//===-- MinidumpFileBuilder.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MinidumpFileBuilder.h" #include "Plugins/Process/minidump/RegisterContextMinidump_ARM64.h" #include "Plugins/Process/minidump/RegisterContextMinidump_x86_64.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleList.h" #include "lldb/Core/Section.h" #include "lldb/Target/ABI.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StopInfo.h" #include "lldb/Target/ThreadList.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/DataExtractor.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RangeMap.h" #include "lldb/Utility/RegisterValue.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/Minidump.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/TargetParser/Triple.h" #include "Plugins/Process/minidump/MinidumpTypes.h" #include "lldb/lldb-enumerations.h" #include "lldb/lldb-forward.h" #include "lldb/lldb-types.h" #include #include #include #include #include #include #include #include #include #include using namespace lldb; using namespace lldb_private; using namespace llvm::minidump; Status MinidumpFileBuilder::AddHeaderAndCalculateDirectories() { // First set the offset on the file, and on the bytes saved m_saved_data_size = HEADER_SIZE; // We know we will have at least Misc, SystemInfo, Modules, and ThreadList // (corresponding memory list for stacks) And an additional memory list for // non-stacks. lldb_private::Target &target = m_process_sp->GetTarget(); m_expected_directories = 6; // Check if OS is linux and reserve directory space for all linux specific // breakpad extension directories. if (target.GetArchitecture().GetTriple().getOS() == llvm::Triple::OSType::Linux) m_expected_directories += 9; // Go through all of the threads and check for exceptions. lldb_private::ThreadList thread_list = m_process_sp->GetThreadList(); const uint32_t num_threads = thread_list.GetSize(); for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); if (stop_info_sp) { const StopReason &stop_reason = stop_info_sp->GetStopReason(); if (stop_reason == StopReason::eStopReasonException || stop_reason == StopReason::eStopReasonSignal) m_expected_directories++; } } m_saved_data_size += m_expected_directories * sizeof(llvm::minidump::Directory); Status error; offset_t new_offset = m_core_file->SeekFromStart(m_saved_data_size); if (new_offset != m_saved_data_size) error.SetErrorStringWithFormat("Failed to fill in header and directory " "sections. Written / Expected (%" PRIx64 " / %" PRIx64 ")", new_offset, m_saved_data_size); return error; } Status MinidumpFileBuilder::AddDirectory(StreamType type, uint64_t stream_size) { // We explicitly cast type, an 32b enum, to uint32_t to avoid warnings. Status error; if (GetCurrentDataEndOffset() > UINT32_MAX) { error.SetErrorStringWithFormat("Unable to add directory for stream type " "%x, offset is greater then 32 bit limit.", (uint32_t)type); return error; } if (m_directories.size() + 1 > m_expected_directories) { error.SetErrorStringWithFormat( "Unable to add directory for stream type %x, exceeded expected number " "of directories %zu.", (uint32_t)type, m_expected_directories); return error; } LocationDescriptor loc; loc.DataSize = static_cast(stream_size); // Stream will begin at the current end of data section loc.RVA = static_cast(GetCurrentDataEndOffset()); Directory dir; dir.Type = static_cast>(type); dir.Location = loc; m_directories.push_back(dir); return error; } Status MinidumpFileBuilder::AddSystemInfo() { Status error; const llvm::Triple &target_triple = m_process_sp->GetTarget().GetArchitecture().GetTriple(); error = AddDirectory(StreamType::SystemInfo, sizeof(llvm::minidump::SystemInfo)); if (error.Fail()) return error; llvm::minidump::ProcessorArchitecture arch; switch (target_triple.getArch()) { case llvm::Triple::ArchType::x86_64: arch = ProcessorArchitecture::AMD64; break; case llvm::Triple::ArchType::x86: arch = ProcessorArchitecture::X86; break; case llvm::Triple::ArchType::arm: arch = ProcessorArchitecture::ARM; break; case llvm::Triple::ArchType::aarch64: arch = ProcessorArchitecture::ARM64; break; case llvm::Triple::ArchType::mips64: case llvm::Triple::ArchType::mips64el: case llvm::Triple::ArchType::mips: case llvm::Triple::ArchType::mipsel: arch = ProcessorArchitecture::MIPS; break; case llvm::Triple::ArchType::ppc64: case llvm::Triple::ArchType::ppc: case llvm::Triple::ArchType::ppc64le: arch = ProcessorArchitecture::PPC; break; default: error.SetErrorStringWithFormat("Architecture %s not supported.", target_triple.getArchName().str().c_str()); return error; }; llvm::support::little_t platform_id; switch (target_triple.getOS()) { case