//===-- ABISysV_arc.cpp ---------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ABISysV_arc.h" // C Includes // C++ Includes #include #include #include // Other libraries and framework includes #include "llvm/IR/DerivedTypes.h" #include "llvm/Support/MathExtras.h" #include "llvm/TargetParser/Triple.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Value.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Core/ValueObjectMemory.h" #include "lldb/Core/ValueObjectRegister.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Utility/ConstString.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Status.h" #define DEFINE_REG_NAME(reg_num) ConstString(#reg_num).GetCString() #define DEFINE_REG_NAME_STR(reg_name) ConstString(reg_name).GetCString() // The ABI is not a source of such information as size, offset, encoding, etc. // of a register. Just provides correct dwarf and eh_frame numbers. #define DEFINE_GENERIC_REGISTER_STUB(dwarf_num, str_name, generic_num) \ { \ DEFINE_REG_NAME(dwarf_num), DEFINE_REG_NAME_STR(str_name), \ 0, 0, eEncodingInvalid, eFormatDefault, \ { dwarf_num, dwarf_num, generic_num, LLDB_INVALID_REGNUM, dwarf_num }, \ nullptr, nullptr, nullptr, \ } #define DEFINE_REGISTER_STUB(dwarf_num, str_name) \ DEFINE_GENERIC_REGISTER_STUB(dwarf_num, str_name, LLDB_INVALID_REGNUM) using namespace lldb; using namespace lldb_private; LLDB_PLUGIN_DEFINE_ADV(ABISysV_arc, ABIARC) namespace { namespace dwarf { enum regnums { r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, fp = r27, r28, sp = r28, r29, r30, r31, blink = r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, /*reserved,*/ /*limm indicator,*/ r63 = 63, pc = 70, status32 = 74 }; static const std::array g_register_infos = { { DEFINE_GENERIC_REGISTER_STUB(r0, nullptr, LLDB_REGNUM_GENERIC_ARG1), DEFINE_GENERIC_REGISTER_STUB(r1, nullptr, LLDB_REGNUM_GENERIC_ARG2), DEFINE_GENERIC_REGISTER_STUB(r2, nullptr, LLDB_REGNUM_GENERIC_ARG3), DEFINE_GENERIC_REGISTER_STUB(r3, nullptr, LLDB_REGNUM_GENERIC_ARG4), DEFINE_GENERIC_REGISTER_STUB(r4, nullptr, LLDB_REGNUM_GENERIC_ARG5), DEFINE_GENERIC_REGISTER_STUB(r5, nullptr, LLDB_REGNUM_GENERIC_ARG6), DEFINE_GENERIC_REGISTER_STUB(r6, nullptr, LLDB_REGNUM_GENERIC_ARG7), DEFINE_GENERIC_REGISTER_STUB(r7, nullptr, LLDB_REGNUM_GENERIC_ARG8), DEFINE_REGISTER_STUB(r8, nullptr), DEFINE_REGISTER_STUB(r9, nullptr), DEFINE_REGISTER_STUB(r10, nullptr), DEFINE_REGISTER_STUB(r11, nullptr), DEFINE_REGISTER_STUB(r12, nullptr), DEFINE_REGISTER_STUB(r13, nullptr), DEFINE_REGISTER_STUB(r14, nullptr), DEFINE_REGISTER_STUB(r15, nullptr), DEFINE_REGISTER_STUB(r16, nullptr), DEFINE_REGISTER_STUB(r17, nullptr), DEFINE_REGISTER_STUB(r18, nullptr), DEFINE_REGISTER_STUB(r19, nullptr), DEFINE_REGISTER_STUB(r20, nullptr), DEFINE_REGISTER_STUB(r21, nullptr), DEFINE_REGISTER_STUB(r22, nullptr), DEFINE_REGISTER_STUB(r23, nullptr), DEFINE_REGISTER_STUB(r24, nullptr), DEFINE_REGISTER_STUB(r25, nullptr), DEFINE_REGISTER_STUB(r26, "gp"), DEFINE_GENERIC_REGISTER_STUB(r27, "fp", LLDB_REGNUM_GENERIC_FP), DEFINE_GENERIC_REGISTER_STUB(r28, "sp", LLDB_REGNUM_GENERIC_SP), DEFINE_REGISTER_STUB(r29, "ilink"), DEFINE_REGISTER_STUB(r30, nullptr), DEFINE_GENERIC_REGISTER_STUB(r31, "blink", LLDB_REGNUM_GENERIC_RA), DEFINE_REGISTER_STUB(r32, nullptr), DEFINE_REGISTER_STUB(r33, nullptr), DEFINE_REGISTER_STUB(r34, nullptr), DEFINE_