//===-- ABISysV_ppc64.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ABISysV_ppc64.h" #include "llvm/ADT/STLExtras.h" #include "llvm/TargetParser/Triple.h" #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" #include "Utility/PPC64LE_DWARF_Registers.h" #include "Utility/PPC64_DWARF_Registers.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Value.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Core/ValueObjectMemory.h" #include "lldb/Core/ValueObjectRegister.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Utility/ConstString.h" #include "lldb/Utility/DataExtractor.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Status.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #define DECLARE_REGISTER_INFOS_PPC64_STRUCT #include "Plugins/Process/Utility/RegisterInfos_ppc64.h" #undef DECLARE_REGISTER_INFOS_PPC64_STRUCT #define DECLARE_REGISTER_INFOS_PPC64LE_STRUCT #include "Plugins/Process/Utility/RegisterInfos_ppc64le.h" #undef DECLARE_REGISTER_INFOS_PPC64LE_STRUCT #include using namespace lldb; using namespace lldb_private; LLDB_PLUGIN_DEFINE(ABISysV_ppc64) const lldb_private::RegisterInfo * ABISysV_ppc64::GetRegisterInfoArray(uint32_t &count) { if (GetByteOrder() == lldb::eByteOrderLittle) { count = std::size(g_register_infos_ppc64le); return g_register_infos_ppc64le; } else { count = std::size(g_register_infos_ppc64); return g_register_infos_ppc64; } } size_t ABISysV_ppc64::GetRedZoneSize() const { return 224; } lldb::ByteOrder ABISysV_ppc64::GetByteOrder() const { return GetProcessSP()->GetByteOrder(); } // Static Functions ABISP ABISysV_ppc64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { if (arch.GetTriple().isPPC64()) return ABISP( new ABISysV_ppc64(std::move(process_sp), MakeMCRegisterInfo(arch))); return ABISP(); } bool ABISysV_ppc64::PrepareTrivialCall(Thread &thread, addr_t sp, addr_t func_addr, addr_t return_addr, llvm::ArrayRef args) const { Log *log = GetLog(LLDBLog::Expressions); if (log) { StreamString s; s.Printf("ABISysV_ppc64::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64, thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, (uint64_t)return_addr); for (size_t i = 0; i < args.size(); ++i) s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast(i + 1), args[i]); s.PutCString(")"); log->PutString(s.GetString()); } RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return false; const RegisterInfo *reg_info = nullptr; if (args.size() > 8) // TODO handle more than 8 arguments return false; for (size_t i = 0; i < args.size(); ++i) { reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i); LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s", static_cast(i + 1), args[i], reg_info->name); if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i])) return false; } // First, align the SP LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, (uint64_t)sp, (uint64_t)(sp & ~0xfull)); sp &= ~(0xfull); // 16-byte alignment sp -= 544; // allocate frame to save TOC, RA and SP. Status error; uint64_t reg_value; const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); const RegisterInfo *sp_reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); ProcessSP process_sp(thread.GetProcess()); const RegisterInfo *lr_reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA); const RegisterInfo *r2_reg_info = reg_ctx->GetRegisterInfoAtIndex(2); const RegisterInfo *r12_reg_info = reg_ctx->GetRegisterInfoAtIndex(12); // Save return address onto the stack. LLDB_LOGF(log, "Pushing the return address onto the stack: 0x%" PRIx64 "(+16): 0x%" PRIx64, (uint64_t)sp, (uint64_t)return_addr); if (!process_sp->WritePointerToMemory(sp + 16, return_addr, error)) return false; // Write the return address to link register. LLDB_LOGF(log, "Writing LR: 0x%" PRIx64, (uint64_t)return_addr); if (!reg_ctx->WriteRegisterFromUnsigned(lr_reg_info, return_addr)) return false; // Write target address to %r12 