || (HasAssignedIndexIDToThread(thread_id))); if (good_first_time || good_subsequent_time) { // We try to avoid doing too many index id reservation, resulting in // fast increase of index ids. output_stream << name << ":"; int32_t index_id = AssignIndexIDToThread(thread_id); output_stream << index_id << ";"; output_stream << usec_name << ":" << usec_value << ";"; } else { // Skip past 'thread_used_name'. llvm::StringRef local_name, local_value; profileDataExtractor.GetNameColonValue(local_name, local_value); } // Store current time as previous time so that they can be compared // later. new_thread_id_to_used_usec_map[thread_id] = curr_used_usec; } else { // Bail out and use old string. output_stream << name << ":" << value << ";"; } } else { output_stream << name << ":" << value << ";"; } } output_stream << end_delimiter; m_thread_id_to_used_usec_map = new_thread_id_to_used_usec_map; return output_stream.str(); } void ProcessGDBRemote::HandleStopReply() { if (GetStopID() != 0) return; if (GetID() == LLDB_INVALID_PROCESS_ID) { lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID(); if (pid != LLDB_INVALID_PROCESS_ID) SetID(pid); } BuildDynamicRegisterInfo(true); } llvm::Expected ProcessGDBRemote::SaveCore(llvm::StringRef outfile) { if (!m_gdb_comm.GetSaveCoreSupported()) return false; StreamString packet; packet.PutCString("qSaveCore;path-hint:"); packet.PutStringAsRawHex8(outfile); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) == GDBRemoteCommunication::PacketResult::Success) { // TODO: grab error message from the packet? StringExtractor seems to // be missing a method for that if (response.IsErrorResponse()) return llvm::createStringError( llvm::inconvertibleErrorCode(), llvm::formatv("qSaveCore returned an error")); std::string path; // process the response for (auto x : llvm::split(response.GetStringRef(), ';')) { if (x.consume_front("core-path:")) StringExtractor(x).GetHexByteString(path); } // verify that we've gotten what we need if (path.empty()) return llvm::createStringError(llvm::inconvertibleErrorCode(), "qSaveCore returned no core path"); // now transfer the core file FileSpec remote_core{llvm::StringRef(path)}; Platform &platform = *GetTarget().GetPlatform(); Status error = platform.GetFile(remote_core, FileSpec(outfile)); if (platform.IsRemote()) { // NB: we unlink the file on error too platform.Unlink(remote_core); if (error.Fail()) return error.ToError(); } return true; } return llvm::createStringError(llvm::inconvertibleErrorCode(), "Unable to send qSaveCore"); } static const char *const s_async_json_packet_prefix = "JSON-async:"; static StructuredData::ObjectSP ParseStructuredDataPacket(llvm::StringRef packet) { Log *log = GetLog(GDBRLog::Process); if (!packet.consume_front(s_async_json_packet_prefix)) { if (log) { LLDB_LOGF( log, "GDBRemoteCommunicationClientBase::%s() received $J packet " "but was not a StructuredData packet: packet starts with " "%s", __FUNCTION__, packet.slice(0, strlen(s_async_json_packet_prefix)).str().c_str()); } return StructuredData::ObjectSP(); } // This is an asynchronous JSON packet, destined for a StructuredDataPlugin. StructuredData::ObjectSP json_sp = StructuredData::ParseJSON(packet); if (log) { if (json_sp) { StreamString json_str; json_sp->Dump(json_str, true); json_str.Flush(); LLDB_LOGF(log, "ProcessGDBRemote::%s() " "received Async StructuredData packet: %s", __FUNCTION__, json_str.GetData()); } else { LLDB_LOGF(log, "ProcessGDBRemote::%s" "() received StructuredData packet:" " parse failure", __FUNCTION__); } } return json_sp; } void ProcessGDBRemote::HandleAsyncStructuredDataPacket(llvm::StringRef data) { auto structured_data_sp = ParseStructuredDataPacket(data); if (structured_data_sp) RouteAsyncStructuredData(structured_data_sp); } class CommandObjectProcessGDBRemoteSpeedTest : public CommandObjectParsed { public: CommandObjectProcessGDBRemoteSpeedTest(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "process plugin packet speed-test", "Tests packet speeds of various sizes to determine " "the performance characteristics of the GDB remote " "connection. ", nullptr), m_option_group(), m_num_packets(LLDB_OPT_SET_1, false, "count", 'c', 0, eArgTypeCount, "The number of packets to send of each varying size " "(default is 1000).", 1000), m_max_send(LLDB_OPT_SET_1, false, "max-send", 's', 0, eArgTypeCount, "The maximum number of bytes to send in a packet. Sizes " "increase in powers of 2 while the size is less than or " "equal to this option value. (default 1024).", 