//===-- asan_win.cpp //------------------------------------------------------===//> // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // Windows-specific details. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #if SANITIZER_WINDOWS # define WIN32_LEAN_AND_MEAN # include # include # include "asan_interceptors.h" # include "asan_internal.h" # include "asan_mapping.h" # include "asan_report.h" # include "asan_stack.h" # include "asan_thread.h" # include "sanitizer_common/sanitizer_libc.h" # include "sanitizer_common/sanitizer_mutex.h" # include "sanitizer_common/sanitizer_win.h" # include "sanitizer_common/sanitizer_win_defs.h" using namespace __asan; extern "C" { SANITIZER_INTERFACE_ATTRIBUTE int __asan_should_detect_stack_use_after_return() { __asan_init(); return __asan_option_detect_stack_use_after_return; } SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_get_shadow_memory_dynamic_address() { __asan_init(); return __asan_shadow_memory_dynamic_address; } } // extern "C" // ---------------------- Windows-specific interceptors ---------------- {{{ static LPTOP_LEVEL_EXCEPTION_FILTER default_seh_handler; static LPTOP_LEVEL_EXCEPTION_FILTER user_seh_handler; extern "C" SANITIZER_INTERFACE_ATTRIBUTE long __asan_unhandled_exception_filter( EXCEPTION_POINTERS *info) { EXCEPTION_RECORD *exception_record = info->ExceptionRecord; CONTEXT *context = info->ContextRecord; // FIXME: Handle EXCEPTION_STACK_OVERFLOW here. SignalContext sig(exception_record, context); ReportDeadlySignal(sig); UNREACHABLE("returned from reporting deadly signal"); } // Wrapper SEH Handler. If the exception should be handled by asan, we call // __asan_unhandled_exception_filter, otherwise, we execute the user provided // exception handler or the default. static long WINAPI SEHHandler(EXCEPTION_POINTERS *info) { DWORD exception_code = info->ExceptionRecord->ExceptionCode; if (__sanitizer::IsHandledDeadlyException(exception_code)) return __asan_unhandled_exception_filter(info); if (user_seh_handler) return user_seh_handler(info); // Bubble out to the default exception filter. if (default_seh_handler) return default_seh_handler(info); return EXCEPTION_CONTINUE_SEARCH; } INTERCEPTOR_WINAPI(LPTOP_LEVEL_EXCEPTION_FILTER, SetUnhandledExceptionFilter, LPTOP_LEVEL_EXCEPTION_FILTER ExceptionFilter) { CHECK(REAL(SetUnhandledExceptionFilter)); if (ExceptionFilter == &SEHHandler) return REAL(SetUnhandledExceptionFilter)(ExceptionFilter); // We record the user provided exception handler to be called for all the // exceptions unhandled by asan. Swap(ExceptionFilter, user_seh_handler); return ExceptionFilter; } INTERCEPTOR_WINAPI(void, RtlRaiseException, EXCEPTION_RECORD *ExceptionRecord) { CHECK(REAL(RtlRaiseException)); // This is a noreturn function, unless it's one of the exceptions raised to // communicate with the debugger, such as the one from OutputDebugString. if (ExceptionRecord->ExceptionCode != DBG_PRINTEXCEPTION_C) __asan_handle_no_return(); REAL(RtlRaiseException)(ExceptionRecord); } INTERCEPTOR_WINAPI(void, RaiseException, void *a, void *b, void *c, void *d) { CHECK(REAL(RaiseException)); __asan_handle_no_return(); REAL(RaiseException)(a, b, c, d); } #ifdef _WIN64 INTERCEPTOR_WINAPI(EXCEPTION_DISPOSITION, __C_specific_handler, _EXCEPTION_RECORD *a, void *b, _CONTEXT *c, _DISPATCHER_CONTEXT *d) { CHECK(REAL(__C_specific_handler)); __asan_handle_no_return(); return REAL(__C_specific_handler)(a, b, c, d); } #else INTERCEPTOR(int, _except_handler3, void *a, void *b, void *c, void *d) { CHECK(REAL(_except_handler3)); __asan_handle_no_return(); return REAL(_except_handler3)(a, b, c, d); } #if ASAN_DYNAMIC // This handler is named differently in -MT and -MD CRTs. #define _except_handler4 _except_handler4_common #endif INTERCEPTOR(int, _except_handler4, void *a, void *b, void *c, void *d) { CHECK(REAL(_except_handler4)); __asan_handle_no_return(); return REAL(_except_handler4)(a, b, c, d); } #endif struct ThreadStartParams { thread_callback_t start_routine; void *arg; }; static thread_return_t THREAD_CALLING_CONV asan_thread_start(void *arg) { AsanThread *t = (AsanThread *)arg; SetCurrentThread(t); t->ThreadStart(GetTid()); ThreadStartParams params; t->GetStartData(params); auto res = (*params.start_routine)(params.arg); t->Destroy(); // POSIX calls this from TSD destructor. return