//===-- MainLoopPosix.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Host/posix/MainLoopPosix.h" #include "lldb/Host/Config.h" #include "lldb/Host/PosixApi.h" #include "lldb/Utility/Status.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Errno.h" #include #include #include #include #include #include // Multiplexing is implemented using kqueue on systems that support it (BSD // variants including OSX). On linux we use ppoll, while android uses pselect // (ppoll is present but not implemented properly). On windows we use WSApoll // (which does not support signals). #if HAVE_SYS_EVENT_H #include #elif defined(__ANDROID__) #include #else #include #endif using namespace lldb; using namespace lldb_private; static sig_atomic_t g_signal_flags[NSIG]; static void SignalHandler(int signo, siginfo_t *info, void *) { assert(signo < NSIG); g_signal_flags[signo] = 1; } class MainLoopPosix::RunImpl { public: RunImpl(MainLoopPosix &loop); ~RunImpl() = default; Status Poll(); void ProcessEvents(); private: MainLoopPosix &loop; #if HAVE_SYS_EVENT_H std::vector in_events; struct kevent out_events[4]; int num_events = -1; #else #ifdef __ANDROID__ fd_set read_fd_set; #else std::vector read_fds; #endif sigset_t get_sigmask(); #endif }; #if HAVE_SYS_EVENT_H MainLoopPosix::RunImpl::RunImpl(MainLoopPosix &loop) : loop(loop) { in_events.reserve(loop.m_read_fds.size()); } Status MainLoopPosix::RunImpl::Poll() { in_events.resize(loop.m_read_fds.size()); unsigned i = 0; for (auto &fd : loop.m_read_fds) EV_SET(&in_events[i++], fd.first, EVFILT_READ, EV_ADD, 0, 0, 0); num_events = kevent(loop.m_kqueue, in_events.data(), in_events.size(), out_events, std::size(out_events), nullptr); if (num_events < 0) { if (errno == EINTR) { // in case of EINTR, let the main loop run one iteration // we need to zero num_events to avoid assertions failing num_events = 0; } else return Status(errno, eErrorTypePOSIX); } return Status(); } void MainLoopPosix::RunImpl::ProcessEvents() { assert(num_events >= 0); for (int i = 0; i < num_events; ++i) { if (loop.m_terminate_request) return; switch (out_events[i].filter) { case EVFILT_READ: loop.ProcessReadObject(out_events[i].ident); break; case EVFILT_SIGNAL: loop.ProcessSignal(out_events[i].ident); break; default: llvm_unreachable("Unknown event"); } } } #else MainLoopPosix::RunImpl::RunImpl(MainLoopPosix &loop) : loop(loop) { #ifndef __ANDROID__ read_fds.reserve(loop.m_read_fds.size()); #endif } sigset_t MainLoopPosix::RunImpl::get_sigmask() { sigset_t sigmask; int ret = pthread_sigmask(SIG_SETMASK, nullptr, &sigmask); assert(ret == 0); UNUSED_IF_ASSERT_DISABLED(ret); for (const auto &sig : loop.m_signals) sigdelset(&sigmask, sig.first); return sigmask; } #ifdef __ANDROID__ Status MainLoopPosix::RunImpl::Poll() { // ppoll(2) is not supported on older all android versions. Also, older // versions android (API <= 19) implemented pselect in a non-atomic way, as a // combination of pthread_sigmask and select. This is not sufficient for us, // as we rely on the atomicity to correctly implement signal polling, so we // call the underlying syscall ourselves. FD_ZERO(&read_fd_set); int nfds = 0; for (const auto &fd : loop.m_read_fds) { FD_SET(fd.first, &read_fd_set); nfds = std::max(nfds, fd.first + 1); } union { sigset_t set; uint64_t pad; } kernel_sigset; memset(&kernel_sigset, 0, sizeof(kernel_sigset)); kernel_sigset.set = get_sigmask(); struct { void *sigset_ptr; size_t sigset_len; } extra_data = {&kernel_sigset, sizeof(kernel_sigset)}; if (syscall(__NR_pselect6, nfds, &read_fd_set, nullptr, nullptr, nullptr, &extra_data) == -1) { if (errno != EINTR) return Status(errno, eErrorTypePOSIX); else FD_ZERO(&read_fd_set); } return Status(); } #else Status MainLoopPosix::RunImpl::Poll() { read_fds.clear(); sigset_t sigmask = get_sigmask(); for (const auto &fd : loop.m_read_fds) { struct pollfd pfd; pfd.fd = fd.first; pfd.events = POLLIN; pfd.revents = 0; read_fds.push_back(pfd); } if (ppoll(read_fds.data(), read_fds.size(), nullptr, &sigmask) == -1 && errno != EINTR) return Status(errno, eErrorTypePOSIX); return Status(); } #endif void MainLoopPosix::RunImpl::ProcessEvents() { #ifdef __ANDROID__ // Collect first all readable file descriptors into a separate vector and // then iterate over it to invoke callbacks. Iterating directly over // loop.m_read_fds is not possible because the callbacks can modify the // container which could invalidate the iterator. std::vector fds; for (const auto &fd : loop.m_read_fds) if (FD_ISSET(fd.first, &read_fd_set)) fds.push_back(fd.first); for (const auto &handle : fds) { #else for (const auto &fd : read_fds) { if ((fd.revents & (POLLIN | POLLHUP)) == 0) continue; IOObject::WaitableHandle handle = fd.fd; #endif if (loop.m_terminate_request) return; loop.ProcessReadObject(handle); } std::vector signals; for (const auto &entry : loop.m_signals) if (g_signal_flags[entry.first] != 0) signals.push_back(entry.first); for (const auto &signal : signals) { if (loop.m_terminate_request) return; g_signal_flags[signal] = 0; loop.ProcessSignal(signal); } } #endif MainLoopPosix::MainLoopPosix() : m_triggering(false) { Status error = m_trigger_pipe.CreateNew(/*child_process_inherit=*/false); assert(error.Success()); const int trigger_pipe_fd = m_trigger_pipe.GetReadFileDescriptor(); m_read_fds.insert({trigger_pipe_fd, [trigger_pipe_fd](MainLoopBase &loop) { char c; ssize_t bytes_read = llvm::sys::RetryAfterSignal( -1, ::read, trigger_pipe_fd, &c, 1); assert(bytes_read == 1); UNUSED_IF_ASSERT_DISABLED(bytes_read); // NB: This implicitly causes another loop iteration // and therefore the execution of pending callbacks. }}); #if HAVE_SYS_EVENT_H m_kqueue = kqueue(); assert(m_kqueue >= 0); #endif } MainLoopPosix::~MainLoopPosix() { #if HAVE_SYS_EVENT_H close(m_kqueue); #endif m_read_fds.erase(m_trigger_pipe.GetReadFileDescriptor()); m_trigger_pipe.Close(); assert(m_read_fds.size() == 0); assert(m_signals.size() == 0); } MainLoopPosix::ReadHandleUP MainLoopPosix::RegisterReadObject(const IOObjectSP &object_sp, const Callback &callback, Status &error) { if (!object_sp || !object_sp->IsValid()) { error.SetErrorString("IO object is not valid."); return nullptr; } const bool inserted = m_read_fds.insert({object_sp->GetWaitableHandle(), callback}).second; if (!inserted) { error.SetErrorStringWithFormat("File descriptor %d already monitored.", object_sp->GetWaitableHandle()); return nullptr; } return CreateReadHandle(object_sp); } // We shall block the signal, then install the signal handler. The signal will // be unblocked in the Run() function to check for signal delivery. MainLoopPosix::SignalHandleUP MainLoopPosix::RegisterSignal(int signo, const Callback &callback, Status &error) { auto signal_it = m_signals.find(signo); if (signal_it != m_signals.end()) { auto callback_it = signal_it->second.callbacks.insert( signal_it->second.callbacks.end(), callback); return SignalHandleUP(new