//===-- RegisterInfoPOSIX_arm64.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// #include #include #include #include "lldb/lldb-defines.h" #include "llvm/Support/Compiler.h" #include "RegisterInfoPOSIX_arm64.h" // Based on RegisterContextDarwin_arm64.cpp #define GPR_OFFSET(idx) ((idx)*8) #define GPR_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::GPR, reg)) #define FPU_OFFSET(idx) ((idx)*16 + sizeof(RegisterInfoPOSIX_arm64::GPR)) #define FPU_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::FPU, reg) + \ sizeof(RegisterInfoPOSIX_arm64::GPR)) // This information is based on AArch64 with SVE architecture reference manual. // AArch64 with SVE has 32 Z and 16 P vector registers. There is also an FFR // (First Fault) register and a VG (Vector Granule) pseudo register. // SVE 16-byte quad word is the basic unit of expansion in vector length. #define SVE_QUAD_WORD_BYTES 16 // Vector length is the multiplier which decides the no of quad words, // (multiples of 128-bits or 16-bytes) present in a Z register. Vector length // is decided during execution and can change at runtime. SVE AArch64 register // infos have modes one for each valid value of vector length. A change in // vector length requires register context to update sizes of SVE Z, P and FFR. // Also register context needs to update byte offsets of all registers affected // by the change in vector length. #define SVE_REGS_DEFAULT_OFFSET_LINUX sizeof(RegisterInfoPOSIX_arm64::GPR) #define SVE_OFFSET_VG SVE_REGS_DEFAULT_OFFSET_LINUX #define EXC_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::EXC, reg) + \ sizeof(RegisterInfoPOSIX_arm64::GPR) + \ sizeof(RegisterInfoPOSIX_arm64::FPU)) #define DBG_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::DBG, reg) + \ sizeof(RegisterInfoPOSIX_arm64::GPR) + \ sizeof(RegisterInfoPOSIX_arm64::FPU) + \ sizeof(RegisterInfoPOSIX_arm64::EXC)) #define DEFINE_DBG(reg, i) \ #reg, NULL, \ sizeof(((RegisterInfoPOSIX_arm64::DBG *) NULL)->reg[i]), \ DBG_OFFSET_NAME(reg[i]), lldb::eEncodingUint, lldb::eFormatHex, \ {LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \ LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \ dbg_##reg##i }, \ NULL, NULL, NULL, #define REG_CONTEXT_SIZE \ (sizeof(RegisterInfoPOSIX_arm64::GPR) + \ sizeof(RegisterInfoPOSIX_arm64::FPU) + \ sizeof(RegisterInfoPOSIX_arm64::EXC)) // Include RegisterInfos_arm64 to declare our g_register_infos_arm64 structure. #define DECLARE_REGISTER_INFOS_ARM64_STRUCT #include "RegisterInfos_arm64.h" #include "RegisterInfos_arm64_sve.h" #undef DECLARE_REGISTER_INFOS_ARM64_STRUCT static lldb_private::RegisterInfo g_register_infos_pauth[] = { DEFINE_EXTENSION_REG(data_mask), DEFINE_EXTENSION_REG(code_mask)}; static lldb_private::RegisterInfo g_register_infos_mte[] = { DEFINE_EXTENSION_REG(mte_ctrl)}; static lldb_private::RegisterInfo g_register_infos_tls[] = { DEFINE_EXTENSION_REG(tpidr), // Only present when SME is present DEFINE_EXTENSION_REG(tpidr2)}; static lldb_private::RegisterInfo g_register_infos_sme[] = { DEFINE_EXTENSION_REG(svcr), DEFINE_EXTENSION_REG(svg), // 16 is a default size we will change later. {"za", nullptr, 16, 0, lldb::eEncodingVector, lldb::eFormatVectorOfUInt8, KIND_ALL_INVALID, nullptr, nullptr, nullptr}}; static