1024), m_max_recv(LLDB_OPT_SET_1, false, "max-receive", 'r', 0, eArgTypeCount, "The maximum number of bytes to receive in a packet. Sizes " "increase in powers of 2 while the size is less than or " "equal to this option value. (default 1024).", 1024), m_json(LLDB_OPT_SET_1, false, "json", 'j', "Print the output as JSON data for easy parsing.", false, true) { m_option_group.Append(&m_num_packets, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Append(&m_max_send, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Append(&m_max_recv, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Append(&m_json, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Finalize(); } ~CommandObjectProcessGDBRemoteSpeedTest() override = default; Options *GetOptions() override { return &m_option_group; } void DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext() .GetProcessPtr(); if (process) { StreamSP output_stream_sp = result.GetImmediateOutputStream(); if (!output_stream_sp) output_stream_sp = StreamSP(m_interpreter.GetDebugger().GetAsyncOutputStream()); result.SetImmediateOutputStream(output_stream_sp); const uint32_t num_packets = (uint32_t)m_num_packets.GetOptionValue().GetCurrentValue(); const uint64_t max_send = m_max_send.GetOptionValue().GetCurrentValue(); const uint64_t max_recv = m_max_recv.GetOptionValue().GetCurrentValue(); const bool json = m_json.GetOptionValue().GetCurrentValue(); const uint64_t k_recv_amount = 4 * 1024 * 1024; // Receive amount in bytes process->GetGDBRemote().TestPacketSpeed( num_packets, max_send, max_recv, k_recv_amount, json, output_stream_sp ? *output_stream_sp : result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return; } } else { result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str()); } result.SetStatus(eReturnStatusFailed); } protected: OptionGroupOptions m_option_group; OptionGroupUInt64 m_num_packets; OptionGroupUInt64 m_max_send; OptionGroupUInt64 m_max_recv; OptionGroupBoolean m_json; }; class CommandObjectProcessGDBRemotePacketHistory : public CommandObjectParsed { private: public: CommandObjectProcessGDBRemotePacketHistory(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "process plugin packet history", "Dumps the packet history buffer. ", nullptr) {} ~CommandObjectProcessGDBRemotePacketHistory() override = default; void DoExecute(Args &command, CommandReturnObject &result) override { ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr(); if (process) { process->DumpPluginHistory(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return; } result.SetStatus(eReturnStatusFailed); } }; class CommandObjectProcessGDBRemotePacketXferSize : public CommandObjectParsed { private: public: CommandObjectProcessGDBRemotePacketXferSize(CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "process plugin packet xfer-size", "Maximum size that lldb will try to read/write one one chunk.", nullptr) { AddSimpleArgumentList(eArgTypeUnsignedInteger); } ~CommandObjectProcessGDBRemotePacketXferSize() override = default; void DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { result.AppendErrorWithFormat("'%s' takes an argument to specify the max " "amount to be transferred when " "reading/writing", m_cmd_name.c_str()); return; } ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr(); if (process) { const char *packet_size = command.GetArgumentAtIndex(0); errno = 0; uint64_t user_specified_max = strtoul(packet_size, nullptr, 10); if (errno == 0 && user_specified_max != 0) { process->SetUserSpecifiedMaxMemoryTransferSize(user_specified_max); result.SetStatus(eReturnStatusSuccessFinishResult); return; } } result.SetStatus(eReturnStatusFailed); } }; class CommandObjectProcessGDBRemotePacketSend : public CommandObjectParsed { private: public: CommandObjectProcessGDBRemotePacketSend(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "process plugin packet send", "Send a custom packet through the GDB remote " "protocol and print the answer. " "The packet header and footer will automatically " "be added to the packet prior to sending and " "stripped from the result.", nullptr) { AddSimpleArgumentList(eArgTypeNone, eArgRepeatStar); } ~CommandObjectProcessGDBRemotePacketSend() override = default; void DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { result.AppendErrorWithFormat( "'%s' takes a one or more packet content arguments", m_cmd_name.c_str()); return; } ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr(); if (process) { for (size_t i = 0; i < argc; ++i) { const char *packet_cstr = command.GetArgumentAtIndex(0); StringExtractorGDBRemote response; process->GetGDBRemote().SendPacketAndWaitForResponse( packet_cstr, response, process->GetInterruptTimeout()); result.SetStatus(eReturnStatusSuccessFinishResult); Stream &output_strm = result.GetOutputStream(); output_strm.Printf(" packet: %s\n", packet_cstr); std::string response_str = std::string(response.GetStringRef()); if (strstr(packet_cstr, "qGetProfileData") != nullptr) { response_str = process->HarmonizeThreadIdsForProfileData(response); } if (response_str.empty()) output_strm.PutCString("response: \nerror: UNIMPLEMENTED\n"); else output_strm.Printf("response: %s\n", response.GetStringRef().data()); } } } }; class CommandObjectProcessGDBRemotePacketMonitor : public CommandObjectRaw { private: public: CommandObjectProcessGDBRemotePacketMonitor(CommandInterpreter &interpreter) : CommandObjectRaw(interpreter, "process plugin packet monitor", "Send a qRcmd packet through the GDB remote protocol " "and print the response." "The argument passed to this command will be hex " "encoded into a valid 'qRcmd' packet, sent and the " "response will be printed.") {} ~CommandObjectProcessGDBRemotePacketMonitor() override = default; void DoExecute(llvm::StringRef command, CommandReturnObject &result) override { if (command.empty()) { result.AppendErrorWithFormat("'%s' takes a command string argument", m_cmd_name.c_str()); return; } ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr(); if (process) { StreamString packet; packet.PutCString("qRcmd,"); packet.PutBytesAsRawHex8(command.data(), command.size()); StringExtractorGDBRemote response; Stream &output_strm = result.GetOutputStream(); process->GetGDBRemote().SendPacketAndReceiveResponseWithOutputSupport( packet.GetString(), response, process->GetInterruptTimeout(), [&output_strm](llvm::StringRef output) { output_strm << output; }); result.SetStatus(eReturnStatusSuccessFinishResult); output_strm.Printf(" packet: %s\n", packet.GetData()); const std::string &response_str = std::string(response.GetStringRef()); if (response_str.empty()) output_strm.PutCString("response: \nerror: UNIMPLEMENTED\n"); else output_strm.Printf("response: %s\n", response.GetStringRef().data()); } } }; class CommandObjectProcessGDBRemotePacket : public CommandObjectMultiword { private: public: CommandObjectProcessGDBRemotePacket(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "process plugin packet", "Commands that deal with GDB remote packets.", nullptr) { LoadSubCommand( "history", CommandObjectSP( new CommandObjectProcessGDBRemotePacketHistory(interpreter))); LoadSubCommand( "send", CommandObjectSP( new CommandObjectProcessGDBRemotePacketSend(interpreter))); LoadSubCommand( "monitor", CommandObjectSP( new CommandObjectProcessGDBRemotePacketMonitor(interpreter))); LoadSubCommand( "xfer-size", CommandObjectSP( new CommandObjectProcessGDBRemotePacketXferSize(interpreter))); LoadSubCommand("speed-test", CommandObjectSP(new CommandObjectProcessGDBRemoteSpeedTest( interpreter))); } ~CommandObjectProcessGDBRemotePacket() override = default; }; class CommandObjectMultiwordProcessGDBRemote : public CommandObjectMultiword { public: CommandObjectMultiwordProcessGDBRemote(CommandInterpreter &interpreter) : CommandObjectMultiword( interpreter, "process plugin", "Commands for operating on a ProcessGDBRemote process.", "process plugin []") { LoadSubCommand( "packet", CommandObjectSP(new CommandObjectProcessGDBRemotePacket(interpreter))); } ~CommandObjectMultiwordProcessGDBRemote() override = default; }; CommandObject *ProcessGDBRemote::GetPluginCommandObject() { if (!m_command_sp) m_command_sp = std::make_shared( GetTarget().GetDebugger().GetCommandInterpreter()); return m_command_sp.get(); } void ProcessGDBRemote::DidForkSwitchSoftwareBreakpoints(bool enable) { GetBreakpointSiteList().ForEach([this, enable](BreakpointSite *bp_site) { if (bp_site->IsEnabled() && (bp_site->GetType() == BreakpointSite::eSoftware || bp_site->GetType() == BreakpointSite::eExternal)) { m_gdb_comm.SendGDBStoppointTypePacket( eBreakpointSoftware, enable, bp_site->GetLoadAddress(), GetSoftwareBreakpointTrapOpcode(bp_site), GetInterruptTimeout()); } }); } void ProcessGDBRemote::DidForkSwitchHardwareTraps(bool enable) { if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) { GetBreakpointSiteList().ForEach([this, enable](BreakpointSite *bp_site) { if (bp_site->IsEnabled() && bp_site->GetType() == BreakpointSite::eHardware) { m_gdb_comm.SendGDBStoppointTypePacket( eBreakpointHardware, enable, bp_site->GetLoadAddress(), GetSoftwareBreakpointTrapOpcode(bp_site), GetInterruptTimeout()); } }); } for (const auto &wp_res_sp : m_watchpoint_resource_list.Sites()) { addr_t addr = wp_res_sp->GetLoadAddress(); size_t size = wp_res_sp->GetByteSize(); GDBStoppointType type = GetGDBStoppointType(wp_res_sp); m_gdb_comm.SendGDBStoppointTypePacket(type, enable, addr, size, GetInterruptTimeout()); } } void ProcessGDBRemote::DidFork(lldb::pid_t child_pid, lldb::tid_t child_tid) { Log *log = GetLog(GDBRLog::Process); lldb::pid_t parent_pid = m_gdb_comm.GetCurrentProcessID(); // Any valid TID will suffice, thread-relevant actions will set a proper TID // anyway. lldb::tid_t parent_tid = m_thread_ids.front(); lldb::pid_t follow_pid, detach_pid; lldb::tid_t follow_tid, detach_tid; switch (GetFollowForkMode()) { case eFollowParent: follow_pid = parent_pid; follow_tid = parent_tid; detach_pid = child_pid; detach_tid = child_tid; break; case eFollowChild: follow_pid = child_pid; follow_tid = child_tid; detach_pid = parent_pid; detach_tid = parent_tid; break; } // Switch to the process that is going to be detached. if (!m_gdb_comm.SetCurrentThread(detach_tid, detach_pid)) { LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to set pid/tid"); return; } // Disable all software breakpoints in the forked process. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware)) DidForkSwitchSoftwareBreakpoints(false); // Remove hardware breakpoints / watchpoints from parent process if we're // following child. if (GetFollowForkMode() == eFollowChild) DidForkSwitchHardwareTraps(false); // Switch to the process that is going to be followed if (!m_gdb_comm.SetCurrentThread(follow_tid, follow_pid) || !m_gdb_comm.SetCurrentThreadForRun(follow_tid, follow_pid)) { LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to reset pid/tid"); return; } LLDB_LOG(log, "Detaching process {0}", detach_pid); Status error = m_gdb_comm.Detach(false, detach_pid); if (error.Fail()) { LLDB_LOG(log, "ProcessGDBRemote::DidFork() detach packet send failed: {0}", error.AsCString() ? error.AsCString() : ""); return; } // Hardware breakpoints/watchpoints are not inherited implicitly, // so we need to readd them if we're following child. if (GetFollowForkMode() == eFollowChild) { DidForkSwitchHardwareTraps(true); // Update our PID SetID(child_pid); } } void ProcessGDBRemote::DidVFork(lldb::pid_t child_pid, lldb::tid_t child_tid) { Log *log = GetLog(GDBRLog::Process); LLDB_LOG( log, "ProcessGDBRemote::DidFork() called for child_pid: {0}, child_tid {1}", child_pid, child_tid); ++m_vfork_in_progress_count; // Disable all software breakpoints for the duration of vfork. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware)) DidForkSwitchSoftwareBreakpoints(false); lldb::pid_t detach_pid; lldb::tid_t detach_tid; switch (GetFollowForkMode()) { case eFollowParent: detach_pid = child_pid; detach_tid = child_tid; break; case eFollowChild: detach_pid = m_gdb_comm.GetCurrentProcessID(); // Any valid TID will suffice, thread-relevant actions will set a proper TID // anyway. detach_tid = m_thread_ids.front(); // Switch to the parent process before detaching it. if (!m_gdb_comm.SetCurrentThread(detach_tid, detach_pid)) { LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to set pid/tid"); return; } // Remove hardware breakpoints / watchpoints from the parent process. DidForkSwitchHardwareTraps(false); // Switch to the child process. if (!m_gdb_comm.SetCurrentThread(child_tid, child_pid) || !m_gdb_comm.SetCurrentThreadForRun(child_tid, child_pid)) { LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to reset pid/tid"); return; } break; } LLDB_LOG(log, "Detaching process {0}", detach_pid); Status error = m_gdb_comm.Detach(false, detach_pid); if (error.Fail()) { LLDB_LOG(log, "ProcessGDBRemote::DidFork() detach packet send failed: {0}", error.AsCString() ? error.AsCString() : ""); return; } if (GetFollowForkMode() == eFollowChild) { // Update our PID SetID(child_pid); } } void ProcessGDBRemote::DidVForkDone() { assert(m_vfork_in_progress_count > 0); --m_vfork_in_progress_count; // Reenable all software breakpoints that were enabled before vfork. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware)) DidForkSwitchSoftwareBreakpoints(true); } void ProcessGDBRemote::DidExec() { // If we are following children, vfork is finished by exec (rather than // vforkdone that is submitted for parent). if (GetFollowForkMode() == eFollowChild) { if (m_vfork_in_progress_count > 0) --m_vfork_in_progress_count; } Process::DidExec(); }