//===-- asan_thread.cpp ---------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // Thread-related code. //===----------------------------------------------------------------------===// #include "asan_thread.h" #include "asan_allocator.h" #include "asan_interceptors.h" #include "asan_mapping.h" #include "asan_poisoning.h" #include "asan_stack.h" #include "lsan/lsan_common.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_tls_get_addr.h" namespace __asan { // AsanThreadContext implementation. void AsanThreadContext::OnCreated(void *arg) { CreateThreadContextArgs *args = static_cast(arg); if (args->stack) stack_id = StackDepotPut(*args->stack); thread = args->thread; thread->set_context(this); } void AsanThreadContext::OnFinished() { // Drop the link to the AsanThread object. thread = nullptr; } static ThreadRegistry *asan_thread_registry; static ThreadArgRetval *thread_data; static Mutex mu_for_thread_context; // TODO(leonardchan@): It should be possible to make LowLevelAllocator // threadsafe and consolidate this one into the GlobalLoweLevelAllocator. // We should be able to do something similar to what's in // sanitizer_stack_store.cpp. static LowLevelAllocator allocator_for_thread_context; static ThreadContextBase *GetAsanThreadContext(u32 tid) { Lock lock(&mu_for_thread_context); return new (allocator_for_thread_context) AsanThreadContext(tid); } static void InitThreads() { static bool initialized; // Don't worry about thread_safety - this should be called when there is // a single thread. if (LIKELY(initialized)) return; // Never reuse ASan threads: we store pointer to AsanThreadContext // in TSD and can't reliably tell when no more TSD destructors will // be called. It would be wrong to reuse AsanThreadContext for another // thread before all TSD destructors will be called for it. // MIPS requires aligned address alignas(alignof(ThreadRegistry)) static char thread_registry_placeholder[sizeof(ThreadRegistry)]; alignas(alignof(ThreadArgRetval)) static char thread_data_placeholder[sizeof(ThreadArgRetval)]; asan_thread_registry = new (thread_registry_placeholder) ThreadRegistry(GetAsanThreadContext); thread_data = new (thread_data_placeholder) ThreadArgRetval(); initialized = true; } ThreadRegistry &asanThreadRegistry() { InitThreads(); return *asan_thread_registry; } ThreadArgRetval &asanThreadArgRetval() { InitThreads(); return *thread_data; } AsanThreadContext *GetThreadContextByTidLocked(u32 tid) { return static_cast( asanThreadRegistry().GetThreadLocked(tid)); } // AsanThread implementation. AsanThread *AsanThread::Create(const void *start_data, uptr data_size, u32 parent_tid, StackTrace *stack, bool detached) { uptr PageSize = GetPageSizeCached(); uptr size = RoundUpTo(sizeof(AsanThread), PageSize); AsanThread *thread = (AsanThread *)MmapOrDie(size, __func__); if (data_size) { uptr availible_size = (uptr)thread + size - (uptr)(thread->start_data_); CHECK_LE(data_size, availible_size); internal_memcpy(thread->start_data_, start_data, data_size); } AsanThreadContext::CreateThreadContextArgs args = {thread, stack}; asanThreadRegistry().CreateThread(0, detached, parent_tid, &args); return thread; } void AsanThread::GetStartData(void *out, uptr out_size) const { internal_memcpy(out, start_data_, out_size); } void AsanThread::TSDDtor(void *tsd) { AsanThreadContext *context = (AsanThreadContext *)tsd; VReport(1, "T%d TSDDtor\n", context->tid); if (context->thread) context->thread->Destroy(); } void AsanThread::Destroy() { int tid = this->tid(); VReport(1, "T%d exited\n", tid); bool was_running = (asanThreadRegistry().FinishThread(tid) == ThreadStatusRunning); if (was_running) { if (AsanThread *thread = GetCurrentThread()) CHECK_EQ(this, thread); malloc_storage().CommitBack(); if (common_flags()->use_sigaltstack) UnsetAlternateSignalStack(); FlushToDeadThreadStats(&stats_); // We also clear the shadow on thread destruction because // some code may still be executing in later TSD destructors // and we don't want it to have any poisoned stack. ClearShadowForThreadStackAndTLS(); DeleteFakeStack(tid); } else { CHECK_NE(this, GetCurrentThread()); } uptr size = RoundUpTo(sizeof(AsanThread), GetPageSizeCached()); UnmapOrDie(this, size); if (was_running) DTLS_Destroy(); } void AsanThread::StartSwitchFiber(FakeStack **fake_stack_save, uptr bottom, uptr size) { if (atomic_load(&stack_switching_, memory_order_relaxed)) { Report("ERROR: starting fiber switch while in fiber switch\n"); Die(); } next_stack_bottom_ = bottom; next_stack_top_ = bottom + size; atomic_store(&stack_switching_, 1, memory_order_release); FakeStack *current_fake_stack = fake_stack_; if (fake_stack_save) *fake_stack_save = fake_stack_; fake_stack_ = nullptr; SetTLSFakeStack(nullptr); // if fake_stack_save is null, the fiber will die, delete the fakestack if (!fake_stack_save && current_fake_stack) current_fake_stack->Destroy(this->tid()); } void AsanThread::FinishSwitchFiber(FakeStack *fake_stack_save, uptr *bottom_old, uptr *size_old) { if (!atomic_load(&stack_switching_, memory_order_relaxed)) { Report("ERROR: finishing a fiber switch that has not started\n"); Die(); } if (fake_stack_save) { SetTLSFakeStack(fake_stack_save); fake_stack_ = fake_stack_save; } if (bottom_old) *bottom_old = stack_bottom_; if (size_old) *size_old = stack_top_ - stack_bottom_; stack_bottom_ = next_stack_bottom_; stack_top_ = next_stack_top_; atomic_store(&stack_switching_, 0, memory_order_release); next_stack_top_ = 0; next_stack_bottom_ = 0; } inline AsanThread::StackBounds AsanThread::GetStackBounds() const { if (!atomic_load(&stack_switching_, memory_order_acquire)) { // Make sure the stack bounds are fully initialized. if (stack_bottom_ >= stack_top_) return {0, 0}; return {stack_bottom_, stack_top_}; } char local; const uptr cur_stack = (uptr)&local; // Note: need to check next stack first, because FinishSwitchFiber // may be in process of overwriting stack_top_/bottom_. But in such case // we are already on the next stack. if (cur_stack >= next_stack_bottom_ && cur_stack < next_stack_top_) return {next_stack_bottom_, next_stack_top_}; return {stack_bottom_, stack_top_}; } uptr AsanThread::stack_top() { return GetStackBounds().top; } uptr AsanThread::stack_bottom() { return GetStackBounds().bottom; } uptr AsanThread::stack_size() { const auto bounds = GetStackBounds(); return bounds.top - bounds.bottom; } // We want to create the FakeStack lazily on the first use, but not earlier // than the stack size is known and the procedure has to be async-signal safe. FakeStack *AsanThread::AsyncSignalSafeLazyInitFakeStack() { uptr stack_size = this->stack_size(); if (stack_size == 0) // stack_size is not yet available, don't use FakeStack. return nullptr; uptr old_val = 0; // fake_stack_ has 3 states: // 0 -- not initialized // 1 -- being initialized // ptr -- initialized // This CAS checks if the state was 0 and if so changes it to state 1, // if that was successful, it initializes the pointer. if (atomic_compare_exchange_strong( reinterpret_cast(&fake_stack_), &old_val, 