//===-- ABISysV_x86_64.cpp ------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ABISysV_x86_64.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/TargetParser/Triple.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Value.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Core/ValueObjectMemory.h" #include "lldb/Core/ValueObjectRegister.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Utility/ConstString.h" #include "lldb/Utility/DataExtractor.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Status.h" #include #include using namespace lldb; using namespace lldb_private; LLDB_PLUGIN_DEFINE(ABISysV_x86_64) enum dwarf_regnums { dwarf_rax = 0, dwarf_rdx, dwarf_rcx, dwarf_rbx, dwarf_rsi, dwarf_rdi, dwarf_rbp, dwarf_rsp, dwarf_r8, dwarf_r9, dwarf_r10, dwarf_r11, dwarf_r12, dwarf_r13, dwarf_r14, dwarf_r15, dwarf_rip, }; bool ABISysV_x86_64::GetPointerReturnRegister(const char *&name) { name = "rax"; return true; } size_t ABISysV_x86_64::GetRedZoneSize() const { return 128; } // Static Functions ABISP ABISysV_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch(); const llvm::Triple::OSType os_type = arch.GetTriple().getOS(); const llvm::Triple::EnvironmentType os_env = arch.GetTriple().getEnvironment(); if (arch_type == llvm::Triple::x86_64) { switch(os_type) { case llvm::Triple::OSType::IOS: case llvm::Triple::OSType::TvOS: case llvm::Triple::OSType::WatchOS: switch (os_env) { case llvm::Triple::EnvironmentType::MacABI: case llvm::Triple::EnvironmentType::Simulator: case llvm::Triple::EnvironmentType::UnknownEnvironment: // UnknownEnvironment is needed for older compilers that don't // support the simulator environment. return ABISP(new ABISysV_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch))); default: return ABISP(); } case llvm::Triple::OSType::Darwin: case llvm::Triple::OSType::FreeBSD: case llvm::Triple::OSType::Linux: case llvm::Triple::OSType::MacOSX: case llvm::Triple::OSType::NetBSD: case llvm::Triple::OSType::Solaris: case llvm::Triple::OSType::UnknownOS: return ABISP( new ABISysV_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch))); default: return ABISP(); } } return ABISP(); } bool ABISysV_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp, addr_t func_addr, addr_t return_addr, llvm::ArrayRef args) const { Log *log = GetLog(LLDBLog::Expressions); if (log) { StreamString s; s.Printf("ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64, thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, (uint64_t)return_addr); for (size_t i = 0; i < args.size(); ++i) s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast(i + 1), args[i]); s.PutCString(")"); log->PutString(s.GetString()); } RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return false; const RegisterInfo *reg_info = nullptr; if (args.size() > 6) // TODO handle more than 6 arguments return false; for (size_t i = 0; i < args.size(); ++i) { reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i); LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s", static_cast(i + 1), args[i], reg_info->name); if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i])) return false; } // First, align the SP LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, (uint64_t)sp, (uint64_t)(sp & ~0xfull)); sp &= ~(0xfull); // 16-byte alignment sp -= 8; Status error; const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); const RegisterInfo *sp_reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); ProcessSP process_sp(thread.GetProcess()); RegisterValue reg_value; LLDB_LOGF(log, "Pushing the return address onto the stack: 0x%" PRIx64 ": 0x%" PRIx64, (uint64_t)sp, (uint64_t)return_addr); // Save return address onto the stack if (!process_sp->WritePointerToMemory(sp, return_addr, error)) return false; // %rsp is set to the actual stack value. LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp)) return false; // %rip is set to the address of the called function. LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr)) return false; return true; } static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Thread &thread, uint32_t *argument_register_ids, unsigned int ¤t_argument_register, addr_t ¤t_stack_argument) { if (bit_width > 64) return false; // Scalar can't hold large integer arguments if (current_argument_register < 6) { scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( argument_register_ids[current_argument_register], 