register. LLDB_LOGF(log, "Writing R12: 0x%" PRIx64, (uint64_t)func_addr); if (!reg_ctx->WriteRegisterFromUnsigned(r12_reg_info, func_addr)) return false; // Read TOC pointer value. reg_value = reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0); // Write TOC pointer onto the stack. uint64_t stack_offset; if (GetByteOrder() == lldb::eByteOrderLittle) stack_offset = 24; else stack_offset = 40; LLDB_LOGF(log, "Writing R2 (TOC) at SP(0x%" PRIx64 ")+%d: 0x%" PRIx64, (uint64_t)(sp + stack_offset), (int)stack_offset, (uint64_t)reg_value); if (!process_sp->WritePointerToMemory(sp + stack_offset, reg_value, error)) return false; // Read the current SP value. reg_value = reg_ctx->ReadRegisterAsUnsigned(sp_reg_info, 0); // Save current SP onto the stack. LLDB_LOGF(log, "Writing SP at SP(0x%" PRIx64 ")+0: 0x%" PRIx64, (uint64_t)sp, (uint64_t)reg_value); if (!process_sp->WritePointerToMemory(sp, reg_value, error)) return false; // %r1 is set to the actual stack value. LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp)) return false; // %pc is set to the address of the called function. LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr)) return false; return true; } static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Thread &thread, uint32_t *argument_register_ids, unsigned int ¤t_argument_register, addr_t ¤t_stack_argument) { if (bit_width > 64) return false; // Scalar can't hold large integer arguments if (current_argument_register < 6) { scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( argument_register_ids[current_argument_register], 0); current_argument_register++; if (is_signed) scalar.SignExtend(bit_width); } else { uint32_t byte_size = (bit_width + (8 - 1)) / 8; Status error; if (thread.GetProcess()->ReadScalarIntegerFromMemory( current_stack_argument, byte_size, is_signed, scalar, error)) { current_stack_argument += byte_size; return true; } return false; } return true; } bool ABISysV_ppc64::GetArgumentValues(Thread &thread, ValueList &values) const { unsigned int num_values = values.GetSize(); unsigned int value_index; // Extract the register context so we can read arguments from registers RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return false; // Get the pointer to the first stack argument so we have a place to start // when reading data addr_t sp = reg_ctx->GetSP(0); if (!sp) return false; uint64_t stack_offset; if (GetByteOrder() == lldb::eByteOrderLittle) stack_offset = 32; else stack_offset = 48; // jump over return address. addr_t current_stack_argument = sp + stack_offset; uint32_t argument_register_ids[8]; for (size_t i = 0; i < 8; ++i) { argument_register_ids[i] = reg_ctx ->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i) ->kinds[eRegisterKindLLDB]; } unsigned int current_argument_register = 0; for (value_index = 0; value_index < num_values; ++value_index) { Value *value = values.GetValueAtIndex(value_index); if (!value) return false; // We currently only support extracting values with Clang QualTypes. Do we // care about others? CompilerType compiler_type = value->GetCompilerType(); std::optional bit_size = compiler_type.GetBitSize(&thread); if (!bit_size) return false; bool is_signed; if (compiler_type.IsIntegerOrEnumerationType(is_signed)) { ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread, argument_register_ids, current_argument_register, current_stack_argument); } else if (compiler_type.IsPointerType()) { ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread, argument_register_ids, current_argument_register, current_stack_argument); } } return true; } Status ABISysV_ppc64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp) { Status error; if (!new_value_sp) { error.SetErrorString("Empty value object for return value."); return error; } CompilerType compiler_type = new_value_sp->GetCompilerType(); if (!compiler_type) { error.SetErrorString("Null clang type for return