REGISTER_STUB(r35, nullptr), DEFINE_REGISTER_STUB(r36, nullptr), DEFINE_REGISTER_STUB(r37, nullptr), DEFINE_REGISTER_STUB(r38, nullptr), DEFINE_REGISTER_STUB(r39, nullptr), DEFINE_REGISTER_STUB(r40, nullptr), DEFINE_REGISTER_STUB(r41, nullptr), DEFINE_REGISTER_STUB(r42, nullptr), DEFINE_REGISTER_STUB(r43, nullptr), DEFINE_REGISTER_STUB(r44, nullptr), DEFINE_REGISTER_STUB(r45, nullptr), DEFINE_REGISTER_STUB(r46, nullptr), DEFINE_REGISTER_STUB(r47, nullptr), DEFINE_REGISTER_STUB(r48, nullptr), DEFINE_REGISTER_STUB(r49, nullptr), DEFINE_REGISTER_STUB(r50, nullptr), DEFINE_REGISTER_STUB(r51, nullptr), DEFINE_REGISTER_STUB(r52, nullptr), DEFINE_REGISTER_STUB(r53, nullptr), DEFINE_REGISTER_STUB(r54, nullptr), DEFINE_REGISTER_STUB(r55, nullptr), DEFINE_REGISTER_STUB(r56, nullptr), DEFINE_REGISTER_STUB(r57, nullptr), DEFINE_REGISTER_STUB(r58, "accl"), DEFINE_REGISTER_STUB(r59, "acch"), DEFINE_REGISTER_STUB(r60, "lp_count"), DEFINE_REGISTER_STUB(r63, "pcl"), DEFINE_GENERIC_REGISTER_STUB(pc, nullptr, LLDB_REGNUM_GENERIC_PC), DEFINE_GENERIC_REGISTER_STUB(status32, nullptr, LLDB_REGNUM_GENERIC_FLAGS)} }; } // namespace dwarf } // namespace const RegisterInfo *ABISysV_arc::GetRegisterInfoArray(uint32_t &count) { count = dwarf::g_register_infos.size(); return dwarf::g_register_infos.data(); } size_t ABISysV_arc::GetRedZoneSize() const { return 0; } bool ABISysV_arc::IsRegisterFileReduced(RegisterContext ®_ctx) const { if (!m_is_reg_file_reduced) { const auto *const rf_build_reg = reg_ctx.GetRegisterInfoByName("rf_build"); const auto reg_value = reg_ctx.ReadRegisterAsUnsigned(rf_build_reg, /*fail_value*/ 0); // RF_BUILD "Number of Entries" bit. const uint32_t rf_entries_bit = 1U << 9U; m_is_reg_file_reduced = (reg_value & rf_entries_bit) != 0; } return m_is_reg_file_reduced.value_or(false); } //------------------------------------------------------------------ // Static Functions //------------------------------------------------------------------ ABISP ABISysV_arc::CreateInstance(ProcessSP process_sp, const ArchSpec &arch) { return llvm::Triple::arc == arch.GetTriple().getArch() ? ABISP(new ABISysV_arc(std::move(process_sp), MakeMCRegisterInfo(arch))) : ABISP(); } static const size_t word_size = 4U; static const size_t reg_size = word_size; static inline size_t AugmentArgSize(size_t size_in_bytes) { return llvm::alignTo(size_in_bytes, word_size); } static size_t TotalArgsSizeInWords(const llvm::ArrayRef &args) { size_t total_size = 0; for (const auto &arg : args) total_size += (ABI::CallArgument::TargetValue == arg.type ? AugmentArgSize(arg.size) : reg_size) / word_size; return total_size; } bool ABISysV_arc::PrepareTrivialCall(Thread &thread, addr_t sp, addr_t func_addr, addr_t return_addr, llvm::ArrayRef args) const { // We don't use the traditional trivial call specialized for jit. return false; } bool ABISysV_arc::PrepareTrivialCall(Thread &thread, addr_t sp, addr_t pc, addr_t ra, llvm::Type &prototype, llvm::ArrayRef args) const { auto reg_ctx = thread.GetRegisterContext(); if (!reg_ctx) return false; uint32_t pc_reg = reg_ctx->ConvertRegisterKindToRegisterNumber( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); if (pc_reg == LLDB_INVALID_REGNUM) return false; uint32_t ra_reg = reg_ctx->ConvertRegisterKindToRegisterNumber( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA); if (ra_reg == LLDB_INVALID_REGNUM) return false; uint32_t sp_reg = reg_ctx->ConvertRegisterKindToRegisterNumber( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); if (sp_reg == LLDB_INVALID_REGNUM) return false; Status error; ProcessSP process = thread.GetProcess(); if (!process) return false; // Push host data onto target. for (const auto &arg : args) { // Skip over target values. if (arg.type == ABI::CallArgument::TargetValue) continue; // Create space on the stack for this data 4-byte aligned. sp -= AugmentArgSize(arg.size); if (process->WriteMemory(sp, arg.data_up.get(), arg.size, error) < arg.size || error.Fail()) return false; // Update the argument with the target pointer. *const_cast(&arg.value) = sp; } // Make sure number of parameters matches prototype. assert(!prototype.isFunctionVarArg()); assert(prototype.getFunctionNumParams() == args.size()); const size_t regs_for_args_count = IsRegisterFileReduced(*reg_ctx) ? 4U : 8U; // Number of arguments passed on stack. auto args_size = TotalArgsSizeInWords(args); auto on_stack = args_size <= regs_for_args_count ? 0 : args_size - regs_for_args_count; auto offset = on_stack * word_size; uint8_t reg_value[reg_size]; size_t reg_index = LLDB_REGNUM_GENERIC_ARG1; for (const auto &arg : args) { auto value = reinterpret_cast(&arg.value); auto size = ABI::CallArgument::TargetValue == arg.type ? arg.size : reg_size; // Pass arguments via registers. while (size > 0 && reg_index < regs_for_args_count) { size_t byte_index = 0; auto end = size < reg_size ? size : reg_size; while (byte_index < end) { reg_value[byte_index++] = *(value++); --size; } while (byte_index < reg_size) { reg_value[byte_index++] = 0; } RegisterValue reg_val_obj(llvm::ArrayRef(reg_value, reg_size), eByteOrderLittle); if (!reg_ctx->WriteRegister( reg_ctx->GetRegisterInfo(eRegisterKindGeneric, reg_index), reg_val_obj)) return false; // NOTE: It's unsafe to iterate through LLDB_REGNUM_GENERICs. ++reg_index; } if (reg_index < regs_for_args_count || size == 0) continue; // Remaining arguments are passed on the stack. if (process->WriteMemory(sp - offset, value, size, error) < size || !error.Success()) return false; offset -= AugmentArgSize(size); } // Set stack pointer immediately below arguments. sp -= on_stack * word_size; // Update registers with current function call state. reg_ctx->WriteRegisterFromUnsigned(pc_reg, pc); reg_ctx->WriteRegisterFromUnsigned(ra_reg, ra); reg_ctx->WriteRegisterFromUnsigned(sp_reg, sp); return true; } bool ABISysV_arc::GetArgumentValues(Thread &thread, ValueList &values) const { return false; } Status ABISysV_arc::SetReturnValueObject(StackFrameSP &frame_sp, ValueObjectSP &new_value_sp) { Status result; if (!new_value_sp) { result.SetErrorString("Empty value object for return value."); return result; } CompilerType compiler_type = new_value_sp->GetCompilerType(); if (!compiler_type) { result.SetErrorString("Null clang type for return value."); return result; } auto ®_ctx = *frame_sp->GetThread()->GetRegisterContext(); bool is_signed = false; if (!compiler_type.IsIntegerOrEnumerationType(is_signed) && !compiler_type.IsPointerType()) { result.SetErrorString("We don't support returning other types at present"); return result; } DataExtractor data; size_t num_bytes = new_value_sp->GetData(data, result); if (result.Fail()) { result.SetErrorStringWithFormat( "Couldn't