//===-- GDBRemoteRegisterContext.cpp --------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "GDBRemoteRegisterContext.h" #include "ProcessGDBRemote.h" #include "ProcessGDBRemoteLog.h" #include "ThreadGDBRemote.h" #include "Utility/ARM_DWARF_Registers.h" #include "Utility/ARM_ehframe_Registers.h" #include "lldb/Core/Architecture.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Target.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/DataExtractor.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Scalar.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/StringExtractorGDBRemote.h" #include using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_gdb_remote; // GDBRemoteRegisterContext constructor GDBRemoteRegisterContext::GDBRemoteRegisterContext( ThreadGDBRemote &thread, uint32_t concrete_frame_idx, GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once, bool write_all_at_once) : RegisterContext(thread, concrete_frame_idx), m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once), m_write_all_at_once(write_all_at_once), m_gpacket_cached(false) { // Resize our vector of bools to contain one bool for every register. We will // use these boolean values to know when a register value is valid in // m_reg_data. m_reg_valid.resize(m_reg_info_sp->GetNumRegisters()); // Make a heap based buffer that is big enough to store all registers DataBufferSP reg_data_sp( new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0)); m_reg_data.SetData(reg_data_sp); m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); } // Destructor GDBRemoteRegisterContext::~GDBRemoteRegisterContext() = default; void GDBRemoteRegisterContext::InvalidateAllRegisters() { SetAllRegisterValid(false); } void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) { m_gpacket_cached = b; std::vector::iterator pos, end = m_reg_valid.end(); for (pos = m_reg_valid.begin(); pos != end; ++pos) *pos = b; } size_t GDBRemoteRegisterContext::GetRegisterCount() { return m_reg_info_sp->GetNumRegisters(); } const RegisterInfo * GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) { return m_reg_info_sp->GetRegisterInfoAtIndex(reg); } size_t GDBRemoteRegisterContext::GetRegisterSetCount() { return m_reg_info_sp->GetNumRegisterSets(); } const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) { return m_reg_info_sp->GetRegisterSet(reg_set); } bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info, RegisterValue &value) { // Read the register if (ReadRegisterBytes(reg_info)) { const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (m_reg_valid[reg] == false) return false; if (reg_info->value_regs && reg_info->value_regs[0] != LLDB_INVALID_REGNUM && reg_info->value_regs[1] != LLDB_INVALID_REGNUM) { std::vector combined_data; uint32_t offset = 0; for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) { const RegisterInfo *parent_reg = GetRegisterInfo( eRegisterKindLLDB, reg_info->value_regs[i]); if (!parent_reg) return false; combined_data.resize(offset + parent_reg->byte_size); if (m_reg_data.CopyData(parent_reg->byte_offset, parent_reg->byte_size, combined_data.data() + offset) != parent_reg->byte_size) return false; offset += parent_reg->byte_size; } Status error; return value.SetFromMemoryData( *reg_info, combined_data.data(), combined_data.size(), m_reg_data.GetByteOrder(), error) == combined_data.size(); } else { const bool partial_data_ok = false; Status error(value.SetValueFromData( *reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); return error.Success(); } } return false; } bool GDBRemoteRegisterContext::PrivateSetRegisterValue( uint32_t reg, llvm::ArrayRef data) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); if (reg_info == nullptr) return false; // Invalidate if needed InvalidateIfNeeded(false); const size_t reg_byte_size = reg_info->byte_size; memcpy(const_cast( m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), data.data(), std::min(data.size(), reg_byte_size)); bool success = data.size() >= reg_byte_size; if (success) { SetRegisterIsValid(reg, true); } else if (data.size() > 0) { // Only set register is valid to false if we copied some bytes, else leave // it as it was. SetRegisterIsValid(reg, false); } return success; } bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg, uint64_t new_reg_val) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); if (reg_info == nullptr) return false; // Early in process startup, we can get a thread that has an invalid byte // order because the process hasn't been completely set up yet (see the ctor // where the byte order is setfrom the process). If that's the case, we // can't set the value here. if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { return false; } // Invalidate if needed InvalidateIfNeeded(false); DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val))); DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *)); // If our register context and our register info disagree, which should never // happen, don't overwrite past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // Grab a pointer to where we are going to put this register uint8_t *dst = const_cast( m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); if (dst == nullptr) return