res; } INTERCEPTOR_WINAPI(HANDLE, CreateThread, LPSECURITY_ATTRIBUTES security, SIZE_T stack_size, LPTHREAD_START_ROUTINE start_routine, void *arg, DWORD thr_flags, DWORD *tid) { // Strict init-order checking is thread-hostile. if (flags()->strict_init_order) StopInitOrderChecking(); GET_STACK_TRACE_THREAD; // FIXME: The CreateThread interceptor is not the same as a pthread_create // one. This is a bandaid fix for PR22025. bool detached = false; // FIXME: how can we determine it on Windows? u32 current_tid = GetCurrentTidOrInvalid(); ThreadStartParams params = {start_routine, arg}; AsanThread *t = AsanThread::Create(params, current_tid, &stack, detached); return REAL(CreateThread)(security, stack_size, asan_thread_start, t, thr_flags, tid); } // }}} namespace __asan { void InitializePlatformInterceptors() { __interception::SetErrorReportCallback(Report); // The interceptors were not designed to be removable, so we have to keep this // module alive for the life of the process. HMODULE pinned; CHECK(GetModuleHandleExW( GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_PIN, (LPCWSTR)&InitializePlatformInterceptors, &pinned)); ASAN_INTERCEPT_FUNC(CreateThread); ASAN_INTERCEPT_FUNC(SetUnhandledExceptionFilter); #ifdef _WIN64 ASAN_INTERCEPT_FUNC(__C_specific_handler); #else ASAN_INTERCEPT_FUNC(_except_handler3); ASAN_INTERCEPT_FUNC(_except_handler4); #endif // Try to intercept kernel32!RaiseException, and if that fails, intercept // ntdll!RtlRaiseException instead. if (!::__interception::OverrideFunction("RaiseException", (uptr)WRAP(RaiseException), (uptr *)&REAL(RaiseException))) { CHECK(::__interception::OverrideFunction("RtlRaiseException", (uptr)WRAP(RtlRaiseException), (uptr *)&REAL(RtlRaiseException))); } } void InstallAtExitCheckLeaks() {} void InstallAtForkHandler() {} void AsanApplyToGlobals(globals_op_fptr op, const void *needle) { UNIMPLEMENTED(); } void FlushUnneededASanShadowMemory(uptr p, uptr size) { // Only asan on 64-bit Windows supports committing shadow memory on demand. #if SANITIZER_WINDOWS64 // Since asan's mapping is compacting, the shadow chunk may be // not page-aligned, so we only flush the page-aligned portion. ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); #endif } // ---------------------- TSD ---------------- {{{ static bool tsd_key_inited = false; static __declspec(thread) void *fake_tsd = 0; // https://docs.microsoft.com/en-us/windows/desktop/api/winternl/ns-winternl-_teb // "[This structure may be altered in future versions of Windows. Applications // should use the alternate functions listed in this topic.]" typedef struct _TEB { PVOID Reserved1[12]; // PVOID ThreadLocalStoragePointer; is here, at the last field in Reserved1. PVOID ProcessEnvironmentBlock; PVOID Reserved2[399]; BYTE Reserved3[1952]; PVOID TlsSlots[64]; BYTE Reserved4[8]; PVOID Reserved5[26]; PVOID ReservedForOle; PVOID Reserved6[4]; PVOID TlsExpansionSlots; } TEB, *PTEB; constexpr size_t TEB_RESERVED_FIELDS_THREAD_LOCAL_STORAGE_OFFSET = 11; BOOL IsTlsInitialized() { PTEB teb = (PTEB)NtCurrentTeb(); return teb->Reserved1[TEB_RESERVED_FIELDS_THREAD_LOCAL_STORAGE_OFFSET] != nullptr; } void AsanTSDInit(void (*destructor)(void *tsd)) { // FIXME: we're ignoring the destructor for now. tsd_key_inited = true; } void *AsanTSDGet() { CHECK(tsd_key_inited); return IsTlsInitialized() ? fake_tsd : nullptr; } void AsanTSDSet(void *tsd) { CHECK(tsd_key_inited); fake_tsd = tsd; } void PlatformTSDDtor(void *tsd) { AsanThread::TSDDtor(tsd); } // }}} // ---------------------- Various stuff ---------------- {{{ uptr FindDynamicShadowStart() { return MapDynamicShadow(MemToShadowSize(kHighMemEnd), ASAN_SHADOW_SCALE, /*min_shadow_base_alignment*/ 0, kHighMemEnd, GetMmapGranularity()); } void AsanCheckDynamicRTPrereqs() {} void AsanCheckIncompatibleRT() {} void AsanOnDeadlySignal(int, void *siginfo, void *context) { UNIMPLEMENTED(); } bool PlatformUnpoisonStacks() { return false; } #if SANITIZER_WINDOWS64 // Exception handler for dealing with shadow memory. static LONG CALLBACK ShadowExceptionHandler(PEXCEPTION_POINTERS exception_pointers) { uptr page_size = GetPageSizeCached(); // Only handle access violations. if (exception_pointers->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION || exception_pointers->ExceptionRecord->NumberParameters < 2) { __asan_handle_no_return(); return EXCEPTION_CONTINUE_SEARCH; } // Only handle