value."); return error; } Thread *thread = frame_sp->GetThread().get(); bool is_signed; uint32_t count; bool is_complex; RegisterContext *reg_ctx = thread->GetRegisterContext().get(); bool set_it_simple = false; if (compiler_type.IsIntegerOrEnumerationType(is_signed) || compiler_type.IsPointerType()) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0); DataExtractor data; Status data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat( "Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } lldb::offset_t offset = 0; if (num_bytes <= 8) { uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value)) set_it_simple = true; } else { error.SetErrorString("We don't support returning longer than 64 bit " "integer values at present."); } } else if (compiler_type.IsFloatingPointType(count, is_complex)) { if (is_complex) error.SetErrorString( "We don't support returning complex values at present"); else { std::optional bit_width = compiler_type.GetBitSize(frame_sp.get()); if (!bit_width) { error.SetErrorString("can't get size of type"); return error; } if (*bit_width <= 64) { DataExtractor data; Status data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat( "Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } unsigned char buffer[16]; ByteOrder byte_order = data.GetByteOrder(); data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order); set_it_simple = true; } else { // FIXME - don't know how to do 80 bit long doubles yet. error.SetErrorString( "We don't support returning float values > 64 bits at present"); } } } if (!set_it_simple) { // Okay we've got a structure or something that doesn't fit in a simple // register. We should figure out where it really goes, but we don't // support this yet. error.SetErrorString("We only support setting simple integer and float " "return types at present."); } return error; } // // ReturnValueExtractor // namespace { #define LOG_PREFIX "ReturnValueExtractor: " class ReturnValueExtractor { // This class represents a register, from which data may be extracted. // // It may be constructed by directly specifying its index (where 0 is the // first register used to return values) or by specifying the offset of a // given struct field, in which case the appropriated register index will be // calculated. class Register { public: enum Type { GPR, // General Purpose Register FPR // Floating Point Register }; // main constructor // // offs - field offset in struct Register(Type ty, uint32_t index, uint32_t offs, RegisterContext *reg_ctx, ByteOrder byte_order) : m_index(index), m_offs(offs % sizeof(uint64_t)), m_avail(sizeof(uint64_t) - m_offs), m_type(ty), m_reg_ctx(reg_ctx), m_byte_order(byte_order) {} // explicit index, no offset Register(Type ty, uint32_t index, RegisterContext *reg_ctx, ByteOrder byte_order) : Register(ty, index, 0, reg_ctx, byte_order) {} // GPR, calculate index from offs Register(uint32_t offs, RegisterContext *reg_ctx, ByteOrder byte_order) : Register(GPR, offs / sizeof(uint64_t), offs, reg_ctx, byte_order) {} uint32_t Index() const { return m_index; } // register offset where data is located uint32_t Offs() const { return m_offs; } // available bytes in this register uint32_t Avail() const { return m_avail; } bool IsValid() const { if (m_index > 7) { LLDB_LOG(m_log, LOG_PREFIX "No more than 8 registers should be used to return values"); return false; } return true; } std::string GetName() const { if (m_type == GPR) return ("r" + llvm::Twine(m_index + 3)).str(); else return ("f" + llvm::Twine(m_index + 1)).str(); } // get raw register data bool GetRawData(uint64_t &raw_data) { const RegisterInfo *reg_info = m_reg_ctx->GetRegisterInfoByName(GetName()); if (!reg_info) { LLDB_LOG(m_log, LOG_PREFIX "Failed to get RegisterInfo"); return false; } RegisterValue reg_val; if (!m_reg_ctx->ReadRegister(reg_info, reg_val)) { LLDB_LOG(m_log, LOG_PREFIX "ReadRegister() failed"); return false; } Status