SignalHandle(*this, signo, callback_it)); } SignalInfo info; info.callbacks.push_back(callback); struct sigaction new_action; new_action.sa_sigaction = &SignalHandler; new_action.sa_flags = SA_SIGINFO; sigemptyset(&new_action.sa_mask); sigaddset(&new_action.sa_mask, signo); sigset_t old_set; g_signal_flags[signo] = 0; // Even if using kqueue, the signal handler will still be invoked, so it's // important to replace it with our "benign" handler. int ret = sigaction(signo, &new_action, &info.old_action); UNUSED_IF_ASSERT_DISABLED(ret); assert(ret == 0 && "sigaction failed"); #if HAVE_SYS_EVENT_H struct kevent ev; EV_SET(&ev, signo, EVFILT_SIGNAL, EV_ADD, 0, 0, 0); ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr); assert(ret == 0); #endif // If we're using kqueue, the signal needs to be unblocked in order to // receive it. If using pselect/ppoll, we need to block it, and later unblock // it as a part of the system call. ret = pthread_sigmask(HAVE_SYS_EVENT_H ? SIG_UNBLOCK : SIG_BLOCK, &new_action.sa_mask, &old_set); assert(ret == 0 && "pthread_sigmask failed"); info.was_blocked = sigismember(&old_set, signo); auto insert_ret = m_signals.insert({signo, info}); return SignalHandleUP(new SignalHandle( *this, signo, insert_ret.first->second.callbacks.begin())); } void MainLoopPosix::UnregisterReadObject(IOObject::WaitableHandle handle) { bool erased = m_read_fds.erase(handle); UNUSED_IF_ASSERT_DISABLED(erased); assert(erased); } void MainLoopPosix::UnregisterSignal( int signo, std::list::iterator callback_it) { auto it = m_signals.find(signo); assert(it != m_signals.end()); it->second.callbacks.erase(callback_it); // Do not remove the signal handler unless all callbacks have been erased. if (!it->second.callbacks.empty()) return; sigaction(signo, &it->second.old_action, nullptr); sigset_t set; sigemptyset(&set); sigaddset(&set, signo); int ret = pthread_sigmask(it->second.was_blocked ? SIG_BLOCK : SIG_UNBLOCK, &set, nullptr); assert(ret == 0); UNUSED_IF_ASSERT_DISABLED(ret); #if HAVE_SYS_EVENT_H struct kevent ev; EV_SET(&ev, signo, EVFILT_SIGNAL, EV_DELETE, 0, 0, 0); ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr); assert(ret == 0); #endif m_signals.erase(it); } Status MainLoopPosix::Run() { m_terminate_request = false; Status error; RunImpl impl(*this); // run until termination or until we run out of things to listen to // (m_read_fds will always contain m_trigger_pipe fd, so check for > 1) while (!m_terminate_request && (m_read_fds.size() > 1 || !m_signals.empty())) { error = impl.Poll(); if (error.Fail()) return error; impl.ProcessEvents(); m_triggering = false; ProcessPendingCallbacks(); } return Status(); } void MainLoopPosix::ProcessReadObject(IOObject::WaitableHandle handle) { auto it = m_read_fds.find(handle); if (it != m_read_fds.end()) it->second(*this); // Do the work } void MainLoopPosix::ProcessSignal(int signo) { auto it = m_signals.find(signo); if (it != m_signals.end()) { // The callback may actually register/unregister signal handlers, // so we need to create a copy first. llvm::SmallVector callbacks_to_run{ it->second.callbacks.begin(), it->second.callbacks.end()}; for (auto &x : callbacks_to_run) x(*this); // Do the work } } void MainLoopPosix::TriggerPendingCallbacks() { if (m_triggering.exchange(true)) return; char c = '.'; size_t bytes_written; Status error = m_trigger_pipe.Write(&c, 1, bytes_written); assert(error.Success()); UNUSED_IF_ASSERT_DISABLED(error); assert(bytes_written == 1); }