0); current_argument_register++; if (is_signed) scalar.SignExtend(bit_width); } else { uint32_t byte_size = (bit_width + (8 - 1)) / 8; Status error; if (thread.GetProcess()->ReadScalarIntegerFromMemory( current_stack_argument, byte_size, is_signed, scalar, error)) { current_stack_argument += byte_size; return true; } return false; } return true; } bool ABISysV_x86_64::GetArgumentValues(Thread &thread, ValueList &values) const { unsigned int num_values = values.GetSize(); unsigned int value_index; // Extract the register context so we can read arguments from registers RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return false; // Get the pointer to the first stack argument so we have a place to start // when reading data addr_t sp = reg_ctx->GetSP(0); if (!sp) return false; addr_t current_stack_argument = sp + 8; // jump over return address uint32_t argument_register_ids[6]; argument_register_ids[0] = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) ->kinds[eRegisterKindLLDB]; argument_register_ids[1] = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) ->kinds[eRegisterKindLLDB]; argument_register_ids[2] = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) ->kinds[eRegisterKindLLDB]; argument_register_ids[3] = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) ->kinds[eRegisterKindLLDB]; argument_register_ids[4] = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5) ->kinds[eRegisterKindLLDB]; argument_register_ids[5] = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6) ->kinds[eRegisterKindLLDB]; unsigned int current_argument_register = 0; for (value_index = 0; value_index < num_values; ++value_index) { Value *value = values.GetValueAtIndex(value_index); if (!value) return false; // We currently only support extracting values with Clang QualTypes. Do we // care about others? CompilerType compiler_type = value->GetCompilerType(); std::optional bit_size = compiler_type.GetBitSize(&thread); if (!bit_size) return false; bool is_signed; if (compiler_type.IsIntegerOrEnumerationType(is_signed)) { ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread, argument_register_ids, current_argument_register, current_stack_argument); } else if (compiler_type.IsPointerType()) { ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread, argument_register_ids, current_argument_register, current_stack_argument); } } return true; } Status ABISysV_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp) { Status error; if (!new_value_sp) { error.SetErrorString("Empty value object for return value."); return error; } CompilerType compiler_type = new_value_sp->GetCompilerType(); if (!compiler_type) { error.SetErrorString("Null clang type for return value."); return error; } Thread *thread = frame_sp->GetThread().get(); bool is_signed; uint32_t count; bool is_complex; RegisterContext *reg_ctx = thread->GetRegisterContext().get(); bool set_it_simple = false; if (compiler_type.IsIntegerOrEnumerationType(is_signed) || compiler_type.IsPointerType()) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0); DataExtractor data; Status data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat( "Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } lldb::offset_t offset = 0; if (num_bytes <= 8) { uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value)) set_it_simple = true; } else { error.SetErrorString("We don't support returning longer than 64 bit " "integer values at present."); } } else if (compiler_type.IsFloatingPointType(count, is_complex)) { if (is_complex) error.SetErrorString( "We don't support returning complex values at present"); else { std::optional bit_width = compiler_type.GetBitSize(frame_sp.get()); if (!bit_width) { error.SetErrorString("can't get type size"); return error; } if (*bit_width <= 64) { const RegisterInfo *xmm0_info = reg_ctx->GetRegisterInfoByName("xmm0", 0); RegisterValue xmm0_value; DataExtractor data; Status data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat( "Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } unsigned char buffer[16]; ByteOrder byte_order = data.GetByteOrder(); data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order); xmm0_value.SetBytes(buffer, 16, byte_order); reg_ctx->WriteRegister(xmm0_info, xmm0_value); set_it_simple = true; } else { // FIXME - don't know how to do 80 bit long doubles yet. error.SetErrorString( "We don't support returning