lldb_private::RegisterInfo g_register_infos_sme2[] = { {"zt0", nullptr, 64, 0, lldb::eEncodingVector, lldb::eFormatVectorOfUInt8, KIND_ALL_INVALID, nullptr, nullptr, nullptr}}; // Number of register sets provided by this context. enum { k_num_gpr_registers = gpr_w28 - gpr_x0 + 1, k_num_fpr_registers = fpu_fpcr - fpu_v0 + 1, k_num_sve_registers = sve_ffr - sve_vg + 1, k_num_mte_register = 1, // Number of TLS registers is dynamic so it is not listed here. k_num_pauth_register = 2, // SME2's ZT0 will also be added to this set if present. So this number is // only for SME1 registers. k_num_sme_register = 3, k_num_register_sets_default = 2, k_num_register_sets = 3 }; // ARM64 general purpose registers. static const uint32_t g_gpr_regnums_arm64[] = { gpr_x0, gpr_x1, gpr_x2, gpr_x3, gpr_x4, gpr_x5, gpr_x6, gpr_x7, gpr_x8, gpr_x9, gpr_x10, gpr_x11, gpr_x12, gpr_x13, gpr_x14, gpr_x15, gpr_x16, gpr_x17, gpr_x18, gpr_x19, gpr_x20, gpr_x21, gpr_x22, gpr_x23, gpr_x24, gpr_x25, gpr_x26, gpr_x27, gpr_x28, gpr_fp, gpr_lr, gpr_sp, gpr_pc, gpr_cpsr, gpr_w0, gpr_w1, gpr_w2, gpr_w3, gpr_w4, gpr_w5, gpr_w6, gpr_w7, gpr_w8, gpr_w9, gpr_w10, gpr_w11, gpr_w12, gpr_w13, gpr_w14, gpr_w15, gpr_w16, gpr_w17, gpr_w18, gpr_w19, gpr_w20, gpr_w21, gpr_w22, gpr_w23, gpr_w24, gpr_w25, gpr_w26, gpr_w27, gpr_w28, LLDB_INVALID_REGNUM}; static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) - 1) == k_num_gpr_registers, "g_gpr_regnums_arm64 has wrong number of register infos"); // ARM64 floating point registers. static const uint32_t g_fpu_regnums_arm64[] = { fpu_v0, fpu_v1, fpu_v2, fpu_v3, fpu_v4, fpu_v5, fpu_v6, fpu_v7, fpu_v8, fpu_v9, fpu_v10, fpu_v11, fpu_v12, fpu_v13, fpu_v14, fpu_v15, fpu_v16, fpu_v17, fpu_v18, fpu_v19, fpu_v20, fpu_v21, fpu_v22, fpu_v23, fpu_v24, fpu_v25, fpu_v26, fpu_v27, fpu_v28, fpu_v29, fpu_v30, fpu_v31, fpu_s0, fpu_s1, fpu_s2, fpu_s3, fpu_s4, fpu_s5, fpu_s6, fpu_s7, fpu_s8, fpu_s9, fpu_s10, fpu_s11, fpu_s12, fpu_s13, fpu_s14, fpu_s15, fpu_s16, fpu_s17, fpu_s18, fpu_s19, fpu_s20, fpu_s21, fpu_s22, fpu_s23, fpu_s24, fpu_s25, fpu_s26, fpu_s27, fpu_s28, fpu_s29, fpu_s30, fpu_s31, fpu_d0, fpu_d1, fpu_d2, fpu_d3, fpu_d4, fpu_d5, fpu_d6, fpu_d7, fpu_d8, fpu_d9, fpu_d10, fpu_d11, fpu_d12, fpu_d13, fpu_d14, fpu_d15, fpu_d16, fpu_d17, fpu_d18, fpu_d19, fpu_d20, fpu_d21, fpu_d22, fpu_d23, fpu_d24, fpu_d25, fpu_d26, fpu_d27, fpu_d28, fpu_d29, fpu_d30, fpu_d31, fpu_fpsr, fpu_fpcr, LLDB_INVALID_REGNUM}; static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) - 1) == k_num_fpr_registers, "g_fpu_regnums_arm64 has wrong number of register infos"); // ARM64 SVE registers. static const uint32_t g_sve_regnums_arm64[] = { sve_vg, sve_z0, sve_z1, sve_z2, sve_z3, sve_z4, sve_z5, sve_z6, sve_z7, sve_z8, sve_z9, sve_z10, sve_z11, sve_z12, sve_z13, sve_z14, sve_z15, sve_z16, sve_z17, sve_z18, sve_z19, sve_z20, sve_z21, sve_z22, sve_z23, sve_z24, sve_z25, sve_z26, sve_z27, sve_z28, sve_z29, sve_z30, sve_z31, sve_p0, sve_p1, sve_p2, sve_p3, sve_p4, sve_p5, sve_p6, sve_p7, sve_p8, sve_p9, sve_p10, sve_p11, sve_p12, sve_p13, sve_p14, sve_p15, sve_ffr, LLDB_INVALID_REGNUM}; static_assert(((sizeof g_sve_regnums_arm64 / sizeof g_sve_regnums_arm64[0]) - 