false; if (data.CopyByteOrderedData(0, // src offset reg_info->byte_size, // src length dst, // dst reg_info->byte_size, // dst length m_reg_data.GetByteOrder())) // dst byte order { SetRegisterIsValid(reg, true); return true; } return false; } // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). bool GDBRemoteRegisterContext::GetPrimordialRegister( const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; if (DataBufferSP buffer_sp = gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg)) return PrivateSetRegisterValue( lldb_reg, llvm::ArrayRef(buffer_sp->GetBytes(), buffer_sp->GetByteSize())); return false; } bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); InvalidateIfNeeded(false); const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (!GetRegisterIsValid(reg)) { if (m_read_all_at_once && !m_gpacket_cached) { if (DataBufferSP buffer_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { memcpy(const_cast(m_reg_data.GetDataStart()), buffer_sp->GetBytes(), std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize())); if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) { SetAllRegisterValid(true); return true; } else if (buffer_sp->GetByteSize() > 0) { for (auto x : llvm::enumerate( m_reg_info_sp->registers< DynamicRegisterInfo::reg_collection_const_range>())) { const struct RegisterInfo ®info = x.value(); m_reg_valid[x.index()] = (reginfo.byte_offset + reginfo.byte_size <= buffer_sp->GetByteSize()); } m_gpacket_cached = true; if (GetRegisterIsValid(reg)) return true; } else { Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets)); LLDB_LOGF( log, "error: GDBRemoteRegisterContext::ReadRegisterBytes tried " "to read the " "entire register context at once, expected at least %" PRId64 " bytes " "but only got %" PRId64 " bytes.", m_reg_data.GetByteSize(), buffer_sp->GetByteSize()); return false; } } } if (reg_info->value_regs) { // Process this composite register request by delegating to the // constituent primordial registers. // Index of the primordial register. bool success = true; for (uint32_t idx = 0; success; ++idx) { const uint32_t prim_reg = reg_info->value_regs[idx]; if (prim_reg == LLDB_INVALID_REGNUM) break; // We have a valid primordial register as our constituent. Grab the // corresponding register info. const RegisterInfo *prim_reg_info = GetRegisterInfo(eRegisterKindLLDB, prim_reg); if (prim_reg_info == nullptr) success = false; else { // Read the containing register if it hasn't already been read if (!GetRegisterIsValid(prim_reg)) success = GetPrimordialRegister(prim_reg_info, gdb_comm); } } if (success) { // If we reach this point, all primordial register requests have // succeeded. Validate this composite register. SetRegisterIsValid(reg_info, true); } } else { // Get each register individually GetPrimordialRegister(reg_info, gdb_comm); } // Make sure we got a valid register value after reading it if (!GetRegisterIsValid(reg)) return false; } return true; } bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info, const RegisterValue &value) { DataExtractor data; if (value.GetData(data)) { if (reg_info->value_regs && reg_info->value_regs[0] != LLDB_INVALID_REGNUM && reg_info->value_regs[1] != LLDB_INVALID_REGNUM) { uint32_t combined_size = 0; for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) { const RegisterInfo *parent_reg = GetRegisterInfo( eRegisterKindLLDB, reg_info->value_regs[i]); if (!parent_reg) return false; combined_size += parent_reg->byte_size; } if (data.GetByteSize() < combined_size) return false; uint32_t offset = 0; for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) { const RegisterInfo *parent_reg = GetRegisterInfo( eRegisterKindLLDB, reg_info->value_regs[i]); assert(parent_reg); DataExtractor parent_data{data, offset, parent_reg->byte_size}; if (!WriteRegisterBytes(parent_reg, parent_data, 0)) return false; offset += parent_reg->byte_size; } assert(offset == combined_size); return true; } else return WriteRegisterBytes(reg_info, data, 0); } return false; } // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). bool GDBRemoteRegisterContext::SetPrimordialRegister( const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { StreamString packet; StringExtractorGDBRemote response; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; // Invalidate just this register SetRegisterIsValid(reg, false); return gdb_comm.WriteRegister( m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), reg_info->byte_size}); } bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); assert(m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); // If our register context and our register info disagree, which should never // happen, don't overwrite past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // Grab a pointer to where we are going to put this register uint8_t *dst = const_cast( m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); if (dst == nullptr) return false; const bool should_reconfigure_registers = RegisterWriteCausesReconfigure(reg_info->name); if (data.CopyByteOrderedData(data_offset, // src offset reg_info->byte_size, // src length dst, // dst reg_info->byte_size, // dst length m_reg_data.GetByteOrder())) // dst byte order { GDBRemoteClientBase::Lock