1UL, memory_order_relaxed)) { uptr stack_size_log = Log2(RoundUpToPowerOfTwo(stack_size)); CHECK_LE(flags()->min_uar_stack_size_log, flags()->max_uar_stack_size_log); stack_size_log = Min(stack_size_log, static_cast(flags()->max_uar_stack_size_log)); stack_size_log = Max(stack_size_log, static_cast(flags()->min_uar_stack_size_log)); fake_stack_ = FakeStack::Create(stack_size_log); DCHECK_EQ(GetCurrentThread(), this); SetTLSFakeStack(fake_stack_); return fake_stack_; } return nullptr; } void AsanThread::Init(const InitOptions *options) { DCHECK_NE(tid(), kInvalidTid); next_stack_top_ = next_stack_bottom_ = 0; atomic_store(&stack_switching_, false, memory_order_release); CHECK_EQ(this->stack_size(), 0U); SetThreadStackAndTls(options); if (stack_top_ != stack_bottom_) { CHECK_GT(this->stack_size(), 0U); CHECK(AddrIsInMem(stack_bottom_)); CHECK(AddrIsInMem(stack_top_ - 1)); } ClearShadowForThreadStackAndTLS(); fake_stack_ = nullptr; if (__asan_option_detect_stack_use_after_return && tid() == GetCurrentTidOrInvalid()) { // AsyncSignalSafeLazyInitFakeStack makes use of threadlocals and must be // called from the context of the thread it is initializing, not its parent. // Most platforms call AsanThread::Init on the newly-spawned thread, but // Fuchsia calls this function from the parent thread. To support that // approach, we avoid calling AsyncSignalSafeLazyInitFakeStack here; it will // be called by the new thread when it first attempts to access the fake // stack. AsyncSignalSafeLazyInitFakeStack(); } int local = 0; VReport(1, "T%d: stack [%p,%p) size 0x%zx; local=%p\n", tid(), (void *)stack_bottom_, (void *)stack_top_, stack_top_ - stack_bottom_, (void *)&local); } // Fuchsia doesn't use ThreadStart. // asan_fuchsia.c definies CreateMainThread and SetThreadStackAndTls. #if !SANITIZER_FUCHSIA void AsanThread::ThreadStart(tid_t os_id) { Init(); asanThreadRegistry().StartThread(tid(), os_id, ThreadType::Regular, nullptr); if (common_flags()->use_sigaltstack) SetAlternateSignalStack(); } AsanThread *CreateMainThread() { AsanThread *main_thread = AsanThread::Create( /* parent_tid */ kMainTid, /* stack */ nullptr, /* detached */ true); SetCurrentThread(main_thread); main_thread->ThreadStart(internal_getpid()); return main_thread; } // This implementation doesn't use the argument, which is just passed down // from the caller of Init (which see, above). It's only there to support // OS-specific implementations that need more information passed through. void AsanThread::SetThreadStackAndTls(const InitOptions *options) { DCHECK_EQ(options, nullptr); uptr tls_size = 0; uptr stack_size = 0; GetThreadStackAndTls(tid() == kMainTid, &stack_bottom_, &stack_size, &tls_begin_, &tls_size); stack_top_ = RoundDownTo(stack_bottom_ + stack_size, ASAN_SHADOW_GRANULARITY); stack_bottom_ = RoundDownTo(stack_bottom_, ASAN_SHADOW_GRANULARITY); tls_end_ = tls_begin_ + tls_size; dtls_ = DTLS_Get(); if (stack_top_ != stack_bottom_) { int local; CHECK(AddrIsInStack((uptr)&local)); } } #endif // !SANITIZER_FUCHSIA void AsanThread::ClearShadowForThreadStackAndTLS() { if (stack_top_ != stack_bottom_) PoisonShadow(stack_bottom_, stack_top_ - stack_bottom_, 0); if (tls_begin_ != tls_end_) { uptr tls_begin_aligned = RoundDownTo(tls_begin_, ASAN_SHADOW_GRANULARITY); uptr tls_end_aligned = RoundUpTo(tls_end_, ASAN_SHADOW_GRANULARITY); FastPoisonShadow(tls_begin_aligned, tls_end_aligned - tls_begin_aligned, 0); } } bool AsanThread::GetStackFrameAccessByAddr(uptr