1) == k_num_sve_registers, "g_sve_regnums_arm64 has wrong number of register infos"); // Register sets for ARM64. static const lldb_private::RegisterSet g_reg_sets_arm64[k_num_register_sets] = { {"General Purpose Registers", "gpr", k_num_gpr_registers, g_gpr_regnums_arm64}, {"Floating Point Registers", "fpu", k_num_fpr_registers, g_fpu_regnums_arm64}, {"Scalable Vector Extension Registers", "sve", k_num_sve_registers, g_sve_regnums_arm64}}; static const lldb_private::RegisterSet g_reg_set_pauth_arm64 = { "Pointer Authentication Registers", "pauth", k_num_pauth_register, nullptr}; static const lldb_private::RegisterSet g_reg_set_mte_arm64 = { "MTE Control Register", "mte", k_num_mte_register, nullptr}; // The size of the TLS set is dynamic, so not listed here. static const lldb_private::RegisterSet g_reg_set_sme_arm64 = { "Scalable Matrix Extension Registers", "sme", k_num_sme_register, nullptr}; RegisterInfoPOSIX_arm64::RegisterInfoPOSIX_arm64( const lldb_private::ArchSpec &target_arch, lldb_private::Flags opt_regsets) : lldb_private::RegisterInfoAndSetInterface(target_arch), m_opt_regsets(opt_regsets) { switch (target_arch.GetMachine()) { case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: { m_register_set_p = g_reg_sets_arm64; m_register_set_count = k_num_register_sets_default; m_per_regset_regnum_range[GPRegSet] = std::make_pair(gpr_x0, gpr_w28 + 1); m_per_regset_regnum_range[FPRegSet] = std::make_pair(fpu_v0, fpu_fpcr + 1); // Now configure register sets supported by current target. If we have a // dynamic register set like MTE, Pointer Authentication regset then we need // to create dynamic register infos and regset array. Push back all optional // register infos and regset and calculate register offsets accordingly. if (m_opt_regsets.AnySet(eRegsetMaskSVE | eRegsetMaskSSVE)) { m_register_info_p = g_register_infos_arm64_sve_le; m_register_info_count = sve_ffr + 1; m_per_regset_regnum_range[m_register_set_count++] = std::make_pair(sve_vg, sve_ffr + 1); } else { m_register_info_p = g_register_infos_arm64_le; m_register_info_count = fpu_fpcr + 1; } if (m_opt_regsets.AnySet(eRegsetMaskDynamic)) { llvm::ArrayRef reg_infos_ref = llvm::ArrayRef(m_register_info_p, m_register_info_count); llvm::ArrayRef reg_sets_ref = llvm::ArrayRef(m_register_set_p, m_register_set_count); llvm::copy(reg_infos_ref, std::back_inserter(m_dynamic_reg_infos)); llvm::copy(reg_sets_ref, std::back_inserter(m_dynamic_reg_sets)); if (m_opt_regsets.AllSet(eRegsetMaskPAuth)) AddRegSetPAuth(); if (m_opt_regsets.AllSet(eRegsetMaskMTE)) AddRegSetMTE(); // The TLS set always contains tpidr but only has tpidr2 when SME is // present. AddRegSetTLS(m_opt_regsets.AllSet(eRegsetMaskSSVE)); if (m_opt_regsets.AnySet(eRegsetMaskSSVE)) AddRegSetSME(m_opt_regsets.AnySet(eRegsetMaskZT)); m_register_info_count = m_dynamic_reg_infos.size(); m_register_info_p = m_dynamic_reg_infos.data(); m_register_set_p = m_dynamic_reg_sets.data(); m_register_set_count = m_dynamic_reg_sets.size(); } break; } default: assert(false && "Unhandled target architecture."); } } uint32_t RegisterInfoPOSIX_arm64::GetRegisterCount() const { return m_register_info_count; } size_t RegisterInfoPOSIX_arm64::GetGPRSizeStatic() { return sizeof(struct