convert return value to raw data: %s", result.AsCString()); return result; } if (num_bytes <= 2 * reg_size) { offset_t offset = 0; uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); auto reg_info = reg_ctx.GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1); if (!reg_ctx.WriteRegisterFromUnsigned(reg_info, raw_value)) { result.SetErrorStringWithFormat("Couldn't write value to register %s", reg_info->name); return result; } if (num_bytes <= reg_size) return result; // Successfully written. raw_value >>= 32; reg_info = reg_ctx.GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2); if (!reg_ctx.WriteRegisterFromUnsigned(reg_info, raw_value)) { result.SetErrorStringWithFormat("Couldn't write value to register %s", reg_info->name); } return result; } result.SetErrorString( "We don't support returning large integer values at present."); return result; } template static void SetInteger(Scalar &scalar, uint64_t raw_value, bool is_signed) { raw_value &= std::numeric_limits::max(); if (is_signed) scalar = static_cast::type>(raw_value); else scalar = static_cast(raw_value); } static bool SetSizedInteger(Scalar &scalar, uint64_t raw_value, uint8_t size_in_bytes, bool is_signed) { switch (size_in_bytes) { default: return false; case sizeof(uint64_t): SetInteger(scalar, raw_value, is_signed); break; case sizeof(uint32_t): SetInteger(scalar, raw_value, is_signed); break; case sizeof(uint16_t): SetInteger(scalar, raw_value, is_signed); break; case sizeof(uint8_t): SetInteger(scalar, raw_value, is_signed); break; } return true; } static bool SetSizedFloat(Scalar &scalar, uint64_t raw_value, uint8_t size_in_bytes) { switch (size_in_bytes) { default: return false; case sizeof(uint64_t): scalar = *reinterpret_cast(&raw_value); break; case sizeof(uint32_t): scalar = *reinterpret_cast(&raw_value); break; } return true; } static uint64_t ReadRawValue(const RegisterContextSP ®_ctx, uint8_t size_in_bytes) { auto reg_info_r0 = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1); // Extract the register context so we can read arguments from registers. uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(reg_info_r0, 0) & UINT32_MAX; if (sizeof(uint64_t) == size_in_bytes) raw_value |= (reg_ctx->ReadRegisterAsUnsigned( reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2), 0) & UINT64_MAX) << 32U; return raw_value; } ValueObjectSP ABISysV_arc::GetReturnValueObjectSimple(Thread &thread, CompilerType &compiler_type) const { if (!compiler_type) return ValueObjectSP(); auto reg_ctx = thread.GetRegisterContext(); if (!reg_ctx) return ValueObjectSP(); Value value; value.SetCompilerType(compiler_type); const uint32_t type_flags = compiler_type.GetTypeInfo(); // Integer return type. if (type_flags & eTypeIsInteger) { const size_t byte_size = compiler_type.GetByteSize(&thread).value_or(0); auto raw_value = ReadRawValue(reg_ctx, byte_size); const bool is_signed = (type_flags & eTypeIsSigned) != 0; if (!SetSizedInteger(value.GetScalar(), raw_value, byte_size, is_signed)) return ValueObjectSP(); value.SetValueType(Value::ValueType::Scalar); } // Pointer return type. else if (type_flags & eTypeIsPointer) { auto reg_info_r0 = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1); value.GetScalar() = reg_ctx->ReadRegisterAsUnsigned(reg_info_r0, 0); value.SetValueType(Value::ValueType::Scalar); } // Floating