//===-- dfsan_allocator.cpp -------------------------- --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of DataflowSanitizer. // // DataflowSanitizer allocator. //===----------------------------------------------------------------------===// #include "dfsan_allocator.h" #include "dfsan.h" #include "dfsan_flags.h" #include "dfsan_thread.h" #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_checks.h" #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_allocator_report.h" #include "sanitizer_common/sanitizer_errno.h" namespace __dfsan { struct Metadata { uptr requested_size; }; struct DFsanMapUnmapCallback { void OnMap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); } void OnMapSecondary(uptr p, uptr size, uptr user_begin, uptr user_size) const { OnMap(p, size); } void OnUnmap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); } }; // Note: to ensure that the allocator is compatible with the application memory // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be // duplicated as MappingDesc::ALLOCATOR in dfsan_platform.h. #if defined(__aarch64__) const uptr kAllocatorSpace = 0xE00000000000ULL; #else const uptr kAllocatorSpace = 0x700000000000ULL; #endif const uptr kMaxAllowedMallocSize = 1ULL << 40; struct AP64 { // Allocator64 parameters. Deliberately using a short name. static const uptr kSpaceBeg = kAllocatorSpace; static const uptr kSpaceSize = 0x40000000000; // 4T. static const uptr kMetadataSize = sizeof(Metadata); typedef DefaultSizeClassMap SizeClassMap; typedef DFsanMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; using AddressSpaceView = LocalAddressSpaceView; }; typedef SizeClassAllocator64 PrimaryAllocator; typedef CombinedAllocator Allocator; typedef Allocator::AllocatorCache AllocatorCache; static Allocator allocator; static AllocatorCache fallback_allocator_cache; static StaticSpinMutex fallback_mutex; static uptr max_malloc_size; void dfsan_allocator_init() { SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); allocator.Init(common_flags()->allocator_release_to_os_interval_ms); if (common_flags()->max_allocation_size_mb) max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20, kMaxAllowedMallocSize); else max_malloc_size = kMaxAllowedMallocSize; } AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) { CHECK(ms); CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); return reinterpret_cast(ms->allocator_cache); } void DFsanThreadLocalMallocStorage::CommitBack() { allocator.SwallowCache(GetAllocatorCache(this)); } static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) { if (size > max_malloc_size) { if (AllocatorMayReturnNull()) { Report("WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n", size); return nullptr; } BufferedStackTrace stack; ReportAllocationSizeTooBig(size, max_malloc_size, &stack); } if (UNLIKELY(IsRssLimitExceeded())) { if (AllocatorMayReturnNull()) return nullptr; BufferedStackTrace stack; ReportRssLimitExceeded(&stack); } DFsanThread *t = GetCurrentThread(); void *allocated; if (t) { AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); allocated = allocator.Allocate(cache, size, alignment); } else { SpinMutexLock l(&fallback_mutex); AllocatorCache *cache = &fallback_allocator_cache; allocated = allocator.Allocate(cache, size, alignment); } if (UNLIKELY(!allocated)) { SetAllocatorOutOfMemory(); if (AllocatorMayReturnNull()) return nullptr; BufferedStackTrace stack; ReportOutOfMemory(size, &stack); } Metadata *meta = reinterpret_cast(allocator.GetMetaData(allocated)); meta->requested_size = size; if (zeroise) { internal_memset(allocated, 0, size); dfsan_set_label(0, allocated, size); } else if (flags().zero_in_malloc) { dfsan_set_label(0, allocated, size); } return allocated; } void dfsan_deallocate(void *p) { CHECK(p); Metadata *meta = reinterpret_cast(allocator.GetMetaData(p)); uptr size = meta->requested_size; meta->requested_size = 0; if (flags().zero_in_free) dfsan_set_label(0, p, size); DFsanThread *t = GetCurrentThread(); if (t) { AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); allocator.Deallocate(cache, p); } else { SpinMutexLock l(&fallback_mutex); AllocatorCache *cache = &fallback_allocator_cache; allocator.Deallocate(cache, p); } } void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) { Metadata *meta = reinterpret_cast(allocator.GetMetaData(old_p)); uptr old_size = meta->requested_size; uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p); if (new_size <= actually_allocated_size) { // We are not reallocating here. meta->requested_size = new_size; if (new_size > old_size && flags().zero_in_malloc) dfsan_set_label(0, (char *)old_p + old_size, new_size - old_size); return old_p; } uptr memcpy_size = Min(new_size, old_size); void *new_p = DFsanAllocate(new_size, alignment, false /*zeroise*/); if (new_p) { dfsan_copy_memory(new_p, old_p, memcpy_size); dfsan_deallocate(old_p); } return new_p; } void *DFsanCalloc(uptr nmemb, uptr size) { if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { if (AllocatorMayReturnNull()) return nullptr; BufferedStackTrace stack; ReportCallocOverflow(nmemb, size, &stack); } return DFsanAllocate(nmemb * size, sizeof(u64), true /*zeroise*/); } static const void *AllocationBegin(const void *p) { if (!p) return nullptr; void *beg = allocator.GetBlockBegin(p); if (!beg) return nullptr; Metadata *b = (Metadata *)allocator.GetMetaData(beg); if (!b) return nullptr; if (b->requested_size == 0) return nullptr; return (const void *)beg; } static uptr AllocationSize(const void *p) { if (!p) return 0; const void *beg = allocator.GetBlockBegin(p); if (beg != p) return 0; Metadata *b = (Metadata *)allocator.GetMetaData(p); return b->requested_size; } static uptr AllocationSizeFast(const void *p) { return reinterpret_cast(allocator.GetMetaData(p))->requested_size; } void *dfsan_malloc(uptr size) { return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/)); } void *dfsan_calloc(uptr nmemb, uptr size) { return SetErrnoOnNull(DFsanCalloc(nmemb, size)); } void *dfsan_realloc(void *ptr, uptr size) { if (!ptr) return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/)); if (size == 0) { dfsan_deallocate(ptr); return nullptr; } return SetErrnoOnNull(DFsanReallocate(ptr, size, sizeof(u64))); } void *dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) { if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { errno = errno_ENOMEM; if (AllocatorMayReturnNull()) return nullptr; BufferedStackTrace stack; ReportReallocArrayOverflow(nmemb, size, &stack); } return dfsan_realloc(ptr, nmemb * size); } void *dfsan_valloc(uptr size) { return SetErrnoOnNull( DFsanAllocate(size, GetPageSizeCached(), false /*zeroise*/)); } void *dfsan_pvalloc(uptr size) { uptr PageSize = GetPageSizeCached(); if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { errno = errno_ENOMEM; if (AllocatorMayReturnNull()) return nullptr; BufferedStackTrace stack; ReportPvallocOverflow(size, &stack); } // pvalloc(0) should allocate one page. size = size ? RoundUpTo(size, PageSize) : PageSize; return SetErrnoOnNull(DFsanAllocate(size, PageSize, false /*zeroise*/)); } void *dfsan_aligned_alloc(uptr alignment, uptr size) { if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { errno = errno_EINVAL; if (AllocatorMayReturnNull()) return nullptr; BufferedStackTrace stack; ReportInvalidAlignedAllocAlignment(size, alignment, &stack); } return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/)); } void *dfsan_memalign(uptr alignment, uptr size) { if (UNLIKELY(!IsPowerOfTwo(alignment))) { errno = errno_EINVAL; if (AllocatorMayReturnNull()) return nullptr; BufferedStackTrace stack; ReportInvalidAllocationAlignment(alignment, &stack); } return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/)); } int dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) { if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { if (AllocatorMayReturnNull()) return errno_EINVAL; BufferedStackTrace stack; ReportInvalidPosixMemalignAlignment(alignment, &stack); } void *ptr = DFsanAllocate(size, alignment, false /*zeroise*/); if (UNLIKELY(!ptr)) // OOM error is already taken care of by DFsanAllocate. return errno_ENOMEM; CHECK(IsAligned((uptr)ptr, alignment)); *memptr = ptr; return 0; } } // namespace __dfsan using namespace __dfsan; uptr __sanitizer_get_current_allocated_bytes() { uptr stats[AllocatorStatCount]; allocator.GetStats(stats); return stats[AllocatorStatAllocated]; } uptr __sanitizer_get_heap_size() { uptr stats[AllocatorStatCount]; allocator.GetStats(stats); return stats[AllocatorStatMapped]; } uptr __sanitizer_get_free_bytes() { return 1; } uptr __sanitizer_get_unmapped_bytes() { return 1; } uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } const void *__sanitizer_get_allocated_begin(const void *p) { return AllocationBegin(p); } uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } uptr __sanitizer_get_allocated_size_fast(const void *p) { DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); uptr ret = AllocationSizeFast(p); DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); return ret; }