llvm::Triple::OSType::Linux: if (target_triple.getEnvironment() == llvm::Triple::EnvironmentType::Android) platform_id = OSPlatform::Android; else platform_id = OSPlatform::Linux; break; case llvm::Triple::OSType::Win32: platform_id = OSPlatform::Win32NT; break; case llvm::Triple::OSType::MacOSX: platform_id = OSPlatform::MacOSX; break; case llvm::Triple::OSType::IOS: platform_id = OSPlatform::IOS; break; default: error.SetErrorStringWithFormat("OS %s not supported.", target_triple.getOSName().str().c_str()); return error; }; llvm::minidump::SystemInfo sys_info; sys_info.ProcessorArch = static_cast>(arch); // Global offset to beginning of a csd_string in a data section sys_info.CSDVersionRVA = static_cast( GetCurrentDataEndOffset() + sizeof(llvm::minidump::SystemInfo)); sys_info.PlatformId = platform_id; m_data.AppendData(&sys_info, sizeof(llvm::minidump::SystemInfo)); std::string csd_string; error = WriteString(csd_string, &m_data); if (error.Fail()) { error.SetErrorString("Unable to convert the csd string to UTF16."); return error; } return error; } Status WriteString(const std::string &to_write, lldb_private::DataBufferHeap *buffer) { Status error; // let the StringRef eat also null termination char llvm::StringRef to_write_ref(to_write.c_str(), to_write.size() + 1); llvm::SmallVector to_write_utf16; bool converted = convertUTF8ToUTF16String(to_write_ref, to_write_utf16); if (!converted) { error.SetErrorStringWithFormat( "Unable to convert the string to UTF16. Failed to convert %s", to_write.c_str()); return error; } // size of the UTF16 string should be written without the null termination // character that is stored in 2 bytes llvm::support::ulittle32_t to_write_size(to_write_utf16.size_in_bytes() - 2); buffer->AppendData(&to_write_size, sizeof(llvm::support::ulittle32_t)); buffer->AppendData(to_write_utf16.data(), to_write_utf16.size_in_bytes()); return error; } llvm::Expected getModuleFileSize(Target &target, const ModuleSP &mod) { // JIT module has the same vm and file size. uint64_t SizeOfImage = 0; if (mod->GetObjectFile()->CalculateType() == ObjectFile::Type::eTypeJIT) { for (const auto §ion : *mod->GetObjectFile()->GetSectionList()) { SizeOfImage += section->GetByteSize(); } return SizeOfImage; } SectionSP sect_sp = mod->GetObjectFile()->GetBaseAddress().GetSection(); if (!sect_sp) { return llvm::createStringError(std::errc::operation_not_supported, "Couldn't obtain the section information."); } lldb::addr_t sect_addr = sect_sp->GetLoadBaseAddress(&target); // Use memory size since zero fill sections, like ".bss", will be smaller on // disk. lldb::addr_t sect_size = sect_sp->GetByteSize(); // This will usually be zero, but make sure to calculate the BaseOfImage // offset. const lldb::addr_t base_sect_offset = mod->GetObjectFile()->GetBaseAddress().GetLoadAddress(&target) - sect_addr; SizeOfImage = sect_size - base_sect_offset; lldb::addr_t next_sect_addr = sect_addr + sect_size; Address sect_so_addr; target.ResolveLoadAddress(next_sect_addr, sect_so_addr); lldb::SectionSP next_sect_sp = sect_so_addr.GetSection(); while (next_sect_sp && next_sect_sp->GetLoadBaseAddress(&target) == next_sect_addr) { sect_size = sect_sp->GetByteSize(); SizeOfImage += sect_size; next_sect_addr += sect_size; target.ResolveLoadAddress(next_sect_addr, sect_so_addr); next_sect_sp = sect_so_addr.GetSection(); } return SizeOfImage; } // ModuleList stream consists of a number of modules, followed by an array // of llvm::minidump::Module's structures. Every structure informs about a // single module. Additional data of variable length, such as module's names, // are stored just after the ModuleList stream. The llvm::minidump::Module // structures point to this helper data by global offset. Status MinidumpFileBuilder::AddModuleList() { constexpr size_t minidump_module_size = sizeof(llvm::minidump::Module); Status error; lldb_private::Target &target = m_process_sp->GetTarget(); const ModuleList &modules = target.GetImages(); llvm::support::ulittle32_t modules_count = static_cast(modules.GetSize()); // This helps us with getting the correct global offset in minidump // file later, when we will be setting up offsets from the // the llvm::minidump::Module's structures into helper data size_t size_before = GetCurrentDataEndOffset(); // This is the size of the main part of the ModuleList stream. // It consists of a module number and corresponding number of // structs describing individual modules size_t module_stream_size = sizeof(llvm::support::ulittle32_t) + modules_count * minidump_module_size; // Adding directory describing this stream. error = AddDirectory(StreamType::ModuleList, module_stream_size); if (error.Fail()) return error; m_data.AppendData(&modules_count, sizeof(llvm::support::ulittle32_t)); // Temporary storage for the helper data (of variable length) // as these cannot be dumped to m_data before dumping entire // array of module structures. DataBufferHeap helper_data; for (size_t i = 0; i < modules_count; ++i) { ModuleSP mod = modules.GetModuleAtIndex(i); std::string module_name = mod->GetSpecificationDescription(); auto maybe_mod_size = getModuleFileSize(target, mod); if (!maybe_mod_size) { llvm::Error mod_size_err = maybe_mod_size.takeError(); llvm::handleAllErrors(std::move(mod_size_err), [&](const llvm::ErrorInfoBase &E) { error.SetErrorStringWithFormat( "Unable to get the size of module %s: %s.", module_name.c_str(), E.message().c_str()); }); return error; } uint64_t mod_size = std::move(*maybe_mod_size); llvm::support::ulittle32_t signature = static_cast( static_cast(minidump::CvSignature::ElfBuildId)); auto uuid = mod->GetUUID().GetBytes(); VSFixedFileInfo info; info.Signature = static_cast(0u); info.StructVersion = static_cast(0u); info.FileVersionHigh = static_cast(0u); info.FileVersionLow = static_cast(0u); info.ProductVersionHigh = static_cast(0u); info.ProductVersionLow = static_cast(0u); info.FileFlagsMask = static_cast(0u); info.FileFlags = static_cast(0u); info.FileOS = static_cast(0u); info.FileType = static_cast(0u); info.FileSubtype = static_cast(0u); info.FileDateHigh = static_cast(0u); info.FileDateLow = static_cast(0u); LocationDescriptor ld; ld.DataSize = static_cast(0u); ld.RVA = static_cast(0u); // Setting up LocationDescriptor for uuid string. The global offset into // minidump file is calculated. LocationDescriptor ld_cv; ld_cv.DataSize = static_cast( sizeof(llvm::support::ulittle32_t) + uuid.size()); ld_cv.RVA = static_cast( size_before + module_stream_size + helper_data.GetByteSize()); helper_data.AppendData(&signature, sizeof(llvm::support::ulittle32_t)); helper_data.AppendData(uuid.begin(), uuid.size()); llvm::minidump::Module m; m.BaseOfImage = static_cast( mod->GetObjectFile()->GetBaseAddress().GetLoadAddress(&target)); m.SizeOfImage = static_cast(mod_size); m.Checksum = static_cast(0); m.TimeDateStamp = static_cast(std::time(nullptr)); m.ModuleNameRVA = static_cast( size_before + module_stream_size + helper_data.GetByteSize()); m.VersionInfo = info; m.CvRecord = ld_cv; m.MiscRecord = ld; error = WriteString(module_name, &helper_data); if (error.Fail()) return error; m_data.AppendData(&m, sizeof(llvm::minidump::Module)); } m_data.AppendData(helper_data.GetBytes(), helper_data.GetByteSize()); return error; } uint16_t read_register_u16_raw(RegisterContext *reg_ctx, llvm::StringRef reg_name) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name); if (!reg_info) return 0; lldb_private::RegisterValue reg_value; bool success = reg_ctx->ReadRegister(reg_info, reg_value); if (!success) return 0; return reg_value.GetAsUInt16(); } uint32_t read_register_u32_raw(RegisterContext *reg_ctx, llvm::StringRef reg_name) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name); if (!reg_info) return 0; lldb_private::RegisterValue reg_value; bool success = reg_ctx->ReadRegister(reg_info, reg_value); if (!success) return 0; return reg_value.GetAsUInt32(); } uint64_t read_register_u64_raw(RegisterContext *reg_ctx, llvm::StringRef reg_name) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name); if (!reg_info) return 0; lldb_private::RegisterValue reg_value; bool success = reg_ctx->ReadRegister(reg_info, reg_value); if (!success) return 0; return reg_value.GetAsUInt64(); } llvm::support::ulittle16_t read_register_u16(RegisterContext *reg_ctx, llvm::StringRef reg_name) { return static_cast( read_register_u16_raw(reg_ctx, reg_name)); } llvm::support::ulittle32_t read_register_u32(RegisterContext *reg_ctx, llvm::StringRef reg_name) { return static_cast( read_register_u32_raw(reg_ctx, reg_name)); } llvm::support::ulittle64_t read_register_u64(RegisterContext *reg_ctx, llvm::StringRef reg_name) { return static_cast( read_register_u64_raw(reg_ctx, reg_name)); } void read_register_u128(RegisterContext *reg_ctx, llvm::StringRef reg_name, uint8_t *dst) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { Status error; uint32_t bytes_copied = reg_value.GetAsMemoryData( *reg_info, dst, 16, lldb::ByteOrder::eByteOrderLittle, error); if (bytes_copied == 16) return; } } // If anything goes wrong, then zero out the register value. memset(dst, 0, 16); } lldb_private::minidump::MinidumpContext_x86_64 GetThreadContext_x86_64(RegisterContext *reg_ctx) { lldb_private::minidump::MinidumpContext_x86_64 thread_context = {}; thread_context.p1_home = {}; thread_context.context_flags = static_cast( lldb_private::minidump::MinidumpContext_x86_64_Flags::x86_64_Flag | lldb_private::minidump::MinidumpContext_x86_64_Flags::Control | lldb_private::minidump::MinidumpContext_x86_64_Flags::Segments | lldb_private::minidump::MinidumpContext_x86_64_Flags::Integer); thread_context.rax = read_register_u64(reg_ctx, "rax"); thread_context.rbx = read_register_u64(reg_ctx, "rbx"); thread_context.rcx = read_register_u64(reg_ctx, "rcx"); thread_context.rdx = read_register_u64(reg_ctx, "rdx"); thread_context.rdi = read_register_u64(reg_ctx, "rdi"); thread_context.rsi = read_register_u64(reg_ctx, "rsi"); thread_context.rbp = read_register_u64(reg_ctx, "rbp"); thread_context.rsp = read_register_u64(reg_ctx, "rsp"); thread_context.r8 = read_register_u64(reg_ctx, "r8"); thread_context.r9 = read_register_u64(reg_ctx, "r9"); thread_context.r10 = read_register_u64(reg_ctx, "r10"); thread_context.r11 = read_register_u64(reg_ctx, "r11"); thread_context.r12 = read_register_u64(reg_ctx, "r12"); thread_context.r13 = read_register_u64(reg_ctx, "r13"); thread_context.r14 = read_register_u64(reg_ctx, "r14"); thread_context.r15 = read_register_u64(reg_ctx, "r15"); thread_context.rip = read_register_u64(reg_ctx, "rip"); thread_context.eflags = read_register_u32(reg_ctx, "rflags"); thread_context.cs = read_register_u16(reg_ctx, "cs"); thread_context.fs = read_register_u16(reg_ctx, "fs"); thread_context.gs = read_register_u16(reg_ctx, "gs"); thread_context.ss = read_register_u16(reg_ctx, "ss"); thread_context.ds = read_register_u16(reg_ctx, "ds"); return thread_context; } minidump::RegisterContextMinidump_ARM64::Context GetThreadContext_ARM64(RegisterContext *reg_ctx) { minidump::RegisterContextMinidump_ARM64::Context thread_context = {}; thread_context.context_flags = static_cast( minidump::RegisterContextMinidump_ARM64::Flags::ARM64_Flag | minidump::RegisterContextMinidump_ARM64::Flags::Integer | minidump::RegisterContextMinidump_ARM64::Flags::FloatingPoint); char reg_name[16]; for (uint32_t i = 0; i < 31; ++i) { snprintf(reg_name, sizeof(reg_name), "x%u", i); thread_context.x[i] = read_register_u64(reg_ctx, reg_name); } // Work around a bug in debugserver where "sp" on arm64 doesn't have the alt // name set to "x31" thread_context.x[31] = read_register_u64(reg_ctx, "sp"); thread_context.pc = read_register_u64(reg_ctx, "pc"); thread_context.cpsr = read_register_u32(reg_ctx, "cpsr"); thread_context.fpsr = read_register_u32(reg_ctx, "fpsr"); thread_context.fpcr = read_register_u32(reg_ctx, "fpcr"); for (uint32_t i = 0; i < 32; ++i) { snprintf(reg_name, sizeof(reg_name), "v%u", i); read_register_u128(reg_ctx, reg_name, &thread_context.v[i * 16]); } return thread_context; } class ArchThreadContexts { llvm::Triple::ArchType m_arch; union { lldb_private::minidump::MinidumpContext_x86_64 x86_64; lldb_private::minidump::RegisterContextMinidump_ARM64::Context arm64; }; public: ArchThreadContexts(llvm::Triple::ArchType arch) : m_arch(arch) {} bool prepareRegisterContext(RegisterContext *reg_ctx) { switch (m_arch) { case llvm::Triple::ArchType::x86_64: x86_64 = GetThreadContext_x86_64(reg_ctx); return true; case llvm::Triple::ArchType::aarch64: arm64 = GetThreadContext_ARM64(reg_ctx); return true; default: break; } return false; } const void *data() const { return &x86_64; } size_t size() const { switch (m_arch) { case llvm::Triple::ArchType::x86_64: return sizeof(x86_64); case llvm::Triple::ArchType::aarch64: return sizeof(arm64); default: break; } return 0; } }; Status MinidumpFileBuilder::FixThreadStacks() { Status error; // If we have anything in the heap flush it. FlushBufferToDisk(); m_core_file->SeekFromStart(m_thread_list_start); for (auto &pair : m_thread_by_range_end) { // The thread objects will get a new memory descriptor added // When we are emitting the memory list and then we write it here const llvm::minidump::Thread &thread = pair.second; size_t bytes_to_write = sizeof(llvm::minidump::Thread); size_t bytes_written = bytes_to_write; error = m_core_file->Write(&thread, bytes_written); if (error.Fail() || bytes_to_write != bytes_written) { error.SetErrorStringWithFormat( "Wrote incorrect number of bytes to minidump file. (written %zd/%zd)", bytes_written, bytes_to_write); return error; } } return error; } Status MinidumpFileBuilder::AddThreadList() { constexpr size_t minidump_thread_size = sizeof(llvm::minidump::Thread); lldb_private::ThreadList thread_list = m_process_sp->GetThreadList(); // size of the entire thread stream consists of: // number of threads and threads array size_t thread_stream_size = sizeof(llvm::support::ulittle32_t) + thread_list.GetSize() * minidump_thread_size; // save