float values > 64 bits at present"); } } } if (!set_it_simple) { // Okay we've got a structure or something that doesn't fit in a simple // register. We should figure out where it really goes, but we don't // support this yet. error.SetErrorString("We only support setting simple integer and float " "return types at present."); } return error; } ValueObjectSP ABISysV_x86_64::GetReturnValueObjectSimple( Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; Value value; if (!return_compiler_type) return return_valobj_sp; // value.SetContext (Value::eContextTypeClangType, return_value_type); value.SetCompilerType(return_compiler_type); RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return return_valobj_sp; const uint32_t type_flags = return_compiler_type.GetTypeInfo(); if (type_flags & eTypeIsScalar) { value.SetValueType(Value::ValueType::Scalar); bool success = false; if (type_flags & eTypeIsInteger) { // Extract the register context so we can read arguments from registers std::optional byte_size = return_compiler_type.GetByteSize(&thread); if (!byte_size) return return_valobj_sp; uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( reg_ctx->GetRegisterInfoByName("rax", 0), 0); const bool is_signed = (type_flags & eTypeIsSigned) != 0; switch (*byte_size) { default: break; case sizeof(uint64_t): if (is_signed) value.GetScalar() = (int64_t)(raw_value); else value.GetScalar() = (uint64_t)(raw_value); success = true; break; case sizeof(uint32_t): if (is_signed) value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); else value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); success = true; break; case sizeof(uint16_t): if (is_signed) value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); else value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); success = true; break; case sizeof(uint8_t): if (is_signed) value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); else value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); success = true; break; } } else if (type_flags & eTypeIsFloat) { if (type_flags & eTypeIsComplex) { // Don't handle complex yet. } else { std::optional byte_size = return_compiler_type.GetByteSize(&thread); if (byte_size && *byte_size <= sizeof(long double)) { const RegisterInfo *xmm0_info = reg_ctx->GetRegisterInfoByName("xmm0", 0); RegisterValue xmm0_value; if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) { DataExtractor data; if (xmm0_value.GetData(data)) { lldb::offset_t offset = 0; if (*byte_size == sizeof(float)) { value.GetScalar() = (float)data.GetFloat(&offset); success = true; } else if (*byte_size == sizeof(double)) { value.GetScalar() = (double)data.GetDouble(&offset); success = true; } else if (*byte_size == sizeof(long double)) { // Don't handle long double since that can be encoded as 80 bit // floats... } } } } } } if (success) return_valobj_sp = ValueObjectConstResult::Create( thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsPointer) { unsigned rax_id = reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB]; value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0); value.SetValueType(Value::ValueType::Scalar); return_valobj_sp = ValueObjectConstResult::Create( thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsVector) { std::optional byte_size = return_compiler_type.GetByteSize(&thread); if (byte_size && *byte_size > 0) { const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("xmm0", 0); if (altivec_reg == nullptr) altivec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0); if (altivec_reg) { if (*byte_size <= altivec_reg->byte_size) { ProcessSP process_sp(thread.GetProcess()); if (process_sp) { std::unique_ptr heap_data_up( new DataBufferHeap(*byte_size, 0)); const ByteOrder byte_order = process_sp->GetByteOrder(); RegisterValue reg_value; if (reg_ctx->ReadRegister(altivec_reg, reg_value)) { Status error; if (reg_value.GetAsMemoryData( *altivec_reg, heap_data_up->GetBytes(), heap_data_up->GetByteSize(), byte_order, error)) { DataExtractor data(DataBufferSP(heap_data_up.release()), byte_order, process_sp->GetTarget() .GetArchitecture() .GetAddressByteSize()); return_valobj_sp = ValueObjectConstResult::Create( &thread, return_compiler_type, ConstString(""), data); } } } } else if (*byte_size <= altivec_reg->byte_size * 2) { const RegisterInfo *altivec_reg2 = reg_ctx->GetRegisterInfoByName("xmm1", 0); if (altivec_reg2) { ProcessSP