//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements extra semantic analysis beyond what is enforced // by the C type system. // //===----------------------------------------------------------------------===// #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/AttrIterator.h" #include "clang/AST/CharUnits.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/FormatString.h" #include "clang/AST/IgnoreExpr.h" #include "clang/AST/NSAPI.h" #include "clang/AST/NonTrivialTypeVisitor.h" #include "clang/AST/OperationKinds.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/Stmt.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/UnresolvedSet.h" #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/OpenCLOptions.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/SyncScope.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TargetCXXABI.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TypeTraits.h" #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Sema.h" #include "clang/Sema/SemaAMDGPU.h" #include "clang/Sema/SemaARM.h" #include "clang/Sema/SemaBPF.h" #include "clang/Sema/SemaHLSL.h" #include "clang/Sema/SemaHexagon.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/SemaLoongArch.h" #include "clang/Sema/SemaMIPS.h" #include "clang/Sema/SemaNVPTX.h" #include "clang/Sema/SemaObjC.h" #include "clang/Sema/SemaOpenCL.h" #include "clang/Sema/SemaPPC.h" #include "clang/Sema/SemaRISCV.h" #include "clang/Sema/SemaSystemZ.h" #include "clang/Sema/SemaWasm.h" #include "clang/Sema/SemaX86.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/Locale.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/RISCVTargetParser.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace clang; using namespace sema; SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const { return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, Context.getTargetInfo()); } static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A, Sema::FormatArgumentPassingKind B) { return (A << 8) | B; } bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) { unsigned ArgCount = Call->getNumArgs(); if (ArgCount >= MinArgCount) return false; return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args) << 0 /*function call*/ << MinArgCount << ArgCount << /*is non object*/ 0 << Call->getSourceRange(); } bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) { unsigned ArgCount = Call->getNumArgs(); if (ArgCount <= MaxArgCount) return false; return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most) << 0 /*function call*/ << MaxArgCount << ArgCount << /*is non object*/ 0 << Call->getSourceRange(); } bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount, unsigned MaxArgCount) { return checkArgCountAtLeast(Call, MinArgCount) || checkArgCountAtMost(Call, MaxArgCount); } bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) { unsigned ArgCount = Call->getNumArgs(); if (ArgCount == DesiredArgCount) return false; if (checkArgCountAtLeast(Call, DesiredArgCount)) return true; assert(ArgCount > DesiredArgCount && "should have diagnosed this"); // Highlight all the excess arguments. SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(), Call->getArg(ArgCount - 1)->getEndLoc()); return Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << DesiredArgCount << ArgCount << /*is non object*/ 0 << Call->getArg(1)->getSourceRange(); } static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) { bool HasError = false; for (unsigned I = 0; I < Call->getNumArgs(); ++I) { Expr *Arg = Call->getArg(I); if (Arg->isValueDependent()) continue; std::optional ArgString = Arg->tryEvaluateString(S.Context); int DiagMsgKind = -1; // Arguments must be pointers to constant strings and cannot use '$'. if (!ArgString.has_value()) DiagMsgKind = 0; else if (ArgString->find('$') != std::string::npos) DiagMsgKind = 1; if (DiagMsgKind >= 0) { S.Diag(Arg->getBeginLoc(), diag::err_builtin_verbose_trap_arg) << DiagMsgKind << Arg->getSourceRange(); HasError = true; } } return !HasError; } static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) { if (Value->isTypeDependent()) return false; InitializedEntity Entity = InitializedEntity::InitializeParameter(S.Context, Ty, false); ExprResult Result = S.PerformCopyInitialization(Entity, SourceLocation(), Value); if (Result.isInvalid()) return true; Value = Result.get(); return false; } /// Check that the first argument to __builtin_annotation is an integer /// and the second argument is a non-wide string literal. static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) { if (S.checkArgCount(TheCall, 2)) return true; // First argument should be an integer. Expr *ValArg = TheCall->getArg(0); QualType Ty = ValArg->getType(); if (!Ty->isIntegerType()) { S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) << ValArg->getSourceRange(); return true; } // Second argument should be a constant string. Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); StringLiteral *Literal = dyn_cast(StrArg); if (!Literal || !Literal->isOrdinary()) { S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) << StrArg->getSourceRange(); return true; } TheCall->setType(Ty); return false; } static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { // We need at least one argument. if (TheCall->getNumArgs() < 1) { S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 << TheCall->getCallee()->getSourceRange(); return true; } // All arguments should be wide string literals. for (Expr *Arg : TheCall->arguments()) { auto *Literal = dyn_cast(Arg->IgnoreParenCasts()); if (!Literal || !Literal->isWide()) { S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) << Arg->getSourceRange(); return true; } } return false; } /// Check that the argument to __builtin_addressof is a glvalue, and set the /// result type to the corresponding pointer type. static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) { if (S.checkArgCount(TheCall, 1)) return true; ExprResult Arg(TheCall->getArg(0)); QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); if (ResultType.isNull()) return true; TheCall->setArg(0, Arg.get()); TheCall->setType(ResultType); return false; } /// Check that the argument to __builtin_function_start is a function. static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) { if (S.checkArgCount(TheCall, 1)) return true; ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); if (Arg.isInvalid()) return true; TheCall->setArg(0, Arg.get()); const FunctionDecl *FD = dyn_cast_or_null( Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext())); if (!FD) { S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type) << TheCall->getSourceRange(); return true; } return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, TheCall->getBeginLoc()); } /// Check the number of arguments and set the result type to /// the argument type. static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) { if (S.checkArgCount(TheCall, 1)) return true; TheCall->setType(TheCall->getArg(0)->getType()); return false; } /// Check that the value argument for __builtin_is_aligned(value, alignment) and /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer /// type (but not a function pointer) and that the alignment is a power-of-two. static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { if (S.checkArgCount(TheCall, 2)) return true; clang::Expr *Source = TheCall->getArg(0); bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; auto IsValidIntegerType = [](QualType Ty) { return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); }; QualType SrcTy = Source->getType(); // We should also be able to use it with arrays (but not functions!). if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { SrcTy = S.Context.getDecayedType(SrcTy); } if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || SrcTy->isFunctionPointerType()) { // FIXME: this is not quite the right error message since we don't allow // floating point types, or member pointers. S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) << SrcTy; return true; } clang::Expr *AlignOp = TheCall->getArg(1); if (!IsValidIntegerType(AlignOp->getType())) { S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) << AlignOp->getType(); return true; } Expr::EvalResult AlignResult; unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; // We can't check validity of alignment if it is value dependent. if (!AlignOp->isValueDependent() && AlignOp->EvaluateAsInt(AlignResult, S.Context, Expr::SE_AllowSideEffects)) { llvm::APSInt AlignValue = AlignResult.Val.getInt(); llvm::APSInt MaxValue( llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); if (AlignValue < 1) { S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; return true; } if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) << toString(MaxValue, 10); return true; } if (!AlignValue.isPowerOf2()) { S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); return true; } if (AlignValue == 1) { S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) << IsBooleanAlignBuiltin; } } ExprResult SrcArg = S.PerformCopyInitialization( InitializedEntity::InitializeParameter(S.Context, SrcTy, false), SourceLocation(), Source); if (SrcArg.isInvalid()) return true; TheCall->setArg(0, SrcArg.get()); ExprResult AlignArg = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( S.Context, AlignOp->getType(), false), SourceLocation(), AlignOp); if (AlignArg.isInvalid()) return true; TheCall->setArg(1, AlignArg.get()); // For align_up/align_down, the return type is the same as the (potentially // decayed) argument type including qualifiers. For is_aligned(), the result // is always bool. TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); return false; } static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) { if (S.checkArgCount(TheCall, 3)) return true; std::pair Builtins[] = { { Builtin::BI__builtin_add_overflow, "ckd_add" }, { Builtin::BI__builtin_sub_overflow, "ckd_sub" }, { Builtin::BI__builtin_mul_overflow, "ckd_mul" }, }; bool CkdOperation = llvm::any_of(Builtins, [&](const std::pair &P) { return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() && Lexer::getImmediateMacroName(TheCall->getExprLoc(), S.getSourceManager(), S.getLangOpts()) == P.second; }); auto ValidCkdIntType = [](QualType QT) { // A valid checked integer type is an integer type other than a plain char, // bool, a bit-precise type, or an enumeration type. if (const auto *BT = QT.getCanonicalType()->getAs()) return (BT->getKind() >= BuiltinType::Short && BT->getKind() <= BuiltinType::Int128) || ( BT->getKind() >= BuiltinType::UShort && BT->getKind() <= BuiltinType::UInt128) || BT->getKind() == BuiltinType::UChar || BT->getKind() == BuiltinType::SChar; return false; }; // First two arguments should be integers. for (unsigned I = 0; I < 2; ++I) { ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); if (Arg.isInvalid()) return true; TheCall->setArg(I, Arg.get()); QualType Ty = Arg.get()->getType(); bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType(); if (!IsValid) { S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) << CkdOperation << Ty << Arg.get()->getSourceRange(); return true; } } // Third argument should be a pointer to a non-const integer. // IRGen correctly handles volatile, restrict, and address spaces, and // the other qualifiers aren't possible. { ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); if (Arg.isInvalid()) return true; TheCall->setArg(2, Arg.get()); QualType Ty = Arg.get()->getType(); const auto *PtrTy = Ty->getAs(); if (!PtrTy || !PtrTy->getPointeeType()->isIntegerType() || (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) || PtrTy->getPointeeType().isConstQualified()) { S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_ptr_int) << CkdOperation << Ty << Arg.get()->getSourceRange(); return true; } } // Disallow signed bit-precise integer args larger than 128 bits to mul // function until we improve backend support. if (BuiltinID == Builtin::BI__builtin_mul_overflow) { for (unsigned I = 0; I < 3; ++I) { const auto Arg = TheCall->getArg(I); // Third argument will be a pointer. auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); if (Ty->isBitIntType() && Ty->isSignedIntegerType() && S.getASTContext().getIntWidth(Ty) > 128) return S.Diag(Arg->getBeginLoc(), diag::err_overflow_builtin_bit_int_max_size) << 128; } } return false; } namespace { struct BuiltinDumpStructGenerator { Sema &S; CallExpr *TheCall; SourceLocation Loc = TheCall->getBeginLoc(); SmallVector Actions; DiagnosticErrorTrap ErrorTracker; PrintingPolicy Policy; BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall) : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()), Policy(S.Context.getPrintingPolicy()) { Policy.AnonymousTagLocations = false; } Expr *makeOpaqueValueExpr(Expr *Inner) { auto *OVE = new (S.Context) OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(), Inner->getObjectKind(), Inner); Actions.push_back(OVE); return OVE; } Expr *getStringLiteral(llvm::StringRef Str) { Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str); // Wrap the literal in parentheses to attach a source location. return new (S.Context) ParenExpr(Loc, Loc, Lit); } bool callPrintFunction(llvm::StringRef Format, llvm::ArrayRef Exprs = {}) { SmallVector Args; assert(TheCall->getNumArgs() >= 2); Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size()); Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end()); Args.push_back(getStringLiteral(Format)); Args.insert(Args.end(), Exprs.begin(), Exprs.end()); // Register a note to explain why we're performing the call. Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall; Ctx.PointOfInstantiation = Loc; Ctx.CallArgs = Args.data(); Ctx.NumCallArgs = Args.size(); S.pushCodeSynthesisContext(Ctx); ExprResult RealCall = S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1), TheCall->getBeginLoc(), Args, TheCall->getRParenLoc()); S.popCodeSynthesisContext(); if (!RealCall.isInvalid()) Actions.push_back(RealCall.get()); // Bail out if we've hit any errors, even if we managed to build the // call. We don't want to produce more than one error. return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred(); } Expr *getIndentString(unsigned Depth) { if (!Depth) return nullptr; llvm::SmallString<32> Indent; Indent.resize(Depth * Policy.Indentation, ' '); return getStringLiteral(Indent); } Expr *getTypeString(QualType T) { return getStringLiteral(T.getAsString(Policy)); } bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl &Str) { llvm::raw_svector_ostream OS(Str); // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather // than trying to print a single character. if (auto *BT = T->getAs()) { switch (BT->getKind()) { case BuiltinType::Bool: OS << "%d"; return true; case BuiltinType::Char_U: case BuiltinType::UChar: OS << "%hhu"; return true; case BuiltinType::Char_S: case BuiltinType::SChar: OS << "%hhd"; return true; default: break; } } analyze_printf::PrintfSpecifier Specifier; if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) { // We were able to guess how to format this. if (Specifier.getConversionSpecifier().getKind() == analyze_printf::PrintfConversionSpecifier::sArg) { // Wrap double-quotes around a '%s' specifier and limit its maximum // length. Ideally we'd also somehow escape special characters in the // contents but printf doesn't support that. // FIXME: '%s' formatting is not safe in general. OS << '"'; Specifier.setPrecision(analyze_printf::OptionalAmount(32u)); Specifier.toString(OS); OS << '"'; // FIXME: It would be nice to include a '...' if the string doesn't fit // in the length limit. } else { Specifier.toString(OS); } return true; } if (T->isPointerType()) { // Format all pointers with '%p'. OS << "%p"; return true; } return false; } bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) { Expr *IndentLit = getIndentString(Depth); Expr *TypeLit = getTypeString(S.Context.getRecordType(RD)); if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit}) : callPrintFunction("%s", {TypeLit})) return true; return dumpRecordValue(RD, E, IndentLit, Depth); } // Dump a record value. E should be a pointer or lvalue referring to an RD. bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent, unsigned Depth) { // FIXME: Decide what to do if RD is a union. At least we should probably // turn off printing `const char*` members with `%s`, because that is very // likely to crash if that's not the active member. Whatever we decide, we // should document it. // Build an OpaqueValueExpr so we can refer to E more than once without // triggering re-evaluation. Expr *RecordArg = makeOpaqueValueExpr(E); bool RecordArgIsPtr = RecordArg->getType()->isPointerType(); if (callPrintFunction(" {\n")) return true; // Dump each base class, regardless of whether they're aggregates. if (const auto *CXXRD = dyn_cast(RD)) { for (const auto &Base : CXXRD->bases()) { QualType BaseType = RecordArgIsPtr ? S.Context.getPointerType(Base.getType()) : S.Context.getLValueReferenceType(Base.getType()); ExprResult BasePtr = S.BuildCStyleCastExpr( Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc, RecordArg); if (BasePtr.isInvalid() || dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(), Depth + 1)) return true; } } Expr *FieldIndentArg = getIndentString(Depth + 1); // Dump each field. for (auto *D : RD->decls()) { auto *IFD = dyn_cast(D); auto *FD = IFD ? IFD->getAnonField() : dyn_cast(D); if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion()) continue; llvm::SmallString<20> Format = llvm::StringRef("%s%s %s "); llvm::SmallVector Args = {FieldIndentArg, getTypeString(FD->getType()), getStringLiteral(FD->getName())}; if (FD->isBitField()) { Format += ": %zu "; QualType SizeT = S.Context.getSizeType(); llvm::APInt BitWidth(S.Context.getIntWidth(SizeT), FD->getBitWidthValue(S.Context)); Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc)); } Format += "="; ExprResult Field = IFD ? S.BuildAnonymousStructUnionMemberReference( CXXScopeSpec(), Loc, IFD, DeclAccessPair::make(IFD, AS_public), RecordArg, Loc) : S.BuildFieldReferenceExpr( RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD, DeclAccessPair::make(FD, AS_public), DeclarationNameInfo(FD->getDeclName(), Loc)); if (Field.isInvalid()) return true; auto *InnerRD = FD->getType()->getAsRecordDecl(); auto *InnerCXXRD = dyn_cast_or_null(InnerRD); if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) { // Recursively print the values of members of aggregate record type. if (callPrintFunction(Format, Args) || dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1)) return true; } else { Format += " "; if (appendFormatSpecifier(FD->getType(), Format)) { // We know how to print this field. Args.push_back(Field.get()); } else { // We don't know how to print this field. Print out its address // with a format specifier that a smart tool will be able to // recognize and treat specially. Format += "*%p"; ExprResult FieldAddr = S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get()); if (FieldAddr.isInvalid()) return true; Args.push_back(FieldAddr.get()); } Format += "\n"; if (callPrintFunction(Format, Args)) return true; } } return RecordIndent ? callPrintFunction("%s}\n", RecordIndent) : callPrintFunction("}\n"); } Expr *buildWrapper() { auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions, PseudoObjectExpr::NoResult); TheCall->setType(Wrapper->getType()); TheCall->setValueKind(Wrapper->getValueKind()); return Wrapper; } }; } // namespace static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) { if (S.checkArgCountAtLeast(TheCall, 2)) return ExprError(); ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0)); if (PtrArgResult.isInvalid()) return ExprError(); TheCall->setArg(0, PtrArgResult.get()); // First argument should be a pointer to a struct. QualType PtrArgType = PtrArgResult.get()->getType(); if (!PtrArgType->isPointerType() || !PtrArgType->getPointeeType()->isRecordType()) { S.Diag(PtrArgResult.get()->getBeginLoc(), diag::err_expected_struct_pointer_argument) << 1 << TheCall->getDirectCallee() << PtrArgType; return ExprError(); } QualType Pointee = PtrArgType->getPointeeType(); const RecordDecl *RD = Pointee->getAsRecordDecl(); // Try to instantiate the class template as appropriate; otherwise, access to // its data() may lead to a crash. if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee, diag::err_incomplete_type)) return ExprError(); // Second argument is a callable, but we can't fully validate it until we try // calling it. QualType FnArgType = TheCall->getArg(1)->getType(); if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() && !FnArgType->isBlockPointerType() && !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) { auto *BT = FnArgType->getAs(); switch (BT ? BT->getKind() : BuiltinType::Void) { case BuiltinType::Dependent: case BuiltinType::Overload: case BuiltinType::BoundMember: case BuiltinType::PseudoObject: case BuiltinType::UnknownAny: case BuiltinType::BuiltinFn: // This might be a callable. break; default: S.Diag(TheCall->getArg(1)->getBeginLoc(), diag::err_expected_callable_argument) << 2 << TheCall->getDirectCallee() << FnArgType; return ExprError(); } } BuiltinDumpStructGenerator Generator(S, TheCall); // Wrap parentheses around the given pointer. This is not necessary for // correct code generation, but it means that when we pretty-print the call // arguments in our diagnostics we will produce '(&s)->n' instead of the // incorrect '&s->n'. Expr *PtrArg = PtrArgResult.get(); PtrArg = new (S.Context) ParenExpr(PtrArg->getBeginLoc(), S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg); if (Generator.dumpUnnamedRecord(RD, PtrArg, 0)) return ExprError(); return Generator.buildWrapper(); } static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { if (S.checkArgCount(BuiltinCall, 2)) return true; SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); Expr *Call = BuiltinCall->getArg(0); Expr *Chain = BuiltinCall->getArg(1); if (Call->getStmtClass() != Stmt::CallExprClass) { S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) << Call->getSourceRange(); return true; } auto CE = cast(Call); if (CE->getCallee()->getType()->isBlockPointerType()) { S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) << Call->getSourceRange(); return true; } const Decl *TargetDecl = CE->getCalleeDecl(); if (const FunctionDecl *FD = dyn_cast_or_null(TargetDecl)) if (FD->getBuiltinID()) { S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) << Call->getSourceRange(); return true; } if (isa(CE->getCallee()->IgnoreParens())) { S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) << Call->getSourceRange(); return true; } ExprResult ChainResult = S.UsualUnaryConversions(Chain); if (ChainResult.isInvalid()) return true; if (!ChainResult.get()->getType()->isPointerType()) { S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) << Chain->getSourceRange(); return true; } QualType ReturnTy = CE->getCallReturnType(S.Context); QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; QualType BuiltinTy = S.Context.getFunctionType( ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); Builtin = S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); BuiltinCall->setType(CE->getType()); BuiltinCall->setValueKind(CE->getValueKind()); BuiltinCall->setObjectKind(CE->getObjectKind()); BuiltinCall->setCallee(Builtin); BuiltinCall->setArg(1, ChainResult.get()); return false; } namespace { class ScanfDiagnosticFormatHandler : public analyze_format_string::FormatStringHandler { // Accepts the argument index (relative to the first destination index) of the // argument whose size we want. using ComputeSizeFunction = llvm::function_ref(unsigned)>; // Accepts the argument index (relative to the first destination index), the // destination size, and the source size). using DiagnoseFunction = llvm::function_ref; ComputeSizeFunction ComputeSizeArgument; DiagnoseFunction Diagnose; public: ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument, DiagnoseFunction Diagnose) : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {} bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, const char *StartSpecifier, unsigned specifierLen) override { if (!FS.consumesDataArgument()) return true; unsigned NulByte = 0; switch ((FS.getConversionSpecifier().getKind())) { default: return true; case analyze_format_string::ConversionSpecifier::sArg: case analyze_format_string::ConversionSpecifier::ScanListArg: NulByte = 1; break; case analyze_format_string::ConversionSpecifier::cArg: break; } analyze_format_string::OptionalAmount FW = FS.getFieldWidth(); if (FW.getHowSpecified() != analyze_format_string::OptionalAmount::HowSpecified::Constant) return true; unsigned SourceSize = FW.getConstantAmount() + NulByte; std::optional DestSizeAPS = ComputeSizeArgument(FS.getArgIndex()); if (!DestSizeAPS) return true; unsigned DestSize = DestSizeAPS->getZExtValue(); if (DestSize < SourceSize) Diagnose(FS.getArgIndex(), DestSize, SourceSize); return true; } }; class EstimateSizeFormatHandler : public analyze_format_string::FormatStringHandler { size_t Size; /// Whether the format string contains Linux kernel's format specifier /// extension. bool IsKernelCompatible = true; public: EstimateSizeFormatHandler(StringRef Format) : Size(std::min(Format.find(0), Format.size()) + 1 /* null byte always written by sprintf */) {} bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, const char *, unsigned SpecifierLen, const TargetInfo &) override { const size_t FieldWidth = computeFieldWidth(FS); const size_t Precision = computePrecision(FS); // The actual format. switch (FS.getConversionSpecifier().getKind()) { // Just a char. case analyze_format_string::ConversionSpecifier::cArg: case analyze_format_string::ConversionSpecifier::CArg: Size += std::max(FieldWidth, (size_t)1); break; // Just an integer. case analyze_format_string::ConversionSpecifier::dArg: case analyze_format_string::ConversionSpecifier::DArg: case analyze_format_string::ConversionSpecifier::iArg: case analyze_format_string::ConversionSpecifier::oArg: case analyze_format_string::ConversionSpecifier::OArg: case analyze_format_string::ConversionSpecifier::uArg: case analyze_format_string::ConversionSpecifier::UArg: case analyze_format_string::ConversionSpecifier::xArg: case analyze_format_string::ConversionSpecifier::XArg: Size += std::max(FieldWidth, Precision); break; // %g style conversion switches between %f or %e style dynamically. // %g removes trailing zeros, and does not print decimal point if there are // no digits that follow it. Thus %g can print a single digit. // FIXME: If it is alternative form: // For g and G conversions, trailing zeros are not removed from the result. case analyze_format_string::ConversionSpecifier::gArg: case analyze_format_string::ConversionSpecifier::GArg: Size += 1; break; // Floating point number in the form '[+]ddd.ddd'. case analyze_format_string::ConversionSpecifier::fArg: case analyze_format_string::ConversionSpecifier::FArg: Size += std::max(FieldWidth, 1 /* integer part */ + (Precision ? 1 + Precision : 0) /* period + decimal */); break; // Floating point number in the form '[-]d.ddde[+-]dd'. case analyze_format_string::ConversionSpecifier::eArg: case analyze_format_string::ConversionSpecifier::EArg: Size += std::max(FieldWidth, 1 /* integer part */ + (Precision ? 1 + Precision : 0) /* period + decimal */ + 1 /* e or E letter */ + 2 /* exponent */); break; // Floating point number in the form '[-]0xh.hhhhp±dd'. case analyze_format_string::ConversionSpecifier::aArg: case analyze_format_string::ConversionSpecifier::AArg: Size += std::max(FieldWidth, 2 /* 0x */ + 1 /* integer part */ + (Precision ? 1 + Precision : 0) /* period + decimal */ + 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); break; // Just a string. case analyze_format_string::ConversionSpecifier::sArg: case analyze_format_string::ConversionSpecifier::SArg: Size += FieldWidth; break; // Just a pointer in the form '0xddd'. case analyze_format_string::ConversionSpecifier::pArg: // Linux kernel has its own extesion for `%p` specifier. // Kernel Document: // https://docs.kernel.org/core-api/printk-formats.html#pointer-types IsKernelCompatible = false; Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); break; // A plain percent. case analyze_format_string::ConversionSpecifier::PercentArg: Size += 1; break; default: break; } Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); if (FS.hasAlternativeForm()) { switch (FS.getConversionSpecifier().getKind()) { // For o conversion, it increases the precision, if and only if necessary, // to force the first digit of the result to be a zero // (if the value and precision are both 0, a single 0 is printed) case analyze_format_string::ConversionSpecifier::oArg: // For b conversion, a nonzero result has 0b prefixed to it. case analyze_format_string::ConversionSpecifier::bArg: // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to // it. case analyze_format_string::ConversionSpecifier::xArg: case analyze_format_string::ConversionSpecifier::XArg: // Note: even when the prefix is added, if // (prefix_width <= FieldWidth - formatted_length) holds, // the prefix does not increase the format // size. e.g.(("%#3x", 0xf) is "0xf") // If the result is zero, o, b, x, X adds nothing. break; // For a, A, e, E, f, F, g, and G conversions, // the result of converting a floating-point number always contains a // decimal-point case analyze_format_string::ConversionSpecifier::aArg: case analyze_format_string::ConversionSpecifier::AArg: case analyze_format_string::ConversionSpecifier::eArg: case analyze_format_string::ConversionSpecifier::EArg: case analyze_format_string::ConversionSpecifier::fArg: case analyze_format_string::ConversionSpecifier::FArg: case analyze_format_string::ConversionSpecifier::gArg: case analyze_format_string::ConversionSpecifier::GArg: Size += (Precision ? 0 : 1); break; // For other conversions, the behavior is undefined. default: break; } } assert(SpecifierLen <= Size && "no underflow"); Size -= SpecifierLen; return true; } size_t getSizeLowerBound() const { return Size; } bool isKernelCompatible() const { return IsKernelCompatible; } private: static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); size_t FieldWidth = 0; if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) FieldWidth = FW.getConstantAmount(); return FieldWidth; } static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); size_t Precision = 0; // See man 3 printf for default precision value based on the specifier. switch (FW.getHowSpecified()) { case analyze_format_string::OptionalAmount::NotSpecified: switch (FS.getConversionSpecifier().getKind()) { default: break; case analyze_format_string::ConversionSpecifier::dArg: // %d case analyze_format_string::ConversionSpecifier::DArg: // %D case analyze_format_string::ConversionSpecifier::iArg: // %i Precision = 1; break; case analyze_format_string::ConversionSpecifier::oArg: // %d case analyze_format_string::ConversionSpecifier::OArg: // %D case analyze_format_string::ConversionSpecifier::uArg: // %d case analyze_format_string::ConversionSpecifier::UArg: // %D case analyze_format_string::ConversionSpecifier::xArg: // %d case analyze_format_string::ConversionSpecifier::XArg: // %D Precision = 1; break; case analyze_format_string::ConversionSpecifier::fArg: // %f case analyze_format_string::ConversionSpecifier::FArg: // %F case analyze_format_string::ConversionSpecifier::eArg: // %e case analyze_format_string::ConversionSpecifier::EArg: // %E case analyze_format_string::ConversionSpecifier::gArg: // %g case analyze_format_string::ConversionSpecifier::GArg: // %G Precision = 6; break; case analyze_format_string::ConversionSpecifier::pArg: // %d Precision = 1; break; } break; case analyze_format_string::OptionalAmount::Constant: Precision = FW.getConstantAmount(); break; default: break; } return Precision; } }; } // namespace static bool ProcessFormatStringLiteral(const Expr *FormatExpr, StringRef &FormatStrRef, size_t &StrLen, ASTContext &Context) { if (const auto *Format = dyn_cast(FormatExpr); Format && (Format->isOrdinary() || Format->isUTF8())) { FormatStrRef = Format->getString(); const ConstantArrayType *T = Context.getAsConstantArrayType(Format->getType()); assert(T && "String literal not of constant array type!"); size_t TypeSize = T->getZExtSize(); // In case there's a null byte somewhere. StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); return true; } return false; } void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall) { if (TheCall->isValueDependent() || TheCall->isTypeDependent() || isConstantEvaluatedContext()) return; bool UseDABAttr = false; const FunctionDecl *UseDecl = FD; const auto *DABAttr = FD->getAttr(); if (DABAttr) { UseDecl = DABAttr->getFunction(); assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!"); UseDABAttr = true; } unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true); if (!BuiltinID) return; const TargetInfo &TI = getASTContext().getTargetInfo(); unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); auto TranslateIndex = [&](unsigned Index) -> std::optional { // If we refer to a diagnose_as_builtin attribute, we need to change the // argument index to refer to the arguments of the called function. Unless // the index is out of bounds, which presumably means it's a variadic // function. if (!UseDABAttr) return Index; unsigned DABIndices = DABAttr->argIndices_size(); unsigned NewIndex = Index < DABIndices ? DABAttr->argIndices_begin()[Index] : Index - DABIndices + FD->getNumParams(); if (NewIndex >= TheCall->getNumArgs()) return std::nullopt; return NewIndex; }; auto ComputeExplicitObjectSizeArgument = [&](unsigned Index) -> std::optional { std::optional IndexOptional = TranslateIndex(Index); if (!IndexOptional) return std::nullopt; unsigned NewIndex = *IndexOptional; Expr::EvalResult Result; Expr *SizeArg = TheCall->getArg(NewIndex); if (!SizeArg->EvaluateAsInt(Result, getASTContext())) return std::nullopt; llvm::APSInt Integer = Result.Val.getInt(); Integer.setIsUnsigned(true); return Integer; }; auto ComputeSizeArgument = [&](unsigned Index) -> std::optional { // If the parameter has a pass_object_size attribute, then we should use its // (potentially) more strict checking mode. Otherwise, conservatively assume // type 0. int BOSType = 0; // This check can fail for variadic functions. if (Index < FD->getNumParams()) { if (const auto *POS = FD->getParamDecl(Index)->getAttr()) BOSType = POS->getType(); } std::optional IndexOptional = TranslateIndex(Index); if (!IndexOptional) return std::nullopt; unsigned NewIndex = *IndexOptional; if (NewIndex >= TheCall->getNumArgs()) return std::nullopt; const Expr *ObjArg = TheCall->getArg(NewIndex); uint64_t Result; if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) return std::nullopt; // Get the object size in the target's size_t width. return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); }; auto ComputeStrLenArgument = [&](unsigned Index) -> std::optional { std::optional IndexOptional = TranslateIndex(Index); if (!IndexOptional) return std::nullopt; unsigned NewIndex = *IndexOptional; const Expr *ObjArg = TheCall->getArg(NewIndex); uint64_t Result; if (!ObjArg->tryEvaluateStrLen(Result, getASTContext())) return std::nullopt; // Add 1 for null byte. return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth); }; std::optional SourceSize; std::optional DestinationSize; unsigned DiagID = 0; bool IsChkVariant = false; auto GetFunctionName = [&]() { StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); // Skim off the details of whichever builtin was called to produce a better // diagnostic, as it's unlikely that the user wrote the __builtin // explicitly. if (IsChkVariant) { FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); FunctionName = FunctionName.drop_back(std::strlen("_chk")); } else { FunctionName.consume_front("__builtin_"); } return FunctionName; }; switch (BuiltinID) { default: return; case Builtin::BI__builtin_strcpy: case Builtin::BIstrcpy: { DiagID = diag::warn_fortify_strlen_overflow; SourceSize = ComputeStrLenArgument(1); DestinationSize = ComputeSizeArgument(0); break; } case Builtin::BI__builtin___strcpy_chk: { DiagID = diag::warn_fortify_strlen_overflow; SourceSize = ComputeStrLenArgument(1); DestinationSize = ComputeExplicitObjectSizeArgument(2); IsChkVariant = true; break; } case Builtin::BIscanf: case Builtin::BIfscanf: case Builtin::BIsscanf: { unsigned FormatIndex = 1; unsigned DataIndex = 2; if (BuiltinID == Builtin::BIscanf) { FormatIndex = 0; DataIndex = 1; } const auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); StringRef FormatStrRef; size_t StrLen; if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) return; auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize, unsigned SourceSize) { DiagID = diag::warn_fortify_scanf_overflow; unsigned Index = ArgIndex + DataIndex; StringRef FunctionName = GetFunctionName(); DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall, PDiag(DiagID) << FunctionName << (Index + 1) << DestSize << SourceSize); }; auto ShiftedComputeSizeArgument = [&](unsigned Index) { return ComputeSizeArgument(Index + DataIndex); }; ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose); const char *FormatBytes = FormatStrRef.data(); analyze_format_string::ParseScanfString(H, FormatBytes, FormatBytes + StrLen, getLangOpts(), Context.getTargetInfo()); // Unlike the other cases, in this one we have already issued the diagnostic // here, so no need to continue (because unlike the other cases, here the // diagnostic refers to the argument number). return; } case Builtin::BIsprintf: case Builtin::BI__builtin___sprintf_chk: { size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); StringRef FormatStrRef; size_t StrLen; if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { EstimateSizeFormatHandler H(FormatStrRef); const char *FormatBytes = FormatStrRef.data(); if (!analyze_format_string::ParsePrintfString( H, FormatBytes, FormatBytes + StrLen, getLangOpts(), Context.getTargetInfo(), false)) { DiagID = H.isKernelCompatible() ? diag::warn_format_overflow : diag::warn_format_overflow_non_kprintf; SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) .extOrTrunc(SizeTypeWidth); if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { DestinationSize = ComputeExplicitObjectSizeArgument(2); IsChkVariant = true; } else { DestinationSize = ComputeSizeArgument(0); } break; } } return; } case Builtin::BI__builtin___memcpy_chk: case Builtin::BI__builtin___memmove_chk: case Builtin::BI__builtin___memset_chk: case Builtin::BI__builtin___strlcat_chk: case Builtin::BI__builtin___strlcpy_chk: case Builtin::BI__builtin___strncat_chk: case Builtin::BI__builtin___strncpy_chk: case Builtin::BI__builtin___stpncpy_chk: case Builtin::BI__builtin___memccpy_chk: case Builtin::BI__builtin___mempcpy_chk: { DiagID = diag::warn_builtin_chk_overflow; SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2); DestinationSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); IsChkVariant = true; break; } case Builtin::BI__builtin___snprintf_chk: case Builtin::BI__builtin___vsnprintf_chk: { DiagID = diag::warn_builtin_chk_overflow; SourceSize = ComputeExplicitObjectSizeArgument(1); DestinationSize = ComputeExplicitObjectSizeArgument(3); IsChkVariant = true; break; } case Builtin::BIstrncat: case Builtin::BI__builtin_strncat: case Builtin::BIstrncpy: case Builtin::BI__builtin_strncpy: case Builtin::BIstpncpy: case Builtin::BI__builtin_stpncpy: { // Whether these functions overflow depends on the runtime strlen of the // string, not just the buffer size, so emitting the "always overflow" // diagnostic isn't quite right. We should still diagnose passing a buffer // size larger than the destination buffer though; this is a runtime abort // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. DiagID = diag::warn_fortify_source_size_mismatch; SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); DestinationSize = ComputeSizeArgument(0); break; } case Builtin::BImemcpy: case Builtin::BI__builtin_memcpy: case Builtin::BImemmove: case Builtin::BI__builtin_memmove: case Builtin::BImemset: case Builtin::BI__builtin_memset: case Builtin::BImempcpy: case Builtin::BI__builtin_mempcpy: { DiagID = diag::warn_fortify_source_overflow; SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); DestinationSize = ComputeSizeArgument(0); break; } case Builtin::BIsnprintf: case Builtin::BI__builtin_snprintf: case Builtin::BIvsnprintf: case Builtin::BI__builtin_vsnprintf: { DiagID = diag::warn_fortify_source_size_mismatch; SourceSize = ComputeExplicitObjectSizeArgument(1); const auto *FormatExpr = TheCall->getArg(2)->IgnoreParenImpCasts(); StringRef FormatStrRef; size_t StrLen; if (SourceSize && ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { EstimateSizeFormatHandler H(FormatStrRef); const char *FormatBytes = FormatStrRef.data(); if (!analyze_format_string::ParsePrintfString( H, FormatBytes, FormatBytes + StrLen, getLangOpts(), Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) { llvm::APSInt FormatSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) .extOrTrunc(SizeTypeWidth); if (FormatSize > *SourceSize && *SourceSize != 0) { unsigned TruncationDiagID = H.isKernelCompatible() ? diag::warn_format_truncation : diag::warn_format_truncation_non_kprintf; SmallString<16> SpecifiedSizeStr; SmallString<16> FormatSizeStr; SourceSize->toString(SpecifiedSizeStr, /*Radix=*/10); FormatSize.toString(FormatSizeStr, /*Radix=*/10); DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, PDiag(TruncationDiagID) << GetFunctionName() << SpecifiedSizeStr << FormatSizeStr); } } } DestinationSize = ComputeSizeArgument(0); } } if (!SourceSize || !DestinationSize || llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0) return; StringRef FunctionName = GetFunctionName(); SmallString<16> DestinationStr; SmallString<16> SourceStr; DestinationSize->toString(DestinationStr, /*Radix=*/10); SourceSize->toString(SourceStr, /*Radix=*/10); DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, PDiag(DiagID) << FunctionName << DestinationStr << SourceStr); } static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, Scope::ScopeFlags NeededScopeFlags, unsigned DiagID) { // Scopes aren't available during instantiation. Fortunately, builtin // functions cannot be template args so they cannot be formed through template // instantiation. Therefore checking once during the parse is sufficient. if (SemaRef.inTemplateInstantiation()) return false; Scope *S = SemaRef.getCurScope(); while (S && !S->isSEHExceptScope()) S = S->getParent(); if (!S || !(S->getFlags() & NeededScopeFlags)) { auto *DRE = cast(TheCall->getCallee()->IgnoreParenCasts()); SemaRef.Diag(TheCall->getExprLoc(), DiagID) << DRE->getDecl()->getIdentifier(); return true; } return false; } namespace { enum PointerAuthOpKind { PAO_Strip, PAO_Sign, PAO_Auth, PAO_SignGeneric, PAO_Discriminator, PAO_BlendPointer, PAO_BlendInteger }; } bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) { if (getLangOpts().PointerAuthIntrinsics) return false; Diag(Loc, diag::err_ptrauth_disabled) << Range; return true; } static bool checkPointerAuthEnabled(Sema &S, Expr *E) { return S.checkPointerAuthEnabled(E->getExprLoc(), E->getSourceRange()); } static bool checkPointerAuthKey(Sema &S, Expr *&Arg) { // Convert it to type 'int'. if (convertArgumentToType(S, Arg, S.Context.IntTy)) return true; // Value-dependent expressions are okay; wait for template instantiation. if (Arg->isValueDependent()) return false; unsigned KeyValue; return S.checkConstantPointerAuthKey(Arg, KeyValue); } bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) { // Attempt to constant-evaluate the expression. std::optional KeyValue = Arg->getIntegerConstantExpr(Context); if (!KeyValue) { Diag(Arg->getExprLoc(), diag::err_expr_not_ice) << 0 << Arg->getSourceRange(); return true; } // Ask the target to validate the key parameter. if (!Context.getTargetInfo().validatePointerAuthKey(*KeyValue)) { llvm::SmallString<32> Value; { llvm::raw_svector_ostream Str(Value); Str << *KeyValue; } Diag(Arg->getExprLoc(), diag::err_ptrauth_invalid_key) << Value << Arg->getSourceRange(); return true; } Result = KeyValue->getZExtValue(); return false; } static std::pair findConstantBaseAndOffset(Sema &S, Expr *E) { // Must evaluate as a pointer. Expr::EvalResult Result; if (!E->EvaluateAsRValue(Result, S.Context) || !Result.Val.isLValue()) return {nullptr, CharUnits()}; const auto *BaseDecl = Result.Val.getLValueBase().dyn_cast(); if (!BaseDecl) return {nullptr, CharUnits()}; return {BaseDecl, Result.Val.getLValueOffset()}; } static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind, bool RequireConstant = false) { if (Arg->hasPlaceholderType()) { ExprResult R = S.CheckPlaceholderExpr(Arg); if (R.isInvalid()) return true; Arg = R.get(); } auto AllowsPointer = [](PointerAuthOpKind OpKind) { return OpKind != PAO_BlendInteger; }; auto AllowsInteger = [](PointerAuthOpKind OpKind) { return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger || OpKind == PAO_SignGeneric; }; // Require the value to have the right range of type. QualType ExpectedTy; if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) { ExpectedTy = Arg->getType().getUnqualifiedType(); } else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) { ExpectedTy = S.Context.VoidPtrTy; } else if (AllowsInteger(OpKind) && Arg->getType()->isIntegralOrUnscopedEnumerationType()) { ExpectedTy = S.Context.getUIntPtrType(); } else { // Diagnose the failures. S.Diag(Arg->getExprLoc(), diag::err_ptrauth_value_bad_type) << unsigned(OpKind == PAO_Discriminator ? 1 : OpKind == PAO_BlendPointer ? 2 : OpKind == PAO_BlendInteger ? 3 : 0) << unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0) << Arg->getType() << Arg->getSourceRange(); return true; } // Convert to that type. This should just be an lvalue-to-rvalue // conversion. if (convertArgumentToType(S, Arg, ExpectedTy)) return true; if (!RequireConstant) { // Warn about null pointers for non-generic sign and auth operations. if ((OpKind == PAO_Sign || OpKind == PAO_Auth) && Arg->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) { S.Diag(Arg->getExprLoc(), OpKind == PAO_Sign ? diag::warn_ptrauth_sign_null_pointer : diag::warn_ptrauth_auth_null_pointer) << Arg->getSourceRange(); } return false; } // Perform special checking on the arguments to ptrauth_sign_constant. // The main argument. if (OpKind == PAO_Sign) { // Require the value we're signing to have a special form. auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Arg); bool Invalid; // Must be rooted in a declaration reference. if (!BaseDecl) Invalid = true; // If it's a function declaration, we can't have an offset. else if (isa(BaseDecl)) Invalid = !Offset.isZero(); // Otherwise we're fine. else Invalid = false; if (Invalid) S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_pointer); return Invalid; } // The discriminator argument. assert(OpKind == PAO_Discriminator); // Must be a pointer or integer or blend thereof. Expr *Pointer = nullptr; Expr *Integer = nullptr; if (auto *Call = dyn_cast(Arg->IgnoreParens())) { if (Call->getBuiltinCallee() == Builtin::BI__builtin_ptrauth_blend_discriminator) { Pointer = Call->getArg(0); Integer = Call->getArg(1); } } if (!Pointer && !Integer) { if (Arg->getType()->isPointerType()) Pointer = Arg; else Integer = Arg; } // Check the pointer. bool Invalid = false; if (Pointer) { assert(Pointer->getType()->isPointerType()); // TODO: if we're initializing a global, check that the address is // somehow related to what we're initializing. This probably will // never really be feasible and we'll have to catch it at link-time. auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Pointer); if (!BaseDecl || !isa(BaseDecl)) Invalid = true; } // Check the integer. if (Integer) { assert(Integer->getType()->isIntegerType()); if (!Integer->isEvaluatable(S.Context)) Invalid = true; } if (Invalid) S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_discriminator); return Invalid; } static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) { if (S.checkArgCount(Call, 2)) return ExprError(); if (checkPointerAuthEnabled(S, Call)) return ExprError(); if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Strip) || checkPointerAuthKey(S, Call->getArgs()[1])) return ExprError(); Call->setType(Call->getArgs()[0]->getType()); return Call; } static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) { if (S.checkArgCount(Call, 2)) return ExprError(); if (checkPointerAuthEnabled(S, Call)) return ExprError(); if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_BlendPointer) || checkPointerAuthValue(S, Call->getArgs()[1], PAO_BlendInteger)) return ExprError(); Call->setType(S.Context.getUIntPtrType()); return Call; } static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) { if (S.checkArgCount(Call, 2)) return ExprError(); if (checkPointerAuthEnabled(S, Call)) return ExprError(); if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_SignGeneric) || checkPointerAuthValue(S, Call->getArgs()[1], PAO_Discriminator)) return ExprError(); Call->setType(S.Context.getUIntPtrType()); return Call; } static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call, PointerAuthOpKind OpKind, bool RequireConstant) { if (S.checkArgCount(Call, 3)) return ExprError(); if (checkPointerAuthEnabled(S, Call)) return ExprError(); if (checkPointerAuthValue(S, Call->getArgs()[0], OpKind, RequireConstant) || checkPointerAuthKey(S, Call->getArgs()[1]) || checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator, RequireConstant)) return ExprError(); Call->setType(Call->getArgs()[0]->getType()); return Call; } static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) { if (S.checkArgCount(Call, 5)) return ExprError(); if (checkPointerAuthEnabled(S, Call)) return ExprError(); if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Auth) || checkPointerAuthKey(S, Call->getArgs()[1]) || checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator) || checkPointerAuthKey(S, Call->getArgs()[3]) || checkPointerAuthValue(S, Call->getArgs()[4], PAO_Discriminator)) return ExprError(); Call->setType(Call->getArgs()[0]->getType()); return Call; } static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) { if (checkPointerAuthEnabled(S, Call)) return ExprError(); // We've already performed normal call type-checking. const Expr *Arg = Call->getArg(0)->IgnoreParenImpCasts(); // Operand must be an ordinary or UTF-8 string literal. const auto *Literal = dyn_cast(Arg); if (!Literal || Literal->getCharByteWidth() != 1) { S.Diag(Arg->getExprLoc(), diag::err_ptrauth_string_not_literal) << (Literal ? 