for the ability to set up RVA size_t size_before = GetCurrentDataEndOffset(); Status error; error = AddDirectory(StreamType::ThreadList, thread_stream_size); if (error.Fail()) return error; llvm::support::ulittle32_t thread_count = static_cast(thread_list.GetSize()); m_data.AppendData(&thread_count, sizeof(llvm::support::ulittle32_t)); // Take the offset after the thread count. m_thread_list_start = GetCurrentDataEndOffset(); DataBufferHeap helper_data; const uint32_t num_threads = thread_list.GetSize(); Log *log = GetLog(LLDBLog::Object); for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext()); if (!reg_ctx_sp) { error.SetErrorString("Unable to get the register context."); return error; } RegisterContext *reg_ctx = reg_ctx_sp.get(); Target &target = m_process_sp->GetTarget(); const ArchSpec &arch = target.GetArchitecture(); ArchThreadContexts thread_context(arch.GetMachine()); if (!thread_context.prepareRegisterContext(reg_ctx)) { error.SetErrorStringWithFormat( "architecture %s not supported.", arch.GetTriple().getArchName().str().c_str()); return error; } uint64_t sp = reg_ctx->GetSP(); MemoryRegionInfo sp_region; m_process_sp->GetMemoryRegionInfo(sp, sp_region); // Emit a blank descriptor MemoryDescriptor stack; LocationDescriptor empty_label; empty_label.DataSize = 0; empty_label.RVA = 0; stack.Memory = empty_label; stack.StartOfMemoryRange = 0; LocationDescriptor thread_context_memory_locator; thread_context_memory_locator.DataSize = static_cast(thread_context.size()); thread_context_memory_locator.RVA = static_cast( size_before + thread_stream_size + helper_data.GetByteSize()); // Cache thie thread context memory so we can reuse for exceptions. m_tid_to_reg_ctx[thread_sp->GetID()] = thread_context_memory_locator; LLDB_LOGF(log, "AddThreadList for thread %d: thread_context %zu bytes", thread_idx, thread_context.size()); helper_data.AppendData(thread_context.data(), thread_context.size()); llvm::minidump::Thread t; t.ThreadId = static_cast(thread_sp->GetID()); t.SuspendCount = static_cast( (thread_sp->GetState() == StateType::eStateSuspended) ? 1 : 0); t.PriorityClass = static_cast(0); t.Priority = static_cast(0); t.EnvironmentBlock = static_cast(0); t.Stack = stack, t.Context = thread_context_memory_locator; // We save off the stack object so we can circle back and clean it up. m_thread_by_range_end[sp_region.GetRange().GetRangeEnd()] = t; m_data.AppendData(&t, sizeof(llvm::minidump::Thread)); } LLDB_LOGF(log, "AddThreadList(): total helper_data %" PRIx64 " bytes", helper_data.GetByteSize()); m_data.AppendData(helper_data.GetBytes(), helper_data.GetByteSize()); return Status(); } Status MinidumpFileBuilder::AddExceptions() { lldb_private::ThreadList thread_list = m_process_sp->GetThreadList(); Status error; const uint32_t num_threads = thread_list.GetSize(); for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); bool add_exception = false; if (stop_info_sp) { switch (stop_info_sp->GetStopReason()) { case eStopReasonSignal: case eStopReasonException: add_exception = true; break; default: break; } } if (add_exception) { constexpr size_t minidump_exception_size = sizeof(llvm::minidump::ExceptionStream); error = AddDirectory(StreamType::Exception, minidump_exception_size); if (error.Fail()) return error; StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext()); Exception exp_record = {}; exp_record.ExceptionCode = static_cast(stop_info_sp->GetValue()); exp_record.ExceptionFlags = static_cast(0); exp_record.ExceptionRecord = static_cast(0); exp_record.ExceptionAddress = reg_ctx_sp->GetPC(); exp_record.NumberParameters = static_cast(0); exp_record.UnusedAlignment = static_cast(0); // exp_record.ExceptionInformation; ExceptionStream exp_stream; exp_stream.ThreadId = static_cast(thread_sp->GetID()); exp_stream.UnusedAlignment = static_cast(0); exp_stream.ExceptionRecord = exp_record; auto Iter = m_tid_to_reg_ctx.find(thread_sp->GetID()); if (Iter != m_tid_to_reg_ctx.end()) { exp_stream.ThreadContext = Iter->second; } else { exp_stream.ThreadContext.DataSize = 0; exp_stream.ThreadContext.RVA = 0; } m_data.AppendData(&exp_stream, minidump_exception_size); } } return error; } lldb_private::Status MinidumpFileBuilder::AddMiscInfo() { Status error; error = AddDirectory(StreamType::MiscInfo, sizeof(lldb_private::minidump::MinidumpMiscInfo)); if (error.Fail()) return error; lldb_private::minidump::MinidumpMiscInfo misc_info; misc_info.size = static_cast( sizeof(lldb_private::minidump::MinidumpMiscInfo)); // Default set flags1 to 0, in case that we will not be able to // get any information misc_info.flags1 = static_cast(0); lldb_private::ProcessInstanceInfo