lock(gdb_comm); if (lock) { if (m_write_all_at_once) { // Invalidate all register values InvalidateIfNeeded(true); // Set all registers in one packet if (gdb_comm.WriteAllRegisters( m_thread.GetProtocolID(), {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())})) { if (should_reconfigure_registers) ReconfigureRegisterInfo(); InvalidateAllRegisters(); return true; } } else { bool success = true; if (reg_info->value_regs) { // This register is part of another register. In this case we read // the actual register data for any "value_regs", and once all that // data is read, we will have enough data in our register context // bytes for the value of this register // Invalidate this composite register first. for (uint32_t idx = 0; success; ++idx) { const uint32_t reg = reg_info->value_regs[idx]; if (reg == LLDB_INVALID_REGNUM) break; // We have a valid primordial register as our constituent. Grab the // corresponding register info. const RegisterInfo *value_reg_info = GetRegisterInfo(eRegisterKindLLDB, reg); if (value_reg_info == nullptr) success = false; else success = SetPrimordialRegister(value_reg_info, gdb_comm); } } else { // This is an actual register, write it success = SetPrimordialRegister(reg_info, gdb_comm); } // Check if writing this register will invalidate any other register // values? If so, invalidate them if (reg_info->invalidate_regs) { for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; reg != LLDB_INVALID_REGNUM; reg = reg_info->invalidate_regs[++idx]) SetRegisterIsValid(ConvertRegisterKindToRegisterNumber( eRegisterKindLLDB, reg), false); } if (success && should_reconfigure_registers && ReconfigureRegisterInfo()) InvalidateAllRegisters(); return success; } } else { Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets)); if (log) { if (log->GetVerbose()) { StreamString strm; process->DumpPluginHistory(strm); LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write register for \"%s\":\n%s", reg_info->name, strm.GetData()); } else LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write register for \"%s\"", reg_info->name); } } } return false; } bool GDBRemoteRegisterContext::ReadAllRegisterValues( RegisterCheckpoint ®_checkpoint) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); uint32_t save_id = 0; if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { reg_checkpoint.SetID(save_id); reg_checkpoint.GetData().reset(); return true; } else { reg_checkpoint.SetID(0); // Invalid save ID is zero return ReadAllRegisterValues(reg_checkpoint.GetData()); } } bool GDBRemoteRegisterContext::WriteAllRegisterValues( const RegisterCheckpoint ®_checkpoint) { uint32_t save_id = reg_checkpoint.GetID(); if (save_id != 0) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); } else { return WriteAllRegisterValues(reg_checkpoint.GetData()); } } bool GDBRemoteRegisterContext::ReadAllRegisterValues( lldb::WritableDataBufferSP &data_sp) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); const bool use_g_packet = !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); GDBRemoteClientBase::Lock lock(gdb_comm); if (lock) { if (gdb_comm.SyncThreadState(m_thread.GetProtocolID())) InvalidateAllRegisters(); if (use_g_packet) { if (DataBufferSP data_buffer = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { data_sp = std::make_shared(*data_buffer); return true; } } // We're going to read each register // individually and store them as binary data in a buffer. const RegisterInfo *reg_info; for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; i++) { if (reg_info ->value_regs) // skip registers that are slices of real registers continue; ReadRegisterBytes(reg_info); // ReadRegisterBytes saves the contents of the register in to the // m_reg_data buffer } data_sp = std::make_shared( m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize()); return true; } else { Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets)); if (log) { if (log->GetVerbose()) { StreamString strm; process->DumpPluginHistory(strm); LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "read all registers:\n%s", strm.GetData()); } else LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "read all registers"); } } data_sp.reset(); return false; } bool GDBRemoteRegisterContext::WriteAllRegisterValues( const lldb::DataBufferSP &data_sp) { if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0) return false; ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); const bool use_g_packet = !