access violations that land within the shadow memory. uptr addr = (uptr)(exception_pointers->ExceptionRecord->ExceptionInformation[1]); // Check valid shadow range. if (!AddrIsInShadow(addr)) { __asan_handle_no_return(); return EXCEPTION_CONTINUE_SEARCH; } // This is an access violation while trying to read from the shadow. Commit // the relevant page and let execution continue. // Determine the address of the page that is being accessed. uptr page = RoundDownTo(addr, page_size); // Commit the page. uptr result = (uptr)::VirtualAlloc((LPVOID)page, page_size, MEM_COMMIT, PAGE_READWRITE); if (result != page) return EXCEPTION_CONTINUE_SEARCH; // The page mapping succeeded, so continue execution as usual. return EXCEPTION_CONTINUE_EXECUTION; } #endif void InitializePlatformExceptionHandlers() { #if SANITIZER_WINDOWS64 // On Win64, we map memory on demand with access violation handler. // Install our exception handler. CHECK(AddVectoredExceptionHandler(TRUE, &ShadowExceptionHandler)); #endif } bool IsSystemHeapAddress(uptr addr) { return ::HeapValidate(GetProcessHeap(), 0, (void *)addr) != FALSE; } // We want to install our own exception handler (EH) to print helpful reports // on access violations and whatnot. Unfortunately, the CRT initializers assume // they are run before any user code and drop any previously-installed EHs on // the floor, so we can't install our handler inside __asan_init. // (See crt0dat.c in the CRT sources for the details) // // Things get even more complicated with the dynamic runtime, as it finishes its // initialization before the .exe module CRT begins to initialize. // // For the static runtime (-MT), it's enough to put a callback to // __asan_set_seh_filter in the last section for C initializers. // // For the dynamic runtime (-MD), we want link the same // asan_dynamic_runtime_thunk.lib to all the modules, thus __asan_set_seh_filter // will be called for each instrumented module. This ensures that at least one // __asan_set_seh_filter call happens after the .exe module CRT is initialized. extern "C" SANITIZER_INTERFACE_ATTRIBUTE int __asan_set_seh_filter() { // We should only store the previous handler if it's not our own handler in // order to avoid loops in the EH chain. auto prev_seh_handler = SetUnhandledExceptionFilter(SEHHandler); if (prev_seh_handler != &SEHHandler) default_seh_handler = prev_seh_handler; return 0; } bool HandleDlopenInit() { // Not supported on this platform. static_assert(!SANITIZER_SUPPORTS_INIT_FOR_DLOPEN, "Expected SANITIZER_SUPPORTS_INIT_FOR_DLOPEN to be false"); return false; } #if !ASAN_DYNAMIC // The CRT runs initializers in this order: // - C initializers, from XIA to XIZ // - C++ initializers, from XCA to XCZ // Prior to 2015, the CRT set the unhandled exception filter at priority XIY, // near the end of C initialization. Starting in 2015, it was moved to the // beginning of C++ initialization. We set our priority to XCAB to run // immediately after the CRT runs. This way, our exception filter is called // first and we can delegate to their filter if appropriate. #pragma section(".CRT$XCAB", long, read) __declspec(allocate(".CRT$XCAB")) int (*__intercept_seh)() = __asan_set_seh_filter; // Piggyback on the TLS initialization callback directory to initialize asan as // early as possible. Initializers in .CRT$XL* are called directly by ntdll, // which run before the CRT. Users also add code to .CRT$XLC, so it's important // to run our initializers first. static void NTAPI asan_thread_init(void *module, DWORD reason, void *reserved) { if (reason == DLL_PROCESS_ATTACH) __asan_init(); } #pragma section(".CRT$XLAB", long, read) __declspec(allocate(".CRT$XLAB")) void(NTAPI *__asan_tls_init)( void *, unsigned long, void *) = asan_thread_init; #endif static void NTAPI asan_thread_exit(void *module, DWORD reason, void *reserved) { if (reason == DLL_THREAD_DETACH) { // Unpoison the thread's stack because the memory may be re-used. NT_TIB *tib = (NT_TIB *)NtCurrentTeb(); uptr stackSize = (uptr)tib->StackBase - (uptr)tib->StackLimit; __asan_unpoison_memory_region(tib->StackLimit, stackSize); } } #pragma section(".CRT$XLY", long, read) __declspec(allocate(".CRT$XLY")) void(NTAPI *__asan_tls_exit)( void *, unsigned long, void *) = asan_thread_exit; WIN_FORCE_LINK(__asan_dso_reg_hook) // }}} } // namespace __asan #endif // SANITIZER_WINDOWS