process_info; m_process_sp->GetProcessInfo(process_info); if (process_info.ProcessIDIsValid()) { // Set flags1 to reflect that PID is filled in misc_info.flags1 = static_cast(static_cast( lldb_private::minidump::MinidumpMiscInfoFlags::ProcessID)); misc_info.process_id = static_cast(process_info.GetProcessID()); } m_data.AppendData(&misc_info, sizeof(lldb_private::minidump::MinidumpMiscInfo)); return error; } std::unique_ptr getFileStreamHelper(const std::string &path) { auto maybe_stream = llvm::MemoryBuffer::getFileAsStream(path); if (!maybe_stream) return nullptr; return std::move(maybe_stream.get()); } Status MinidumpFileBuilder::AddLinuxFileStreams() { Status error; // No-op if we are not on linux. if (m_process_sp->GetTarget().GetArchitecture().GetTriple().getOS() != llvm::Triple::Linux) return error; std::vector> files_with_stream_types = { {StreamType::LinuxCPUInfo, "/proc/cpuinfo"}, {StreamType::LinuxLSBRelease, "/etc/lsb-release"}, }; lldb_private::ProcessInstanceInfo process_info; m_process_sp->GetProcessInfo(process_info); if (process_info.ProcessIDIsValid()) { lldb::pid_t pid = process_info.GetProcessID(); std::string pid_str = std::to_string(pid); files_with_stream_types.push_back( {StreamType::LinuxProcStatus, "/proc/" + pid_str + "/status"}); files_with_stream_types.push_back( {StreamType::LinuxCMDLine, "/proc/" + pid_str + "/cmdline"}); files_with_stream_types.push_back( {StreamType::LinuxEnviron, "/proc/" + pid_str + "/environ"}); files_with_stream_types.push_back( {StreamType::LinuxAuxv, "/proc/" + pid_str + "/auxv"}); files_with_stream_types.push_back( {StreamType::LinuxMaps, "/proc/" + pid_str + "/maps"}); files_with_stream_types.push_back( {StreamType::LinuxProcStat, "/proc/" + pid_str + "/stat"}); files_with_stream_types.push_back( {StreamType::LinuxProcFD, "/proc/" + pid_str + "/fd"}); } for (const auto &entry : files_with_stream_types) { StreamType stream = entry.first; std::string path = entry.second; auto memory_buffer = getFileStreamHelper(path); if (memory_buffer) { size_t size = memory_buffer->getBufferSize(); if (size == 0) continue; error = AddDirectory(stream, size); if (error.Fail()) return error; m_data.AppendData(memory_buffer->getBufferStart(), size); } } return error; } Status MinidumpFileBuilder::AddMemoryList(SaveCoreStyle core_style) { Status error; // We first save the thread stacks to ensure they fit in the first UINT32_MAX // bytes of the core file. Thread structures in minidump files can only use // 32 bit memory descriptiors, so we emit them first to ensure the memory is // in accessible with a 32 bit offset. Process::CoreFileMemoryRanges ranges_32; Process::CoreFileMemoryRanges ranges_64; error = m_process_sp->CalculateCoreFileSaveRanges( SaveCoreStyle::eSaveCoreStackOnly, ranges_32); if (error.Fail()) return error; // Calculate totalsize including the current offset. uint64_t total_size = GetCurrentDataEndOffset(); total_size += ranges_32.size() * sizeof(llvm::minidump::MemoryDescriptor); std::unordered_set stack_start_addresses; for (const auto &core_range : ranges_32) { stack_start_addresses.insert(core_range.range.start()); total_size += core_range.range.size(); } if (total_size >= UINT32_MAX) { error.SetErrorStringWithFormat("Unable to write minidump. Stack memory " "exceeds 32b limit. (Num Stacks %zu)", ranges_32.size()); return error; } Process::CoreFileMemoryRanges all_core_memory_ranges; if (core_style != SaveCoreStyle::eSaveCoreStackOnly) { error = m_process_sp->CalculateCoreFileSaveRanges(core_style, all_core_memory_ranges); if (error.Fail()) return error; } // After saving the stacks, we start packing as much as we can into 32b. // We apply a generous padding here so that the Directory, MemoryList and // Memory64List sections all begin in 32b addressable space. // Then anything overflow extends into 64b addressable space. // All core memeroy ranges will either container nothing on stacks only // or all the memory ranges including stacks if (!all_core_memory_ranges.empty()) total_size += 256 + (all_core_memory_ranges.size() - stack_start_addresses.size()) * sizeof(llvm::minidump::MemoryDescriptor_64); for (const auto &core_range : all_core_memory_ranges) { const addr_t range_size = core_range.range.size(); if (stack_start_addresses.count(core_range.range.start()) > 0) // Don't double save stacks. continue; if (total_size + range_size < UINT32_MAX) { ranges_32.push_back(core_range); total_size += range_size; } else { ranges_64.push_back(core_range); } } error = AddMemoryList_32(ranges_32); if (error.Fail()) return error; // Add the remaining memory as a 64b range. if (!ranges_64.empty()) { error = AddMemoryList_64(ranges_64); if (error.Fail()) return error; } return FixThreadStacks(); } Status MinidumpFileBuilder::DumpHeader() const { // write header llvm::minidump::Header header; header.Signature = static_cast( llvm::minidump::Header::MagicSignature); header.Version = static_cast( llvm::minidump::Header::MagicVersion); header.NumberOfStreams = static_cast(m_directories.size()); // We write the directories right after the header. header.StreamDirectoryRVA = static_cast(HEADER_SIZE); header.Checksum = static_cast( 0u), // not used in most of the writers header.TimeDateStamp = static_cast(std::time(nullptr)); header.Flags = static_cast(0u); // minidump normal flag Status error; size_t bytes_written; m_core_file->SeekFromStart(0); bytes_written = HEADER_SIZE; error = m_core_file->Write(&header, bytes_written); if (error.Fail() || bytes_written != HEADER_SIZE) { if (bytes_written != HEADER_SIZE) error.SetErrorStringWithFormat( "Unable to write the minidump header (written %zd/%zd)", bytes_written, HEADER_SIZE); return error; } return error; } offset_t MinidumpFileBuilder::GetCurrentDataEndOffset() const { return m_data.GetByteSize() + m_saved_data_size; } Status MinidumpFileBuilder::DumpDirectories() const { Status error; size_t bytes_written; m_core_file->SeekFromStart(HEADER_SIZE); for (const Directory &dir : m_directories) { bytes_written = DIRECTORY_SIZE; error = m_core_file->Write(&dir, bytes_written); if (error.Fail() || bytes_written != DIRECTORY_SIZE) { if (bytes_written != DIRECTORY_SIZE) error.SetErrorStringWithFormat( "unable to write the directory (written %zd/%zd)", bytes_written, DIRECTORY_SIZE); return error; } } return error; } static uint64_t GetLargestRangeSize(const Process::CoreFileMemoryRanges &ranges) { uint64_t max_size = 0; for (const auto &core_range : ranges) max_size = std::max(max_size, core_range.range.size()); return max_size; } Status MinidumpFileBuilder::AddMemoryList_32(Process::CoreFileMemoryRanges &ranges) { std::vector descriptors; Status error; if (ranges.size() == 0) return error; Log *log = GetLog(LLDBLog::Object); size_t region_index = 0; auto data_up = std::make_unique(GetLargestRangeSize(ranges), 0); for (const auto &core_range : ranges) { // Take the offset before we write. const offset_t offset_for_data = GetCurrentDataEndOffset(); const addr_t addr = core_range.range.start(); const addr_t size = core_range.range.size(); const addr_t end = core_range.range.end(); LLDB_LOGF(log, "AddMemoryList %zu/%zu reading memory for region " "(%" PRIx64 " bytes) [%" PRIx64 ", %" PRIx64 ")", region_index, ranges.size(), size, addr, addr + size); ++region_index; const size_t bytes_read = m_process_sp->ReadMemory(addr, data_up->GetBytes(), size, error); if (error.Fail() || bytes_read == 0) { LLDB_LOGF(log, "Failed to read memory region. Bytes read: %zu, error: %s", bytes_read, error.AsCString()); // Just skip sections with errors or zero bytes in 32b mode continue; } else if (bytes_read != size) { LLDB_LOGF( log, "Memory region at: %" PRIx64 " failed to read %" PRIx64 " bytes", addr, size); } MemoryDescriptor descriptor; descriptor.StartOfMemoryRange = static_cast(addr); descriptor.Memory.DataSize = static_cast(bytes_read); descriptor.Memory.RVA = static_cast(offset_for_data); descriptors.push_back(descriptor); if (m_thread_by_range_end.count(end) > 0) m_thread_by_range_end[end].Stack = descriptor; // Add the data to the buffer, flush as needed. error = AddData(data_up->GetBytes(), bytes_read); if (error.Fail()) return error; } // Add a directory that references this list // With a size of the number of ranges as a 32 bit num // And then the size of all the ranges error = AddDirectory(StreamType::MemoryList, sizeof(llvm::support::ulittle32_t) + descriptors.size() * sizeof(llvm::minidump::MemoryDescriptor)); if (error.Fail()) return error; llvm::support::ulittle32_t memory_ranges_num = static_cast(descriptors.size()); m_data.AppendData(&memory_ranges_num, sizeof(llvm::support::ulittle32_t)); // For 32b we can get away with writing off the descriptors after the data. // This means no cleanup loop needed. m_data.AppendData(descriptors.data(), descriptors.size() * sizeof(MemoryDescriptor)); return error; } Status MinidumpFileBuilder::AddMemoryList_64(Process::CoreFileMemoryRanges &ranges) { Status error; if (ranges.empty()) return error; error = AddDirectory(StreamType::Memory64List, (sizeof(llvm::support::ulittle64_t) * 2) + ranges.size() * sizeof(llvm::minidump::MemoryDescriptor_64)); if (error.Fail()) return error; llvm::support::ulittle64_t memory_ranges_num = static_cast(ranges.size()); m_data.AppendData(&memory_ranges_num, sizeof(llvm::support::ulittle64_t)); // Capture the starting offset for all the descriptors so we can clean them up // if needed. offset_t starting_offset = GetCurrentDataEndOffset() + sizeof(llvm::support::ulittle64_t); // The base_rva needs to start after the directories, which is right after // this 8 byte variable. offset_t base_rva = starting_offset + (ranges.size() * sizeof(llvm::minidump::MemoryDescriptor_64)); llvm::support::ulittle64_t memory_ranges_base_rva = static_cast(base_rva); m_data.AppendData(&memory_ranges_base_rva, sizeof(llvm::support::ulittle64_t)); bool cleanup_required = false; std::vector descriptors; // Enumerate the ranges and create the memory descriptors so we can append // them first for (const auto core_range : ranges) { // Add the space required to store the memory descriptor MemoryDescriptor_64 memory_desc; memory_desc.StartOfMemoryRange = static_cast(core_range.range.start()); memory_desc.DataSize = static_cast(core_range.range.size()); descriptors.push_back(memory_desc); // Now write this memory descriptor to the buffer. m_data.AppendData(&memory_desc, sizeof(MemoryDescriptor_64)); } Log *log = GetLog(LLDBLog::Object); size_t region_index = 0; auto data_up = std::make_unique(GetLargestRangeSize(ranges), 0); for (const auto &core_range : ranges) { const addr_t addr = core_range.range.start(); const addr_t size = core_range.range.size(); LLDB_LOGF(log, "AddMemoryList_64 %zu/%zu reading memory for region " "(%" PRIx64 "bytes) " "[%" PRIx64 ", %" PRIx64 ")", region_index, ranges.size(), size, addr, addr + size); ++region_index; const size_t bytes_read = m_process_sp->ReadMemory(addr, data_up->GetBytes(), size, error); if (error.Fail()) { LLDB_LOGF(log, "Failed to read memory region. Bytes read: %zu, error: %s", bytes_read, error.AsCString()); error.Clear(); cleanup_required = true; descriptors[region_index].DataSize = 0; } if (bytes_read != size) { LLDB_LOGF( log, "Memory region at: %" PRIx64 " failed to read %" PRIx64 " bytes", addr, size); cleanup_required = true; descriptors[region_index].DataSize = bytes_read; } // Add the data to the buffer, flush as needed. error = AddData(data_up->GetBytes(), bytes_read); if (error.Fail()) return error; } // Early return if there is no cleanup needed. if (!cleanup_required) { return error; } else { // Flush to disk we can make the fixes in place. FlushBufferToDisk(); // Fixup the descriptors that were not read correctly. m_core_file->SeekFromStart(starting_offset); size_t bytes_written = sizeof(MemoryDescriptor_64) * descriptors.size(); error = m_core_file->Write(descriptors.data(), bytes_written); if (error.Fail() || bytes_written != sizeof(MemoryDescriptor_64) * descriptors.size()) { error.SetErrorStringWithFormat( "unable to write the memory descriptors (written %zd/%zd)", bytes_written, sizeof(MemoryDescriptor_64) * descriptors.size()); } return error; } } Status MinidumpFileBuilder::AddData(const void *data, uint64_t size) { // This should also get chunked, because worst case we copy over a big // object / memory range, say 5gb. In that case, we'd have to allocate 10gb // 5 gb for the buffer we're copying from, and then 5gb for the buffer we're // copying to. Which will be short lived and immedaitely go to disk, the goal // here is to limit the number of bytes we need to host in memory at any given // time. m_data.AppendData(data, size); if (m_data.GetByteSize() > MAX_WRITE_CHUNK_SIZE) return FlushBufferToDisk(); return Status(); } Status MinidumpFileBuilder::FlushBufferToDisk() { Status error; // Set the stream to it's end. m_core_file->SeekFromStart(m_saved_data_size); addr_t starting_size = m_data.GetByteSize(); addr_t remaining_bytes = starting_size; offset_t offset = 0; while (remaining_bytes > 0) { size_t bytes_written = remaining_bytes; // We don't care how many bytes we wrote unless we got an error // so just decrement the remaining bytes. error = m_core_file->Write(m_data.GetBytes() + offset, bytes_written); if (error.Fail()) { error.SetErrorStringWithFormat( "Wrote incorrect number of bytes to minidump file. (written %" PRIx64 "/%" PRIx64 ")", starting_size - remaining_bytes, starting_size); return error; } offset += bytes_written; remaining_bytes -= bytes_written; } m_saved_data_size += starting_size; m_data.Clear(); return error; } Status MinidumpFileBuilder::DumpFile() { Status error; // If anything is left unsaved, dump it. error = FlushBufferToDisk(); if (error.Fail()) return error; // Overwrite the header which we filled in earlier. error = DumpHeader(); if (error.Fail()) return error; // Overwrite the space saved for directories error = DumpDirectories(); if (error.Fail()) return error; return error; }