addr, StackFrameAccess *access) { if (stack_top_ == stack_bottom_) return false; uptr bottom = 0; if (AddrIsInStack(addr)) { bottom = stack_bottom(); } else if (FakeStack *fake_stack = get_fake_stack()) { bottom = fake_stack->AddrIsInFakeStack(addr); CHECK(bottom); access->offset = addr - bottom; access->frame_pc = ((uptr *)bottom)[2]; access->frame_descr = (const char *)((uptr *)bottom)[1]; return true; } uptr aligned_addr = RoundDownTo(addr, SANITIZER_WORDSIZE / 8); // align addr. uptr mem_ptr = RoundDownTo(aligned_addr, ASAN_SHADOW_GRANULARITY); u8 *shadow_ptr = (u8 *)MemToShadow(aligned_addr); u8 *shadow_bottom = (u8 *)MemToShadow(bottom); while (shadow_ptr >= shadow_bottom && *shadow_ptr != kAsanStackLeftRedzoneMagic) { shadow_ptr--; mem_ptr -= ASAN_SHADOW_GRANULARITY; } while (shadow_ptr >= shadow_bottom && *shadow_ptr == kAsanStackLeftRedzoneMagic) { shadow_ptr--; mem_ptr -= ASAN_SHADOW_GRANULARITY; } if (shadow_ptr < shadow_bottom) { return false; } uptr *ptr = (uptr *)(mem_ptr + ASAN_SHADOW_GRANULARITY); CHECK(ptr[0] == kCurrentStackFrameMagic); access->offset = addr - (uptr)ptr; access->frame_pc = ptr[2]; access->frame_descr = (const char *)ptr[1]; return true; } uptr AsanThread::GetStackVariableShadowStart(uptr addr) { uptr bottom = 0; if (AddrIsInStack(addr)) { bottom = stack_bottom(); } else if (FakeStack *fake_stack = get_fake_stack()) { bottom = fake_stack->AddrIsInFakeStack(addr); if (bottom == 0) { return 0; } } else { return 0; } uptr aligned_addr = RoundDownTo(addr, SANITIZER_WORDSIZE / 8); // align addr. u8 *shadow_ptr = (u8 *)MemToShadow(aligned_addr); u8 *shadow_bottom = (u8 *)MemToShadow(bottom); while (shadow_ptr >= shadow_bottom && (*shadow_ptr != kAsanStackLeftRedzoneMagic && *shadow_ptr != kAsanStackMidRedzoneMagic && *shadow_ptr != kAsanStackRightRedzoneMagic)) shadow_ptr--; return (uptr)shadow_ptr + 1; } bool AsanThread::AddrIsInStack(uptr addr) { const auto bounds = GetStackBounds(); return addr >= bounds.bottom && addr < bounds.top; } static bool ThreadStackContainsAddress(ThreadContextBase *tctx_base, void *addr) { AsanThreadContext *tctx = static_cast(tctx_base); AsanThread *t = tctx->thread; if (!t) return false; if (t->AddrIsInStack((uptr)addr)) return true; FakeStack *fake_stack = t->get_fake_stack(); if (!fake_stack) return false; return fake_stack->AddrIsInFakeStack((uptr)addr); } AsanThread *GetCurrentThread() { AsanThreadContext *context = reinterpret_cast(AsanTSDGet()); if (!context) { if (SANITIZER_ANDROID) { // On Android, libc constructor is called _after_ asan_init, and cleans up // TSD. Try to figure out if this is still the main thread by the stack // address. We are not entirely sure that we have correct main thread // limits, so only do this magic on Android, and only if the found thread // is the main thread. AsanThreadContext *tctx = GetThreadContextByTidLocked(kMainTid); if (tctx && ThreadStackContainsAddress(tctx, &context)) { SetCurrentThread(tctx->thread); return tctx->thread; } } return nullptr; } return context->thread; } void SetCurrentThread(AsanThread *t) { CHECK(t->context()); VReport(2, "SetCurrentThread: %p for thread %p\n", (void *)t->context(), (void *)GetThreadSelf()); // Make sure we do not reset the current AsanThread. CHECK_EQ(0, AsanTSDGet()); AsanTSDSet(t->context()); CHECK_EQ(t->context(), AsanTSDGet()); } u32 GetCurrentTidOrInvalid() { AsanThread *t = GetCurrentThread(); return t ? t->tid() : kInvalidTid; } AsanThread *FindThreadByStackAddress(uptr addr) { asanThreadRegistry().CheckLocked(); AsanThreadContext *tctx = static_cast( asanThreadRegistry().FindThreadContextLocked(ThreadStackContainsAddress, (void *)addr)); return tctx ? tctx->thread : nullptr; } void EnsureMainThreadIDIsCorrect() { AsanThreadContext *context = reinterpret_cast(AsanTSDGet()); if (context && (context->tid == kMainTid)) context->os_id = GetTid(); } __asan::AsanThread *GetAsanThreadByOsIDLocked(tid_t os_id) { __asan::AsanThreadContext *context = static_cast<__asan::AsanThreadContext *>( __asan::asanThreadRegistry().FindThreadContextByOsIDLocked(os_id)); if (!context) return nullptr; return context->thread; } } // namespace __asan // --- Implementation of LSan-specific functions --- {{{1 namespace __lsan { void LockThreads() { __asan::asanThreadRegistry().Lock(); __asan::asanThreadArgRetval().Lock(); } void UnlockThreads() { __asan::asanThreadArgRetval().Unlock(); __asan::asanThreadRegistry().Unlock(); } static ThreadRegistry *GetAsanThreadRegistryLocked() { __asan::asanThreadRegistry().CheckLocked(); return &__asan::asanThreadRegistry(); } void EnsureMainThreadIDIsCorrect() { __asan::EnsureMainThreadIDIsCorrect(); } bool GetThreadRangesLocked(tid_t os_id, uptr *stack_begin, uptr *stack_end, uptr *tls_begin, uptr *tls_end, uptr *cache_begin, uptr *cache_end, DTLS **dtls) { __asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id); if (!t) return false; *stack_begin = t->stack_bottom(); *stack_end = t->stack_top(); *tls_begin = t->tls_begin(); *tls_end = t->tls_end(); // ASan doesn't keep allocator caches in TLS, so these are unused. *cache_begin = 0; *cache_end = 0; *dtls = t->dtls(); return true; } void GetAllThreadAllocatorCachesLocked(InternalMmapVector *caches) {} void GetThreadExtraStackRangesLocked(tid_t os_id, InternalMmapVector *ranges) { __asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id); if (!t) return; __asan::FakeStack *fake_stack = t->get_fake_stack(); if (!fake_stack) return; fake_stack->ForEachFakeFrame( [](uptr begin, uptr end, void *arg) { reinterpret_cast *>(arg)->push_back( {begin, end}); }, ranges); } void GetThreadExtraStackRangesLocked(InternalMmapVector *ranges) { GetAsanThreadRegistryLocked()->RunCallbackForEachThreadLocked( [](ThreadContextBase *tctx, void *arg) { GetThreadExtraStackRangesLocked( tctx->os_id, reinterpret_cast *>(arg)); }, ranges); } void GetAdditionalThreadContextPtrsLocked(InternalMmapVector *ptrs) { __asan::asanThreadArgRetval().GetAllPtrsLocked(ptrs); } void GetRunningThreadsLocked(InternalMmapVector *threads) { GetAsanThreadRegistryLocked()->RunCallbackForEachThreadLocked( [](ThreadContextBase *tctx, void *threads) { if (tctx->status == ThreadStatusRunning) reinterpret_cast *>(threads)->push_back( tctx->os_id); }, threads); } } // namespace __lsan // ---------------------- Interface ---------------- {{{1 using namespace __asan; extern "C" { SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_start_switch_fiber(void **fakestacksave, const void *bottom, uptr size) { AsanThread *t = GetCurrentThread(); if (!t) { VReport(1, "__asan_start_switch_fiber called from unknown thread\n"); return; } t->StartSwitchFiber((FakeStack **)fakestacksave, (uptr)bottom, size); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_finish_switch_fiber(void *fakestack, const void **bottom_old, uptr *size_old) { AsanThread *t = GetCurrentThread(); if (!t) { VReport(1, "__asan_finish_switch_fiber called from unknown thread\n"); return; } t->FinishSwitchFiber((FakeStack *)fakestack, (uptr *)bottom_old, (uptr *)size_old); } }