RegisterInfoPOSIX_arm64::GPR); } size_t RegisterInfoPOSIX_arm64::GetFPRSize() const { return sizeof(struct RegisterInfoPOSIX_arm64::FPU); } const lldb_private::RegisterInfo * RegisterInfoPOSIX_arm64::GetRegisterInfo() const { return m_register_info_p; } size_t RegisterInfoPOSIX_arm64::GetRegisterSetCount() const { return m_register_set_count; } size_t RegisterInfoPOSIX_arm64::GetRegisterSetFromRegisterIndex( uint32_t reg_index) const { for (const auto ®set_range : m_per_regset_regnum_range) { if (reg_index >= regset_range.second.first && reg_index < regset_range.second.second) return regset_range.first; } return LLDB_INVALID_REGNUM; } const lldb_private::RegisterSet * RegisterInfoPOSIX_arm64::GetRegisterSet(size_t set_index) const { if (set_index < GetRegisterSetCount()) return &m_register_set_p[set_index]; return nullptr; } void RegisterInfoPOSIX_arm64::AddRegSetPAuth() { uint32_t pa_regnum = m_dynamic_reg_infos.size(); for (uint32_t i = 0; i < k_num_pauth_register; i++) { pauth_regnum_collection.push_back(pa_regnum + i); m_dynamic_reg_infos.push_back(g_register_infos_pauth[i]); m_dynamic_reg_infos[pa_regnum + i].byte_offset = m_dynamic_reg_infos[pa_regnum + i - 1].byte_offset + m_dynamic_reg_infos[pa_regnum + i - 1].byte_size; m_dynamic_reg_infos[pa_regnum + i].kinds[lldb::eRegisterKindLLDB] = pa_regnum + i; } m_per_regset_regnum_range[m_register_set_count] = std::make_pair(pa_regnum, m_dynamic_reg_infos.size()); m_dynamic_reg_sets.push_back(g_reg_set_pauth_arm64); m_dynamic_reg_sets.back().registers = pauth_regnum_collection.data(); } void RegisterInfoPOSIX_arm64::AddRegSetMTE() { uint32_t mte_regnum = m_dynamic_reg_infos.size(); m_mte_regnum_collection.push_back(mte_regnum); m_dynamic_reg_infos.push_back(g_register_infos_mte[0]); m_dynamic_reg_infos[mte_regnum].byte_offset = m_dynamic_reg_infos[mte_regnum - 1].byte_offset + m_dynamic_reg_infos[mte_regnum - 1].byte_size; m_dynamic_reg_infos[mte_regnum].kinds[lldb::eRegisterKindLLDB] = mte_regnum; m_per_regset_regnum_range[m_register_set_count] = std::make_pair(mte_regnum, mte_regnum + 1); m_dynamic_reg_sets.push_back(g_reg_set_mte_arm64); m_dynamic_reg_sets.back().registers = m_mte_regnum_collection.data(); } void RegisterInfoPOSIX_arm64::AddRegSetTLS(bool has_tpidr2) { uint32_t tls_regnum = m_dynamic_reg_infos.size(); uint32_t num_regs = has_tpidr2 ? 2 : 1; for (uint32_t i = 0; i < num_regs; i++) { m_tls_regnum_collection.push_back(tls_regnum + i); m_dynamic_reg_infos.push_back(g_register_infos_tls[i]); m_dynamic_reg_infos[tls_regnum + i].byte_offset = m_dynamic_reg_infos[tls_regnum + i - 1].byte_offset + m_dynamic_reg_infos[tls_regnum + i - 1].byte_size; m_dynamic_reg_infos[tls_regnum + i].kinds[lldb::eRegisterKindLLDB] = tls_regnum + i; } m_per_regset_regnum_range[m_register_set_count] = std::make_pair(tls_regnum, m_dynamic_reg_infos.size()); m_dynamic_reg_sets.push_back( {"Thread Local Storage Registers", "tls", num_regs, nullptr}); m_dynamic_reg_sets.back().registers = m_tls_regnum_collection.data(); } void RegisterInfoPOSIX_arm64::AddRegSetSME(bool has_zt) { const uint32_t first_sme_regnum = m_dynamic_reg_infos.size(); uint32_t sme_regnum = first_sme_regnum; for (uint32_t i = 0; i < k_num_sme_register; ++i, ++sme_regnum) { m_sme_regnum_collection.push_back(sme_regnum); m_dynamic_reg_infos.push_back(g_register_infos_sme[i]); m_dynamic_reg_infos[sme_regnum].byte_offset = m_dynamic_reg_infos[sme_regnum - 1].byte_offset + m_dynamic_reg_infos[sme_regnum - 1].byte_size; m_dynamic_reg_infos[sme_regnum].kinds[lldb::eRegisterKindLLDB] = sme_regnum; } lldb_private::RegisterSet sme_regset = g_reg_set_sme_arm64; if (has_zt) { m_sme_regnum_collection.push_back(sme_regnum); m_dynamic_reg_infos.push_back(g_register_infos_sme2[0]); m_dynamic_reg_infos[sme_regnum].byte_offset = m_dynamic_reg_infos[sme_regnum - 1].byte_offset + m_dynamic_reg_infos[sme_regnum - 1].byte_size; m_dynamic_reg_infos[sme_regnum].kinds[lldb::eRegisterKindLLDB] = sme_regnum; sme_regset.num_registers += 1; } m_per_regset_regnum_range[m_register_set_count] = std::make_pair(first_sme_regnum, m_dynamic_reg_infos.size()); m_dynamic_reg_sets.push_back(sme_regset); m_dynamic_reg_sets.back().registers = m_sme_regnum_collection.data(); // When vg is written during streaming mode, svg will also change, as vg and // svg in this state are both showing the streaming vector length. // We model this as vg invalidating svg. In non-streaming mode this doesn't // happen but to keep things simple we will invalidate svg anyway. // // This must be added now, rather than when vg is defined because SME is a // dynamic set that may or may not be present. static uint32_t vg_invalidates[] = {sme_regnum + 1 /*svg*/, LLDB_INVALID_REGNUM}; m_dynamic_reg_infos[GetRegNumSVEVG()].invalidate_regs = vg_invalidates; } uint32_t RegisterInfoPOSIX_arm64::ConfigureVectorLengthSVE(uint32_t sve_vq) { // sve_vq contains SVE Quad vector length in context of AArch64 SVE. // SVE register infos if enabled cannot be disabled by selecting sve_vq = 0. // Also if an invalid or previously set vector length is passed to this // function then it will exit immediately with previously set vector length. if (!VectorSizeIsValid(sve_vq) || m_vector_reg_vq == sve_vq) return m_vector_reg_vq; // We cannot enable AArch64 only mode if SVE was enabled. if (sve_vq == eVectorQuadwordAArch64 && m_vector_reg_vq > eVectorQuadwordAArch64) sve_vq = eVectorQuadwordAArch64SVE; m_vector_reg_vq = sve_vq; if (sve_vq == eVectorQuadwordAArch64) return m_vector_reg_vq; std::vector ®_info_ref = m_per_vq_reg_infos[sve_vq]; if (reg_info_ref.empty()) { reg_info_ref = llvm::ArrayRef(m_register_info_p, m_register_info_count); uint32_t offset = SVE_REGS_DEFAULT_OFFSET_LINUX; reg_info_ref[fpu_fpsr].byte_offset = offset; reg_info_ref[fpu_fpcr].byte_offset = offset + 4; reg_info_ref[sve_vg].byte_offset = offset + 8; offset += 16; // Update Z registers size and offset uint32_t s_reg_base = fpu_s0; uint32_t d_reg_base = fpu_d0; uint32_t v_reg_base = fpu_v0; uint32_t z_reg_base = sve_z0; for (uint32_t index = 0; index < 32; index++) { reg_info_ref[s_reg_base + index].byte_offset = offset; reg_info_ref[d_reg_base + index].byte_offset = offset; reg_info_ref[v_reg_base + index].byte_offset = offset; reg_info_ref[z_reg_base + index].byte_offset = offset; reg_info_ref[z_reg_base + index].byte_size = sve_vq * SVE_QUAD_WORD_BYTES; offset += reg_info_ref[z_reg_base + index].byte_size; } // Update P registers and FFR size and offset