error; uint32_t rc = reg_val.GetAsMemoryData( *reg_info, &raw_data, sizeof(raw_data), m_byte_order, error); if (rc != sizeof(raw_data)) { LLDB_LOG(m_log, LOG_PREFIX "GetAsMemoryData() failed"); return false; } return true; } private: uint32_t m_index; uint32_t m_offs; uint32_t m_avail; Type m_type; RegisterContext *m_reg_ctx; ByteOrder m_byte_order; Log *m_log = GetLog(LLDBLog::Expressions); }; Register GetGPR(uint32_t index) const { return Register(Register::GPR, index, m_reg_ctx, m_byte_order); } Register GetFPR(uint32_t index) const { return Register(Register::FPR, index, m_reg_ctx, m_byte_order); } Register GetGPRByOffs(uint32_t offs) const { return Register(offs, m_reg_ctx, m_byte_order); } public: // factory static llvm::Expected Create(Thread &thread, CompilerType &type) { RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return llvm::createStringError(LOG_PREFIX "Failed to get RegisterContext"); ProcessSP process_sp = thread.GetProcess(); if (!process_sp) return llvm::createStringError(LOG_PREFIX "GetProcess() failed"); return ReturnValueExtractor(thread, type, reg_ctx, process_sp); } // main method: get value of the type specified at construction time ValueObjectSP GetValue() { const uint32_t type_flags = m_type.GetTypeInfo(); // call the appropriate type handler ValueSP value_sp; ValueObjectSP valobj_sp; if (type_flags & eTypeIsScalar) { if (type_flags & eTypeIsInteger) { value_sp = GetIntegerValue(0); } else if (type_flags & eTypeIsFloat) { if (type_flags & eTypeIsComplex) { LLDB_LOG(m_log, LOG_PREFIX "Complex numbers are not supported yet"); return ValueObjectSP(); } else { value_sp = GetFloatValue(m_type, 0); } } } else if (type_flags & eTypeIsPointer) { value_sp = GetPointerValue(0); } if (value_sp) { valobj_sp = ValueObjectConstResult::Create( m_thread.GetStackFrameAtIndex(0).get(), *value_sp, ConstString("")); } else if (type_flags & eTypeIsVector) { valobj_sp = GetVectorValueObject(); } else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass) { valobj_sp = GetStructValueObject(); } return valobj_sp; } private: // data Thread &m_thread; CompilerType &m_type; uint64_t m_byte_size; std::unique_ptr m_data_up; int32_t m_src_offs = 0; int32_t m_dst_offs = 0; bool m_packed = false; Log *m_log = GetLog(LLDBLog::Expressions); RegisterContext *m_reg_ctx; ProcessSP m_process_sp; ByteOrder m_byte_order; uint32_t m_addr_size; // methods // constructor ReturnValueExtractor(Thread &thread, CompilerType &type, RegisterContext *reg_ctx, ProcessSP process_sp) : m_thread(thread), m_type(type), m_byte_size(m_type.GetByteSize(&thread).value_or(0)), m_data_up(new DataBufferHeap(m_byte_size, 0)), m_reg_ctx(reg_ctx), m_process_sp(process_sp), m_byte_order(process_sp->GetByteOrder()), m_addr_size( process_sp->GetTarget().GetArchitecture().GetAddressByteSize()) {} // build a new scalar value ValueSP NewScalarValue(CompilerType &type) { ValueSP value_sp(new Value); value_sp->SetCompilerType(type); value_sp->SetValueType(Value::ValueType::Scalar); return value_sp; } // get an integer value in the specified register ValueSP GetIntegerValue(uint32_t reg_index) { uint64_t raw_value; auto reg = GetGPR(reg_index); if (!reg.GetRawData(raw_value)) return ValueSP(); // build value from data ValueSP value_sp(NewScalarValue(m_type)); uint32_t type_flags = m_type.GetTypeInfo(); bool is_signed = (type_flags & eTypeIsSigned) != 0; switch (m_byte_size) { case sizeof(uint64_t): if (is_signed) value_sp->GetScalar() = (int64_t)(raw_value); else value_sp->GetScalar() = (uint64_t)(raw_value); break; case sizeof(uint32_t): if (is_signed) value_sp->GetScalar() = (int32_t)(raw_value & UINT32_MAX); else value_sp->GetScalar() = (uint32_t)(raw_value & UINT32_MAX); break; case sizeof(uint16_t): if (is_signed) value_sp->GetScalar() = (int16_t)(raw_value & UINT16_MAX); else value_sp->GetScalar() = (uint16_t)(raw_value & UINT16_MAX); break; case sizeof(uint8_t): if (is_signed) value_sp->GetScalar() = (int8_t)(raw_value & UINT8_MAX); else value_sp->GetScalar() = (uint8_t)(raw_value & UINT8_MAX); break; default: llvm_unreachable("Invalid integer size"); } return value_sp; } // get a floating point value on the specified register ValueSP GetFloatValue(CompilerType &type, uint32_t reg_index) { uint64_t raw_data; auto reg = GetFPR(reg_index); if (!reg.GetRawData(raw_data)) return {}; // build value from data ValueSP value_sp(NewScalarValue(type)); DataExtractor de(&raw_data, sizeof(raw_data), m_byte_order, m_addr_size); offset_t offset = 0; std::optional byte_size = type.GetByteSize(m_process_sp.get()); if (!byte_size) return {}; switch (*byte_size) { case sizeof(float): value_sp->GetScalar() = (float)de.GetDouble(&offset); break; case sizeof(double): value_sp->GetScalar() = de.GetDouble(&offset); break; default: llvm_unreachable("Invalid floating point size"); } return value_sp; } // get pointer value from register ValueSP GetPointerValue(uint32_t reg_index) { uint64_t raw_data; auto reg = GetGPR(reg_index); if (!reg.GetRawData(raw_data)) return ValueSP(); // build value from raw data ValueSP value_sp(NewScalarValue(m_type)); value_sp->GetScalar() = raw_data; return value_sp; } // build the ValueObject from our data buffer ValueObjectSP BuildValueObject() { DataExtractor de(DataBufferSP(m_data_up.release()), m_byte_order, m_addr_size); return ValueObjectConstResult::Create(&m_thread, m_type, ConstString(""), de); } // get a vector return value ValueObjectSP GetVectorValueObject() { const uint32_t MAX_VRS = 2; // get first V register used to return values const RegisterInfo *vr[MAX_VRS]; vr[0] = m_reg_ctx->GetRegisterInfoByName("vr2"); if (!vr[0]) { LLDB_LOG(m_log, LOG_PREFIX "Failed to get vr2 RegisterInfo"); return ValueObjectSP(); } const uint32_t vr_size = vr[0]->byte_size; size_t vrs = 1; if (m_byte_size > 2 * vr_size) { LLDB_LOG( m_log, LOG_PREFIX "Returning vectors that don't fit in 2 VR regs is not supported"); return ValueObjectSP(); } // load vr3, if needed if (m_byte_size > vr_size) { vrs++; vr[1] = m_reg_ctx->GetRegisterInfoByName("vr3"); if (!vr[1]) { LLDB_LOG(m_log, LOG_PREFIX "Failed to get vr3 RegisterInfo"); return ValueObjectSP(); } } // Get the whole contents of vector registers and let the logic here // arrange the data properly. RegisterValue vr_val[MAX_VRS]; Status error; std::unique_ptr vr_data( new DataBufferHeap(vrs * vr_size, 0)); for (uint32_t i = 0; i < vrs; i++) { if (!m_reg_ctx->ReadRegister(vr[i], vr_val[i])) { LLDB_LOG(m_log, LOG_PREFIX "Failed to read vector register contents"); return ValueObjectSP(); } if (!vr_val[i].GetAsMemoryData(*vr[i], vr_data->GetBytes() + i * vr_size, vr_size, m_byte_order, error)) { LLDB_LOG(m_log, LOG_PREFIX "Failed to extract vector register bytes"); return ValueObjectSP(); } } // The compiler generated code seems to always put the vector elements at // the end of the vector register, in case they don't occupy all of it. // This offset variable handles this. uint32_t offs = 0; if (m_byte_size < vr_size) offs = vr_size - m_byte_size; // copy extracted data to our buffer memcpy(m_data_up->GetBytes(), vr_data->GetBytes() + offs, m_byte_size); return BuildValueObject(); } // get a struct return value ValueObjectSP GetStructValueObject() { // case 1: get from stack if (m_byte_size > 2 * sizeof(uint64_t)) { uint64_t addr; auto reg = GetGPR(0); if (!reg.GetRawData(addr)) return {}; Status error; size_t rc = m_process_sp->ReadMemory(addr, m_data_up->GetBytes(), m_byte_size, error); if (rc != m_byte_size) { LLDB_LOG(m_log, LOG_PREFIX "Failed to read memory pointed by r3"); return ValueObjectSP(); } return BuildValueObject(); } // get number of children const bool omit_empty_base_classes = true; auto n_or_err = m_type.GetNumChildren(omit_empty_base_classes, nullptr); if (!n_or_err) { LLDB_LOG_ERROR(m_log, n_or_err.takeError(), LOG_PREFIX "{0}"); return {}; } uint32_t n = *n_or_err; if (!n) { LLDB_LOG(m_log, LOG_PREFIX "No children found in struct"); return {}; } // case 2: homogeneous double or float aggregate CompilerType elem_type; if (m_type.IsHomogeneousAggregate(&elem_type)) { uint32_t type_flags = elem_type.GetTypeInfo(); std::optional elem_size = elem_type.GetByteSize(m_process_sp.get()); if (!elem_size) return {}; if (type_flags & eTypeIsComplex || !