process_sp(thread.GetProcess()); if (process_sp) { std::unique_ptr heap_data_up( new DataBufferHeap(*byte_size, 0)); const ByteOrder byte_order = process_sp->GetByteOrder(); RegisterValue reg_value; RegisterValue reg_value2; if (reg_ctx->ReadRegister(altivec_reg, reg_value) && reg_ctx->ReadRegister(altivec_reg2, reg_value2)) { Status error; if (reg_value.GetAsMemoryData( *altivec_reg, heap_data_up->GetBytes(), altivec_reg->byte_size, byte_order, error) && reg_value2.GetAsMemoryData( *altivec_reg2, heap_data_up->GetBytes() + altivec_reg->byte_size, heap_data_up->GetByteSize() - altivec_reg->byte_size, byte_order, error)) { DataExtractor data(DataBufferSP(heap_data_up.release()), byte_order, process_sp->GetTarget() .GetArchitecture() .GetAddressByteSize()); return_valobj_sp = ValueObjectConstResult::Create( &thread, return_compiler_type, ConstString(""), data); } } } } } } } } return return_valobj_sp; } // The compiler will flatten the nested aggregate type into single // layer and push the value to stack // This helper function will flatten an aggregate type // and return true if it can be returned in register(s) by value // return false if the aggregate is in memory static bool FlattenAggregateType( Thread &thread, ExecutionContext &exe_ctx, CompilerType &return_compiler_type, uint32_t data_byte_offset, std::vector &aggregate_field_offsets, std::vector &aggregate_compiler_types) { const uint32_t num_children = return_compiler_type.GetNumFields(); for (uint32_t idx = 0; idx < num_children; ++idx) { std::string name; bool is_signed; uint32_t count; bool is_complex; uint64_t field_bit_offset = 0; CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( idx, name, &field_bit_offset, nullptr, nullptr); std::optional field_bit_width = field_compiler_type.GetBitSize(&thread); // if we don't know the size of the field (e.g. invalid type), exit if (!field_bit_width || *field_bit_width == 0) { return false; } uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset; const uint32_t field_type_flags = field_compiler_type.GetTypeInfo(); if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || field_compiler_type.IsPointerType() || field_compiler_type.IsFloatingPointType(count, is_complex)) { aggregate_field_offsets.push_back(field_byte_offset); aggregate_compiler_types.push_back(field_compiler_type); } else if (field_type_flags & eTypeHasChildren) { if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type, field_byte_offset, aggregate_field_offsets, aggregate_compiler_types)) { return false; } } } return true; } ValueObjectSP ABISysV_x86_64::GetReturnValueObjectImpl( Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; if (!return_compiler_type) return return_valobj_sp; ExecutionContext exe_ctx(thread.shared_from_this()); return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); if (return_valobj_sp) return return_valobj_sp; RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); if (!reg_ctx_sp) return return_valobj_sp; std::optional bit_width = return_compiler_type.GetBitSize(&thread); if (!bit_width) return return_valobj_sp; if (return_compiler_type.IsAggregateType()) { Target *target = exe_ctx.GetTargetPtr(); bool is_memory = true; std::vector aggregate_field_offsets; std::vector aggregate_compiler_types; auto ts = return_compiler_type.GetTypeSystem(); if (ts && ts->CanPassInRegisters(return_compiler_type) && *bit_width <= 128 && FlattenAggregateType(thread, exe_ctx, return_compiler_type, 0, aggregate_field_offsets, aggregate_compiler_types)) { ByteOrder byte_order = target->GetArchitecture().GetByteOrder(); WritableDataBufferSP data_sp(new DataBufferHeap(16, 0)); DataExtractor return_ext(data_sp, byte_order, target->GetArchitecture().GetAddressByteSize()); const RegisterInfo *rax_info = reg_ctx_sp->GetRegisterInfoByName("rax", 0); const RegisterInfo *rdx_info = reg_ctx_sp->GetRegisterInfoByName("rdx", 0); const RegisterInfo *xmm0_info = reg_ctx_sp->GetRegisterInfoByName("xmm0", 0); const RegisterInfo *xmm1_info = reg_ctx_sp->GetRegisterInfoByName("xmm1", 0); RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value; reg_ctx_sp->ReadRegister(rax_info, rax_value); reg_ctx_sp->ReadRegister(rdx_info, rdx_value); reg_ctx_sp->ReadRegister(xmm0_info, xmm0_value); reg_ctx_sp->ReadRegister(xmm1_info, xmm1_value); DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data; rax_value.GetData(rax_data); rdx_value.GetData(rdx_data); xmm0_value.GetData(xmm0_data); xmm1_value.GetData(xmm1_data); uint32_t