1 : 0) << Arg->getSourceRange(); return ExprError(); } return Call; } static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) { if (S.checkArgCount(TheCall, 1)) return ExprError(); // Compute __builtin_launder's parameter type from the argument. // The parameter type is: // * The type of the argument if it's not an array or function type, // Otherwise, // * The decayed argument type. QualType ParamTy = [&]() { QualType ArgTy = TheCall->getArg(0)->getType(); if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) return S.Context.getPointerType(Ty->getElementType()); if (ArgTy->isFunctionType()) { return S.Context.getPointerType(ArgTy); } return ArgTy; }(); TheCall->setType(ParamTy); auto DiagSelect = [&]() -> std::optional { if (!ParamTy->isPointerType()) return 0; if (ParamTy->isFunctionPointerType()) return 1; if (ParamTy->isVoidPointerType()) return 2; return std::optional{}; }(); if (DiagSelect) { S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) << *DiagSelect << TheCall->getSourceRange(); return ExprError(); } // We either have an incomplete class type, or we have a class template // whose instantiation has not been forced. Example: // // template struct Foo { T value; }; // Foo *p = nullptr; // auto *d = __builtin_launder(p); if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), diag::err_incomplete_type)) return ExprError(); assert(ParamTy->getPointeeType()->isObjectType() && "Unhandled non-object pointer case"); InitializedEntity Entity = InitializedEntity::InitializeParameter(S.Context, ParamTy, false); ExprResult Arg = S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); if (Arg.isInvalid()) return ExprError(); TheCall->setArg(0, Arg.get()); return TheCall; } // Emit an error and return true if the current object format type is in the // list of unsupported types. static bool CheckBuiltinTargetNotInUnsupported( Sema &S, unsigned BuiltinID, CallExpr *TheCall, ArrayRef UnsupportedObjectFormatTypes) { llvm::Triple::ObjectFormatType CurObjFormat = S.getASTContext().getTargetInfo().getTriple().getObjectFormat(); if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) { S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) << TheCall->getSourceRange(); return true; } return false; } // Emit an error and return true if the current architecture is not in the list // of supported architectures. static bool CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall, ArrayRef SupportedArchs) { llvm::Triple::ArchType CurArch = S.getASTContext().getTargetInfo().getTriple().getArch(); if (llvm::is_contained(SupportedArchs, CurArch)) return false; S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) << TheCall->getSourceRange(); return true; } static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, SourceLocation CallSiteLoc); bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall) { switch (TI.getTriple().getArch()) { default: // Some builtins don't require additional checking, so just consider these // acceptable. return false; case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: case llvm::Triple::aarch64_be: return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::bpfeb: case llvm::Triple::bpfel: return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); case llvm::Triple::hexagon: return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); case llvm::Triple::mips: case llvm::Triple::mipsel: case llvm::Triple::mips64: case llvm::Triple::mips64el: return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::systemz: return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); case llvm::Triple::x86: case llvm::Triple::x86_64: return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::ppc: case llvm::Triple::ppcle: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::amdgcn: return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); case llvm::Triple::riscv32: case llvm::Triple::riscv64: return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::loongarch32: case llvm::Triple::loongarch64: return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::wasm32: case llvm::Triple::wasm64: return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall); case llvm::Triple::nvptx: case llvm::Triple::nvptx64: return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall); } } // Check if \p Ty is a valid type for the elementwise math builtins. If it is // not a valid type, emit an error message and return true. Otherwise return // false. static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc, QualType ArgTy, int ArgIndex) { if (!ArgTy->getAs() && !ConstantMatrixType::isValidElementType(ArgTy)) { return S.Diag(Loc, diag::err_builtin_invalid_arg_type) << ArgIndex << /* vector, integer or float ty*/ 0 << ArgTy; } return false; } static bool checkFPMathBuiltinElementType(Sema &S, SourceLocation Loc, QualType ArgTy, int ArgIndex) { QualType EltTy = ArgTy; if (auto *VecTy = EltTy->getAs()) EltTy = VecTy->getElementType(); if (!EltTy->isRealFloatingType()) { return S.Diag(Loc, diag::err_builtin_invalid_arg_type) << ArgIndex << /* vector or float ty*/ 5 << ArgTy; } return false; } /// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *). /// This checks that the target supports the builtin and that the string /// argument is constant and valid. static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall, const TargetInfo *AuxTI, unsigned BuiltinID) { assert((BuiltinID == Builtin::BI__builtin_cpu_supports || BuiltinID == Builtin::BI__builtin_cpu_is) && "Expecting __builtin_cpu_..."); bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports; const TargetInfo *TheTI = &TI; auto SupportsBI = [=](const TargetInfo *TInfo) { return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) || (!IsCPUSupports && TInfo->supportsCpuIs())); }; if (!SupportsBI(&TI) && SupportsBI(AuxTI)) TheTI = AuxTI; if ((!IsCPUSupports && !TheTI->supportsCpuIs()) || (IsCPUSupports && !TheTI->supportsCpuSupports())) return S.Diag(TheCall->getBeginLoc(), TI.getTriple().isOSAIX() ? diag::err_builtin_aix_os_unsupported : diag::err_builtin_target_unsupported) << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); Expr *Arg = TheCall->getArg(0)->IgnoreParenImpCasts(); // Check if the argument is a string literal. if (!isa(Arg)) return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) << Arg->getSourceRange(); // Check the contents of the string. StringRef Feature = cast(Arg)->getString(); if (IsCPUSupports && !TheTI->validateCpuSupports(Feature)) { S.Diag(TheCall->getBeginLoc(), diag::warn_invalid_cpu_supports) << Arg->getSourceRange(); return false; } if (!IsCPUSupports && !TheTI->validateCpuIs(Feature)) return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) << Arg->getSourceRange(); return false; } /// Checks that __builtin_popcountg was called with a single argument, which is /// an unsigned integer. static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) { if (S.checkArgCount(TheCall, 1)) return true; ExprResult ArgRes = S.DefaultLvalueConversion(TheCall->getArg(0)); if (ArgRes.isInvalid()) return true; Expr *Arg = ArgRes.get(); TheCall->setArg(0, Arg); QualType ArgTy = Arg->getType(); if (!ArgTy->isUnsignedIntegerType()) { S.Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /*unsigned integer ty*/ 7 << ArgTy; return true; } return false; } /// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is /// an unsigned integer, and an optional second argument, which is promoted to /// an 'int'. static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) { if (S.checkArgCountRange(TheCall, 1, 2)) return true; ExprResult Arg0Res = S.DefaultLvalueConversion(TheCall->getArg(0)); if (Arg0Res.isInvalid()) return true; Expr *Arg0 = Arg0Res.get(); TheCall->setArg(0, Arg0); QualType Arg0Ty = Arg0->getType(); if (!Arg0Ty->isUnsignedIntegerType()) { S.Diag(Arg0->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /*unsigned integer ty*/ 7 << Arg0Ty; return true; } if (TheCall->getNumArgs() > 1) { ExprResult Arg1Res = S.UsualUnaryConversions(TheCall->getArg(1)); if (Arg1Res.isInvalid()) return true; Expr *Arg1 = Arg1Res.get(); TheCall->setArg(1, Arg1); QualType Arg1Ty = Arg1->getType(); if (!Arg1Ty->isSpecificBuiltinType(BuiltinType::Int)) { S.Diag(Arg1->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 2 << /*'int' ty*/ 8 << Arg1Ty; return true; } } return false; } ExprResult Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, CallExpr *TheCall) { ExprResult TheCallResult(TheCall); // Find out if any arguments are required to be integer constant expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); if (Error != ASTContext::GE_None) ICEArguments = 0; // Don't diagnose previously diagnosed errors. // If any arguments are required to be ICE's, check and diagnose. for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { // Skip arguments not required to be ICE's. if ((ICEArguments & (1 << ArgNo)) == 0) continue; llvm::APSInt Result; // If we don't have enough arguments, continue so we can issue better // diagnostic in checkArgCount(...) if (ArgNo < TheCall->getNumArgs() && BuiltinConstantArg(TheCall, ArgNo, Result)) return true; ICEArguments &= ~(1 << ArgNo); } FPOptions FPO; switch (BuiltinID) { case Builtin::BI__builtin_cpu_supports: case Builtin::BI__builtin_cpu_is: if (BuiltinCpu(*this, Context.getTargetInfo(), TheCall, Context.getAuxTargetInfo(), BuiltinID)) return ExprError(); break; case Builtin::BI__builtin_cpu_init: if (!Context.getTargetInfo().supportsCpuInit()) { Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); return ExprError(); } break; case Builtin::BI__builtin___CFStringMakeConstantString: // CFStringMakeConstantString is currently not implemented for GOFF (i.e., // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported if (CheckBuiltinTargetNotInUnsupported( *this, BuiltinID, TheCall, {llvm::Triple::GOFF, llvm::Triple::XCOFF})) return ExprError(); assert(TheCall->getNumArgs() == 1 && "Wrong # arguments to builtin CFStringMakeConstantString"); if (ObjC().CheckObjCString(TheCall->getArg(0))) return ExprError(); break; case Builtin::BI__builtin_ms_va_start: case Builtin::BI__builtin_stdarg_start: case Builtin::BI__builtin_va_start: if (BuiltinVAStart(BuiltinID, TheCall)) return ExprError(); break; case Builtin::BI__va_start: { switch (Context.getTargetInfo().getTriple().getArch()) { case llvm::Triple::aarch64: case llvm::Triple::arm: case llvm::Triple::thumb: if (BuiltinVAStartARMMicrosoft(TheCall)) return ExprError(); break; default: if (BuiltinVAStart(BuiltinID, TheCall)) return ExprError(); break; } break; } // The acquire, release, and no fence variants are ARM and AArch64 only. case Builtin::BI_interlockedbittestandset_acq: case Builtin::BI_interlockedbittestandset_rel: case Builtin::BI_interlockedbittestandset_nf: case Builtin::BI_interlockedbittestandreset_acq: case Builtin::BI_interlockedbittestandreset_rel: case Builtin::BI_interlockedbittestandreset_nf: if (CheckBuiltinTargetInSupported( *this, BuiltinID, TheCall, {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) return ExprError(); break; // The 64-bit bittest variants are x64, ARM, and AArch64 only. case Builtin::BI_bittest64: case Builtin::BI_bittestandcomplement64: case Builtin::BI_bittestandreset64: case Builtin::BI_bittestandset64: case Builtin::BI_interlockedbittestandreset64: case Builtin::BI_interlockedbittestandset64: if (CheckBuiltinTargetInSupported( *this, BuiltinID, TheCall, {llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn})) return ExprError(); break; case Builtin::BI__builtin_set_flt_rounds: if (CheckBuiltinTargetInSupported( *this, BuiltinID, TheCall, {llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn})) return ExprError(); break; case Builtin::BI__builtin_isgreater: case Builtin::BI__builtin_isgreaterequal: case Builtin::BI__builtin_isless: case Builtin::BI__builtin_islessequal: case Builtin::BI__builtin_islessgreater: case Builtin::BI__builtin_isunordered: if (BuiltinUnorderedCompare(TheCall, BuiltinID)) return ExprError(); break; case Builtin::BI__builtin_fpclassify: if (BuiltinFPClassification(TheCall, 6, BuiltinID)) return ExprError(); break; case Builtin::BI__builtin_isfpclass: if (BuiltinFPClassification(TheCall, 2, BuiltinID)) return ExprError(); break; case Builtin::BI__builtin_isfinite: case Builtin::BI__builtin_isinf: case Builtin::BI__builtin_isinf_sign: case Builtin::BI__builtin_isnan: case Builtin::BI__builtin_issignaling: case Builtin::BI__builtin_isnormal: case Builtin::BI__builtin_issubnormal: case Builtin::BI__builtin_iszero: case Builtin::BI__builtin_signbit: case Builtin::BI__builtin_signbitf: case Builtin::BI__builtin_signbitl: if (BuiltinFPClassification(TheCall, 1, BuiltinID)) return ExprError(); break; case Builtin::BI__builtin_shufflevector: return BuiltinShuffleVector(TheCall); // TheCall will be freed by the smart pointer here, but that's fine, since // BuiltinShuffleVector guts it, but then doesn't release it. case Builtin::BI__builtin_prefetch: if (BuiltinPrefetch(TheCall)) return ExprError(); break; case Builtin::BI__builtin_alloca_with_align: case Builtin::BI__builtin_alloca_with_align_uninitialized: if (BuiltinAllocaWithAlign(TheCall)) return ExprError(); [[fallthrough]]; case Builtin::BI__builtin_alloca: case Builtin::BI__builtin_alloca_uninitialized: Diag(TheCall->getBeginLoc(), diag::warn_alloca) << TheCall->getDirectCallee(); break; case Builtin::BI__arithmetic_fence: if (BuiltinArithmeticFence(TheCall)) return ExprError(); break; case Builtin::BI__assume: case Builtin::BI__builtin_assume: if (BuiltinAssume(TheCall)) return ExprError(); break; case Builtin::BI__builtin_assume_aligned: if (BuiltinAssumeAligned(TheCall)) return ExprError(); break; case Builtin::BI__builtin_dynamic_object_size: case Builtin::BI__builtin_object_size: if (BuiltinConstantArgRange(TheCall, 1, 0, 3)) return ExprError(); break; case Builtin::BI__builtin_longjmp: if (BuiltinLongjmp(TheCall)) return ExprError(); break; case Builtin::BI__builtin_setjmp: if (BuiltinSetjmp(TheCall)) return ExprError(); break; case Builtin::BI__builtin_classify_type: if (checkArgCount(TheCall, 1)) return true; TheCall->setType(Context.IntTy); break; case Builtin::BI__builtin_complex: if (BuiltinComplex(TheCall)) return ExprError(); break; case Builtin::BI__builtin_constant_p: { if (checkArgCount(TheCall, 1)) return true; ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); if (Arg.isInvalid()) return true; TheCall->setArg(0, Arg.get()); TheCall->setType(Context.IntTy); break; } case Builtin::BI__builtin_launder: return BuiltinLaunder(*this, TheCall); case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_add_1: case Builtin::BI__sync_fetch_and_add_2: case Builtin::BI__sync_fetch_and_add_4: case Builtin::BI__sync_fetch_and_add_8: case Builtin::BI__sync_fetch_and_add_16: case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_sub_1: case Builtin::BI__sync_fetch_and_sub_2: case Builtin::BI__sync_fetch_and_sub_4: case Builtin::BI__sync_fetch_and_sub_8: case Builtin::BI__sync_fetch_and_sub_16: case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_or_1: case Builtin::BI__sync_fetch_and_or_2: case Builtin::BI__sync_fetch_and_or_4: case Builtin::BI__sync_fetch_and_or_8: case Builtin::BI__sync_fetch_and_or_16: case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_and_1: case Builtin::BI__sync_fetch_and_and_2: case Builtin::BI__sync_fetch_and_and_4: case Builtin::BI__sync_fetch_and_and_8: case Builtin::BI__sync_fetch_and_and_16: case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_fetch_and_xor_1: case Builtin::BI__sync_fetch_and_xor_2: case Builtin::BI__sync_fetch_and_xor_4: case Builtin::BI__sync_fetch_and_xor_8: case Builtin::BI__sync_fetch_and_xor_16: case Builtin::BI__sync_fetch_and_nand: case Builtin::BI__sync_fetch_and_nand_1: case Builtin::BI__sync_fetch_and_nand_2: case Builtin::BI__sync_fetch_and_nand_4: case Builtin::BI__sync_fetch_and_nand_8: case Builtin::BI__sync_fetch_and_nand_16: case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_add_and_fetch_1: case Builtin::BI__sync_add_and_fetch_2: case Builtin::BI__sync_add_and_fetch_4: case Builtin::BI__sync_add_and_fetch_8: case Builtin::BI__sync_add_and_fetch_16: case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_sub_and_fetch_1: case Builtin::BI__sync_sub_and_fetch_2: case Builtin::BI__sync_sub_and_fetch_4: case Builtin::BI__sync_sub_and_fetch_8: case Builtin::BI__sync_sub_and_fetch_16: case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_and_and_fetch_1: case Builtin::BI__sync_and_and_fetch_2: case Builtin::BI__sync_and_and_fetch_4: case Builtin::BI__sync_and_and_fetch_8: case Builtin::BI__sync_and_and_fetch_16: case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_or_and_fetch_1: case Builtin::BI__sync_or_and_fetch_2: case Builtin::BI__sync_or_and_fetch_4: case Builtin::BI__sync_or_and_fetch_8: case Builtin::BI__sync_or_and_fetch_16: case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_xor_and_fetch_1: case Builtin::BI__sync_xor_and_fetch_2: case Builtin::BI__sync_xor_and_fetch_4: case Builtin::BI__sync_xor_and_fetch_8: case Builtin::BI__sync_xor_and_fetch_16: case Builtin::BI__sync_nand_and_fetch: case Builtin::BI__sync_nand_and_fetch_1: case Builtin::BI__sync_nand_and_fetch_2: case Builtin::BI__sync_nand_and_fetch_4: case Builtin::BI__sync_nand_and_fetch_8: case Builtin::BI__sync_nand_and_fetch_16: case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_val_compare_and_swap_1: case Builtin::BI__sync_val_compare_and_swap_2: case Builtin::BI__sync_val_compare_and_swap_4: case Builtin::BI__sync_val_compare_and_swap_8: case Builtin::BI__sync_val_compare_and_swap_16: case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap_1: case Builtin::BI__sync_bool_compare_and_swap_2: case Builtin::BI__sync_bool_compare_and_swap_4: case Builtin::BI__sync_bool_compare_and_swap_8: case Builtin::BI__sync_bool_compare_and_swap_16: case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_test_and_set_1: case Builtin::BI__sync_lock_test_and_set_2: case Builtin::BI__sync_lock_test_and_set_4: case Builtin::BI__sync_lock_test_and_set_8: case Builtin::BI__sync_lock_test_and_set_16: case Builtin::BI__sync_lock_release: case Builtin::BI__sync_lock_release_1: case Builtin::BI__sync_lock_release_2: case Builtin::BI__sync_lock_release_4: case Builtin::BI__sync_lock_release_8: case Builtin::BI__sync_lock_release_16: case Builtin::BI__sync_swap: case Builtin::BI__sync_swap_1: case Builtin::BI__sync_swap_2: case Builtin::BI__sync_swap_4: case Builtin::BI__sync_swap_8: case Builtin::BI__sync_swap_16: return BuiltinAtomicOverloaded(TheCallResult); case Builtin::BI__sync_synchronize: Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) << TheCall->getCallee()->getSourceRange(); break; case Builtin::BI__builtin_nontemporal_load: case Builtin::BI__builtin_nontemporal_store: return BuiltinNontemporalOverloaded(TheCallResult); case Builtin::BI__builtin_memcpy_inline: { clang::Expr *SizeOp = TheCall->getArg(2); // We warn about copying to or from `nullptr` pointers when `size` is // greater than 0. When `size` is value dependent we cannot evaluate its // value so we bail out. if (SizeOp->isValueDependent()) break; if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) { CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); } break; } case Builtin::BI__builtin_memset_inline: { clang::Expr *SizeOp = TheCall->getArg(2); // We warn about filling to `nullptr` pointers when `size` is greater than // 0. When `size` is value dependent we cannot evaluate its value so we bail // out. if (SizeOp->isValueDependent()) break; if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); break; } #define BUILTIN(ID, TYPE, ATTRS) #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ case Builtin::BI##ID: \ return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); #include "clang/Basic/Builtins.inc" case Builtin::BI__annotation: if (BuiltinMSVCAnnotation(*this, TheCall)) return ExprError(); break; case Builtin::BI__builtin_annotation: if (BuiltinAnnotation(*this, TheCall)) return ExprError(); break; case Builtin::BI__builtin_addressof: if (BuiltinAddressof(*this, TheCall)) return ExprError(); break; case Builtin::BI__builtin_function_start: if (BuiltinFunctionStart(*this, TheCall)) return ExprError(); break; case Builtin::BI__builtin_is_aligned: case Builtin::BI__builtin_align_up: case Builtin::BI__builtin_align_down: if (BuiltinAlignment(*this, TheCall, BuiltinID)) return ExprError(); break; case Builtin::BI__builtin_add_overflow: case Builtin::BI__builtin_sub_overflow: case Builtin::BI__builtin_mul_overflow: if (BuiltinOverflow(*this, TheCall, BuiltinID)) return ExprError(); break; case Builtin::BI__builtin_operator_new: case Builtin::BI__builtin_operator_delete: { bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; ExprResult Res = BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); if (Res.isInvalid()) CorrectDelayedTyposInExpr(TheCallResult.get()); return Res; } case Builtin::BI__builtin_dump_struct: return BuiltinDumpStruct(*this, TheCall); case Builtin::BI__builtin_expect_with_probability: { // We first want to ensure we are called with 3 arguments if (checkArgCount(TheCall, 3)) return ExprError(); // then check probability is constant float in range [0.0, 1.0] const Expr *ProbArg = TheCall->getArg(2); SmallVector Notes; Expr::EvalResult Eval; Eval.Diag = &Notes; if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || !Eval.Val.isFloat()) { Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) << ProbArg->getSourceRange(); for (const PartialDiagnosticAt &PDiag : Notes) Diag(PDiag.first, PDiag.second); return ExprError(); } llvm::APFloat Probability = Eval.Val.getFloat(); bool LoseInfo = false; Probability.convert(llvm::APFloat::IEEEdouble(), llvm::RoundingMode::Dynamic, &LoseInfo); if (!(Probability >= llvm::APFloat(0.0) && Probability <= llvm::APFloat(1.0))) { Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) << ProbArg->getSourceRange(); return ExprError(); } break; } case Builtin::BI__builtin_preserve_access_index: if (BuiltinPreserveAI(*this, TheCall)) return ExprError(); break; case Builtin::BI__builtin_call_with_static_chain: if (BuiltinCallWithStaticChain(*this, TheCall)) return ExprError(); break; case Builtin::BI__exception_code: case Builtin::BI_exception_code: if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, diag::err_seh___except_block)) return ExprError(); break; case Builtin::BI__exception_info: case Builtin::BI_exception_info: if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, diag::err_seh___except_filter)) return ExprError(); break; case Builtin::BI__GetExceptionInfo: if (checkArgCount(TheCall, 1)) return ExprError(); if (CheckCXXThrowOperand( TheCall->getBeginLoc(), Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), TheCall)) return ExprError(); TheCall->setType(Context.VoidPtrTy); break; case Builtin::BIaddressof: case Builtin::BI__addressof: case Builtin::BIforward: case Builtin::BIforward_like: case Builtin::BImove: case Builtin::BImove_if_noexcept: case Builtin::BIas_const: { // These are all expected to be of the form // T &/&&/* f(U &/&&) // where T and U only differ in qualification. if (checkArgCount(TheCall, 1)) return ExprError(); QualType Param = FDecl->getParamDecl(0)->getType(); QualType Result = FDecl->getReturnType(); bool ReturnsPointer = BuiltinID == Builtin::BIaddressof || BuiltinID == Builtin::BI__addressof; if (!(Param->isReferenceType() && (ReturnsPointer ? Result->isAnyPointerType() : Result->isReferenceType()) && Context.hasSameUnqualifiedType(Param->getPointeeType(), Result->getPointeeType()))) { Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported) << FDecl; return ExprError(); } break; } case Builtin::BI__builtin_ptrauth_strip: return PointerAuthStrip(*this, TheCall); case Builtin::BI__builtin_ptrauth_blend_discriminator: return PointerAuthBlendDiscriminator(*this, TheCall); case Builtin::BI__builtin_ptrauth_sign_constant: return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign, /*RequireConstant=*/true); case Builtin::BI__builtin_ptrauth_sign_unauthenticated: return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign, /*RequireConstant=*/false); case Builtin::BI__builtin_ptrauth_auth: return PointerAuthSignOrAuth(*this, TheCall, PAO_Auth, /*RequireConstant=*/false); case Builtin::BI__builtin_ptrauth_sign_generic_data: return PointerAuthSignGenericData(*this, TheCall); case Builtin::BI__builtin_ptrauth_auth_and_resign: return PointerAuthAuthAndResign(*this, TheCall); case Builtin::BI__builtin_ptrauth_string_discriminator: return PointerAuthStringDiscriminator(*this, TheCall); // OpenCL v2.0, s6.13.16 - Pipe functions case Builtin::BIread_pipe: case Builtin::BIwrite_pipe: // Since those two functions are declared with var args, we need a semantic // check for the argument. if (OpenCL().checkBuiltinRWPipe(TheCall)) return ExprError(); break; case Builtin::BIreserve_read_pipe: case Builtin::BIreserve_write_pipe: case Builtin::BIwork_group_reserve_read_pipe: case Builtin::BIwork_group_reserve_write_pipe: if (OpenCL().checkBuiltinReserveRWPipe(TheCall)) return ExprError(); break; case Builtin::BIsub_group_reserve_read_pipe: case Builtin::BIsub_group_reserve_write_pipe: if (OpenCL().checkSubgroupExt(TheCall) || OpenCL().checkBuiltinReserveRWPipe(TheCall)) return ExprError(); break; case Builtin::BIcommit_read_pipe: case Builtin::BIcommit_write_pipe: case Builtin::BIwork_group_commit_read_pipe: case Builtin::BIwork_group_commit_write_pipe: if (OpenCL().checkBuiltinCommitRWPipe(TheCall)) return ExprError(); break; case Builtin::BIsub_group_commit_read_pipe: case Builtin::BIsub_group_commit_write_pipe: if (OpenCL().checkSubgroupExt(TheCall) || OpenCL().checkBuiltinCommitRWPipe(TheCall)) return ExprError(); break; case Builtin::BIget_pipe_num_packets: case Builtin::BIget_pipe_max_packets: if (OpenCL().checkBuiltinPipePackets(TheCall)) return ExprError(); break; case Builtin::BIto_global: case Builtin::BIto_local: case Builtin::BIto_private: if (OpenCL().checkBuiltinToAddr(BuiltinID, TheCall)) return ExprError(); break; // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. case Builtin::BIenqueue_kernel: if (OpenCL().checkBuiltinEnqueueKernel(TheCall)) return ExprError(); break; case Builtin::BIget_kernel_work_group_size: case Builtin::BIget_kernel_preferred_work_group_size_multiple: if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall)) return ExprError(); break; case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: case Builtin::BIget_kernel_sub_group_count_for_ndrange: if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall)) return ExprError(); break; case Builtin::BI__builtin_os_log_format: Cleanup.setExprNeedsCleanups(true); [[fallthrough]]; case Builtin::BI__builtin_os_log_format_buffer_size: if (BuiltinOSLogFormat(TheCall)) return ExprError(); break; case Builtin::BI__builtin_frame_address: case Builtin::BI__builtin_return_address: { if (BuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) return ExprError(); // -Wframe-address warning if non-zero passed to builtin // return/frame address. Expr::EvalResult Result; if (!TheCall->getArg(0)->isValueDependent() && TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && Result.Val.getInt() != 0) Diag(TheCall->getBeginLoc(), diag::warn_frame_address) << ((BuiltinID == Builtin::BI__builtin_return_address) ? "__builtin_return_address" : "__builtin_frame_address") << TheCall->getSourceRange(); break; } case Builtin::BI__builtin_nondeterministic_value: { if (BuiltinNonDeterministicValue(TheCall)) return ExprError(); break; } // __builtin_elementwise_abs restricts the element type to signed integers or // floating point types only. case Builtin::BI__builtin_elementwise_abs: { if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) return ExprError(); QualType ArgTy = TheCall->getArg(0)->getType(); QualType EltTy = ArgTy; if (auto *VecTy = EltTy->getAs()) EltTy = VecTy->getElementType(); if (EltTy->isUnsignedIntegerType()) { Diag(TheCall->getArg(0)->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /* signed integer or float ty*/ 3 << ArgTy; return ExprError(); } break; } // These builtins restrict the element type to floating point // types only. case Builtin::BI__builtin_elementwise_acos: case Builtin::BI__builtin_elementwise_asin: case Builtin::BI__builtin_elementwise_atan: case Builtin::BI__builtin_elementwise_ceil: case Builtin::BI__builtin_elementwise_cos: case Builtin::BI__builtin_elementwise_cosh: case Builtin::BI__builtin_elementwise_exp: case Builtin::BI__builtin_elementwise_exp2: case Builtin::BI__builtin_elementwise_floor: case Builtin::BI__builtin_elementwise_log: case Builtin::BI__builtin_elementwise_log2: case Builtin::BI__builtin_elementwise_log10: case Builtin::BI__builtin_elementwise_roundeven: case Builtin::BI__builtin_elementwise_round: case Builtin::BI__builtin_elementwise_rint: case Builtin::BI__builtin_elementwise_nearbyint: case Builtin::BI__builtin_elementwise_sin: case Builtin::BI__builtin_elementwise_sinh: case Builtin::BI__builtin_elementwise_sqrt: case Builtin::BI__builtin_elementwise_tan: case Builtin::BI__builtin_elementwise_tanh: case Builtin::BI__builtin_elementwise_trunc: case Builtin::BI__builtin_elementwise_canonicalize: { if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) return ExprError(); QualType ArgTy = TheCall->getArg(0)->getType(); if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(), ArgTy, 1)) return ExprError(); break; } case Builtin::BI__builtin_elementwise_fma: { if (BuiltinElementwiseTernaryMath(TheCall)) return ExprError(); break; } // These builtins restrict the element type to floating point // types only, and take in two arguments. case Builtin::BI__builtin_elementwise_pow: { if (BuiltinElementwiseMath(TheCall)) return ExprError(); QualType ArgTy = TheCall->getArg(0)->getType(); if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(), ArgTy, 1) || checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(), ArgTy, 2)) return ExprError(); break; } // These builtins restrict the element type to integer // types only. case Builtin::BI__builtin_elementwise_add_sat: case Builtin::BI__builtin_elementwise_sub_sat: { if (BuiltinElementwiseMath(TheCall)) return ExprError(); const Expr *Arg = TheCall->getArg(0); QualType ArgTy = Arg->getType(); QualType EltTy = ArgTy; if (auto *VecTy = EltTy->getAs()) EltTy = VecTy->getElementType(); if (!EltTy->isIntegerType()) { Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /* integer ty */ 6 << ArgTy; return ExprError(); } break; } case Builtin::BI__builtin_elementwise_min: case Builtin::BI__builtin_elementwise_max: if (BuiltinElementwiseMath(TheCall)) return ExprError(); break; case Builtin::BI__builtin_elementwise_bitreverse: { if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) return ExprError(); const Expr *Arg = TheCall->getArg(0); QualType ArgTy = Arg->getType(); QualType EltTy = ArgTy; if (auto *VecTy = EltTy->getAs()) EltTy = VecTy->getElementType(); if (!EltTy->isIntegerType()) { Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /* integer ty */ 6 << ArgTy; return ExprError(); } break; } case Builtin::BI__builtin_elementwise_copysign: { if (checkArgCount(TheCall, 2)) return ExprError(); ExprResult Magnitude = UsualUnaryConversions(TheCall->getArg(0)); ExprResult Sign = UsualUnaryConversions(TheCall->getArg(1)); if (Magnitude.isInvalid() || Sign.isInvalid()) return ExprError(); QualType MagnitudeTy = Magnitude.get()->getType(); QualType SignTy = Sign.get()->getType(); if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(), MagnitudeTy, 1) || checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(), SignTy, 2)) { return ExprError(); } if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) { return Diag(Sign.get()->getBeginLoc(), diag::err_typecheck_call_different_arg_types) << MagnitudeTy << SignTy; } TheCall->setArg(0, Magnitude.get()); TheCall->setArg(1, Sign.get()); TheCall->setType(Magnitude.get()->getType()); break; } case Builtin::BI__builtin_reduce_max: case Builtin::BI__builtin_reduce_min: { if (PrepareBuiltinReduceMathOneArgCall(TheCall)) return ExprError(); const Expr *Arg = TheCall->getArg(0); const auto *TyA = Arg->getType()->getAs(); QualType ElTy; if (TyA) ElTy = TyA->getElementType(); else if (Arg->getType()->isSizelessVectorType()) ElTy = Arg->getType()->getSizelessVectorEltType(Context); if (ElTy.isNull()) { Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /* vector ty*/ 4 << Arg->getType(); return ExprError(); } TheCall->setType(ElTy); break; } // These builtins support vectors of integers only. // TODO: ADD/MUL should support floating-point types. case Builtin::BI__builtin_reduce_add: case Builtin::BI__builtin_reduce_mul: case Builtin::BI__builtin_reduce_xor: case Builtin::BI__builtin_reduce_or: case Builtin::BI__builtin_reduce_and: { if (PrepareBuiltinReduceMathOneArgCall(TheCall)) return ExprError(); const Expr *Arg = TheCall->getArg(0); const auto *TyA = Arg->getType()->getAs(); QualType ElTy; if (TyA) ElTy = TyA->getElementType(); else if (Arg->getType()->isSizelessVectorType()) ElTy = Arg->getType()->getSizelessVectorEltType(Context); if (ElTy.isNull() || !ElTy->isIntegerType()) { Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /* vector of integers */ 6 << Arg->getType(); return ExprError(); } TheCall->setType(ElTy); break; } case Builtin::BI__builtin_matrix_transpose: return BuiltinMatrixTranspose(TheCall, TheCallResult); case Builtin::BI__builtin_matrix_column_major_load: return BuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); case Builtin::BI__builtin_matrix_column_major_store: return BuiltinMatrixColumnMajorStore(TheCall, TheCallResult); case Builtin::BI__builtin_verbose_trap: if (!checkBuiltinVerboseTrap(TheCall, *this)) return ExprError(); break; case Builtin::BI__builtin_get_device_side_mangled_name: { auto Check = [](CallExpr *TheCall) { if (TheCall->getNumArgs() != 1) return false; auto *DRE = dyn_cast(TheCall->getArg(0)->IgnoreImpCasts()); if (!DRE) return false; auto *D = DRE->getDecl(); if (!isa(D) && !isa(D)) return false; return D->hasAttr() || D->hasAttr() || D->hasAttr() || D->hasAttr(); }; if (!Check(TheCall)) { Diag(TheCall->getBeginLoc(), diag::err_hip_invalid_args_builtin_mangled_name); return ExprError(); } break; } case Builtin::BI__builtin_popcountg: if (BuiltinPopcountg(*this, TheCall)) return ExprError(); break; case Builtin::BI__builtin_clzg: case Builtin::BI__builtin_ctzg: if (BuiltinCountZeroBitsGeneric(*this, TheCall)) return ExprError(); break; case Builtin::BI__builtin_allow_runtime_check: { Expr *Arg = TheCall->getArg(0); // Check if the argument is a