(type_flags & eTypeIsFloat)) { LLDB_LOG(m_log, LOG_PREFIX "Unexpected type found in homogeneous aggregate"); return {}; } for (uint32_t i = 0; i < n; i++) { ValueSP val_sp = GetFloatValue(elem_type, i); if (!val_sp) return {}; // copy to buffer Status error; size_t rc = val_sp->GetScalar().GetAsMemoryData( m_data_up->GetBytes() + m_dst_offs, *elem_size, m_byte_order, error); if (rc != *elem_size) { LLDB_LOG(m_log, LOG_PREFIX "Failed to get float data"); return {}; } m_dst_offs += *elem_size; } return BuildValueObject(); } // case 3: get from GPRs // first, check if this is a packed struct or not auto ast = m_type.GetTypeSystem().dyn_cast_or_null(); if (ast) { clang::RecordDecl *record_decl = TypeSystemClang::GetAsRecordDecl(m_type); if (record_decl) { auto attrs = record_decl->attrs(); for (const auto &attr : attrs) { if (attr->getKind() == clang::attr::Packed) { m_packed = true; break; } } } } LLDB_LOG(m_log, LOG_PREFIX "{0} struct", m_packed ? "packed" : "not packed"); for (uint32_t i = 0; i < n; i++) { std::string name; uint32_t size; (void)GetChildType(i, name, size); // NOTE: the offset returned by GetChildCompilerTypeAtIndex() // can't be used because it never considers alignment bytes // between struct fields. LLDB_LOG(m_log, LOG_PREFIX "field={0}, size={1}", name, size); if (!ExtractField(size)) return ValueObjectSP(); } return BuildValueObject(); } // extract 'size' bytes at 'offs' from GPRs bool ExtractFromRegs(int32_t offs, uint32_t size, void *buf) { while (size) { auto reg = GetGPRByOffs(offs); if (!reg.IsValid()) return false; uint32_t n = std::min(reg.Avail(), size); uint64_t raw_data; if (!reg.GetRawData(raw_data)) return false; memcpy(buf, (char *)&raw_data + reg.Offs(), n); offs += n; size -= n; buf = (char *)buf + n; } return true; } // extract one field from GPRs and put it in our buffer bool ExtractField(uint32_t size) { auto reg = GetGPRByOffs(m_src_offs); if (!reg.IsValid()) return false; // handle padding if (!m_packed) { uint32_t n = m_src_offs % size; // not 'size' bytes aligned if (n) { LLDB_LOG(m_log, LOG_PREFIX "Extracting {0} alignment bytes at offset {1}", n, m_src_offs); // get alignment bytes if (!ExtractFromRegs(m_src_offs, n, m_data_up->GetBytes() + m_dst_offs)) return false; m_src_offs += n; m_dst_offs += n; } } // get field LLDB_LOG(m_log, LOG_PREFIX "Extracting {0} field bytes at offset {1}", size, m_src_offs); if (!ExtractFromRegs(m_src_offs, size, m_data_up->GetBytes() + m_dst_offs)) return false; m_src_offs += size; m_dst_offs += size; return true; } // get child llvm::Expected GetChildType(uint32_t i, std::string &name, uint32_t &size) { // GetChild constant inputs const bool transparent_pointers = false; const bool omit_empty_base_classes = true; const bool ignore_array_bounds = false; // GetChild output params int32_t child_offs; uint32_t child_bitfield_bit_size; uint32_t child_bitfield_bit_offset; bool child_is_base_class; bool child_is_deref_of_parent; ValueObject *valobj = nullptr; uint64_t language_flags; ExecutionContext exe_ctx; m_thread.CalculateExecutionContext(exe_ctx); return m_type.GetChildCompilerTypeAtIndex( &exe_ctx, i, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, name, size, child_offs, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } }; #undef LOG_PREFIX } // anonymous namespace ValueObjectSP ABISysV_ppc64::GetReturnValueObjectSimple(Thread &thread, CompilerType &type) const { if (!type) return ValueObjectSP(); auto exp_extractor = ReturnValueExtractor::Create(thread, type); if (!exp_extractor) { Log *log = GetLog(LLDBLog::Expressions); LLDB_LOG_ERROR(log, exp_extractor.takeError(), "Extracting return value failed: {0}"); return ValueObjectSP(); } return exp_extractor.get().GetValue(); } ValueObjectSP ABISysV_ppc64::GetReturnValueObjectImpl( Thread &thread, CompilerType &return_compiler_type) const { return GetReturnValueObjectSimple(thread, return_compiler_type); } bool ABISysV_ppc64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind(eRegisterKindDWARF); uint32_t lr_reg_num; uint32_t sp_reg_num; uint32_t pc_reg_num; if (GetByteOrder() == lldb::eByteOrderLittle) { lr_reg_num = ppc64le_dwarf::dwarf_lr_ppc64le; sp_reg_num = ppc64le_dwarf::dwarf_r1_ppc64le; pc_reg_num = ppc64le_dwarf::dwarf_pc_ppc64le; } else { lr_reg_num = ppc64_dwarf::dwarf_lr_ppc64; sp_reg_num = ppc64_dwarf::dwarf_r1_ppc64; pc_reg_num = ppc64_dwarf::dwarf_pc_ppc64; } UnwindPlan::RowSP row(new UnwindPlan::Row); // Our Call Frame Address is the stack pointer value row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0); // The previous PC is in the LR row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true); unwind_plan.AppendRow(row); // All other registers are the same. unwind_plan.SetSourceName("ppc64 at-func-entry default"); unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); return true; } bool ABISysV_ppc64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind(eRegisterKindDWARF); uint32_t sp_reg_num; uint32_t pc_reg_num; uint32_t cr_reg_num; if (GetByteOrder() == lldb::eByteOrderLittle) { sp_reg_num = ppc64le_dwarf::dwarf_r1_ppc64le; pc_reg_num = ppc64le_dwarf::dwarf_lr_ppc64le; cr_reg_num = ppc64le_dwarf::dwarf_cr_ppc64le; } else { sp_reg_num = ppc64_dwarf::dwarf_r1_ppc64; pc_reg_num = ppc64_dwarf::dwarf_lr_ppc64; cr_reg_num = ppc64_dwarf::dwarf_cr_ppc64; } UnwindPlan::RowSP row(new UnwindPlan::Row); const int32_t ptr_size = 8; row->SetUnspecifiedRegistersAreUndefined(true); row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num); row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 2, true); row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true); row->SetRegisterLocationToAtCFAPlusOffset(cr_reg_num, ptr_size, true); unwind_plan.AppendRow(row); unwind_plan.SetSourceName("ppc64 default unwind plan"); unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); unwind_plan.SetReturnAddressRegister(pc_reg_num); return true; } bool ABISysV_ppc64::RegisterIsVolatile(const RegisterInfo *reg_info) { return !RegisterIsCalleeSaved(reg_info); } // See "Register Usage" in the // "System V Application Binary Interface" // "64-bit PowerPC ELF Application Binary Interface Supplement" current version // is 2 released 2015 at // https://members.openpowerfoundation.org/document/dl/576 bool ABISysV_ppc64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { if (reg_info) { // Preserved registers are : // r1,r2,r13-r31 // cr2-cr4 (partially preserved) // f14-f31 (not yet) // v20-v31 (not yet) // vrsave (not yet) const char *name = reg_info->name; if (name[0] == 'r') { if ((name[1] == '1' || name[1] == '2') && name[2] == '\0') return true; if (name[1] == '1' && name[2] > '2') return true; if ((name[1] == '2' || name[1] == '3') && name[2] != '\0') return true; } if (name[0] == 'f' && name[1] >= '0' && name[2] <= '9') { if (name[2] == '\0') return false; if (name[1] == '1' && name[2] >= '4') return true; if ((name[1] == '2' || name[1] == '3') && name[2] != '\0') return true; } if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp return true; if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp return false; if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc return true; } return false; } void ABISysV_ppc64::Initialize() { PluginManager::RegisterPlugin( GetPluginNameStatic(), "System V ABI for ppc64 targets", CreateInstance); } void ABISysV_ppc64::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); }