point return type. else if (type_flags & eTypeIsFloat) { uint32_t float_count = 0; bool is_complex = false; if (compiler_type.IsFloatingPointType(float_count, is_complex) && 1 == float_count && !is_complex) { const size_t byte_size = compiler_type.GetByteSize(&thread).value_or(0); auto raw_value = ReadRawValue(reg_ctx, byte_size); if (!SetSizedFloat(value.GetScalar(), raw_value, byte_size)) return ValueObjectSP(); } } // Unsupported return type. else return ValueObjectSP(); return ValueObjectConstResult::Create(thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } ValueObjectSP ABISysV_arc::GetReturnValueObjectImpl( Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; if (!return_compiler_type) return return_valobj_sp; ExecutionContext exe_ctx(thread.shared_from_this()); return GetReturnValueObjectSimple(thread, return_compiler_type); } ValueObjectSP ABISysV_arc::GetReturnValueObjectImpl(Thread &thread, llvm::Type &retType) const { auto reg_ctx = thread.GetRegisterContext(); if (!reg_ctx) return ValueObjectSP(); Value value; // Void return type. if (retType.isVoidTy()) { value.GetScalar() = 0; } // Integer return type. else if (retType.isIntegerTy()) { size_t byte_size = retType.getPrimitiveSizeInBits(); if (1 != byte_size) // For boolean type. byte_size /= CHAR_BIT; auto raw_value = ReadRawValue(reg_ctx, byte_size); const bool is_signed = false; // IR Type doesn't provide this info. if (!SetSizedInteger(value.GetScalar(), raw_value, byte_size, is_signed)) return ValueObjectSP(); } // Pointer return type. else if (retType.isPointerTy()) { auto reg_info_r0 = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1); value.GetScalar() = reg_ctx->ReadRegisterAsUnsigned(reg_info_r0, 0); value.SetValueType(Value::ValueType::Scalar); } // Floating point return type. else if (retType.isFloatingPointTy()) { const size_t byte_size = retType.getPrimitiveSizeInBits() / CHAR_BIT; auto raw_value = ReadRawValue(reg_ctx, byte_size); if (!SetSizedFloat(value.GetScalar(), raw_value, byte_size)) return ValueObjectSP(); } // Unsupported return type. else return ValueObjectSP(); return ValueObjectConstResult::Create(thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } bool ABISysV_arc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind(eRegisterKindDWARF); UnwindPlan::RowSP row(new UnwindPlan::Row); // Our Call Frame Address is the stack pointer value. row->GetCFAValue().SetIsRegisterPlusOffset(dwarf::sp, 0); // The previous PC is in the BLINK. row->SetRegisterLocationToRegister(dwarf::pc, dwarf::blink, true); unwind_plan.AppendRow(row); // All other registers are the same. unwind_plan.SetSourceName("arc at-func-entry default"); unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); return true; } bool ABISysV_arc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { return false; } bool ABISysV_arc::RegisterIsVolatile(const RegisterInfo *reg_info) { if (nullptr == reg_info) return false; // Volatile registers are: r0..r12. uint32_t regnum = reg_info->kinds[eRegisterKindDWARF]; if (regnum <= 12) return true; static const std::string ra_reg_name = "blink"; return ra_reg_name == reg_info->name; } void ABISysV_arc::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), "System V ABI for ARC targets", CreateInstance); } void ABISysV_arc::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); }