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); GDBRemoteClientBase::Lock lock(gdb_comm); if (lock) { // The data_sp contains the G response packet. if (use_g_packet) { if (gdb_comm.WriteAllRegisters( m_thread.GetProtocolID(), {data_sp->GetBytes(), size_t(data_sp->GetByteSize())})) return true; uint32_t num_restored = 0; // We need to manually go through all of the registers and restore them // manually DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(), m_reg_data.GetAddressByteSize()); const RegisterInfo *reg_info; // The g packet contents may either include the slice registers // (registers defined in terms of other registers, e.g. eax is a subset // of rax) or not. The slice registers should NOT be in the g packet, // but some implementations may incorrectly include them. // // If the slice registers are included in the packet, we must step over // the slice registers when parsing the packet -- relying on the // RegisterInfo byte_offset field would be incorrect. If the slice // registers are not included, then using the byte_offset values into the // data buffer is the best way to find individual register values. uint64_t size_including_slice_registers = 0; uint64_t size_not_including_slice_registers = 0; uint64_t size_by_highest_offset = 0; for (uint32_t reg_idx = 0; (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) { size_including_slice_registers += reg_info->byte_size; if (reg_info->value_regs == nullptr) size_not_including_slice_registers += reg_info->byte_size; if (reg_info->byte_offset >= size_by_highest_offset) size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; } bool use_byte_offset_into_buffer; if (size_by_highest_offset == restore_data.GetByteSize()) { // The size of the packet agrees with the highest offset: + size in the // register file use_byte_offset_into_buffer = true; } else if (size_not_including_slice_registers == restore_data.GetByteSize()) { // The size of the packet is the same as concatenating all of the // registers sequentially, skipping the slice registers use_byte_offset_into_buffer = true; } else if (size_including_slice_registers == restore_data.GetByteSize()) { // The slice registers are present in the packet (when they shouldn't // be). Don't try to use the RegisterInfo byte_offset into the // restore_data, it will point to the wrong place. use_byte_offset_into_buffer = false; } else { // None of our expected sizes match the actual g packet data we're // looking at. The most conservative approach here is to use the // running total byte offset. use_byte_offset_into_buffer = false; } // In case our register definitions don't include the correct offsets, // keep track of the size of each reg & compute offset based on that. uint32_t running_byte_offset = 0; for (uint32_t reg_idx = 0; (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx, running_byte_offset += reg_info->byte_size) { // Skip composite aka slice registers (e.g. eax is a slice of rax). if (reg_info->value_regs) continue; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; uint32_t register_offset; if (use_byte_offset_into_buffer) { register_offset = reg_info->byte_offset; } else { register_offset = running_byte_offset; } const uint32_t reg_byte_size = reg_info->byte_size; const uint8_t *restore_src = restore_data.PeekData(register_offset, reg_byte_size); if (restore_src) { SetRegisterIsValid(reg, false); if (gdb_comm.WriteRegister( m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], {restore_src, reg_byte_size})) ++num_restored; } } return num_restored > 0; } else { // For the use_g_packet == false case, we're going to write each register // individually. The data buffer is binary data in this case, instead of // ascii characters. bool arm64_debugserver = false; if (m_thread.GetProcess().get()) { const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 || arch.GetMachine() == llvm::Triple::aarch64_32) && arch.GetTriple().getVendor() == llvm::Triple::Apple && arch.GetTriple().getOS() == llvm::Triple::IOS) { arm64_debugserver = true; } } uint32_t num_restored = 0; const RegisterInfo *reg_info; for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; i++) { if (reg_info->value_regs) // skip registers that are slices of real // registers continue; // Skip the fpsr and fpcr floating point status/control register // writing to work around a bug in an older version of debugserver that // would lead to register context corruption when writing fpsr/fpcr. if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 || strcmp(reg_info->name, "fpcr") == 0)) { continue; } SetRegisterIsValid(reg_info, false); if (gdb_comm.WriteRegister(m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], {data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size})) ++num_restored; } return num_restored > 0; } } else { Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets)); if (log) { if (log->GetVerbose()) { StreamString strm; process->DumpPluginHistory(strm); LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write all registers:\n%s", strm.GetData()); } else LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write all registers"); } } return false; } uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber( lldb::RegisterKind kind, uint32_t num) { return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num); } bool GDBRemoteRegisterContext::RegisterWriteCausesReconfigure( const llvm::StringRef name) { ExecutionContext exe_ctx(CalculateThread()); const Architecture *architecture = exe_ctx.GetProcessRef().GetTarget().GetArchitecturePlugin(); return architecture && architecture->RegisterWriteCausesReconfigure(name); } bool GDBRemoteRegisterContext::ReconfigureRegisterInfo() { ExecutionContext exe_ctx(CalculateThread()); const Architecture *architecture = exe_ctx.GetProcessRef().GetTarget().GetArchitecturePlugin(); if (architecture) return architecture->ReconfigureRegisterInfo(*(m_reg_info_sp.get()), m_reg_data, *this); return false; }