fp_bytes = 0; // Tracks how much of the xmm registers we've consumed so far uint32_t integer_bytes = 0; // Tracks how much of the rax/rds registers we've consumed so far // in case of the returned type is a subclass of non-abstract-base class // it will have a padding to skip the base content if (aggregate_field_offsets.size()) { fp_bytes = aggregate_field_offsets[0]; integer_bytes = aggregate_field_offsets[0]; } const uint32_t num_children = aggregate_compiler_types.size(); // Since we are in the small struct regime, assume we are not in memory. is_memory = false; for (uint32_t idx = 0; idx < num_children; idx++) { bool is_signed; uint32_t count; bool is_complex; CompilerType field_compiler_type = aggregate_compiler_types[idx]; uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread)); uint32_t field_byte_offset = aggregate_field_offsets[idx]; uint32_t field_bit_width = field_byte_width * 8; DataExtractor *copy_from_extractor = nullptr; uint32_t copy_from_offset = 0; if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || field_compiler_type.IsPointerType()) { if (integer_bytes < 8) { if (integer_bytes + field_byte_width <= 8) { // This is in RAX, copy from register to our result structure: copy_from_extractor = &rax_data; copy_from_offset = integer_bytes; integer_bytes += field_byte_width; } else { // The next field wouldn't fit in the remaining space, so we // pushed it to rdx. copy_from_extractor = &rdx_data; copy_from_offset = 0; integer_bytes = 8 + field_byte_width; } } else if (integer_bytes + field_byte_width <= 16) { copy_from_extractor = &rdx_data; copy_from_offset = integer_bytes - 8; integer_bytes += field_byte_width; } else { // The last field didn't fit. I can't see how that would happen // w/o the overall size being greater than 16 bytes. For now, // return a nullptr return value object. return return_valobj_sp; } } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) { // Structs with long doubles are always passed in memory. if (field_bit_width == 128) { is_memory = true; break; } else if (field_bit_width == 64) { // These have to be in a single xmm register. if (fp_bytes == 0) copy_from_extractor = &xmm0_data; else copy_from_extractor = &xmm1_data; copy_from_offset = 0; fp_bytes += field_byte_width; } else if (field_bit_width == 32) { // This one is kind of complicated. If we are in an "eightbyte" // with another float, we'll be stuffed into an xmm register with // it. If we are in an "eightbyte" with one or more ints, then we // will be stuffed into the appropriate GPR with them. bool in_gpr; if (field_byte_offset % 8 == 0) { // We are at the beginning of one of the eightbytes, so check the // next element (if any) if (idx == num_children - 1) { in_gpr = false; } else { CompilerType next_field_compiler_type = aggregate_compiler_types[idx + 1]; if (next_field_compiler_type.IsIntegerOrEnumerationType( is_signed)) { in_gpr = true; } else { copy_from_offset = 0; in_gpr = false; } } } else if (field_byte_offset % 4 == 0) { // We are inside of an eightbyte, so see if the field before us // is floating point: This could happen if somebody put padding // in the structure. if (idx == 0) { in_gpr = false; } else { CompilerType prev_field_compiler_type = aggregate_compiler_types[idx - 1]; if (prev_field_compiler_type.IsIntegerOrEnumerationType( is_signed)) { in_gpr = true; } else { copy_from_offset = 4; in_gpr = false; } } } else { is_memory = true; continue; } // Okay, we've figured out whether we are in GPR or XMM, now figure // out which one. if (in_gpr) { if (integer_bytes < 8) { // This is in RAX, copy from register to our result structure: copy_from_extractor = &rax_data; copy_from_offset = integer_bytes; integer_bytes += field_byte_width; } else { copy_from_extractor = &rdx_data; copy_from_offset = integer_bytes - 8; integer_bytes += field_byte_width; } } else { if (fp_bytes < 8) copy_from_extractor = &xmm0_data; else copy_from_extractor = &xmm1_data; fp_bytes += field_byte_width; } } } // These two tests are just sanity checks. If I somehow get the type // calculation wrong above it is better to just return nothing than to // assert or crash. if (!copy_from_extractor) return return_valobj_sp; if (copy_from_offset + field_byte_width > copy_from_extractor->GetByteSize()) return return_valobj_sp; copy_from_extractor->CopyByteOrderedData( copy_from_offset, field_byte_width, data_sp->GetBytes() + field_byte_offset, field_byte_width, byte_order); } if (!is_memory) { // The result is in our data buffer. Let's make a variable object out // of it: return_valobj_sp = ValueObjectConstResult::Create( &thread, return_compiler_type, ConstString(""), return_ext); } } // FIXME: This is just taking a guess, rax may very well no longer hold the // return storage location. // If we are going to do this right, when we make a new frame we should // check to see if it uses a memory return, and if we are at the first // instruction and if so stash away the return location. Then we would // only return the memory return value if we know it is valid. if (is_memory) { unsigned rax_id = reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB]; lldb::addr_t storage_addr = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0); return_valobj_sp = ValueObjectMemory::Create( &thread, "", Address(storage_addr, nullptr), return_compiler_type); } } return return_valobj_sp; } // This defines the CFA as rsp+8 // the saved pc is at CFA-8 (i.e. rsp+0) // The saved rsp is CFA+0 bool ABISysV_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind(eRegisterKindDWARF); uint32_t sp_reg_num = dwarf_rsp; uint32_t pc_reg_num = dwarf_rip; UnwindPlan::RowSP row(new UnwindPlan::Row); row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8); row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false); row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true); unwind_plan.AppendRow(row); unwind_plan.SetSourceName("x86_64 at-func-entry default"); unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); return true; } // This defines the CFA as rbp+16 // The saved pc is at CFA-8 (i.e. rbp+8) // The saved rbp is at CFA-16 (i.e. rbp+0) // The saved rsp is CFA+0 bool ABISysV_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind(eRegisterKindDWARF); uint32_t fp_reg_num = dwarf_rbp; uint32_t sp_reg_num = dwarf_rsp; uint32_t pc_reg_num = dwarf_rip; UnwindPlan::RowSP row(new UnwindPlan::Row); const int32_t ptr_size = 8; row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size); row->SetOffset(0); row->SetUnspecifiedRegistersAreUndefined(true); row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true); row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true); row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true); unwind_plan.AppendRow(row); unwind_plan.SetSourceName("x86_64 default unwind plan"); unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); return true; } bool ABISysV_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) { return !RegisterIsCalleeSaved(reg_info); } // See "Register Usage" in the // "System V Application Binary Interface" // "AMD64 Architecture Processor Supplement" (or "x86-64(tm) Architecture // Processor Supplement" in earlier revisions) (this doc is also commonly // referred to as the x86-64/AMD64 psABI) Edited by Michael Matz, Jan Hubicka, // Andreas Jaeger, and Mark Mitchell current version is 0.99.6 released // 2012-07-02 at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf // It's being revised & updated at https://github.com/hjl-tools/x86-psABI/ bool ABISysV_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { if (!reg_info) return false; assert(reg_info->name != nullptr && "unnamed register?"); std::string Name = std::string(reg_info->name); bool IsCalleeSaved = llvm::StringSwitch(Name) .Cases("r12", "r13", "r14", "r15", "rbp", "ebp", "rbx", "ebx", true) .Cases("rip", "eip", "rsp", "esp", "sp", "fp", "pc", true) .Default(false); return IsCalleeSaved; } uint32_t ABISysV_x86_64::GetGenericNum(llvm::StringRef name) { return llvm::StringSwitch(name) .Case("rip", LLDB_REGNUM_GENERIC_PC) .Case("rsp", LLDB_REGNUM_GENERIC_SP) .Case("rbp", LLDB_REGNUM_GENERIC_FP) .Case("rflags", LLDB_REGNUM_GENERIC_FLAGS) // gdbserver uses eflags .Case("eflags", LLDB_REGNUM_GENERIC_FLAGS) .Case("rdi", LLDB_REGNUM_GENERIC_ARG1) .Case("rsi", LLDB_REGNUM_GENERIC_ARG2) .Case("rdx", LLDB_REGNUM_GENERIC_ARG3) .Case("rcx", LLDB_REGNUM_GENERIC_ARG4) .Case("r8", LLDB_REGNUM_GENERIC_ARG5) .Case("r9", LLDB_REGNUM_GENERIC_ARG6) .Default(LLDB_INVALID_REGNUM); } void ABISysV_x86_64::Initialize() { PluginManager::RegisterPlugin( GetPluginNameStatic(), "System V ABI for x86_64 targets", CreateInstance); } void ABISysV_x86_64::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); }