for (uint32_t it = sve_p0; it <= sve_ffr; it++) { reg_info_ref[it].byte_offset = offset; reg_info_ref[it].byte_size = sve_vq * SVE_QUAD_WORD_BYTES / 8; offset += reg_info_ref[it].byte_size; } for (uint32_t it = sve_ffr + 1; it < m_register_info_count; it++) { reg_info_ref[it].byte_offset = offset; offset += reg_info_ref[it].byte_size; } m_per_vq_reg_infos[sve_vq] = reg_info_ref; } m_register_info_p = m_per_vq_reg_infos[sve_vq].data(); return m_vector_reg_vq; } void RegisterInfoPOSIX_arm64::ConfigureVectorLengthZA(uint32_t za_vq) { if (!VectorSizeIsValid(za_vq) || m_za_reg_vq == za_vq) return; m_za_reg_vq = za_vq; // For SVE changes, we replace m_register_info_p completely. ZA is in a // dynamic set and is just 1 register so we make an exception to const here. lldb_private::RegisterInfo *non_const_reginfo = const_cast(m_register_info_p); non_const_reginfo[m_sme_regnum_collection[2]].byte_size = (za_vq * 16) * (za_vq * 16); } bool RegisterInfoPOSIX_arm64::IsSVEReg(unsigned reg) const { if (m_vector_reg_vq > eVectorQuadwordAArch64) return (sve_vg <= reg && reg <= sve_ffr); else return false; } bool RegisterInfoPOSIX_arm64::IsSVEZReg(unsigned reg) const { return (sve_z0 <= reg && reg <= sve_z31); } bool RegisterInfoPOSIX_arm64::IsSVEPReg(unsigned reg) const { return (sve_p0 <= reg && reg <= sve_p15); } bool RegisterInfoPOSIX_arm64::IsSVERegVG(unsigned reg) const { return sve_vg == reg; } bool RegisterInfoPOSIX_arm64::IsSMERegZA(unsigned reg) const { return reg == m_sme_regnum_collection[2]; } bool RegisterInfoPOSIX_arm64::IsSMERegZT(unsigned reg) const { // ZT0 is part of the SME register set only if SME2 is present. return m_sme_regnum_collection.size() >= 4 && reg == m_sme_regnum_collection[3]; } bool RegisterInfoPOSIX_arm64::IsPAuthReg(unsigned reg) const { return llvm::is_contained(pauth_regnum_collection, reg); } bool RegisterInfoPOSIX_arm64::IsMTEReg(unsigned reg) const { return llvm::is_contained(m_mte_regnum_collection, reg); } bool RegisterInfoPOSIX_arm64::IsTLSReg(unsigned reg) const { return llvm::is_contained(m_tls_regnum_collection, reg); } bool RegisterInfoPOSIX_arm64::IsSMEReg(unsigned reg) const { return llvm::is_contained(m_sme_regnum_collection, reg); } uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEZ0() const { return sve_z0; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEFFR() const { return sve_ffr; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPCR() const { return fpu_fpcr; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPSR() const { return fpu_fpsr; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEVG() const { return sve_vg; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumSMESVG() const { return m_sme_regnum_collection[1]; } uint32_t RegisterInfoPOSIX_arm64::GetPAuthOffset() const { return m_register_info_p[pauth_regnum_collection[0]].byte_offset; } uint32_t RegisterInfoPOSIX_arm64::GetMTEOffset() const { return m_register_info_p[m_mte_regnum_collection[0]].byte_offset; } uint32_t RegisterInfoPOSIX_arm64::GetTLSOffset() const { return m_register_info_p[m_tls_regnum_collection[0]].byte_offset; } uint32_t RegisterInfoPOSIX_arm64::GetSMEOffset() const { return m_register_info_p[m_sme_regnum_collection[0]].byte_offset; }