string literal. if (!isa(Arg->IgnoreParenImpCasts())) { Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) << Arg->getSourceRange(); return ExprError(); } break; } } if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall)) return ExprError(); // Since the target specific builtins for each arch overlap, only check those // of the arch we are compiling for. if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { assert(Context.getAuxTargetInfo() && "Aux Target Builtin, but not an aux target?"); if (CheckTSBuiltinFunctionCall( *Context.getAuxTargetInfo(), Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) return ExprError(); } else { if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, TheCall)) return ExprError(); } } return TheCallResult; } bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { llvm::APSInt Result; // We can't check the value of a dependent argument. Expr *Arg = TheCall->getArg(ArgNum); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; // Check constant-ness first. if (BuiltinConstantArg(TheCall, ArgNum, Result)) return true; // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. if (Result.isShiftedMask() || (~Result).isShiftedMask()) return false; return Diag(TheCall->getBeginLoc(), diag::err_argument_not_contiguous_bit_field) << ArgNum << Arg->getSourceRange(); } bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, bool IsVariadic, FormatStringInfo *FSI) { if (Format->getFirstArg() == 0) FSI->ArgPassingKind = FAPK_VAList; else if (IsVariadic) FSI->ArgPassingKind = FAPK_Variadic; else FSI->ArgPassingKind = FAPK_Fixed; FSI->FormatIdx = Format->getFormatIdx() - 1; FSI->FirstDataArg = FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1; // The way the format attribute works in GCC, the implicit this argument // of member functions is counted. However, it doesn't appear in our own // lists, so decrement format_idx in that case. if (IsCXXMember) { if(FSI->FormatIdx == 0) return false; --FSI->FormatIdx; if (FSI->FirstDataArg != 0) --FSI->FirstDataArg; } return true; } /// Checks if a the given expression evaluates to null. /// /// Returns true if the value evaluates to null. static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { // Treat (smart) pointers constructed from nullptr as null, whether we can // const-evaluate them or not. // This must happen first: the smart pointer expr might have _Nonnull type! if (isa( IgnoreExprNodes(Expr, IgnoreImplicitAsWrittenSingleStep, IgnoreElidableImplicitConstructorSingleStep))) return true; // If the expression has non-null type, it doesn't evaluate to null. if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) { if (*nullability == NullabilityKind::NonNull) return false; } // As a special case, transparent unions initialized with zero are // considered null for the purposes of the nonnull attribute. if (const RecordType *UT = Expr->getType()->getAsUnionType(); UT && UT->getDecl()->hasAttr()) { if (const auto *CLE = dyn_cast(Expr)) if (const auto *ILE = dyn_cast(CLE->getInitializer())) Expr = ILE->getInit(0); } bool Result; return (!Expr->isValueDependent() && Expr->EvaluateAsBooleanCondition(Result, S.Context) && !Result); } static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, SourceLocation CallSiteLoc) { if (CheckNonNullExpr(S, ArgExpr)) S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange()); } /// Determine whether the given type has a non-null nullability annotation. static bool isNonNullType(QualType type) { if (auto nullability = type->getNullability()) return *nullability == NullabilityKind::NonNull; return false; } static void CheckNonNullArguments(Sema &S, const NamedDecl *FDecl, const FunctionProtoType *Proto, ArrayRef Args, SourceLocation CallSiteLoc) { assert((FDecl || Proto) && "Need a function declaration or prototype"); // Already checked by constant evaluator. if (S.isConstantEvaluatedContext()) return; // Check the attributes attached to the method/function itself. llvm::SmallBitVector NonNullArgs; if (FDecl) { // Handle the nonnull attribute on the function/method declaration itself. for (const auto *NonNull : FDecl->specific_attrs()) { if (!NonNull->args_size()) { // Easy case: all pointer arguments are nonnull. for (const auto *Arg : Args) if (S.isValidPointerAttrType(Arg->getType())) CheckNonNullArgument(S, Arg, CallSiteLoc); return; } for (const ParamIdx &Idx : NonNull->args()) { unsigned IdxAST = Idx.getASTIndex(); if (IdxAST >= Args.size()) continue; if (NonNullArgs.empty()) NonNullArgs.resize(Args.size()); NonNullArgs.set(IdxAST); } } } if (FDecl && (isa(FDecl) || isa(FDecl))) { // Handle the nonnull attribute on the parameters of the // function/method. ArrayRef parms; if (const FunctionDecl *FD = dyn_cast(FDecl)) parms = FD->parameters(); else parms = cast(FDecl)->parameters(); unsigned ParamIndex = 0; for (ArrayRef::iterator I = parms.begin(), E = parms.end(); I != E; ++I, ++ParamIndex) { const ParmVarDecl *PVD = *I; if (PVD->hasAttr() || isNonNullType(PVD->getType())) { if (NonNullArgs.empty()) NonNullArgs.resize(Args.size()); NonNullArgs.set(ParamIndex); } } } else { // If we have a non-function, non-method declaration but no // function prototype, try to dig out the function prototype. if (!Proto) { if (const ValueDecl *VD = dyn_cast(FDecl)) { QualType type = VD->getType().getNonReferenceType(); if (auto pointerType = type->getAs()) type = pointerType->getPointeeType(); else if (auto blockType = type->getAs()) type = blockType->getPointeeType(); // FIXME: data member pointers? // Dig out the function prototype, if there is one. Proto = type->getAs(); } } // Fill in non-null argument information from the nullability // information on the parameter types (if we have them). if (Proto) { unsigned Index = 0; for (auto paramType : Proto->getParamTypes()) { if (isNonNullType(paramType)) { if (NonNullArgs.empty()) NonNullArgs.resize(Args.size()); NonNullArgs.set(Index); } ++Index; } } } // Check for non-null arguments. for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); ArgIndex != ArgIndexEnd; ++ArgIndex) { if (NonNullArgs[ArgIndex]) CheckNonNullArgument(S, Args[ArgIndex], Args[ArgIndex]->getExprLoc()); } } void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, StringRef ParamName, QualType ArgTy, QualType ParamTy) { // If a function accepts a pointer or reference type if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) return; // If the parameter is a pointer type, get the pointee type for the // argument too. If the parameter is a reference type, don't try to get // the pointee type for the argument. if (ParamTy->isPointerType()) ArgTy = ArgTy->getPointeeType(); // Remove reference or pointer ParamTy = ParamTy->getPointeeType(); // Find expected alignment, and the actual alignment of the passed object. // getTypeAlignInChars requires complete types if (ArgTy.isNull() || ParamTy->isDependentType() || ParamTy->isIncompleteType() || ArgTy->isIncompleteType() || ParamTy->isUndeducedType() || ArgTy->isUndeducedType()) return; CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy); CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy); // If the argument is less aligned than the parameter, there is a // potential alignment issue. if (ArgAlign < ParamAlign) Diag(Loc, diag::warn_param_mismatched_alignment) << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() << ParamName << (FDecl != nullptr) << FDecl; } void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, const Expr *ThisArg, ArrayRef Args, bool IsMemberFunction, SourceLocation Loc, SourceRange Range, VariadicCallType CallType) { // FIXME: We should check as much as we can in the template definition. if (CurContext->isDependentContext()) return; // Printf and scanf checking. llvm::SmallBitVector CheckedVarArgs; if (FDecl) { for (const auto *I : FDecl->specific_attrs()) { // Only create vector if there are format attributes. CheckedVarArgs.resize(Args.size()); CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, CheckedVarArgs); } } // Refuse POD arguments that weren't caught by the format string // checks above. auto *FD = dyn_cast_or_null(FDecl); if (CallType != VariadicDoesNotApply && (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { unsigned NumParams = Proto ? Proto->getNumParams() : isa_and_nonnull(FDecl) ? cast(FDecl)->getNumParams() : isa_and_nonnull(FDecl) ? cast(FDecl)->param_size() : 0; for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { // Args[ArgIdx] can be null in malformed code. if (const Expr *Arg = Args[ArgIdx]) { if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) checkVariadicArgument(Arg, CallType); } } } if (FDecl || Proto) { CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); // Type safety checking. if (FDecl) { for (const auto *I : FDecl->specific_attrs()) CheckArgumentWithTypeTag(I, Args, Loc); } } // Check that passed arguments match the alignment of original arguments. // Try to get the missing prototype from the declaration. if (!Proto && FDecl) { const auto *FT = FDecl->getFunctionType(); if (isa_and_nonnull(FT)) Proto = cast(FDecl->getFunctionType()); } if (Proto) { // For variadic functions, we may have more args than parameters. // For some K&R functions, we may have less args than parameters. const auto N = std::min(Proto->getNumParams(), Args.size()); bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType(); bool IsScalableArg = false; for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { // Args[ArgIdx] can be null in malformed code. if (const Expr *Arg = Args[ArgIdx]) { if (Arg->containsErrors()) continue; if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg && FDecl->hasLinkage() && FDecl->getFormalLinkage() != Linkage::Internal && CallType == VariadicDoesNotApply) PPC().checkAIXMemberAlignment((Arg->getExprLoc()), Arg); QualType ParamTy = Proto->getParamType(ArgIdx); if (ParamTy->isSizelessVectorType()) IsScalableArg = true; QualType ArgTy = Arg->getType(); CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1), ArgTy, ParamTy); } } // If the callee has an AArch64 SME attribute to indicate that it is an // __arm_streaming function, then the caller requires SME to be available. FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo(); if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) { if (auto *CallerFD = dyn_cast(CurContext)) { llvm::StringMap CallerFeatureMap; Context.getFunctionFeatureMap(CallerFeatureMap, CallerFD); if (!CallerFeatureMap.contains("sme")) Diag(Loc, diag::err_sme_call_in_non_sme_target); } else if (!Context.getTargetInfo().hasFeature("sme")) { Diag(Loc, diag::err_sme_call_in_non_sme_target); } } // If the call requires a streaming-mode change and has scalable vector // arguments or return values, then warn the user that the streaming and // non-streaming vector lengths may be different. const auto *CallerFD = dyn_cast(CurContext); if (CallerFD && (!FD || !FD->getBuiltinID()) && (IsScalableArg || IsScalableRet)) { bool IsCalleeStreaming = ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask; bool IsCalleeStreamingCompatible = ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMCompatibleMask; SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(CallerFD); if (!IsCalleeStreamingCompatible && (CallerFnType == SemaARM::ArmStreamingCompatible || ((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) { if (IsScalableArg) Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming) << /*IsArg=*/true; if (IsScalableRet) Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming) << /*IsArg=*/false; } } FunctionType::ArmStateValue CalleeArmZAState = FunctionType::getArmZAState(ExtInfo.AArch64SMEAttributes); FunctionType::ArmStateValue CalleeArmZT0State = FunctionType::getArmZT0State(ExtInfo.AArch64SMEAttributes); if (CalleeArmZAState != FunctionType::ARM_None || CalleeArmZT0State != FunctionType::ARM_None) { bool CallerHasZAState = false; bool CallerHasZT0State = false; if (CallerFD) { auto *Attr = CallerFD->getAttr(); if (Attr && Attr->isNewZA()) CallerHasZAState = true; if (Attr && Attr->isNewZT0()) CallerHasZT0State = true; if (const auto *FPT = CallerFD->getType()->getAs()) { CallerHasZAState |= FunctionType::getArmZAState( FPT->getExtProtoInfo().AArch64SMEAttributes) != FunctionType::ARM_None; CallerHasZT0State |= FunctionType::getArmZT0State( FPT->getExtProtoInfo().AArch64SMEAttributes) != FunctionType::ARM_None; } } if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState) Diag(Loc, diag::err_sme_za_call_no_za_state); if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State) Diag(Loc, diag::err_sme_zt0_call_no_zt0_state); if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None && CalleeArmZT0State != FunctionType::ARM_None) { Diag(Loc, diag::err_sme_unimplemented_za_save_restore); Diag(Loc, diag::note_sme_use_preserves_za); } } } if (FDecl && FDecl->hasAttr()) { auto *AA = FDecl->getAttr(); const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; if (!Arg->isValueDependent()) { Expr::EvalResult Align; if (Arg->EvaluateAsInt(Align, Context)) { const llvm::APSInt &I = Align.Val.getInt(); if (!I.isPowerOf2()) Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) << Arg->getSourceRange(); if (I > Sema::MaximumAlignment) Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) << Arg->getSourceRange() << Sema::MaximumAlignment; } } } if (FD) diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); } void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) { if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) { DiagnoseUseOfDecl(Decl, Loc); } } void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, ArrayRef Args, const FunctionProtoType *Proto, SourceLocation Loc) { VariadicCallType CallType = Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; auto *Ctor = cast(FDecl); CheckArgAlignment( Loc, FDecl, "'this'", Context.getPointerType(ThisType), Context.getPointerType(Ctor->getFunctionObjectParameterType())); checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, Loc, SourceRange(), CallType); } bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, const FunctionProtoType *Proto) { bool IsMemberOperatorCall = isa(TheCall) && isa(FDecl); bool IsMemberFunction = isa(TheCall) || IsMemberOperatorCall; VariadicCallType CallType = getVariadicCallType(FDecl, Proto, TheCall->getCallee()); Expr** Args = TheCall->getArgs(); unsigned NumArgs = TheCall->getNumArgs(); Expr *ImplicitThis = nullptr; if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) { // If this is a call to a member operator, hide the first // argument from checkCall. // FIXME: Our choice of AST representation here is less than ideal. ImplicitThis = Args[0]; ++Args; --NumArgs; } else if (IsMemberFunction && !FDecl->isStatic() && !FDecl->hasCXXExplicitFunctionObjectParameter()) ImplicitThis = cast(TheCall)->getImplicitObjectArgument(); if (ImplicitThis) { // ImplicitThis may or may not be a pointer, depending on whether . or -> is // used. QualType ThisType = ImplicitThis->getType(); if (!ThisType->isPointerType()) { assert(!ThisType->isReferenceType()); ThisType = Context.getPointerType(ThisType); } QualType ThisTypeFromDecl = Context.getPointerType( cast(FDecl)->getFunctionObjectParameterType()); CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType, ThisTypeFromDecl); } checkCall(FDecl, Proto, ImplicitThis, llvm::ArrayRef(Args, NumArgs), IsMemberFunction, TheCall->getRParenLoc(), TheCall->getCallee()->getSourceRange(), CallType); IdentifierInfo *FnInfo = FDecl->getIdentifier(); // None of the checks below are needed for functions that don't have // simple names (e.g., C++ conversion functions). if (!FnInfo) return false; // Enforce TCB except for builtin calls, which are always allowed. if (FDecl->getBuiltinID() == 0) CheckTCBEnforcement(TheCall->getExprLoc(), FDecl); CheckAbsoluteValueFunction(TheCall, FDecl); CheckMaxUnsignedZero(TheCall, FDecl); CheckInfNaNFunction(TheCall, FDecl); if (getLangOpts().ObjC) ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs); unsigned CMId = FDecl->getMemoryFunctionKind(); // Handle memory setting and copying functions. switch (CMId) { case 0: return false; case Builtin::BIstrlcpy: // fallthrough case Builtin::BIstrlcat: CheckStrlcpycatArguments(TheCall, FnInfo); break; case Builtin::BIstrncat: CheckStrncatArguments(TheCall, FnInfo); break; case Builtin::BIfree: CheckFreeArguments(TheCall); break; default: CheckMemaccessArguments(TheCall, CMId, FnInfo); } return false; } bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, const FunctionProtoType *Proto) { QualType Ty; if (const auto *V = dyn_cast(NDecl)) Ty = V->getType().getNonReferenceType(); else if (const auto *F = dyn_cast(NDecl)) Ty = F->getType().getNonReferenceType(); else return false; if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && !Ty->isFunctionProtoType()) return false; VariadicCallType CallType; if (!Proto || !Proto->isVariadic()) { CallType = VariadicDoesNotApply; } else if (Ty->isBlockPointerType()) { CallType = VariadicBlock; } else { // Ty->isFunctionPointerType() CallType = VariadicFunction; } checkCall(NDecl, Proto, /*ThisArg=*/nullptr, llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), /*IsMemberFunction=*/false, TheCall->getRParenLoc(), TheCall->getCallee()->getSourceRange(), CallType); return false; } bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, TheCall->getCallee()); checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), /*IsMemberFunction=*/false, TheCall->getRParenLoc(), TheCall->getCallee()->getSourceRange(), CallType); return false; } static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { if (!llvm::isValidAtomicOrderingCABI(Ordering)) return false; auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; switch (Op) { case AtomicExpr::AO__c11_atomic_init: case AtomicExpr::AO__opencl_atomic_init: llvm_unreachable("There is no ordering argument for an init"); case AtomicExpr::AO__c11_atomic_load: case AtomicExpr::AO__opencl_atomic_load: case AtomicExpr::AO__hip_atomic_load: case AtomicExpr::AO__atomic_load_n: case AtomicExpr::AO__atomic_load: case AtomicExpr::AO__scoped_atomic_load_n: case AtomicExpr::AO__scoped_atomic_load: return OrderingCABI != llvm::AtomicOrderingCABI::release && OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; case AtomicExpr::AO__c11_atomic_store: case AtomicExpr::AO__opencl_atomic_store: case AtomicExpr::AO__hip_atomic_store: case AtomicExpr::AO__atomic_store: case AtomicExpr::AO__atomic_store_n: case AtomicExpr::AO__scoped_atomic_store: case AtomicExpr::AO__scoped_atomic_store_n: return OrderingCABI != llvm::AtomicOrderingCABI::consume && OrderingCABI != llvm::AtomicOrderingCABI::acquire && OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; default: return true; } } ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) { CallExpr *TheCall = cast(TheCallResult.get()); DeclRefExpr *DRE =cast(TheCall->getCallee()->IgnoreParenCasts()); MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, DRE->getSourceRange(), TheCall->getRParenLoc(), Args, Op); } ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, SourceLocation RParenLoc, MultiExprArg Args, AtomicExpr::AtomicOp Op, AtomicArgumentOrder ArgOrder) { // All the non-OpenCL operations take one of the following forms. // The OpenCL operations take the __c11 forms with one extra argument for // synchronization scope. enum { // C __c11_atomic_init(A *, C) Init, // C __c11_atomic_load(A *, int) Load, // void __atomic_load(A *, CP, int) LoadCopy, // void __atomic_store(A *, CP, int) Copy, // C __c11_atomic_add(A *, M, int) Arithmetic, // C __atomic_exchange_n(A *, CP, int) Xchg, // void __atomic_exchange(A *, C *, CP, int) GNUXchg, // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) C11CmpXchg, // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) GNUCmpXchg } Form = Init; const unsigned NumForm = GNUCmpXchg + 1; const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; // where: // C is an appropriate type, // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, // M is C if C is an integer, and ptrdiff_t if C is a pointer, and // the int parameters are for orderings. static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, "need to update code for modified forms"); static_assert(AtomicExpr::AO__atomic_add_fetch == 0 && AtomicExpr::AO__atomic_xor_fetch + 1 == AtomicExpr::AO__c11_atomic_compare_exchange_strong, "need to update code for modified C11 atomics"); bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong && Op <= AtomicExpr::AO__opencl_atomic_store; bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong && Op <= AtomicExpr::AO__hip_atomic_store; bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch && Op <= AtomicExpr::AO__scoped_atomic_xor_fetch; bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong && Op <= AtomicExpr::AO__c11_atomic_store) || IsOpenCL; bool IsN = Op == AtomicExpr::AO__atomic_load_n || Op == AtomicExpr::AO__atomic_store_n || Op == AtomicExpr::AO__atomic_exchange_n || Op == AtomicExpr::AO__atomic_compare_exchange_n || Op == AtomicExpr::AO__scoped_atomic_load_n || Op == AtomicExpr::AO__scoped_atomic_store_n || Op == AtomicExpr::AO__scoped_atomic_exchange_n || Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n; // Bit mask for extra allowed value types other than integers for atomic // arithmetic operations. Add/sub allow pointer and floating point. Min/max // allow floating point. enum ArithOpExtraValueType { AOEVT_None = 0, AOEVT_Pointer = 1, AOEVT_FP = 2, }; unsigned ArithAllows = AOEVT_None; switch (Op) { case AtomicExpr::AO__c11_atomic_init: case AtomicExpr::AO__opencl_atomic_init: Form = Init; break; case AtomicExpr::AO__c11_atomic_load: case AtomicExpr::AO__opencl_atomic_load: case AtomicExpr::AO__hip_atomic_load: case AtomicExpr::AO__atomic_load_n: case AtomicExpr::AO__scoped_atomic_load_n: Form = Load; break; case AtomicExpr::AO__atomic_load: case AtomicExpr::AO__scoped_atomic_load: Form = LoadCopy; break; case AtomicExpr::AO__c11_atomic_store: case AtomicExpr::AO__opencl_atomic_store: case AtomicExpr::AO__hip_atomic_store: case AtomicExpr::AO__atomic_store: case AtomicExpr::AO__atomic_store_n: case AtomicExpr::AO__scoped_atomic_store: case AtomicExpr::AO__scoped_atomic_store_n: Form = Copy; break; case AtomicExpr::AO__atomic_fetch_add: case AtomicExpr::AO__atomic_fetch_sub: case AtomicExpr::AO__atomic_add_fetch: case AtomicExpr::AO__atomic_sub_fetch: case AtomicExpr::AO__scoped_atomic_fetch_add: case AtomicExpr::AO__scoped_atomic_fetch_sub: case AtomicExpr::AO__scoped_atomic_add_fetch: case AtomicExpr::AO__scoped_atomic_sub_fetch: case AtomicExpr::AO__c11_atomic_fetch_add: case AtomicExpr::AO__c11_atomic_fetch_sub: case AtomicExpr::AO__opencl_atomic_fetch_add: case AtomicExpr::AO__opencl_atomic_fetch_sub: case AtomicExpr::AO__hip_atomic_fetch_add: case AtomicExpr::AO__hip_atomic_fetch_sub: ArithAllows = AOEVT_Pointer | AOEVT_FP; Form = Arithmetic; break; case AtomicExpr::AO__atomic_fetch_max: case AtomicExpr::AO__atomic_fetch_min: case AtomicExpr::AO__atomic_max_fetch: case AtomicExpr::AO__atomic_min_fetch: case AtomicExpr::AO__scoped_atomic_fetch_max: case AtomicExpr::AO__scoped_atomic_fetch_min: case AtomicExpr::AO__scoped_atomic_max_fetch: case AtomicExpr::AO__scoped_atomic_min_fetch: case AtomicExpr::AO__c11_atomic_fetch_max: case AtomicExpr::AO__c11_atomic_fetch_min: case AtomicExpr::AO__opencl_atomic_fetch_max: case AtomicExpr::AO__opencl_atomic_fetch_min: case AtomicExpr::AO__hip_atomic_fetch_max: case AtomicExpr::AO__hip_atomic_fetch_min: ArithAllows = AOEVT_FP; Form = Arithmetic; break; case AtomicExpr::AO__c11_atomic_fetch_and: case AtomicExpr::AO__c11_atomic_fetch_or: case AtomicExpr::AO__c11_atomic_fetch_xor: case AtomicExpr::AO__hip_atomic_fetch_and: case AtomicExpr::AO__hip_atomic_fetch_or: case AtomicExpr::AO__hip_atomic_fetch_xor: case AtomicExpr::AO__c11_atomic_fetch_nand: case AtomicExpr::AO__opencl_atomic_fetch_and: case AtomicExpr::AO__opencl_atomic_fetch_or: case AtomicExpr::AO__opencl_atomic_fetch_xor: case AtomicExpr::AO__atomic_fetch_and: case AtomicExpr::AO__atomic_fetch_or: case AtomicExpr::AO__atomic_fetch_xor: case AtomicExpr::AO__atomic_fetch_nand: case AtomicExpr::AO__atomic_and_fetch: case AtomicExpr::AO__atomic_or_fetch: case AtomicExpr::AO__atomic_xor_fetch: case AtomicExpr::AO__atomic_nand_fetch: case AtomicExpr::AO__scoped_atomic_fetch_and: case AtomicExpr::AO__scoped_atomic_fetch_or: case AtomicExpr::AO__scoped_atomic_fetch_xor: case AtomicExpr::AO__scoped_atomic_fetch_nand: case AtomicExpr::AO__scoped_atomic_and_fetch: case AtomicExpr::AO__scoped_atomic_or_fetch: case AtomicExpr::AO__scoped_atomic_xor_fetch: case AtomicExpr::AO__scoped_atomic_nand_fetch: Form = Arithmetic; break; case AtomicExpr::AO__c11_atomic_exchange: case AtomicExpr::AO__hip_atomic_exchange: case AtomicExpr::AO__opencl_atomic_exchange: case AtomicExpr::AO__atomic_exchange_n: case AtomicExpr::AO__scoped_atomic_exchange_n: Form = Xchg; break; case AtomicExpr::AO__atomic_exchange: case AtomicExpr::AO__scoped_atomic_exchange: Form = GNUXchg; break; case AtomicExpr::AO__c11_atomic_compare_exchange_strong: case AtomicExpr::AO__c11_atomic_compare_exchange_weak: case AtomicExpr::AO__hip_atomic_compare_exchange_strong: case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: case AtomicExpr::AO__hip_atomic_compare_exchange_weak: Form = C11CmpXchg; break; case AtomicExpr::AO__atomic_compare_exchange: case AtomicExpr::AO__atomic_compare_exchange_n: case AtomicExpr::AO__scoped_atomic_compare_exchange: case AtomicExpr::AO__scoped_atomic_compare_exchange_n: Form = GNUCmpXchg; break; } unsigned AdjustedNumArgs = NumArgs[Form]; if ((IsOpenCL || IsHIP || IsScoped) && Op != AtomicExpr::AO__opencl_atomic_init) ++AdjustedNumArgs; // Check we have the right number of arguments. if (Args.size() < AdjustedNumArgs) { Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) << 0 << AdjustedNumArgs << static_cast(Args.size()) << /*is non object*/ 0 << ExprRange; return ExprError(); } else if (Args.size() > AdjustedNumArgs) { Diag(Args[AdjustedNumArgs]->getBeginLoc(), diag::err_typecheck_call_too_many_args) << 0 << AdjustedNumArgs << static_cast(Args.size()) << /*is non object*/ 0 << ExprRange; return ExprError(); } // Inspect the first argument of the atomic operation. Expr *Ptr = Args[0]; ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); if (ConvertedPtr.isInvalid()) return ExprError(); Ptr = ConvertedPtr.get(); const PointerType *pointerType = Ptr->getType()->getAs(); if (!pointerType) { Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) << Ptr->getType() << 0 << Ptr->getSourceRange(); return ExprError(); } // For a __c11 builtin, this should be a pointer to an _Atomic type. QualType AtomTy = pointerType->getPointeeType(); // 'A' QualType ValType = AtomTy; // 'C' if (IsC11) { if (!AtomTy->isAtomicType()) { Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || AtomTy.getAddressSpace() == LangAS::opencl_constant) { Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } ValType = AtomTy->castAs()->getValueType(); } else if (Form != Load && Form != LoadCopy) { if (ValType.isConstQualified()) { Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } } // Pointer to object of size zero is not allowed. if (RequireCompleteType(Ptr->getBeginLoc(), AtomTy, diag::err_incomplete_type)) return ExprError(); if (Context.getTypeInfoInChars(AtomTy).Width.isZero()) { Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) << Ptr->getType() << 1 << Ptr->getSourceRange(); return ExprError(); } // For an arithmetic operation, the implied arithmetic must be well-formed. if (Form == Arithmetic) { // GCC does not enforce these rules for GNU atomics, but we do to help catch // trivial type errors. auto IsAllowedValueType = [&](QualType ValType, unsigned AllowedType) -> bool { if (ValType->isIntegerType()) return true; if (ValType->isPointerType()) return AllowedType & AOEVT_Pointer; if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP))) return false; // LLVM Parser does not allow atomicrmw with x86_fp80 type. if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) && &Context.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) return false; return true; }; if (!IsAllowedValueType(ValType, ArithAllows)) { auto DID = ArithAllows & AOEVT_FP ? (ArithAllows & AOEVT_Pointer ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp : diag::err_atomic_op_needs_atomic_int_or_fp) : diag::err_atomic_op_needs_atomic_int; Diag(ExprRange.getBegin(), DID) << IsC11 << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } if (IsC11 && ValType->isPointerType() && RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), diag::err_incomplete_type)) { return ExprError(); } } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { // For __atomic_*_n operations, the value type must be a scalar integral or // pointer type which is 1, 2, 4, 8 or 16 bytes in length. Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) << IsC11 << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && !AtomTy->isScalarType()) { // For GNU atomics, require a trivially-copyable type. This is not part of // the GNU atomics specification but we enforce it for consistency with // other atomics which generally all require a trivially-copyable type. This // is because atomics just copy bits. Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } switch (ValType.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: // okay break; case Qualifiers::OCL_Weak: case Qualifiers::OCL_Strong: case Qualifiers::OCL_Autoreleasing: // FIXME: Can this happen? By this point, ValType should be known // to be trivially copyable. Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) << ValType << Ptr->getSourceRange(); return ExprError(); } // All atomic operations have an overload which takes a pointer to a volatile // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself // into the result or the other operands. Similarly atomic_load takes a // pointer to a const 'A'. ValType.removeLocalVolatile(); ValType.removeLocalConst(); QualType ResultType = ValType; if (Form == Copy || Form == LoadCopy || Form == GNUXchg || Form == Init) ResultType = Context.VoidTy; else if (Form == C11CmpXchg || Form == GNUCmpXchg) ResultType = Context.BoolTy; // The type of a parameter passed 'by value'. In the GNU atomics, such // arguments are actually passed as pointers. QualType ByValType = ValType; // 'CP' bool IsPassedByAddress = false; if (!IsC11 && !IsHIP && !IsN) { ByValType = Ptr->getType(); IsPassedByAddress = true; } SmallVector APIOrderedArgs; if (ArgOrder == Sema::AtomicArgumentOrder::AST) { APIOrderedArgs.push_back(Args[0]); switch (Form) { case Init: case Load: APIOrderedArgs.push_back(Args[1]); // Val1/Order break; case LoadCopy: case Copy: case Arithmetic: case Xchg: APIOrderedArgs.push_back(Args[2]); // Val1 APIOrderedArgs.push_back(Args[1]); // Order break; case GNUXchg: APIOrderedArgs.push_back(Args[2]); // Val1 APIOrderedArgs.push_back(Args[3]); // Val2 APIOrderedArgs.push_back(Args[1]); // Order break; case C11CmpXchg: APIOrderedArgs.push_back(Args[2]); // Val1 APIOrderedArgs.push_back(Args[4]); // Val2 APIOrderedArgs.push_back(Args[1]); // Order APIOrderedArgs.push_back(Args[3]); // OrderFail break; case GNUCmpXchg: APIOrderedArgs.push_back(Args[2]); // Val1 APIOrderedArgs.push_back(Args[4]); // Val2 APIOrderedArgs.push_back(Args[5]); // Weak APIOrderedArgs.push_back(Args[1]); // Order APIOrderedArgs.push_back(Args[3]); // OrderFail break; } } else APIOrderedArgs.append(Args.begin(), Args.end()); // The first argument's non-CV pointer type is used to deduce the type of // subsequent arguments, except for: // - weak flag (always converted to bool) // - memory order (always converted to int) // - scope (always converted to int) for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { QualType Ty; if (i < NumVals[Form] + 1) { switch (i) { case 0: // The first argument is always a pointer. It has a fixed type. // It is always dereferenced, a nullptr is undefined. CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); // Nothing else to do: we already know all we want about this pointer. continue; case 1: // The second argument is the non-atomic operand. For arithmetic, this // is always passed by value, and for a compare_exchange it is always // passed by address. For the rest, GNU uses by-address and C11 uses // by-value. assert(Form != Load); if (Form == Arithmetic && ValType->isPointerType()) Ty = Context.getPointerDiffType(); else if (Form == Init || Form == Arithmetic) Ty = ValType; else if (Form == Copy || Form == Xchg) { if (IsPassedByAddress) { // The value pointer is always dereferenced, a nullptr is undefined. CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); } Ty = ByValType; } else { Expr *ValArg = APIOrderedArgs[i]; // The value pointer is always dereferenced, a nullptr is undefined. CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); LangAS AS = LangAS::Default; // Keep address space of non-atomic pointer type. if (const PointerType *PtrTy = ValArg->getType()->getAs()) { AS = PtrTy->getPointeeType().getAddressSpace(); } Ty = Context.getPointerType( Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); } break; case 2: // The third argument to compare_exchange / GNU exchange is the desired // value, either by-value (for the C11 and *_n variant) or as a pointer. if (IsPassedByAddress) CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); Ty = ByValType; break; case 3: // The fourth argument to GNU compare_exchange is a 'weak' flag. Ty = Context.BoolTy; break; } } else { // The order(s) and scope are always converted to int. Ty = Context.IntTy; } InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, Ty, false); ExprResult Arg = APIOrderedArgs[i]; Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); if (Arg.isInvalid()) return true; APIOrderedArgs[i] = Arg.get(); } // Permute the arguments into a 'consistent' order. SmallVector SubExprs; SubExprs.push_back(Ptr); switch (Form) { case Init: // Note, AtomicExpr::getVal1() has a special case for this atomic. SubExprs.push_back(APIOrderedArgs[1]); // Val1 break; case Load: SubExprs.push_back(APIOrderedArgs[1]); // Order break; case LoadCopy: case Copy: case Arithmetic: case Xchg: SubExprs.push_back(APIOrderedArgs[2]); // Order SubExprs.push_back(APIOrderedArgs[1]); // Val1 break; case GNUXchg: // Note, AtomicExpr::getVal2() has a special case for this atomic. SubExprs.push_back(APIOrderedArgs[3]); // Order SubExprs.push_back(APIOrderedArgs[1]); // Val1 SubExprs.push_back(APIOrderedArgs[2]); // Val2 break; case C11CmpXchg: SubExprs.push_back(APIOrderedArgs[3]); // Order SubExprs.push_back(APIOrderedArgs[1]); // Val1 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail SubExprs.push_back(APIOrderedArgs[2]); // Val2 break; case GNUCmpXchg: SubExprs.push_back(APIOrderedArgs[4]); // Order SubExprs.push_back(APIOrderedArgs[1]); // Val1 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail SubExprs.push_back(APIOrderedArgs[2]); // Val2 SubExprs.push_back(APIOrderedArgs[3]); // Weak break; } // If the memory orders are constants, check they are valid. if (SubExprs.size() >= 2 && Form != Init) { std::optional Success = SubExprs[1]->getIntegerConstantExpr(Context); if (Success && !isValidOrderingForOp(Success->getSExtValue(), Op)) { Diag(SubExprs[1]->getBeginLoc(), diag::warn_atomic_op_has_invalid_memory_order) << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg) << SubExprs[1]->getSourceRange(); } if (SubExprs.size() >= 5) { if (std::optional Failure = SubExprs[3]->getIntegerConstantExpr(Context)) { if (!llvm::is_contained( {llvm::AtomicOrderingCABI::relaxed, llvm::AtomicOrderingCABI::consume, llvm::AtomicOrderingCABI::acquire, llvm::AtomicOrderingCABI::seq_cst}, (llvm::AtomicOrderingCABI)Failure->getSExtValue())) { Diag(SubExprs[3]->getBeginLoc(), diag::warn_atomic_op_has_invalid_memory_order) << /*failure=*/2 << SubExprs[3]->getSourceRange(); } } } } if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { auto *Scope = Args[Args.size() - 1]; if (std::optional Result = Scope->getIntegerConstantExpr(Context)) { if (!ScopeModel->isValid(Result->getZExtValue())) Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) << Scope->getSourceRange(); } SubExprs.push_back(Scope); } AtomicExpr *AE = new (Context) AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); if ((Op == AtomicExpr::AO__c11_atomic_load || Op == AtomicExpr::AO__c11_atomic_store || Op == AtomicExpr::AO__opencl_atomic_load || Op == AtomicExpr::AO__hip_atomic_load || Op == AtomicExpr::AO__opencl_atomic_store || Op == AtomicExpr::AO__hip_atomic_store) && Context.AtomicUsesUnsupportedLibcall(AE)) Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) << ((Op == AtomicExpr::AO__c11_atomic_load || Op == AtomicExpr::AO__opencl_atomic_load || Op == AtomicExpr::AO__hip_atomic_load) ? 0 : 1); if (ValType->isBitIntType()) { Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit); return ExprError(); } return AE; } /// checkBuiltinArgument - Given a call to a builtin function, perform /// normal type-checking on the given argument, updating the call in /// place. This is useful when a builtin function requires custom /// type-checking for some of its arguments but not necessarily all of /// them. /// /// Returns true on error. static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { FunctionDecl *Fn = E->getDirectCallee(); assert(Fn && "builtin call without direct callee!"); ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); InitializedEntity Entity = InitializedEntity::InitializeParameter(S.Context, Param); ExprResult Arg = E->getArg(ArgIndex); Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); if (Arg.isInvalid()) return true; E->setArg(ArgIndex, Arg.get()); return false; } ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) { CallExpr *TheCall = static_cast(TheCallResult.get()); Expr *Callee = TheCall->getCallee(); DeclRefExpr *DRE = cast(Callee->IgnoreParenCasts()); FunctionDecl *FDecl = cast(DRE->getDecl()); // Ensure that we have at least one argument to do type inference from. if (TheCall->getNumArgs() < 1) { Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 << Callee->getSourceRange(); return ExprError(); } // Inspect the first argument of the atomic builtin. This should always be // a pointer type, whose element is an integral scalar or pointer type. // Because it is a pointer type, we don't have to worry about any implicit // casts here. // FIXME: We don't allow floating point scalars as input. Expr *FirstArg = TheCall->getArg(0); ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); if (FirstArgResult.isInvalid()) return ExprError(); FirstArg = FirstArgResult.get(); TheCall->setArg(0, FirstArg); const PointerType *pointerType = FirstArg->getType()->getAs(); if (!pointerType) { Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) << FirstArg->getType() << 0 << FirstArg->getSourceRange(); return ExprError(); } QualType ValType = pointerType->getPointeeType(); if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && !ValType->isBlockPointerType()) { Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) << FirstArg->getType() << 0 << FirstArg->getSourceRange(); return ExprError(); } if (ValType.isConstQualified()) { Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) << FirstArg->getType() << FirstArg->getSourceRange(); return ExprError(); } switch (ValType.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: // okay break; case Qualifiers::OCL_Weak: case Qualifiers::OCL_Strong: case Qualifiers::OCL_Autoreleasing: Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) << ValType << FirstArg->getSourceRange(); return ExprError(); } // Strip any qualifiers off ValType. ValType = ValType.getUnqualifiedType(); // The majority of builtins return a value, but a few have special return // types, so allow them to override appropriately below. QualType ResultType = ValType; // We need to figure out which concrete builtin this maps onto. For example, // __sync_fetch_and_add with a 2 byte object turns into // __sync_fetch_and_add_2. #define BUILTIN_ROW(x) \ { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ Builtin::BI##x##_8, Builtin::BI##x##_16 } static const unsigned BuiltinIndices[][5] = { BUILTIN_ROW(__sync_fetch_and_add), BUILTIN_ROW(__sync_fetch_and_sub), BUILTIN_ROW(__sync_fetch_and_or), BUILTIN_ROW(__sync_fetch_and_and), BUILTIN_ROW(__sync_fetch_and_xor), BUILTIN_ROW(__sync_fetch_and_nand), BUILTIN_ROW(__sync_add_and_fetch), BUILTIN_ROW(__sync_sub_and_fetch), BUILTIN_ROW(__sync_and_and_fetch), BUILTIN_ROW(__sync_or_and_fetch), BUILTIN_ROW(__sync_xor_and_fetch), BUILTIN_ROW(__sync_nand_and_fetch), BUILTIN_ROW(__sync_val_compare_and_swap), BUILTIN_ROW(__sync_bool_compare_and_swap), BUILTIN_ROW(__sync_lock_test_and_set), BUILTIN_ROW(__sync_lock_release), BUILTIN_ROW(__sync_swap) }; #undef BUILTIN_ROW // Determine the index of the size. unsigned SizeIndex; switch (Context.getTypeSizeInChars(ValType).getQuantity()) { case 1: SizeIndex = 0; break; case 2: SizeIndex = 1; break; case 4: SizeIndex = 2; break; case 8: SizeIndex = 3; break; case 16: SizeIndex = 4; break; default: Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) << FirstArg->getType() << FirstArg->getSourceRange(); return ExprError(); } // Each of these builtins has one pointer argument, followed by some number of // values (0, 1 or 2) followed by a potentially empty varags list of stuff // that we ignore. Find out which row of BuiltinIndices to read from as well // as the number of fixed args. unsigned BuiltinID = FDecl->getBuiltinID(); unsigned BuiltinIndex, NumFixed = 1; bool WarnAboutSemanticsChange = false; switch (BuiltinID) { default: llvm_unreachable("Unknown overloaded atomic builtin!"); case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_add_1: case Builtin::BI__sync_fetch_and_add_2: case Builtin::BI__sync_fetch_and_add_4: case Builtin::BI__sync_fetch_and_add_8: case Builtin::BI__sync_fetch_and_add_16: BuiltinIndex = 0; break; case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_sub_1: case Builtin::BI__sync_fetch_and_sub_2: case Builtin::BI__sync_fetch_and_sub_4: case Builtin::BI__sync_fetch_and_sub_8: case Builtin::BI__sync_fetch_and_sub_16: BuiltinIndex = 1; break; case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_or_1: case Builtin::BI__sync_fetch_and_or_2: case Builtin::BI__sync_fetch_and_or_4: case Builtin::BI__sync_fetch_and_or_8: case Builtin::BI__sync_fetch_and_or_16: BuiltinIndex = 2; break; case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_and_1: case Builtin::BI__sync_fetch_and_and_2: case Builtin::BI__sync_fetch_and_and_4: case Builtin::BI__sync_fetch_and_and_8: case Builtin::BI__sync_fetch_and_and_16: BuiltinIndex = 3; break; case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_fetch_and_xor_1: case Builtin::BI__sync_fetch_and_xor_2: case Builtin::BI__sync_fetch_and_xor_4: case Builtin::BI__sync_fetch_and_xor_8: case Builtin::BI__sync_fetch_and_xor_16: BuiltinIndex = 4; break; case Builtin::BI__sync_fetch_and_nand: case Builtin::BI__sync_fetch_and_nand_1: case Builtin::BI__sync_fetch_and_nand_2: case Builtin::BI__sync_fetch_and_nand_4: case Builtin::BI__sync_fetch_and_nand_8: case Builtin::BI__sync_fetch_and_nand_16: BuiltinIndex = 5; WarnAboutSemanticsChange = true; break; case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_add_and_fetch_1: case Builtin::BI__sync_add_and_fetch_2: case Builtin::BI__sync_add_and_fetch_4: case Builtin::BI__sync_add_and_fetch_8: case Builtin::BI__sync_add_and_fetch_16: BuiltinIndex = 6; break; case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_sub_and_fetch_1: case Builtin::BI__sync_sub_and_fetch_2: case Builtin::BI__sync_sub_and_fetch_4: case Builtin::BI__sync_sub_and_fetch_8: case Builtin::BI__sync_sub_and_fetch_16: BuiltinIndex = 7; break; case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_and_and_fetch_1: case Builtin::BI__sync_and_and_fetch_2: case Builtin::BI__sync_and_and_fetch_4: case Builtin::BI__sync_and_and_fetch_8: case Builtin::BI__sync_and_and_fetch_16: BuiltinIndex = 8; break; case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_or_and_fetch_1: case Builtin::BI__sync_or_and_fetch_2: case Builtin::BI__sync_or_and_fetch_4: case Builtin::BI__sync_or_and_fetch_8: case Builtin::BI__sync_or_and_fetch_16: BuiltinIndex = 9; break; case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_xor_and_fetch_1: case Builtin::BI__sync_xor_and_fetch_2: case Builtin::BI__sync_xor_and_fetch_4: case Builtin::BI__sync_xor_and_fetch_8: case Builtin::BI__sync_xor_and_fetch_16: BuiltinIndex = 10; break; case Builtin::BI__sync_nand_and_fetch: case Builtin::BI__sync_nand_and_fetch_1: case Builtin::BI__sync_nand_and_fetch_2: case Builtin::BI__sync_nand_and_fetch_4: case Builtin::BI__sync_nand_and_fetch_8: case Builtin::BI__sync_nand_and_fetch_16: BuiltinIndex = 11; WarnAboutSemanticsChange = true; break; case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_val_compare_and_swap_1: case Builtin::BI__sync_val_compare_and_swap_2: case Builtin::BI__sync_val_compare_and_swap_4: case Builtin::BI__sync_val_compare_and_swap_8: case Builtin::BI__sync_val_compare_and_swap_16: BuiltinIndex = 12; NumFixed = 2; break; case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap_1: case Builtin::BI__sync_bool_compare_and_swap_2: case Builtin::BI__sync_bool_compare_and_swap_4: case Builtin::BI__sync_bool_compare_and_swap_8: case Builtin::BI__sync_bool_compare_and_swap_16: BuiltinIndex = 13; NumFixed = 2; ResultType = Context.BoolTy; break; case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_test_and_set_1: case Builtin::BI__sync_lock_test_and_set_2: case Builtin::BI__sync_lock_test_and_set_4: case Builtin::BI__sync_lock_test_and_set_8: case Builtin::BI__sync_lock_test_and_set_16: BuiltinIndex = 14; break; case Builtin::BI__sync_lock_release: case Builtin::BI__sync_lock_release_1: case Builtin::BI__sync_lock_release_2: case Builtin::BI__sync_lock_release_4: case Builtin::BI__sync_lock_release_8: case Builtin::BI__sync_lock_release_16: BuiltinIndex = 15; NumFixed = 0; ResultType = Context.VoidTy; break; case Builtin::BI__sync_swap: case Builtin::BI__sync_swap_1: case Builtin::BI__sync_swap_2: case Builtin::BI__sync_swap_4: case Builtin::BI__sync_swap_8: case Builtin::BI__sync_swap_16: BuiltinIndex = 16; break; } // Now that we know how many fixed arguments we expect, first check that we // have at least that many. if (TheCall->getNumArgs() < 1+NumFixed) { Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0 << Callee->getSourceRange(); return ExprError(); } Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) << Callee->getSourceRange(); if (WarnAboutSemanticsChange) { Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) << Callee->getSourceRange(); } // Get the decl for the concrete builtin from this, we can tell what the // concrete integer type we should convert to is. unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; StringRef NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); FunctionDecl *NewBuiltinDecl; if (NewBuiltinID == BuiltinID) NewBuiltinDecl = FDecl; else { // Perform builtin lookup to avoid redeclaring it. DeclarationName DN(&Context.Idents.get(NewBuiltinName)); LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); assert(Res.getFoundDecl()); NewBuiltinDecl = dyn_cast(Res.getFoundDecl()); if (!NewBuiltinDecl) return ExprError(); } // The first argument --- the pointer --- has a fixed type; we // deduce the types of the rest of the arguments accordingly. Walk // the remaining arguments, converting them to the deduced value type. for (unsigned i = 0; i != NumFixed; ++i) { ExprResult Arg = TheCall->getArg(i+1); // GCC does an implicit conversion to the pointer or integer ValType. This // can fail in some cases (1i -> int**), check for this error case now. // Initialize the argument. InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, ValType, /*consume*/ false); Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); if (Arg.isInvalid()) return ExprError(); // Okay, we have something that *can* be converted to the right type. Check // to see if there is a potentially weird extension going on here. This can // happen when you do an atomic operation on something like an char* and // pass in 42. The 42 gets converted to char. This is even more strange // for things like 45.123 -> char, etc. // FIXME: Do this check. TheCall->setArg(i+1, Arg.get()); } // Create a new DeclRefExpr to refer to the new decl. DeclRefExpr *NewDRE = DeclRefExpr::Create( Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); // Set the callee in the CallExpr. // FIXME: This loses syntactic information. QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, CK_BuiltinFnToFnPtr); TheCall->setCallee(PromotedCall.get()); // Change the result type of the call to match the original value type. This // is arbitrary, but the codegen for these builtins ins design to handle it // gracefully. TheCall->setType(ResultType); // Prohibit problematic uses of bit-precise integer types with atomic // builtins. The arguments would have already been converted to the first // argument's type, so only need to check the first argument. const auto *BitIntValType = ValType->getAs(); if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) { Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); return ExprError(); } return TheCallResult; } ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) { CallExpr *TheCall = (CallExpr *)TheCallResult.get(); DeclRefExpr *DRE = cast(TheCall->getCallee()->IgnoreParenCasts()); FunctionDecl *FDecl = cast(DRE->getDecl()); unsigned BuiltinID = FDecl->getBuiltinID(); assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && "Unexpected nontemporal load/store builtin!"); bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; unsigned numArgs = isStore ? 2 : 1; // Ensure that we have the proper number of arguments. if (checkArgCount(TheCall, numArgs)) return ExprError(); // Inspect the last argument of the nontemporal builtin. This should always // be a pointer type, from which we imply the type of the memory access. // Because it is a pointer type, we don't have to worry about any implicit // casts here. Expr *PointerArg = TheCall->getArg(numArgs - 1); ExprResult PointerArgResult = DefaultFunctionArrayLvalueConversion(PointerArg); if (PointerArgResult.isInvalid()) return ExprError(); PointerArg = PointerArgResult.get(); TheCall->setArg(numArgs - 1, PointerArg); const PointerType *pointerType = PointerArg->getType()->getAs(); if (!pointerType) { Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) << PointerArg->getType() << PointerArg->getSourceRange(); return ExprError(); } QualType ValType = pointerType->getPointeeType(); // Strip any qualifiers off ValType. ValType = ValType.getUnqualifiedType(); if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && !ValType->isBlockPointerType() && !ValType->isFloatingType() && !ValType->isVectorType()) { Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) << PointerArg->getType() << PointerArg->getSourceRange(); return ExprError(); } if (!isStore) { TheCall->setType(ValType); return TheCallResult; } ExprResult ValArg = TheCall->getArg(0); InitializedEntity Entity = InitializedEntity::InitializeParameter( