//===-- ObjectFileELF.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ObjectFileELF.h" #include #include #include #include #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Progress.h" #include "lldb/Core/Section.h" #include "lldb/Host/FileSystem.h" #include "lldb/Host/LZMA.h" #include "lldb/Symbol/DWARFCallFrameInfo.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/Target.h" #include "lldb/Utility/ArchSpec.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/FileSpecList.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RangeMap.h" #include "lldb/Utility/Status.h" #include "lldb/Utility/Stream.h" #include "lldb/Utility/Timer.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/Decompressor.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/CRC.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/MipsABIFlags.h" #define CASE_AND_STREAM(s, def, width) \ case def: \ s->Printf("%-*s", width, #def); \ break; using namespace lldb; using namespace lldb_private; using namespace elf; using namespace llvm::ELF; LLDB_PLUGIN_DEFINE(ObjectFileELF) // ELF note owner definitions static const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; static const char *const LLDB_NT_OWNER_GNU = "GNU"; static const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; static const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE"; static const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; static const char *const LLDB_NT_OWNER_ANDROID = "Android"; static const char *const LLDB_NT_OWNER_CORE = "CORE"; static const char *const LLDB_NT_OWNER_LINUX = "LINUX"; // ELF note type definitions static const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; static const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; static const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; static const elf_word LLDB_NT_GNU_ABI_SIZE = 16; static const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; static const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1; static const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4; static const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7; static const elf_word LLDB_NT_NETBSD_PROCINFO = 1; // GNU ABI note OS constants static const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; static const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; static const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; namespace { //===----------------------------------------------------------------------===// /// \class ELFRelocation /// Generic wrapper for ELFRel and ELFRela. /// /// This helper class allows us to parse both ELFRel and ELFRela relocation /// entries in a generic manner. class ELFRelocation { public: /// Constructs an ELFRelocation entry with a personality as given by @p /// type. /// /// \param type Either DT_REL or DT_RELA. Any other value is invalid. ELFRelocation(unsigned type); ~ELFRelocation(); bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); static unsigned RelocType32(const ELFRelocation &rel); static unsigned RelocType64(const ELFRelocation &rel); static unsigned RelocSymbol32(const ELFRelocation &rel); static unsigned RelocSymbol64(const ELFRelocation &rel); static elf_addr RelocOffset32(const ELFRelocation &rel); static elf_addr RelocOffset64(const ELFRelocation &rel); static elf_sxword RelocAddend32(const ELFRelocation &rel); static elf_sxword RelocAddend64(const ELFRelocation &rel); bool IsRela() { return (reloc.is()); } private: typedef llvm::PointerUnion RelocUnion; RelocUnion reloc; }; } // end anonymous namespace ELFRelocation::ELFRelocation(unsigned type) { if (type == DT_REL || type == SHT_REL) reloc = new ELFRel(); else if (type == DT_RELA || type == SHT_RELA) reloc = new ELFRela(); else { assert(false && "unexpected relocation type"); reloc = static_cast(nullptr); } } ELFRelocation::~ELFRelocation() { if (reloc.is()) delete reloc.get(); else delete reloc.get(); } bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) { if (reloc.is()) return reloc.get()->Parse(data, offset); else return reloc.get()->Parse(data, offset); } unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocType32(*rel.reloc.get()); else return ELFRela::RelocType32(*rel.reloc.get()); } unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocType64(*rel.reloc.get()); else return ELFRela::RelocType64(*rel.reloc.get()); } unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocSymbol32(*rel.reloc.get()); else return ELFRela::RelocSymbol32(*rel.reloc.get()); } unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocSymbol64(*rel.reloc.get()); else return ELFRela::RelocSymbol64(*rel.reloc.get()); } elf_addr ELFRelocation::RelocOffset32(const ELFRelocation &rel) { if (rel.reloc.is()) return rel.reloc.get()->r_offset; else return rel.reloc.get()->r_offset; } elf_addr ELFRelocation::RelocOffset64(const ELFRelocation &rel) { if (rel.reloc.is()) return rel.reloc.get()->r_offset; else return rel.reloc.get()->r_offset; } elf_sxword ELFRelocation::RelocAddend32(const ELFRelocation &rel) { if (rel.reloc.is()) return 0; else return rel.reloc.get()->r_addend; } elf_sxword ELFRelocation::RelocAddend64(const ELFRelocation &rel) { if (rel.reloc.is()) return 0; else return rel.reloc.get()->r_addend; } static user_id_t SegmentID(size_t PHdrIndex) { return ~user_id_t(PHdrIndex); } bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { // Read all fields. if (data.GetU32(offset, &n_namesz, 3) == nullptr) return false; // The name field is required to be nul-terminated, and n_namesz includes the // terminating nul in observed implementations (contrary to the ELF-64 spec). // A special case is needed for cores generated by some older Linux versions, // which write a note named "CORE" without a nul terminator and n_namesz = 4. if (n_namesz == 4) { char buf[4]; if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) return false; if (strncmp(buf, "CORE", 4) == 0) { n_name = "CORE"; *offset += 4; return true; } } const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); if (cstr == nullptr) { Log *log = GetLog(LLDBLog::Symbols); LLDB_LOGF(log, "Failed to parse note name lacking nul terminator"); return false; } n_name = cstr; return true; } static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; uint32_t endian = header.e_ident[EI_DATA]; uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; uint32_t fileclass = header.e_ident[EI_CLASS]; // If there aren't any elf flags available (e.g core elf file) then return // default // 32 or 64 bit arch (without any architecture revision) based on object file's class. if (header.e_type == ET_CORE) { switch (fileclass) { case llvm::ELF::ELFCLASS32: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; case llvm::ELF::ELFCLASS64: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; default: return arch_variant; } } switch (mips_arch) { case llvm::ELF::EF_MIPS_ARCH_1: case llvm::ELF::EF_MIPS_ARCH_2: case llvm::ELF::EF_MIPS_ARCH_32: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; case llvm::ELF::EF_MIPS_ARCH_32R2: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; case llvm::ELF::EF_MIPS_ARCH_32R6: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; case llvm::ELF::EF_MIPS_ARCH_3: case llvm::ELF::EF_MIPS_ARCH_4: case llvm::ELF::EF_MIPS_ARCH_5: case llvm::ELF::EF_MIPS_ARCH_64: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; case llvm::ELF::EF_MIPS_ARCH_64R2: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; case llvm::ELF::EF_MIPS_ARCH_64R6: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; default: break; } return arch_variant; } static uint32_t riscvVariantFromElfFlags(const elf::ELFHeader &header) { uint32_t fileclass = header.e_ident[EI_CLASS]; switch (fileclass) { case llvm::ELF::ELFCLASS32: return ArchSpec::eRISCVSubType_riscv32; case llvm::ELF::ELFCLASS64: return ArchSpec::eRISCVSubType_riscv64; default: return ArchSpec::eRISCVSubType_unknown; } } static uint32_t ppc64VariantFromElfFlags(const elf::ELFHeader &header) { uint32_t endian = header.e_ident[EI_DATA]; if (endian == ELFDATA2LSB) return ArchSpec::eCore_ppc64le_generic; else return ArchSpec::eCore_ppc64_generic; } static uint32_t loongarchVariantFromElfFlags(const elf::ELFHeader &header) { uint32_t fileclass = header.e_ident[EI_CLASS]; switch (fileclass) { case llvm::ELF::ELFCLASS32: return ArchSpec::eLoongArchSubType_loongarch32; case llvm::ELF::ELFCLASS64: return ArchSpec::eLoongArchSubType_loongarch64; default: return ArchSpec::eLoongArchSubType_unknown; } } static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { if (header.e_machine == llvm::ELF::EM_MIPS) return mipsVariantFromElfFlags(header); else if (header.e_machine == llvm::ELF::EM_PPC64) return ppc64VariantFromElfFlags(header); else if (header.e_machine == llvm::ELF::EM_RISCV) return riscvVariantFromElfFlags(header); else if (header.e_machine == llvm::ELF::EM_LOONGARCH) return loongarchVariantFromElfFlags(header); return LLDB_INVALID_CPUTYPE; } char ObjectFileELF::ID; // Arbitrary constant used as UUID prefix for core files. const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); // Static methods. void ObjectFileELF::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, CreateMemoryInstance, GetModuleSpecifications); } void ObjectFileELF::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, DataBufferSP data_sp, lldb::offset_t data_offset, const lldb_private::FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) { bool mapped_writable = false; if (!data_sp) { data_sp = MapFileDataWritable(*file, length, file_offset); if (!data_sp) return nullptr; data_offset = 0; mapped_writable = true; } assert(data_sp); if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) return nullptr; const uint8_t *magic = data_sp->GetBytes() + data_offset; if (!ELFHeader::MagicBytesMatch(magic)) return nullptr; // Update the data to contain the entire file if it doesn't already if (data_sp->GetByteSize() < length) { data_sp = MapFileDataWritable(*file, length, file_offset); if (!data_sp) return nullptr; data_offset = 0; mapped_writable = true; magic = data_sp->GetBytes(); } // If we didn't map the data as writable take ownership of the buffer. if (!mapped_writable) { data_sp = std::make_shared(data_sp->GetBytes(), data_sp->GetByteSize()); data_offset = 0; magic = data_sp->GetBytes(); } unsigned address_size = ELFHeader::AddressSizeInBytes(magic); if (address_size == 4 || address_size == 8) { std::unique_ptr objfile_up(new ObjectFileELF( module_sp, data_sp, data_offset, file, file_offset, length)); ArchSpec spec = objfile_up->GetArchitecture(); if (spec && objfile_up->SetModulesArchitecture(spec)) return objfile_up.release(); } return nullptr; } ObjectFile *ObjectFileELF::CreateMemoryInstance( const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { const uint8_t *magic = data_sp->GetBytes(); if (ELFHeader::MagicBytesMatch(magic)) { unsigned address_size = ELFHeader::AddressSizeInBytes(magic); if (address_size == 4 || address_size == 8) { std::unique_ptr objfile_up( new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); ArchSpec spec = objfile_up->GetArchitecture(); if (spec && objfile_up->SetModulesArchitecture(spec)) return objfile_up.release(); } } } return nullptr; } bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, lldb::addr_t data_offset, lldb::addr_t data_length) { if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { const uint8_t *magic = data_sp->GetBytes() + data_offset; return ELFHeader::MagicBytesMatch(magic); } return false; } static uint32_t calc_crc32(uint32_t init, const DataExtractor &data) { return llvm::crc32(init, llvm::ArrayRef(data.GetDataStart(), data.GetByteSize())); } uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( const ProgramHeaderColl &program_headers, DataExtractor &object_data) { uint32_t core_notes_crc = 0; for (const ELFProgramHeader &H : program_headers) { if (H.p_type == llvm::ELF::PT_NOTE) { const elf_off ph_offset = H.p_offset; const size_t ph_size = H.p_filesz; DataExtractor segment_data; if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { // The ELF program header contained incorrect data, probably corefile // is incomplete or corrupted. break; } core_notes_crc = calc_crc32(core_notes_crc, segment_data); } } return core_notes_crc; } static const char *OSABIAsCString(unsigned char osabi_byte) { #define _MAKE_OSABI_CASE(x) \ case x: \ return #x switch (osabi_byte) { _MAKE_OSABI_CASE(ELFOSABI_NONE); _MAKE_OSABI_CASE(ELFOSABI_HPUX); _MAKE_OSABI_CASE(ELFOSABI_NETBSD); _MAKE_OSABI_CASE(ELFOSABI_GNU); _MAKE_OSABI_CASE(ELFOSABI_HURD); _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); _MAKE_OSABI_CASE(ELFOSABI_AIX); _MAKE_OSABI_CASE(ELFOSABI_IRIX); _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); _MAKE_OSABI_CASE(ELFOSABI_TRU64); _MAKE_OSABI_CASE(ELFOSABI_MODESTO); _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); _MAKE_OSABI_CASE(ELFOSABI_NSK); _MAKE_OSABI_CASE(ELFOSABI_AROS); _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); _MAKE_OSABI_CASE(ELFOSABI_ARM); _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); default: return ""; } #undef _MAKE_OSABI_CASE } // // WARNING : This function is being deprecated // It's functionality has moved to ArchSpec::SetArchitecture This function is // only being kept to validate the move. // // TODO : Remove this function static bool GetOsFromOSABI(unsigned char osabi_byte, llvm::Triple::OSType &ostype) { switch (osabi_byte) { case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; default: ostype = llvm::Triple::OSType::UnknownOS; } return ostype != llvm::Triple::OSType::UnknownOS; } size_t ObjectFileELF::GetModuleSpecifications( const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, lldb::offset_t data_offset, lldb::offset_t file_offset, lldb::offset_t length, lldb_private::ModuleSpecList &specs) { Log *log = GetLog(LLDBLog::Modules); const size_t initial_count = specs.GetSize(); if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { DataExtractor data; data.SetData(data_sp); elf::ELFHeader header; lldb::offset_t header_offset = data_offset; if (header.Parse(data, &header_offset)) { if (data_sp) { ModuleSpec spec(file); // In Android API level 23 and above, bionic dynamic linker is able to // load .so file directly from zip file. In that case, .so file is // page aligned and uncompressed, and this module spec should retain the // .so file offset and file size to pass through the information from // lldb-server to LLDB. For normal file, file_offset should be 0, // length should be the size of the file. spec.SetObjectOffset(file_offset); spec.SetObjectSize(length); const uint32_t sub_type = subTypeFromElfHeader(header); spec.GetArchitecture().SetArchitecture( eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); if (spec.GetArchitecture().IsValid()) { llvm::Triple::OSType ostype; llvm::Triple::VendorType vendor; llvm::Triple::OSType spec_ostype = spec.GetArchitecture().GetTriple().getOS(); LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath().c_str(), OSABIAsCString(header.e_ident[EI_OSABI])); // SetArchitecture should have set the vendor to unknown vendor = spec.GetArchitecture().GetTriple().getVendor(); assert(vendor == llvm::Triple::UnknownVendor); UNUSED_IF_ASSERT_DISABLED(vendor); // // Validate it is ok to remove GetOsFromOSABI GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); assert(spec_ostype == ostype); if (spec_ostype != llvm::Triple::OSType::UnknownOS) { LLDB_LOGF(log, "ObjectFileELF::%s file '%s' set ELF module OS type " "from ELF header OSABI.", __FUNCTION__, file.GetPath().c_str()); } // When ELF file does not contain GNU build ID, the later code will // calculate CRC32 with this data_sp file_offset and length. It is // important for Android zip .so file, which is a slice of a file, // to not access the outside of the file slice range. if (data_sp->GetByteSize() < length) data_sp = MapFileData(file, length, file_offset); if (data_sp) data.SetData(data_sp); // In case there is header extension in the section #0, the header we // parsed above could have sentinel values for e_phnum, e_shnum, and // e_shstrndx. In this case we need to reparse the header with a // bigger data source to get the actual values. if (header.HasHeaderExtension()) { lldb::offset_t header_offset = data_offset; header.Parse(data, &header_offset); } uint32_t gnu_debuglink_crc = 0; std::string gnu_debuglink_file; SectionHeaderColl section_headers; lldb_private::UUID &uuid = spec.GetUUID(); GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture()); llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module set to triple: %s " "(architecture %s)", __FUNCTION__, file.GetPath().c_str(), spec_triple.getTriple().c_str(), spec.GetArchitecture().GetArchitectureName()); if (!uuid.IsValid()) { uint32_t core_notes_crc = 0; if (!gnu_debuglink_crc) { LLDB_SCOPED_TIMERF( "Calculating module crc32 %s with size %" PRIu64 " KiB", file.GetFilename().AsCString(), (length - file_offset) / 1024); // For core files - which usually don't happen to have a // gnu_debuglink, and are pretty bulky - calculating whole // contents crc32 would be too much of luxury. Thus we will need // to fallback to something simpler. if (header.e_type == llvm::ELF::ET_CORE) { ProgramHeaderColl program_headers; GetProgramHeaderInfo(program_headers, data, header); core_notes_crc = CalculateELFNotesSegmentsCRC32(program_headers, data); } else { gnu_debuglink_crc = calc_crc32(0, data); } } using u32le = llvm::support::ulittle32_t; if (gnu_debuglink_crc) { // Use 4 bytes of crc from the .gnu_debuglink section. u32le data(gnu_debuglink_crc); uuid = UUID(&data, sizeof(data)); } else if (core_notes_crc) { // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make // it look different form .gnu_debuglink crc followed by 4 bytes // of note segments crc. u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; uuid = UUID(data, sizeof(data)); } } specs.Append(spec); } } } } return specs.GetSize() - initial_count; } // ObjectFile protocol ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, DataBufferSP data_sp, lldb::offset_t data_offset, const FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset) { if (file) m_file = *file; } ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, DataBufferSP header_data_sp, const lldb::ProcessSP &process_sp, addr_t header_addr) : ObjectFile(module_sp, process_sp, header_addr, header_data_sp) {} bool ObjectFileELF::IsExecutable() const { return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); } bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, bool value_is_offset) { ModuleSP module_sp = GetModule(); if (module_sp) { size_t num_loaded_sections = 0; SectionList *section_list = GetSectionList(); if (section_list) { if (!value_is_offset) { addr_t base = GetBaseAddress().GetFileAddress(); if (base == LLDB_INVALID_ADDRESS) return false; value -= base; } const size_t num_sections = section_list->GetSize(); size_t sect_idx = 0; for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { // Iterate through the object file sections to find all of the sections // that have SHF_ALLOC in their flag bits. SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); // PT_TLS segments can have the same p_vaddr and p_paddr as other // PT_LOAD segments so we shouldn't load them. If we do load them, then // the SectionLoadList will incorrectly fill in the instance variable // SectionLoadList::m_addr_to_sect with the same address as a PT_LOAD // segment and we won't be able to resolve addresses in the PT_LOAD // segment whose p_vaddr entry matches that of the PT_TLS. Any variables // that appear in the PT_TLS segments get resolved by the DWARF // expressions. If this ever changes we will need to fix all object // file plug-ins, but until then, we don't want PT_TLS segments to // remove the entry from SectionLoadList::m_addr_to_sect when we call // SetSectionLoadAddress() below. if (section_sp->IsThreadSpecific()) continue; if (section_sp->Test(SHF_ALLOC) || section_sp->GetType() == eSectionTypeContainer) { lldb::addr_t load_addr = section_sp->GetFileAddress(); // We don't want to update the load address of a section with type // eSectionTypeAbsoluteAddress as they already have the absolute load // address already specified if (section_sp->GetType() != eSectionTypeAbsoluteAddress) load_addr += value; // On 32-bit systems the load address have to fit into 4 bytes. The // rest of the bytes are the overflow from the addition. if (GetAddressByteSize() == 4) load_addr &= 0xFFFFFFFF; if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, load_addr)) ++num_loaded_sections; } } return num_loaded_sections > 0; } } return false; } ByteOrder ObjectFileELF::GetByteOrder() const { if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) return eByteOrderBig; if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) return eByteOrderLittle; return eByteOrderInvalid; } uint32_t ObjectFileELF::GetAddressByteSize() const { return m_data.GetAddressByteSize(); } AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { Symtab *symtab = GetSymtab(); if (!symtab) return AddressClass::eUnknown; // The address class is determined based on the symtab. Ask it from the // object file what contains the symtab information. ObjectFile *symtab_objfile = symtab->GetObjectFile(); if (symtab_objfile != nullptr && symtab_objfile != this) return symtab_objfile->GetAddressClass(file_addr); auto res = ObjectFile::GetAddressClass(file_addr); if (res != AddressClass::eCode) return res; auto ub = m_address_class_map.upper_bound(file_addr); if (ub == m_address_class_map.begin()) { // No entry in the address class map before the address. Return default // address class for an address in a code section. return AddressClass::eCode; } // Move iterator to the address class entry preceding address --ub; return ub->second; } size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { return std::distance(m_section_headers.begin(), I); } size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { return std::distance(m_section_headers.begin(), I); } bool ObjectFileELF::ParseHeader() { lldb::offset_t offset = 0; return m_header.Parse(m_data, &offset); } UUID ObjectFileELF::GetUUID() { // Need to parse the section list to get the UUIDs, so make sure that's been // done. if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) return UUID(); if (!m_uuid) { using u32le = llvm::support::ulittle32_t; if (GetType() == ObjectFile::eTypeCoreFile) { uint32_t core_notes_crc = 0; if (!ParseProgramHeaders()) return UUID(); core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); if (core_notes_crc) { // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it // look different form .gnu_debuglink crc - followed by 4 bytes of note // segments crc. u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; m_uuid = UUID(data, sizeof(data)); } } else { if (!m_gnu_debuglink_crc) m_gnu_debuglink_crc = calc_crc32(0, m_data); if (m_gnu_debuglink_crc) { // Use 4 bytes of crc from the .gnu_debuglink section. u32le data(m_gnu_debuglink_crc); m_uuid = UUID(&data, sizeof(data)); } } } return m_uuid; } std::optional ObjectFileELF::GetDebugLink() { if (m_gnu_debuglink_file.empty()) return std::nullopt; return FileSpec(m_gnu_debuglink_file); } uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { size_t num_modules = ParseDependentModules(); uint32_t num_specs = 0; for (unsigned i = 0; i < num_modules; ++i) { if (files.AppendIfUnique(m_filespec_up->GetFileSpecAtIndex(i))) num_specs++; } return num_specs; } Address ObjectFileELF::GetImageInfoAddress(Target *target) { if (!ParseDynamicSymbols()) return Address(); SectionList *section_list = GetSectionList(); if (!section_list) return Address(); // Find the SHT_DYNAMIC (.dynamic) section. SectionSP dynsym_section_sp( section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); if (!dynsym_section_sp) return Address(); assert(dynsym_section_sp->GetObjectFile() == this); user_id_t dynsym_id = dynsym_section_sp->GetID(); const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); if (!dynsym_hdr) return Address(); for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { ELFDynamic &symbol = m_dynamic_symbols[i]; if (symbol.d_tag == DT_DEBUG) { // Compute the offset as the number of previous entries plus the size of // d_tag. addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); return Address(dynsym_section_sp, offset); } // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP // exists in non-PIE. else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) { addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); if (dyn_base == LLDB_INVALID_ADDRESS) return Address(); Status error; if (symbol.d_tag == DT_MIPS_RLD_MAP) { // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. Address addr; if (target->ReadPointerFromMemory(dyn_base + offset, error, addr, true)) return addr; } if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, // relative to the address of the tag. uint64_t rel_offset; rel_offset = target->ReadUnsignedIntegerFromMemory( dyn_base + offset, GetAddressByteSize(), UINT64_MAX, error, true); if (error.Success() && rel_offset != UINT64_MAX) { Address addr; addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; addr.SetOffset(debug_ptr_address); return addr; } } } } return Address(); } lldb_private::Address ObjectFileELF::GetEntryPointAddress() { if (m_entry_point_address.IsValid()) return m_entry_point_address; if (!ParseHeader() || !IsExecutable()) return m_entry_point_address; SectionList *section_list = GetSectionList(); addr_t offset = m_header.e_entry; if (!section_list) m_entry_point_address.SetOffset(offset); else m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); return m_entry_point_address; } Address ObjectFileELF::GetBaseAddress() { if (GetType() == ObjectFile::eTypeObjectFile) { for (SectionHeaderCollIter I = std::next(m_section_headers.begin()); I != m_section_headers.end(); ++I) { const ELFSectionHeaderInfo &header = *I; if (header.sh_flags & SHF_ALLOC) return Address(GetSectionList()->FindSectionByID(SectionIndex(I)), 0); } return LLDB_INVALID_ADDRESS; } for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) { const ELFProgramHeader &H = EnumPHdr.value(); if (H.p_type != PT_LOAD) continue; return Address( GetSectionList()->FindSectionByID(SegmentID(EnumPHdr.index())), 0); } return LLDB_INVALID_ADDRESS; } // ParseDependentModules size_t ObjectFileELF::ParseDependentModules() { if (m_filespec_up) return m_filespec_up->GetSize(); m_filespec_up = std::make_unique(); if (!ParseSectionHeaders()) return 0; SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Find the SHT_DYNAMIC section. Section *dynsym = section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) .get(); if (!dynsym) return 0; assert(dynsym->GetObjectFile() == this); const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); if (!header) return 0; // sh_link: section header index of string table used by entries in the // section. Section *dynstr = section_list->FindSectionByID(header->sh_link).get(); if (!dynstr) return 0; DataExtractor dynsym_data; DataExtractor dynstr_data; if (ReadSectionData(dynsym, dynsym_data) && ReadSectionData(dynstr, dynstr_data)) { ELFDynamic symbol; const lldb::offset_t section_size = dynsym_data.GetByteSize(); lldb::offset_t offset = 0; // The only type of entries we are concerned with are tagged DT_NEEDED, // yielding the name of a required library. while (offset < section_size) { if (!symbol.Parse(dynsym_data, &offset)) break; if (symbol.d_tag != DT_NEEDED) continue; uint32_t str_index = static_cast(symbol.d_val); const char *lib_name = dynstr_data.PeekCStr(str_index); FileSpec file_spec(lib_name); FileSystem::Instance().Resolve(file_spec); m_filespec_up->Append(file_spec); } } return m_filespec_up->GetSize(); } // GetProgramHeaderInfo size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, DataExtractor &object_data, const ELFHeader &header) { // We have already parsed the program headers if (!program_headers.empty()) return program_headers.size(); // If there are no program headers to read we are done. if (header.e_phnum == 0) return 0; program_headers.resize(header.e_phnum); if (program_headers.size() != header.e_phnum) return 0; const size_t ph_size = header.e_phnum * header.e_phentsize; const elf_off ph_offset = header.e_phoff; DataExtractor data; if (data.SetData(object_data, ph_offset, ph_size) != ph_size) return 0; uint32_t idx; lldb::offset_t offset; for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { if (!program_headers[idx].Parse(data, &offset)) break; } if (idx < program_headers.size()) program_headers.resize(idx); return program_headers.size(); } // ParseProgramHeaders bool ObjectFileELF::ParseProgramHeaders() { return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0; } lldb_private::Status ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) { Log *log = GetLog(LLDBLog::Modules); Status error; lldb::offset_t offset = 0; while (true) { // Parse the note header. If this fails, bail out. const lldb::offset_t note_offset = offset; ELFNote note = ELFNote(); if (!note.Parse(data, &offset)) { // We're done. return error; } LLDB_LOGF(log, "ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str(), note.n_type); // Process FreeBSD ELF notes. if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { // Pull out the min version info. uint32_t version_info; if (data.GetU32(&offset, &version_info, 1) == nullptr) { error.SetErrorString("failed to read FreeBSD ABI note payload"); return error; } // Convert the version info into a major/minor number. const uint32_t version_major = version_info / 100000; const uint32_t version_minor = (version_info / 1000) % 100; char os_name[32]; snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); // Set the elf OS version to FreeBSD. Also clear the vendor. arch_spec.GetTriple().setOSName(os_name); arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); LLDB_LOGF(log, "ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast(version_info % 1000)); } // Process GNU ELF notes. else if (note.n_name == LLDB_NT_OWNER_GNU) { switch (note.n_type) { case LLDB_NT_GNU_ABI_TAG: if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { // Pull out the min OS version supporting the ABI. uint32_t version_info[4]; if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == nullptr) { error.SetErrorString("failed to read GNU ABI note payload"); return error; } // Set the OS per the OS field. switch (version_info[0]) { case LLDB_NT_GNU_ABI_OS_LINUX: arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); arch_spec.GetTriple().setVendor( llvm::Triple::VendorType::UnknownVendor); LLDB_LOGF(log, "ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); // FIXME we have the minimal version number, we could be propagating // that. version_info[1] = OS Major, version_info[2] = OS Minor, // version_info[3] = Revision. break; case LLDB_NT_GNU_ABI_OS_HURD: arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); arch_spec.GetTriple().setVendor( llvm::Triple::VendorType::UnknownVendor); LLDB_LOGF(log, "ObjectFileELF::%s detected Hurd (unsupported), min " "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); break; case LLDB_NT_GNU_ABI_OS_SOLARIS: arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); arch_spec.GetTriple().setVendor( llvm::Triple::VendorType::UnknownVendor); LLDB_LOGF(log, "ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); break; default: LLDB_LOGF(log, "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); break; } } break; case LLDB_NT_GNU_BUILD_ID_TAG: // Only bother processing this if we don't already have the uuid set. if (!uuid.IsValid()) { // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a // build-id of a different length. Accept it as long as it's at least // 4 bytes as it will be better than our own crc32. if (note.n_descsz >= 4) { if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) { // Save the build id as the UUID for the module. uuid = UUID(buf, note.n_descsz); } else { error.SetErrorString("failed to read GNU_BUILD_ID note payload"); return error; } } } break; } if (arch_spec.IsMIPS() && arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); } // Process NetBSD ELF executables and shared libraries else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) && (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) && (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) { // Pull out the version info. uint32_t version_info; if (data.GetU32(&offset, &version_info, 1) == nullptr) { error.SetErrorString("failed to read NetBSD ABI note payload"); return error; } // Convert the version info into a major/minor/patch number. // #define __NetBSD_Version__ MMmmrrpp00 // // M = major version // m = minor version; a minor number of 99 indicates current. // r = 0 (since NetBSD 3.0 not used) // p = patchlevel const uint32_t version_major = version_info / 100000000; const uint32_t version_minor = (version_info % 100000000) / 1000000; const uint32_t version_patch = (version_info % 10000) / 100; // Set the elf OS version to NetBSD. Also clear the vendor. arch_spec.GetTriple().setOSName( llvm::formatv("netbsd{0}.{1}.{2}", version_major, version_minor, version_patch).str()); arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); } // Process NetBSD ELF core(5) notes else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) && (note.n_type == LLDB_NT_NETBSD_PROCINFO)) { // Set the elf OS version to NetBSD. Also clear the vendor. arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); } // Process OpenBSD ELF notes. else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { // Set the elf OS version to OpenBSD. Also clear the vendor. arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); arch_spec.GetTriple().setEnvironment( llvm::Triple::EnvironmentType::Android); } else if (note.n_name == LLDB_NT_OWNER_LINUX) { // This is sometimes found in core files and usually contains extended // register info arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); } else if (note.n_name == LLDB_NT_OWNER_CORE) { // Parse the NT_FILE to look for stuff in paths to shared libraries // The contents look like this in a 64 bit ELF core file: // // count = 0x000000000000000a (10) // page_size = 0x0000000000001000 (4096) // Index start end file_ofs path // ===== ------------------ ------------------ ------------------ ------------------------------------- // [ 0] 0x0000000000401000 0x0000000000000000 /tmp/a.out // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so // // In the 32 bit ELFs the count, page_size, start, end, file_ofs are // uint32_t. // // For reference: see readelf source code (in binutils). if (note.n_type == NT_FILE) { uint64_t count = data.GetAddress(&offset); const char *cstr; data.GetAddress(&offset); // Skip page size offset += count * 3 * data.GetAddressByteSize(); // Skip all start/end/file_ofs for (size_t i = 0; i < count; ++i) { cstr = data.GetCStr(&offset); if (cstr == nullptr) { error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " "at an offset after the end " "(GetCStr returned nullptr)", __FUNCTION__); return error; } llvm::StringRef path(cstr); if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); break; } } if (arch_spec.IsMIPS() && arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some // cases (e.g. compile with -nostdlib) Hence set OS to Linux arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); } } // Calculate the offset of the next note just in case "offset" has been // used to poke at the contents of the note data offset = note_offset + note.GetByteSize(); } return error; } void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, ArchSpec &arch_spec) { lldb::offset_t Offset = 0; uint8_t FormatVersion = data.GetU8(&Offset); if (FormatVersion != llvm::ELFAttrs::Format_Version) return; Offset = Offset + sizeof(uint32_t); // Section Length llvm::StringRef VendorName = data.GetCStr(&Offset); if (VendorName != "aeabi") return; if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment) arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); while (Offset < length) { uint8_t Tag = data.GetU8(&Offset); uint32_t Size = data.GetU32(&Offset); if (Tag != llvm::ARMBuildAttrs::File || Size == 0) continue; while (Offset < length) { uint64_t Tag = data.GetULEB128(&Offset); switch (Tag) { default: if (Tag < 32) data.GetULEB128(&Offset); else if (Tag % 2 == 0) data.GetULEB128(&Offset); else data.GetCStr(&Offset); break; case llvm::ARMBuildAttrs::CPU_raw_name: case llvm::ARMBuildAttrs::CPU_name: data.GetCStr(&Offset); break; case llvm::ARMBuildAttrs::ABI_VFP_args: { uint64_t VFPArgs = data.GetULEB128(&Offset); if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); } break; } } } } } // GetSectionHeaderInfo size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, DataExtractor &object_data, const elf::ELFHeader &header, lldb_private::UUID &uuid, std::string &gnu_debuglink_file, uint32_t &gnu_debuglink_crc, ArchSpec &arch_spec) { // Don't reparse the section headers if we already did that. if (!section_headers.empty()) return section_headers.size(); // Only initialize the arch_spec to okay defaults if they're not already set. // We'll refine this with note data as we parse the notes. if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { llvm::Triple::OSType ostype; llvm::Triple::OSType spec_ostype; const uint32_t sub_type = subTypeFromElfHeader(header); arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is // determined based on EI_OSABI flag and the info extracted from ELF notes // (see RefineModuleDetailsFromNote). However in some cases that still // might be not enough: for example a shared library might not have any // notes at all and have EI_OSABI flag set to System V, as result the OS // will be set to UnknownOS. GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); spec_ostype = arch_spec.GetTriple().getOS(); assert(spec_ostype == ostype); UNUSED_IF_ASSERT_DISABLED(spec_ostype); } if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) { switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { case llvm::ELF::EF_MIPS_MICROMIPS: arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); break; case llvm::ELF::EF_MIPS_ARCH_ASE_M16: arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); break; case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); break; default: break; } } if (arch_spec.GetMachine() == llvm::Triple::arm || arch_spec.GetMachine() == llvm::Triple::thumb) { if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); } if (arch_spec.GetMachine() == llvm::Triple::riscv32 || arch_spec.GetMachine() == llvm::Triple::riscv64) { uint32_t flags = arch_spec.GetFlags(); if (header.e_flags & llvm::ELF::EF_RISCV_RVC) flags |= ArchSpec::eRISCV_rvc; if (header.e_flags & llvm::ELF::EF_RISCV_RVE) flags |= ArchSpec::eRISCV_rve; if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE) == llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE) flags |= ArchSpec::eRISCV_float_abi_single; else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE) == llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE) flags |= ArchSpec::eRISCV_float_abi_double; else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD) == llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD) flags |= ArchSpec::eRISCV_float_abi_quad; arch_spec.SetFlags(flags); } // If there are no section headers we are done. if (header.e_shnum == 0) return 0; Log *log = GetLog(LLDBLog::Modules); section_headers.resize(header.e_shnum); if (section_headers.size() != header.e_shnum) return 0; const size_t sh_size = header.e_shnum * header.e_shentsize; const elf_off sh_offset = header.e_shoff; DataExtractor sh_data; if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) return 0; uint32_t idx; lldb::offset_t offset; for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { if (!section_headers[idx].Parse(sh_data, &offset)) break; } if (idx < section_headers.size()) section_headers.resize(idx); const unsigned strtab_idx = header.e_shstrndx; if (strtab_idx && strtab_idx < section_headers.size()) { const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; const size_t byte_size = sheader.sh_size; const Elf64_Off offset = sheader.sh_offset; lldb_private::DataExtractor shstr_data; if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { for (SectionHeaderCollIter I = section_headers.begin(); I != section_headers.end(); ++I) { static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); const ELFSectionHeaderInfo &sheader = *I; const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; ConstString name(shstr_data.PeekCStr(I->sh_name)); I->section_name = name; if (arch_spec.IsMIPS()) { uint32_t arch_flags = arch_spec.GetFlags(); DataExtractor data; if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { if (section_size && (data.SetData(object_data, sheader.sh_offset, section_size) == section_size)) { // MIPS ASE Mask is at offset 12 in MIPS.abiflags section lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 arch_flags |= data.GetU32(&offset); // The floating point ABI is at offset 7 offset = 7; switch (data.GetU8(&offset)) { case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; break; } } } // Settings appropriate ArchSpec ABI Flags switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { case llvm::ELF::EF_MIPS_ABI_O32: arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; break; case EF_MIPS_ABI_O64: arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; break; case EF_MIPS_ABI_EABI32: arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; break; case EF_MIPS_ABI_EABI64: arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; break; default: // ABI Mask doesn't cover N32 and N64 ABI. if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; break; } arch_spec.SetFlags(arch_flags); } if (arch_spec.GetMachine() == llvm::Triple::arm || arch_spec.GetMachine() == llvm::Triple::thumb) { DataExtractor data; if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && data.SetData(object_data, sheader.sh_offset, section_size) == section_size) ParseARMAttributes(data, section_size, arch_spec); } if (name == g_sect_name_gnu_debuglink) { DataExtractor data; if (section_size && (data.SetData(object_data, sheader.sh_offset, section_size) == section_size)) { lldb::offset_t gnu_debuglink_offset = 0; gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); } } // Process ELF note section entries. bool is_note_header = (sheader.sh_type == SHT_NOTE); // The section header ".note.android.ident" is stored as a // PROGBITS type header but it is actually a note header. static ConstString g_sect_name_android_ident(".note.android.ident"); if (!is_note_header && name == g_sect_name_android_ident) is_note_header = true; if (is_note_header) { // Allow notes to refine module info. DataExtractor data; if (section_size && (data.SetData(object_data, sheader.sh_offset, section_size) == section_size)) { Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); if (error.Fail()) { LLDB_LOGF(log, "ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString()); } } } } // Make any unknown triple components to be unspecified unknowns. if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) arch_spec.GetTriple().setVendorName(llvm::StringRef()); if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) arch_spec.GetTriple().setOSName(llvm::StringRef()); return section_headers.size(); } } section_headers.clear(); return 0; } llvm::StringRef ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { size_t pos = symbol_name.find('@'); return symbol_name.substr(0, pos); } // ParseSectionHeaders size_t ObjectFileELF::ParseSectionHeaders() { return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); } const ObjectFileELF::ELFSectionHeaderInfo * ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { if (!ParseSectionHeaders()) return nullptr; if (id < m_section_headers.size()) return &m_section_headers[id]; return nullptr; } lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { if (!name || !name[0] || !ParseSectionHeaders()) return 0; for (size_t i = 1; i < m_section_headers.size(); ++i) if (m_section_headers[i].section_name == ConstString(name)) return i; return 0; } static SectionType GetSectionTypeFromName(llvm::StringRef Name) { if (Name.consume_front(".debug_")) { return llvm::StringSwitch(Name) .Case("abbrev", eSectionTypeDWARFDebugAbbrev) .Case("abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo) .Case("addr", eSectionTypeDWARFDebugAddr) .Case("aranges", eSectionTypeDWARFDebugAranges) .Case("cu_index", eSectionTypeDWARFDebugCuIndex) .Case("frame", eSectionTypeDWARFDebugFrame) .Case("info", eSectionTypeDWARFDebugInfo) .Case("info.dwo", eSectionTypeDWARFDebugInfoDwo) .Cases("line", "line.dwo", eSectionTypeDWARFDebugLine) .Cases("line_str", "line_str.dwo", eSectionTypeDWARFDebugLineStr) .Case("loc", eSectionTypeDWARFDebugLoc) .Case("loc.dwo", eSectionTypeDWARFDebugLocDwo) .Case("loclists", eSectionTypeDWARFDebugLocLists) .Case("loclists.dwo", eSectionTypeDWARFDebugLocListsDwo) .Case("macinfo", eSectionTypeDWARFDebugMacInfo) .Cases("macro", "macro.dwo", eSectionTypeDWARFDebugMacro) .Case("names", eSectionTypeDWARFDebugNames) .Case("pubnames", eSectionTypeDWARFDebugPubNames) .Case("pubtypes", eSectionTypeDWARFDebugPubTypes) .Case("ranges", eSectionTypeDWARFDebugRanges) .Case("rnglists", eSectionTypeDWARFDebugRngLists) .Case("rnglists.dwo", eSectionTypeDWARFDebugRngListsDwo) .Case("str", eSectionTypeDWARFDebugStr) .Case("str.dwo", eSectionTypeDWARFDebugStrDwo) .Case("str_offsets", eSectionTypeDWARFDebugStrOffsets) .Case("str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo) .Case("tu_index", eSectionTypeDWARFDebugTuIndex) .Case("types", eSectionTypeDWARFDebugTypes) .Case("types.dwo", eSectionTypeDWARFDebugTypesDwo) .Default(eSectionTypeOther); } return llvm::StringSwitch(Name) .Case(".ARM.exidx", eSectionTypeARMexidx) .Case(".ARM.extab", eSectionTypeARMextab) .Case(".ctf", eSectionTypeDebug) .Cases(".data", ".tdata", eSectionTypeData) .Case(".eh_frame", eSectionTypeEHFrame) .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink) .Case(".gosymtab", eSectionTypeGoSymtab) .Case(".text", eSectionTypeCode) .Case(".swift_ast", eSectionTypeSwiftModules) .Default(eSectionTypeOther); } SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const { switch (H.sh_type) { case SHT_PROGBITS: if (H.sh_flags & SHF_EXECINSTR) return eSectionTypeCode; break; case SHT_NOBITS: if (H.sh_flags & SHF_ALLOC) return eSectionTypeZeroFill; break; case SHT_SYMTAB: return eSectionTypeELFSymbolTable; case SHT_DYNSYM: return eSectionTypeELFDynamicSymbols; case SHT_RELA: case SHT_REL: return eSectionTypeELFRelocationEntries; case SHT_DYNAMIC: return eSectionTypeELFDynamicLinkInfo; } return GetSectionTypeFromName(H.section_name.GetStringRef()); } static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) { switch (Type) { case eSectionTypeData: case eSectionTypeZeroFill: return arch.GetDataByteSize(); case eSectionTypeCode: return arch.GetCodeByteSize(); default: return 1; } } static Permissions GetPermissions(const ELFSectionHeader &H) { Permissions Perm = Permissions(0); if (H.sh_flags & SHF_ALLOC) Perm |= ePermissionsReadable; if (H.sh_flags & SHF_WRITE) Perm |= ePermissionsWritable; if (H.sh_flags & SHF_EXECINSTR) Perm |= ePermissionsExecutable; return Perm; } static Permissions GetPermissions(const ELFProgramHeader &H) { Permissions Perm = Permissions(0); if (H.p_flags & PF_R) Perm |= ePermissionsReadable; if (H.p_flags & PF_W) Perm |= ePermissionsWritable; if (H.p_flags & PF_X) Perm |= ePermissionsExecutable; return Perm; } namespace { using VMRange = lldb_private::Range; struct SectionAddressInfo { SectionSP Segment; VMRange Range; }; // (Unlinked) ELF object files usually have 0 for every section address, meaning // we need to compute synthetic addresses in order for "file addresses" from // different sections to not overlap. This class handles that logic. class VMAddressProvider { using VMMap = llvm::IntervalMap>; ObjectFile::Type ObjectType; addr_t NextVMAddress = 0; VMMap::Allocator Alloc; VMMap Segments{Alloc}; VMMap Sections{Alloc}; lldb_private::Log *Log = GetLog(LLDBLog::Modules); size_t SegmentCount = 0; std::string SegmentName; VMRange GetVMRange(const ELFSectionHeader &H) { addr_t Address = H.sh_addr; addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0; // When this is a debug file for relocatable file, the address is all zero // and thus needs to use accumulate method if ((ObjectType == ObjectFile::Type::eTypeObjectFile || (ObjectType == ObjectFile::Type::eTypeDebugInfo && H.sh_addr == 0)) && Segments.empty() && (H.sh_flags & SHF_ALLOC)) { NextVMAddress = llvm::alignTo(NextVMAddress, std::max(H.sh_addralign, 1)); Address = NextVMAddress; NextVMAddress += Size; } return VMRange(Address, Size); } public: VMAddressProvider(ObjectFile::Type Type, llvm::StringRef SegmentName) : ObjectType(Type), SegmentName(std::string(SegmentName)) {} std::string GetNextSegmentName() const { return llvm::formatv("{0}[{1}]", SegmentName, SegmentCount).str(); } std::optional GetAddressInfo(const ELFProgramHeader &H) { if (H.p_memsz == 0) { LLDB_LOG(Log, "Ignoring zero-sized {0} segment. Corrupt object file?", SegmentName); return std::nullopt; } if (Segments.overlaps(H.p_vaddr, H.p_vaddr + H.p_memsz)) { LLDB_LOG(Log, "Ignoring overlapping {0} segment. Corrupt object file?", SegmentName); return std::nullopt; } return VMRange(H.p_vaddr, H.p_memsz); } std::optional GetAddressInfo(const ELFSectionHeader &H) { VMRange Range = GetVMRange(H); SectionSP Segment; auto It = Segments.find(Range.GetRangeBase()); if ((H.sh_flags & SHF_ALLOC) && It.valid()) { addr_t MaxSize; if (It.start() <= Range.GetRangeBase()) { MaxSize = It.stop() - Range.GetRangeBase(); Segment = *It; } else MaxSize = It.start() - Range.GetRangeBase(); if (Range.GetByteSize() > MaxSize) { LLDB_LOG(Log, "Shortening section crossing segment boundaries. " "Corrupt object file?"); Range.SetByteSize(MaxSize); } } if (Range.GetByteSize() > 0 && Sections.overlaps(Range.GetRangeBase(), Range.GetRangeEnd())) { LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?"); return std::nullopt; } if (Segment) Range.Slide(-Segment->GetFileAddress()); return SectionAddressInfo{Segment, Range}; } void AddSegment(const VMRange &Range, SectionSP Seg) { Segments.insert(Range.GetRangeBase(), Range.GetRangeEnd(), std::move(Seg)); ++SegmentCount; } void AddSection(SectionAddressInfo Info, SectionSP Sect) { if (Info.Range.GetByteSize() == 0) return; if (Info.Segment) Info.Range.Slide(Info.Segment->GetFileAddress()); Sections.insert(Info.Range.GetRangeBase(), Info.Range.GetRangeEnd(), std::move(Sect)); } }; } // We have to do this because ELF doesn't have section IDs, and also // doesn't require section names to be unique. (We use the section index // for section IDs, but that isn't guaranteed to be the same in separate // debug images.) static SectionSP FindMatchingSection(const SectionList §ion_list, SectionSP section) { SectionSP sect_sp; addr_t vm_addr = section->GetFileAddress(); ConstString name = section->GetName(); offset_t byte_size = section->GetByteSize(); bool thread_specific = section->IsThreadSpecific(); uint32_t permissions = section->GetPermissions(); uint32_t alignment = section->GetLog2Align(); for (auto sect : section_list) { if (sect->GetName() == name && sect->IsThreadSpecific() == thread_specific && sect->GetPermissions() == permissions && sect->GetByteSize() == byte_size && sect->GetFileAddress() == vm_addr && sect->GetLog2Align() == alignment) { sect_sp = sect; break; } else { sect_sp = FindMatchingSection(sect->GetChildren(), section); if (sect_sp) break; } } return sect_sp; } void ObjectFileELF::CreateSections(SectionList &unified_section_list) { if (m_sections_up) return; m_sections_up = std::make_unique(); VMAddressProvider regular_provider(GetType(), "PT_LOAD"); VMAddressProvider tls_provider(GetType(), "PT_TLS"); for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) { const ELFProgramHeader &PHdr = EnumPHdr.value(); if (PHdr.p_type != PT_LOAD && PHdr.p_type != PT_TLS) continue; VMAddressProvider &provider = PHdr.p_type == PT_TLS ? tls_provider : regular_provider; auto InfoOr = provider.GetAddressInfo(PHdr); if (!InfoOr) continue; uint32_t Log2Align = llvm::Log2_64(std::max(PHdr.p_align, 1)); SectionSP Segment = std::make_shared
( GetModule(), this, SegmentID(EnumPHdr.index()), ConstString(provider.GetNextSegmentName()), eSectionTypeContainer, InfoOr->GetRangeBase(), InfoOr->GetByteSize(), PHdr.p_offset, PHdr.p_filesz, Log2Align, /*flags*/ 0); Segment->SetPermissions(GetPermissions(PHdr)); Segment->SetIsThreadSpecific(PHdr.p_type == PT_TLS); m_sections_up->AddSection(Segment); provider.AddSegment(*InfoOr, std::move(Segment)); } ParseSectionHeaders(); if (m_section_headers.empty()) return; for (SectionHeaderCollIter I = std::next(m_section_headers.begin()); I != m_section_headers.end(); ++I) { const ELFSectionHeaderInfo &header = *I; ConstString &name = I->section_name; const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; VMAddressProvider &provider = header.sh_flags & SHF_TLS ? tls_provider : regular_provider; auto InfoOr = provider.GetAddressInfo(header); if (!InfoOr) continue; SectionType sect_type = GetSectionType(header); const uint32_t target_bytes_size = GetTargetByteSize(sect_type, m_arch_spec); elf::elf_xword log2align = (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); SectionSP section_sp(new Section( InfoOr->Segment, GetModule(), // Module to which this section belongs. this, // ObjectFile to which this section belongs and should // read section data from. SectionIndex(I), // Section ID. name, // Section name. sect_type, // Section type. InfoOr->Range.GetRangeBase(), // VM address. InfoOr->Range.GetByteSize(), // VM size in bytes of this section. header.sh_offset, // Offset of this section in the file. file_size, // Size of the section as found in the file. log2align, // Alignment of the section header.sh_flags, // Flags for this section. target_bytes_size)); // Number of host bytes per target byte section_sp->SetPermissions(GetPermissions(header)); section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS); (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up) .AddSection(section_sp); provider.AddSection(std::move(*InfoOr), std::move(section_sp)); } // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the // unified section list. if (GetType() != eTypeDebugInfo) unified_section_list = *m_sections_up; // If there's a .gnu_debugdata section, we'll try to read the .symtab that's // embedded in there and replace the one in the original object file (if any). // If there's none in the orignal object file, we add it to it. if (auto gdd_obj_file = GetGnuDebugDataObjectFile()) { if (auto gdd_objfile_section_list = gdd_obj_file->GetSectionList()) { if (SectionSP symtab_section_sp = gdd_objfile_section_list->FindSectionByType( eSectionTypeELFSymbolTable, true)) { SectionSP module_section_sp = unified_section_list.FindSectionByType( eSectionTypeELFSymbolTable, true); if (module_section_sp) unified_section_list.ReplaceSection(module_section_sp->GetID(), symtab_section_sp); else unified_section_list.AddSection(symtab_section_sp); } } } } std::shared_ptr ObjectFileELF::GetGnuDebugDataObjectFile() { if (m_gnu_debug_data_object_file != nullptr) return m_gnu_debug_data_object_file; SectionSP section = GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata")); if (!section) return nullptr; if (!lldb_private::lzma::isAvailable()) { GetModule()->ReportWarning( "No LZMA support found for reading .gnu_debugdata section"); return nullptr; } // Uncompress the data DataExtractor data; section->GetSectionData(data); llvm::SmallVector uncompressedData; auto err = lldb_private::lzma::uncompress(data.GetData(), uncompressedData); if (err) { GetModule()->ReportWarning( "An error occurred while decompression the section {0}: {1}", section->GetName().AsCString(), llvm::toString(std::move(err)).c_str()); return nullptr; } // Construct ObjectFileELF object from decompressed buffer DataBufferSP gdd_data_buf( new DataBufferHeap(uncompressedData.data(), uncompressedData.size())); auto fspec = GetFileSpec().CopyByAppendingPathComponent( llvm::StringRef("gnu_debugdata")); m_gnu_debug_data_object_file.reset(new ObjectFileELF( GetModule(), gdd_data_buf, 0, &fspec, 0, gdd_data_buf->GetByteSize())); // This line is essential; otherwise a breakpoint can be set but not hit. m_gnu_debug_data_object_file->SetType(ObjectFile::eTypeDebugInfo); ArchSpec spec = m_gnu_debug_data_object_file->GetArchitecture(); if (spec && m_gnu_debug_data_object_file->SetModulesArchitecture(spec)) return m_gnu_debug_data_object_file; return nullptr; } // Find the arm/aarch64 mapping symbol character in the given symbol name. // Mapping symbols have the form of "$[.]*". Additionally we // recognize cases when the mapping symbol prefixed by an arbitrary string // because if a symbol prefix added to each symbol in the object file with // objcopy then the mapping symbols are also prefixed. static char FindArmAarch64MappingSymbol(const char *symbol_name) { if (!symbol_name) return '\0'; const char *dollar_pos = ::strchr(symbol_name, '$'); if (!dollar_pos || dollar_pos[1] == '\0') return '\0'; if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') return dollar_pos[1]; return '\0'; } #define STO_MIPS_ISA (3 << 6) #define STO_MICROMIPS (2 << 6) #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) // private std::pair ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, SectionList *section_list, const size_t num_symbols, const DataExtractor &symtab_data, const DataExtractor &strtab_data) { ELFSymbol symbol; lldb::offset_t offset = 0; // The changes these symbols would make to the class map. We will also update // m_address_class_map but need to tell the caller what changed because the // caller may be another object file. FileAddressToAddressClassMap address_class_map; static ConstString text_section_name(".text"); static ConstString init_section_name(".init"); static ConstString fini_section_name(".fini"); static ConstString ctors_section_name(".ctors"); static ConstString dtors_section_name(".dtors"); static ConstString data_section_name(".data"); static ConstString rodata_section_name(".rodata"); static ConstString rodata1_section_name(".rodata1"); static ConstString data2_section_name(".data1"); static ConstString bss_section_name(".bss"); static ConstString opd_section_name(".opd"); // For ppc64 // On Android the oatdata and the oatexec symbols in the oat and odex files // covers the full .text section what causes issues with displaying unusable // symbol name to the user and very slow unwinding speed because the // instruction emulation based unwind plans try to emulate all instructions // in these symbols. Don't add these symbols to the symbol list as they have // no use for the debugger and they are causing a lot of trouble. Filtering // can't be restricted to Android because this special object file don't // contain the note section specifying the environment to Android but the // custom extension and file name makes it highly unlikely that this will // collide with anything else. llvm::StringRef file_extension = m_file.GetFileNameExtension(); bool skip_oatdata_oatexec = file_extension == ".oat" || file_extension == ".odex"; ArchSpec arch = GetArchitecture(); ModuleSP module_sp(GetModule()); SectionList *module_section_list = module_sp ? module_sp->GetSectionList() : nullptr; // We might have debug information in a separate object, in which case // we need to map the sections from that object to the sections in the // main object during symbol lookup. If we had to compare the sections // for every single symbol, that would be expensive, so this map is // used to accelerate the process. std::unordered_map section_map; unsigned i; for (i = 0; i < num_symbols; ++i) { if (!symbol.Parse(symtab_data, &offset)) break; const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); if (!symbol_name) symbol_name = ""; // No need to add non-section symbols that have no names if (symbol.getType() != STT_SECTION && (symbol_name == nullptr || symbol_name[0] == '\0')) continue; // Skipping oatdata and oatexec sections if it is requested. See details // above the definition of skip_oatdata_oatexec for the reasons. if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) continue; SectionSP symbol_section_sp; SymbolType symbol_type = eSymbolTypeInvalid; Elf64_Half shndx = symbol.st_shndx; switch (shndx) { case SHN_ABS: symbol_type = eSymbolTypeAbsolute; break; case SHN_UNDEF: symbol_type = eSymbolTypeUndefined; break; default: symbol_section_sp = section_list->FindSectionByID(shndx); break; } // If a symbol is undefined do not process it further even if it has a STT // type if (symbol_type != eSymbolTypeUndefined) { switch (symbol.getType()) { default: case STT_NOTYPE: // The symbol's type is not specified. break; case STT_OBJECT: // The symbol is associated with a data object, such as a variable, an // array, etc. symbol_type = eSymbolTypeData; break; case STT_FUNC: // The symbol is associated with a function or other executable code. symbol_type = eSymbolTypeCode; break; case STT_SECTION: // The symbol is associated with a section. Symbol table entries of // this type exist primarily for relocation and normally have STB_LOCAL // binding. break; case STT_FILE: // Conventionally, the symbol's name gives the name of the source file // associated with the object file. A file symbol has STB_LOCAL // binding, its section index is SHN_ABS, and it precedes the other // STB_LOCAL symbols for the file, if it is present. symbol_type = eSymbolTypeSourceFile; break; case STT_GNU_IFUNC: // The symbol is associated with an indirect function. The actual // function will be resolved if it is referenced. symbol_type = eSymbolTypeResolver; break; } } if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { if (symbol_section_sp) { ConstString sect_name = symbol_section_sp->GetName(); if (sect_name == text_section_name || sect_name == init_section_name || sect_name == fini_section_name || sect_name == ctors_section_name || sect_name == dtors_section_name) { symbol_type = eSymbolTypeCode; } else if (sect_name == data_section_name || sect_name == data2_section_name || sect_name == rodata_section_name || sect_name == rodata1_section_name || sect_name == bss_section_name) { symbol_type = eSymbolTypeData; } } } int64_t symbol_value_offset = 0; uint32_t additional_flags = 0; if (arch.IsValid()) { if (arch.GetMachine() == llvm::Triple::arm) { if (symbol.getBinding() == STB_LOCAL) { char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); if (symbol_type == eSymbolTypeCode) { switch (mapping_symbol) { case 'a': // $a[.]* - marks an ARM instruction sequence address_class_map[symbol.st_value] = AddressClass::eCode; break; case 'b': case 't': // $b[.]* - marks a THUMB BL instruction sequence // $t[.]* - marks a THUMB instruction sequence address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; break; case 'd': // $d[.]* - marks a data item sequence (e.g. lit pool) address_class_map[symbol.st_value] = AddressClass::eData; break; } } if (mapping_symbol) continue; } } else if (arch.GetMachine() == llvm::Triple::aarch64) { if (symbol.getBinding() == STB_LOCAL) { char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); if (symbol_type == eSymbolTypeCode) { switch (mapping_symbol) { case 'x': // $x[.]* - marks an A64 instruction sequence address_class_map[symbol.st_value] = AddressClass::eCode; break; case 'd': // $d[.]* - marks a data item sequence (e.g. lit pool) address_class_map[symbol.st_value] = AddressClass::eData; break; } } if (mapping_symbol) continue; } } if (arch.GetMachine() == llvm::Triple::arm) { if (symbol_type == eSymbolTypeCode) { if (symbol.st_value & 1) { // Subtracting 1 from the address effectively unsets the low order // bit, which results in the address actually pointing to the // beginning of the symbol. This delta will be used below in // conjunction with symbol.st_value to produce the final // symbol_value that we store in the symtab. symbol_value_offset = -1; address_class_map[symbol.st_value ^ 1] = AddressClass::eCodeAlternateISA; } else { // This address is ARM address_class_map[symbol.st_value] = AddressClass::eCode; } } } /* * MIPS: * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for * MIPS). * This allows processor to switch between microMIPS and MIPS without any * need * for special mode-control register. However, apart from .debug_line, * none of * the ELF/DWARF sections set the ISA bit (for symbol or section). Use * st_other * flag to check whether the symbol is microMIPS and then set the address * class * accordingly. */ if (arch.IsMIPS()) { if (IS_MICROMIPS(symbol.st_other)) address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { symbol.st_value = symbol.st_value & (~1ull); address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; } else { if (symbol_type == eSymbolTypeCode) address_class_map[symbol.st_value] = AddressClass::eCode; else if (symbol_type == eSymbolTypeData) address_class_map[symbol.st_value] = AddressClass::eData; else address_class_map[symbol.st_value] = AddressClass::eUnknown; } } } // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB // symbols. See above for more details. uint64_t symbol_value = symbol.st_value + symbol_value_offset; if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) symbol_value -= symbol_section_sp->GetFileAddress(); if (symbol_section_sp && module_section_list && module_section_list != section_list) { auto section_it = section_map.find(symbol_section_sp); if (section_it == section_map.end()) { section_it = section_map .emplace(symbol_section_sp, FindMatchingSection(*module_section_list, symbol_section_sp)) .first; } if (section_it->second) symbol_section_sp = section_it->second; } bool is_global = symbol.getBinding() == STB_GLOBAL; uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; llvm::StringRef symbol_ref(symbol_name); // Symbol names may contain @VERSION suffixes. Find those and strip them // temporarily. size_t version_pos = symbol_ref.find('@'); bool has_suffix = version_pos != llvm::StringRef::npos; llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); Mangled mangled(symbol_bare); // Now append the suffix back to mangled and unmangled names. Only do it if // the demangling was successful (string is not empty). if (has_suffix) { llvm::StringRef suffix = symbol_ref.substr(version_pos); llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); if (!mangled_name.empty()) mangled.SetMangledName(ConstString((mangled_name + suffix).str())); ConstString demangled = mangled.GetDemangledName(); llvm::StringRef demangled_name = demangled.GetStringRef(); if (!demangled_name.empty()) mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); } // In ELF all symbol should have a valid size but it is not true for some // function symbols coming from hand written assembly. As none of the // function symbol should have 0 size we try to calculate the size for // these symbols in the symtab with saying that their original size is not // valid. bool symbol_size_valid = symbol.st_size != 0 || symbol.getType() != STT_FUNC; bool is_trampoline = false; if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64)) { // On AArch64, trampolines are registered as code. // If we detect a trampoline (which starts with __AArch64ADRPThunk_ or // __AArch64AbsLongThunk_) we register the symbol as a trampoline. This // way we will be able to detect the trampoline when we step in a function // and step through the trampoline. if (symbol_type == eSymbolTypeCode) { llvm::StringRef trampoline_name = mangled.GetName().GetStringRef(); if (trampoline_name.starts_with("__AArch64ADRPThunk_") || trampoline_name.starts_with("__AArch64AbsLongThunk_")) { symbol_type = eSymbolTypeTrampoline; is_trampoline = true; } } } Symbol dc_symbol( i + start_id, // ID is the original symbol table index. mangled, symbol_type, // Type of this symbol is_global, // Is this globally visible? false, // Is this symbol debug info? is_trampoline, // Is this symbol a trampoline? false, // Is this symbol artificial? AddressRange(symbol_section_sp, // Section in which this symbol is // defined or null. symbol_value, // Offset in section or symbol value. symbol.st_size), // Size in bytes of this symbol. symbol_size_valid, // Symbol size is valid has_suffix, // Contains linker annotations? flags); // Symbol flags. if (symbol.getBinding() == STB_WEAK) dc_symbol.SetIsWeak(true); symtab->AddSymbol(dc_symbol); } m_address_class_map.merge(address_class_map); return {i, address_class_map}; } std::pair ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) { if (symtab->GetObjectFile() != this) { // If the symbol table section is owned by a different object file, have it // do the parsing. ObjectFileELF *obj_file_elf = static_cast(symtab->GetObjectFile()); auto [num_symbols, address_class_map] = obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); // The other object file returned the changes it made to its address // class map, make the same changes to ours. m_address_class_map.merge(address_class_map); return {num_symbols, address_class_map}; } // Get section list for this object file. SectionList *section_list = m_sections_up.get(); if (!section_list) return {}; user_id_t symtab_id = symtab->GetID(); const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); assert(symtab_hdr->sh_type == SHT_SYMTAB || symtab_hdr->sh_type == SHT_DYNSYM); // sh_link: section header index of associated string table. user_id_t strtab_id = symtab_hdr->sh_link; Section *strtab = section_list->FindSectionByID(strtab_id).get(); if (symtab && strtab) { assert(symtab->GetObjectFile() == this); assert(strtab->GetObjectFile() == this); DataExtractor symtab_data; DataExtractor strtab_data; if (ReadSectionData(symtab, symtab_data) && ReadSectionData(strtab, strtab_data)) { size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; return ParseSymbols(symbol_table, start_id, section_list, num_symbols, symtab_data, strtab_data); } } return {0, {}}; } size_t ObjectFileELF::ParseDynamicSymbols() { if (m_dynamic_symbols.size()) return m_dynamic_symbols.size(); SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Find the SHT_DYNAMIC section. Section *dynsym = section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) .get(); if (!dynsym) return 0; assert(dynsym->GetObjectFile() == this); ELFDynamic symbol; DataExtractor dynsym_data; if (ReadSectionData(dynsym, dynsym_data)) { const lldb::offset_t section_size = dynsym_data.GetByteSize(); lldb::offset_t cursor = 0; while (cursor < section_size) { if (!symbol.Parse(dynsym_data, &cursor)) break; m_dynamic_symbols.push_back(symbol); } } return m_dynamic_symbols.size(); } const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { if (!ParseDynamicSymbols()) return nullptr; DynamicSymbolCollIter I = m_dynamic_symbols.begin(); DynamicSymbolCollIter E = m_dynamic_symbols.end(); for (; I != E; ++I) { ELFDynamic *symbol = &*I; if (symbol->d_tag == tag) return symbol; } return nullptr; } unsigned ObjectFileELF::PLTRelocationType() { // DT_PLTREL // This member specifies the type of relocation entry to which the // procedure linkage table refers. The d_val member holds DT_REL or // DT_RELA, as appropriate. All relocations in a procedure linkage table // must use the same relocation. const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); if (symbol) return symbol->d_val; return 0; } // Returns the size of the normal plt entries and the offset of the first // normal plt entry. The 0th entry in the plt table is usually a resolution // entry which have different size in some architectures then the rest of the // plt entries. static std::pair GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, const ELFSectionHeader *plt_hdr) { const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are // 16 bytes. So round the entsize up by the alignment if addralign is set. elf_xword plt_entsize = plt_hdr->sh_addralign ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. // PLT entries relocation code in general requires multiple instruction and // should be greater than 4 bytes in most cases. Try to guess correct size // just in case. if (plt_entsize <= 4) { // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the // size of the plt entries based on the number of entries and the size of // the plt section with the assumption that the size of the 0th entry is at // least as big as the size of the normal entries and it isn't much bigger // then that. if (plt_hdr->sh_addralign) plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; else plt_entsize = plt_hdr->sh_size / (num_relocations + 1); } elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; return std::make_pair(plt_entsize, plt_offset); } static unsigned ParsePLTRelocations( Symtab *symbol_table, user_id_t start_id, unsigned rel_type, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, DataExtractor &symtab_data, DataExtractor &strtab_data) { ELFRelocation rel(rel_type); ELFSymbol symbol; lldb::offset_t offset = 0; uint64_t plt_offset, plt_entsize; std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); reloc_info_fn reloc_type; reloc_info_fn reloc_symbol; if (hdr->Is32Bit()) { reloc_type = ELFRelocation::RelocType32; reloc_symbol = ELFRelocation::RelocSymbol32; } else { reloc_type = ELFRelocation::RelocType64; reloc_symbol = ELFRelocation::RelocSymbol64; } unsigned slot_type = hdr->GetRelocationJumpSlotType(); unsigned i; for (i = 0; i < num_relocations; ++i) { if (!rel.Parse(rel_data, &offset)) break; if (reloc_type(rel) != slot_type) continue; lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; if (!symbol.Parse(symtab_data, &symbol_offset)) break; const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); uint64_t plt_index = plt_offset + i * plt_entsize; Symbol jump_symbol( i + start_id, // Symbol table index symbol_name, // symbol name. eSymbolTypeTrampoline, // Type of this symbol false, // Is this globally visible? false, // Is this symbol debug info? true, // Is this symbol a trampoline? true, // Is this symbol artificial? plt_section_sp, // Section in which this symbol is defined or null. plt_index, // Offset in section or symbol value. plt_entsize, // Size in bytes of this symbol. true, // Size is valid false, // Contains linker annotations? 0); // Symbol flags. symbol_table->AddSymbol(jump_symbol); } return i; } unsigned ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, const ELFSectionHeaderInfo *rel_hdr, user_id_t rel_id) { assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); // The link field points to the associated symbol table. user_id_t symtab_id = rel_hdr->sh_link; // If the link field doesn't point to the appropriate symbol name table then // try to find it by name as some compiler don't fill in the link fields. if (!symtab_id) symtab_id = GetSectionIndexByName(".dynsym"); // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers // point that to the .got.plt or .got section instead of .plt. user_id_t plt_id = GetSectionIndexByName(".plt"); if (!symtab_id || !plt_id) return 0; const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); if (!plt_hdr) return 0; const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); if (!sym_hdr) return 0; SectionList *section_list = m_sections_up.get(); if (!section_list) return 0; Section *rel_section = section_list->FindSectionByID(rel_id).get(); if (!rel_section) return 0; SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); if (!plt_section_sp) return 0; Section *symtab = section_list->FindSectionByID(symtab_id).get(); if (!symtab) return 0; // sh_link points to associated string table. Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get(); if (!strtab) return 0; DataExtractor rel_data; if (!ReadSectionData(rel_section, rel_data)) return 0; DataExtractor symtab_data; if (!ReadSectionData(symtab, symtab_data)) return 0; DataExtractor strtab_data; if (!ReadSectionData(strtab, strtab_data)) return 0; unsigned rel_type = PLTRelocationType(); if (!rel_type) return 0; return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, rel_hdr, plt_hdr, sym_hdr, plt_section_sp, rel_data, symtab_data, strtab_data); } static void ApplyELF64ABS64Relocation(Symtab *symtab, ELFRelocation &rel, DataExtractor &debug_data, Section *rel_section) { Symbol *symbol = symtab->FindSymbolByID(ELFRelocation::RelocSymbol64(rel)); if (symbol) { addr_t value = symbol->GetAddressRef().GetFileAddress(); DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); // ObjectFileELF creates a WritableDataBuffer in CreateInstance. WritableDataBuffer *data_buffer = llvm::cast(data_buffer_sp.get()); uint64_t *dst = reinterpret_cast( data_buffer->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel); memcpy(dst, &val_offset, sizeof(uint64_t)); } } static void ApplyELF64ABS32Relocation(Symtab *symtab, ELFRelocation &rel, DataExtractor &debug_data, Section *rel_section, bool is_signed) { Symbol *symbol = symtab->FindSymbolByID(ELFRelocation::RelocSymbol64(rel)); if (symbol) { addr_t value = symbol->GetAddressRef().GetFileAddress(); value += ELFRelocation::RelocAddend32(rel); if ((!is_signed && (value > UINT32_MAX)) || (is_signed && ((int64_t)value > INT32_MAX || (int64_t)value < INT32_MIN))) { Log *log = GetLog(LLDBLog::Modules); LLDB_LOGF(log, "Failed to apply debug info relocations"); return; } uint32_t truncated_addr = (value & 0xFFFFFFFF); DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); // ObjectFileELF creates a WritableDataBuffer in CreateInstance. WritableDataBuffer *data_buffer = llvm::cast(data_buffer_sp.get()); uint32_t *dst = reinterpret_cast( data_buffer->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); memcpy(dst, &truncated_addr, sizeof(uint32_t)); } } static void ApplyELF32ABS32RelRelocation(Symtab *symtab, ELFRelocation &rel, DataExtractor &debug_data, Section *rel_section) { Log *log = GetLog(LLDBLog::Modules); Symbol *symbol = symtab->FindSymbolByID(ELFRelocation::RelocSymbol32(rel)); if (symbol) { addr_t value = symbol->GetAddressRef().GetFileAddress(); if (value == LLDB_INVALID_ADDRESS) { const char *name = symbol->GetName().GetCString(); LLDB_LOGF(log, "Debug info symbol invalid: %s", name); return; } assert(llvm::isUInt<32>(value) && "Valid addresses are 32-bit"); DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); // ObjectFileELF creates a WritableDataBuffer in CreateInstance. WritableDataBuffer *data_buffer = llvm::cast(data_buffer_sp.get()); uint8_t *dst = data_buffer->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel); // Implicit addend is stored inline as a signed value. int32_t addend; memcpy(&addend, dst, sizeof(int32_t)); // The sum must be positive. This extra check prevents UB from overflow in // the actual range check below. if (addend < 0 && static_cast(-addend) > value) { LLDB_LOGF(log, "Debug info relocation overflow: 0x%" PRIx64, static_cast(value) + addend); return; } if (!llvm::isUInt<32>(value + addend)) { LLDB_LOGF(log, "Debug info relocation out of range: 0x%" PRIx64, value); return; } uint32_t addr = value + addend; memcpy(dst, &addr, sizeof(uint32_t)); } } unsigned ObjectFileELF::ApplyRelocations( Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, DataExtractor &rel_data, DataExtractor &symtab_data, DataExtractor &debug_data, Section *rel_section) { ELFRelocation rel(rel_hdr->sh_type); lldb::addr_t offset = 0; const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); reloc_info_fn reloc_type; reloc_info_fn reloc_symbol; if (hdr->Is32Bit()) { reloc_type = ELFRelocation::RelocType32; reloc_symbol = ELFRelocation::RelocSymbol32; } else { reloc_type = ELFRelocation::RelocType64; reloc_symbol = ELFRelocation::RelocSymbol64; } for (unsigned i = 0; i < num_relocations; ++i) { if (!rel.Parse(rel_data, &offset)) { GetModule()->ReportError(".rel{0}[{1:d}] failed to parse relocation", rel_section->GetName().AsCString(), i); break; } Symbol *symbol = nullptr; if (hdr->Is32Bit()) { switch (hdr->e_machine) { case llvm::ELF::EM_ARM: switch (reloc_type(rel)) { case R_ARM_ABS32: ApplyELF32ABS32RelRelocation(symtab, rel, debug_data, rel_section); break; case R_ARM_REL32: GetModule()->ReportError("unsupported AArch32 relocation:" " .rel{0}[{1}], type {2}", rel_section->GetName().AsCString(), i, reloc_type(rel)); break; default: assert(false && "unexpected relocation type"); } break; case llvm::ELF::EM_386: switch (reloc_type(rel)) { case R_386_32: symbol = symtab->FindSymbolByID(reloc_symbol(rel)); if (symbol) { addr_t f_offset = rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel); DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); // ObjectFileELF creates a WritableDataBuffer in CreateInstance. WritableDataBuffer *data_buffer = llvm::cast(data_buffer_sp.get()); uint32_t *dst = reinterpret_cast( data_buffer->GetBytes() + f_offset); addr_t value = symbol->GetAddressRef().GetFileAddress(); if (rel.IsRela()) { value += ELFRelocation::RelocAddend32(rel); } else { value += *dst; } *dst = value; } else { GetModule()->ReportError(".rel{0}[{1}] unknown symbol id: {2:d}", rel_section->GetName().AsCString(), i, reloc_symbol(rel)); } break; case R_386_NONE: case R_386_PC32: GetModule()->ReportError("unsupported i386 relocation:" " .rel{0}[{1}], type {2}", rel_section->GetName().AsCString(), i, reloc_type(rel)); break; default: assert(false && "unexpected relocation type"); break; } break; default: GetModule()->ReportError("unsupported 32-bit ELF machine arch: {0}", hdr->e_machine); break; } } else { switch (hdr->e_machine) { case llvm::ELF::EM_AARCH64: switch (reloc_type(rel)) { case R_AARCH64_ABS64: ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section); break; case R_AARCH64_ABS32: ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, true); break; default: assert(false && "unexpected relocation type"); } break; case llvm::ELF::EM_LOONGARCH: switch (reloc_type(rel)) { case R_LARCH_64: ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section); break; case R_LARCH_32: ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, true); break; default: assert(false && "unexpected relocation type"); } break; case llvm::ELF::EM_X86_64: switch (reloc_type(rel)) { case R_X86_64_64: ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section); break; case R_X86_64_32: ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, false); break; case R_X86_64_32S: ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, true); break; case R_X86_64_PC32: default: assert(false && "unexpected relocation type"); } break; default: GetModule()->ReportError("unsupported 64-bit ELF machine arch: {0}", hdr->e_machine); break; } } } return 0; } unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id, lldb_private::Symtab *thetab) { assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); // Parse in the section list if needed. SectionList *section_list = GetSectionList(); if (!section_list) return 0; user_id_t symtab_id = rel_hdr->sh_link; user_id_t debug_id = rel_hdr->sh_info; const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); if (!symtab_hdr) return 0; const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); if (!debug_hdr) return 0; Section *rel = section_list->FindSectionByID(rel_id).get(); if (!rel) return 0; Section *symtab = section_list->FindSectionByID(symtab_id).get(); if (!symtab) return 0; Section *debug = section_list->FindSectionByID(debug_id).get(); if (!debug) return 0; DataExtractor rel_data; DataExtractor symtab_data; DataExtractor debug_data; if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, rel_data, symtab_data, debug_data, debug); } return 0; } void ObjectFileELF::ParseSymtab(Symtab &lldb_symtab) { ModuleSP module_sp(GetModule()); if (!module_sp) return; Progress progress("Parsing symbol table", m_file.GetFilename().AsCString("")); ElapsedTime elapsed(module_sp->GetSymtabParseTime()); // We always want to use the main object file so we (hopefully) only have one // cached copy of our symtab, dynamic sections, etc. ObjectFile *module_obj_file = module_sp->GetObjectFile(); if (module_obj_file && module_obj_file != this) return module_obj_file->ParseSymtab(lldb_symtab); SectionList *section_list = module_sp->GetSectionList(); if (!section_list) return; uint64_t symbol_id = 0; // Sharable objects and dynamic executables usually have 2 distinct symbol // tables, one named ".symtab", and the other ".dynsym". The dynsym is a // smaller version of the symtab that only contains global symbols. The // information found in the dynsym is therefore also found in the symtab, // while the reverse is not necessarily true. Section *symtab = section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); if (symtab) { auto [num_symbols, address_class_map] = ParseSymbolTable(&lldb_symtab, symbol_id, symtab); m_address_class_map.merge(address_class_map); symbol_id += num_symbols; } // The symtab section is non-allocable and can be stripped, while the // .dynsym section which should always be always be there. To support the // minidebuginfo case we parse .dynsym when there's a .gnu_debuginfo // section, nomatter if .symtab was already parsed or not. This is because // minidebuginfo normally removes the .symtab symbols which have their // matching .dynsym counterparts. if (!symtab || GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"))) { Section *dynsym = section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) .get(); if (dynsym) { auto [num_symbols, address_class_map] = ParseSymbolTable(&lldb_symtab, symbol_id, dynsym); symbol_id += num_symbols; m_address_class_map.merge(address_class_map); } } // DT_JMPREL // If present, this entry's d_ptr member holds the address of // relocation // entries associated solely with the procedure linkage table. // Separating // these relocation entries lets the dynamic linker ignore them during // process initialization, if lazy binding is enabled. If this entry is // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must // also be present. const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); if (symbol) { // Synthesize trampoline symbols to help navigate the PLT. addr_t addr = symbol->d_ptr; Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); if (reloc_section) { user_id_t reloc_id = reloc_section->GetID(); const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); if (reloc_header) ParseTrampolineSymbols(&lldb_symtab, symbol_id, reloc_header, reloc_id); } } if (DWARFCallFrameInfo *eh_frame = GetModule()->GetUnwindTable().GetEHFrameInfo()) { ParseUnwindSymbols(&lldb_symtab, eh_frame); } // In the event that there's no symbol entry for the entry point we'll // artificially create one. We delegate to the symtab object the figuring // out of the proper size, this will usually make it span til the next // symbol it finds in the section. This means that if there are missing // symbols the entry point might span beyond its function definition. // We're fine with this as it doesn't make it worse than not having a // symbol entry at all. if (CalculateType() == eTypeExecutable) { ArchSpec arch = GetArchitecture(); auto entry_point_addr = GetEntryPointAddress(); bool is_valid_entry_point = entry_point_addr.IsValid() && entry_point_addr.IsSectionOffset(); addr_t entry_point_file_addr = entry_point_addr.GetFileAddress(); if (is_valid_entry_point && !lldb_symtab.FindSymbolContainingFileAddress( entry_point_file_addr)) { uint64_t symbol_id = lldb_symtab.GetNumSymbols(); // Don't set the name for any synthetic symbols, the Symbol // object will generate one if needed when the name is accessed // via accessors. SectionSP section_sp = entry_point_addr.GetSection(); Symbol symbol( /*symID=*/symbol_id, /*name=*/llvm::StringRef(), // Name will be auto generated. /*type=*/eSymbolTypeCode, /*external=*/true, /*is_debug=*/false, /*is_trampoline=*/false, /*is_artificial=*/true, /*section_sp=*/section_sp, /*offset=*/0, /*size=*/0, // FDE can span multiple symbols so don't use its size. /*size_is_valid=*/false, /*contains_linker_annotations=*/false, /*flags=*/0); // When the entry point is arm thumb we need to explicitly set its // class address to reflect that. This is important because expression // evaluation relies on correctly setting a breakpoint at this // address. if (arch.GetMachine() == llvm::Triple::arm && (entry_point_file_addr & 1)) { symbol.GetAddressRef().SetOffset(entry_point_addr.GetOffset() ^ 1); m_address_class_map[entry_point_file_addr ^ 1] = AddressClass::eCodeAlternateISA; } else { m_address_class_map[entry_point_file_addr] = AddressClass::eCode; } lldb_symtab.AddSymbol(symbol); } } } void ObjectFileELF::RelocateSection(lldb_private::Section *section) { static const char *debug_prefix = ".debug"; // Set relocated bit so we stop getting called, regardless of whether we // actually relocate. section->SetIsRelocated(true); // We only relocate in ELF relocatable files if (CalculateType() != eTypeObjectFile) return; const char *section_name = section->GetName().GetCString(); // Can't relocate that which can't be named if (section_name == nullptr) return; // We don't relocate non-debug sections at the moment if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) return; // Relocation section names to look for std::string needle = std::string(".rel") + section_name; std::string needlea = std::string(".rela") + section_name; for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { const char *hay_name = I->section_name.GetCString(); if (hay_name == nullptr) continue; if (needle == hay_name || needlea == hay_name) { const ELFSectionHeader &reloc_header = *I; user_id_t reloc_id = SectionIndex(I); RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); break; } } } } void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, DWARFCallFrameInfo *eh_frame) { SectionList *section_list = GetSectionList(); if (!section_list) return; // First we save the new symbols into a separate list and add them to the // symbol table after we collected all symbols we want to add. This is // neccessary because adding a new symbol invalidates the internal index of // the symtab what causing the next lookup to be slow because it have to // recalculate the index first. std::vector new_symbols; size_t num_symbols = symbol_table->GetNumSymbols(); uint64_t last_symbol_id = num_symbols ? symbol_table->SymbolAtIndex(num_symbols - 1)->GetID() : 0; eh_frame->ForEachFDEEntries([&](lldb::addr_t file_addr, uint32_t size, dw_offset_t) { Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); if (symbol) { if (!symbol->GetByteSizeIsValid()) { symbol->SetByteSize(size); symbol->SetSizeIsSynthesized(true); } } else { SectionSP section_sp = section_list->FindSectionContainingFileAddress(file_addr); if (section_sp) { addr_t offset = file_addr - section_sp->GetFileAddress(); uint64_t symbol_id = ++last_symbol_id; // Don't set the name for any synthetic symbols, the Symbol // object will generate one if needed when the name is accessed // via accessors. Symbol eh_symbol( /*symID=*/symbol_id, /*name=*/llvm::StringRef(), // Name will be auto generated. /*type=*/eSymbolTypeCode, /*external=*/true, /*is_debug=*/false, /*is_trampoline=*/false, /*is_artificial=*/true, /*section_sp=*/section_sp, /*offset=*/offset, /*size=*/0, // FDE can span multiple symbols so don't use its size. /*size_is_valid=*/false, /*contains_linker_annotations=*/false, /*flags=*/0); new_symbols.push_back(eh_symbol); } } return true; }); for (const Symbol &s : new_symbols) symbol_table->AddSymbol(s); } bool ObjectFileELF::IsStripped() { // TODO: determine this for ELF return false; } //===----------------------------------------------------------------------===// // Dump // // Dump the specifics of the runtime file container (such as any headers // segments, sections, etc). void ObjectFileELF::Dump(Stream *s) { ModuleSP module_sp(GetModule()); if (!module_sp) { return; } std::lock_guard guard(module_sp->GetMutex()); s->Printf("%p: ", static_cast(this)); s->Indent(); s->PutCString("ObjectFileELF"); ArchSpec header_arch = GetArchitecture(); *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; DumpELFHeader(s, m_header); s->EOL(); DumpELFProgramHeaders(s); s->EOL(); DumpELFSectionHeaders(s); s->EOL(); SectionList *section_list = GetSectionList(); if (section_list) section_list->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true, UINT32_MAX); Symtab *symtab = GetSymtab(); if (symtab) symtab->Dump(s, nullptr, eSortOrderNone); s->EOL(); DumpDependentModules(s); s->EOL(); } // DumpELFHeader // // Dump the ELF header to the specified output stream void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { s->PutCString("ELF Header\n"); s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); s->Printf("e_type = 0x%4.4x ", header.e_type); DumpELFHeader_e_type(s, header.e_type); s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); s->Printf("e_version = 0x%8.8x\n", header.e_version); s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); s->Printf("e_flags = 0x%8.8x\n", header.e_flags); s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); } // DumpELFHeader_e_type // // Dump an token value for the ELF header member e_type void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { switch (e_type) { case ET_NONE: *s << "ET_NONE"; break; case ET_REL: *s << "ET_REL"; break; case ET_EXEC: *s << "ET_EXEC"; break; case ET_DYN: *s << "ET_DYN"; break; case ET_CORE: *s << "ET_CORE"; break; default: break; } } // DumpELFHeader_e_ident_EI_DATA // // Dump an token value for the ELF header member e_ident[EI_DATA] void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) { switch (ei_data) { case ELFDATANONE: *s << "ELFDATANONE"; break; case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; default: break; } } // DumpELFProgramHeader // // Dump a single ELF program header to the specified output stream void ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) { DumpELFProgramHeader_p_type(s, ph.p_type); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); DumpELFProgramHeader_p_flags(s, ph.p_flags); s->Printf(") %8.8" PRIx64, ph.p_align); } // DumpELFProgramHeader_p_type // // Dump an token value for the ELF program header member p_type which describes // the type of the program header void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { const int kStrWidth = 15; switch (p_type) { CASE_AND_STREAM(s, PT_NULL, kStrWidth); CASE_AND_STREAM(s, PT_LOAD, kStrWidth); CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); CASE_AND_STREAM(s, PT_INTERP, kStrWidth); CASE_AND_STREAM(s, PT_NOTE, kStrWidth); CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); CASE_AND_STREAM(s, PT_PHDR, kStrWidth); CASE_AND_STREAM(s, PT_TLS, kStrWidth); CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); default: s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); break; } } // DumpELFProgramHeader_p_flags // // Dump an token value for the ELF program header member p_flags void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { *s << ((p_flags & PF_X) ? "PF_X" : " ") << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') << ((p_flags & PF_W) ? "PF_W" : " ") << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') << ((p_flags & PF_R) ? "PF_R" : " "); } // DumpELFProgramHeaders // // Dump all of the ELF program header to the specified output stream void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { if (!ParseProgramHeaders()) return; s->PutCString("Program Headers\n"); s->PutCString("IDX p_type p_offset p_vaddr p_paddr " "p_filesz p_memsz p_flags p_align\n"); s->PutCString("==== --------------- -------- -------- -------- " "-------- -------- ------------------------- --------\n"); for (const auto &H : llvm::enumerate(m_program_headers)) { s->Format("[{0,2}] ", H.index()); ObjectFileELF::DumpELFProgramHeader(s, H.value()); s->EOL(); } } // DumpELFSectionHeader // // Dump a single ELF section header to the specified output stream void ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) { s->Printf("%8.8x ", sh.sh_name); DumpELFSectionHeader_sh_type(s, sh.sh_type); s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); DumpELFSectionHeader_sh_flags(s, sh.sh_flags); s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); } // DumpELFSectionHeader_sh_type // // Dump an token value for the ELF section header member sh_type which // describes the type of the section void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { const int kStrWidth = 12; switch (sh_type) { CASE_AND_STREAM(s, SHT_NULL, kStrWidth); CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); CASE_AND_STREAM(s, SHT_RELA, kStrWidth); CASE_AND_STREAM(s, SHT_HASH, kStrWidth); CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); CASE_AND_STREAM(s, SHT_REL, kStrWidth); CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); default: s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); break; } } // DumpELFSectionHeader_sh_flags // // Dump an token value for the ELF section header member sh_flags void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) { *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); } // DumpELFSectionHeaders // // Dump all of the ELF section header to the specified output stream void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { if (!ParseSectionHeaders()) return; s->PutCString("Section Headers\n"); s->PutCString("IDX name type flags " "addr offset size link info addralgn " "entsize Name\n"); s->PutCString("==== -------- ------------ -------------------------------- " "-------- -------- -------- -------- -------- -------- " "-------- ====================\n"); uint32_t idx = 0; for (SectionHeaderCollConstIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I, ++idx) { s->Printf("[%2u] ", idx); ObjectFileELF::DumpELFSectionHeader(s, *I); const char *section_name = I->section_name.AsCString(""); if (section_name) *s << ' ' << section_name << "\n"; } } void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { size_t num_modules = ParseDependentModules(); if (num_modules > 0) { s->PutCString("Dependent Modules:\n"); for (unsigned i = 0; i < num_modules; ++i) { const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(i); s->Printf(" %s\n", spec.GetFilename().GetCString()); } } } ArchSpec ObjectFileELF::GetArchitecture() { if (!ParseHeader()) return ArchSpec(); if (m_section_headers.empty()) { // Allow elf notes to be parsed which may affect the detected architecture. ParseSectionHeaders(); } if (CalculateType() == eTypeCoreFile && !m_arch_spec.TripleOSWasSpecified()) { // Core files don't have section headers yet they have PT_NOTE program // headers that might shed more light on the architecture for (const elf::ELFProgramHeader &H : ProgramHeaders()) { if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0) continue; DataExtractor data; if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) { UUID uuid; RefineModuleDetailsFromNote(data, m_arch_spec, uuid); } } } return m_arch_spec; } ObjectFile::Type ObjectFileELF::CalculateType() { switch (m_header.e_type) { case llvm::ELF::ET_NONE: // 0 - No file type return eTypeUnknown; case llvm::ELF::ET_REL: // 1 - Relocatable file return eTypeObjectFile; case llvm::ELF::ET_EXEC: // 2 - Executable file return eTypeExecutable; case llvm::ELF::ET_DYN: // 3 - Shared object file return eTypeSharedLibrary; case ET_CORE: // 4 - Core file return eTypeCoreFile; default: break; } return eTypeUnknown; } ObjectFile::Strata ObjectFileELF::CalculateStrata() { switch (m_header.e_type) { case llvm::ELF::ET_NONE: // 0 - No file type return eStrataUnknown; case llvm::ELF::ET_REL: // 1 - Relocatable file return eStrataUnknown; case llvm::ELF::ET_EXEC: // 2 - Executable file { SectionList *section_list = GetSectionList(); if (section_list) { static ConstString loader_section_name(".interp"); SectionSP loader_section = section_list->FindSectionByName(loader_section_name); if (loader_section) { char buffer[256]; size_t read_size = ReadSectionData(loader_section.get(), 0, buffer, sizeof(buffer)); // We compare the content of .interp section // It will contains \0 when counting read_size, so the size needs to // decrease by one llvm::StringRef loader_name(buffer, read_size - 1); llvm::StringRef freebsd_kernel_loader_name("/red/herring"); if (loader_name == freebsd_kernel_loader_name) return eStrataKernel; } } return eStrataUser; } case llvm::ELF::ET_DYN: // 3 - Shared object file // TODO: is there any way to detect that an shared library is a kernel // related executable by inspecting the program headers, section headers, // symbols, or any other flag bits??? return eStrataUnknown; case ET_CORE: // 4 - Core file // TODO: is there any way to detect that an core file is a kernel // related executable by inspecting the program headers, section headers, // symbols, or any other flag bits??? return eStrataUnknown; default: break; } return eStrataUnknown; } size_t ObjectFileELF::ReadSectionData(Section *section, lldb::offset_t section_offset, void *dst, size_t dst_len) { // If some other objectfile owns this data, pass this to them. if (section->GetObjectFile() != this) return section->GetObjectFile()->ReadSectionData(section, section_offset, dst, dst_len); if (!section->Test(SHF_COMPRESSED)) return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); // For compressed sections we need to read to full data to be able to // decompress. DataExtractor data; ReadSectionData(section, data); return data.CopyData(section_offset, dst_len, dst); } size_t ObjectFileELF::ReadSectionData(Section *section, DataExtractor §ion_data) { // If some other objectfile owns this data, pass this to them. if (section->GetObjectFile() != this) return section->GetObjectFile()->ReadSectionData(section, section_data); size_t result = ObjectFile::ReadSectionData(section, section_data); if (result == 0 || !(section->Get() & llvm::ELF::SHF_COMPRESSED)) return result; auto Decompressor = llvm::object::Decompressor::create( section->GetName().GetStringRef(), {reinterpret_cast(section_data.GetDataStart()), size_t(section_data.GetByteSize())}, GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); if (!Decompressor) { GetModule()->ReportWarning( "Unable to initialize decompressor for section '{0}': {1}", section->GetName().GetCString(), llvm::toString(Decompressor.takeError()).c_str()); section_data.Clear(); return 0; } auto buffer_sp = std::make_shared(Decompressor->getDecompressedSize(), 0); if (auto error = Decompressor->decompress( {buffer_sp->GetBytes(), size_t(buffer_sp->GetByteSize())})) { GetModule()->ReportWarning("Decompression of section '{0}' failed: {1}", section->GetName().GetCString(), llvm::toString(std::move(error)).c_str()); section_data.Clear(); return 0; } section_data.SetData(buffer_sp); return buffer_sp->GetByteSize(); } llvm::ArrayRef ObjectFileELF::ProgramHeaders() { ParseProgramHeaders(); return m_program_headers; } DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) { return DataExtractor(m_data, H.p_offset, H.p_filesz); } bool ObjectFileELF::AnySegmentHasPhysicalAddress() { for (const ELFProgramHeader &H : ProgramHeaders()) { if (H.p_paddr != 0) return true; } return false; } std::vector ObjectFileELF::GetLoadableData(Target &target) { // Create a list of loadable data from loadable segments, using physical // addresses if they aren't all null std::vector loadables; bool should_use_paddr = AnySegmentHasPhysicalAddress(); for (const ELFProgramHeader &H : ProgramHeaders()) { LoadableData loadable; if (H.p_type != llvm::ELF::PT_LOAD) continue; loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr; if (loadable.Dest == LLDB_INVALID_ADDRESS) continue; if (H.p_filesz == 0) continue; auto segment_data = GetSegmentData(H); loadable.Contents = llvm::ArrayRef(segment_data.GetDataStart(), segment_data.GetByteSize()); loadables.push_back(loadable); } return loadables; } lldb::WritableDataBufferSP ObjectFileELF::MapFileDataWritable(const FileSpec &file, uint64_t Size, uint64_t Offset) { return FileSystem::Instance().CreateWritableDataBuffer(file.GetPath(), Size, Offset); }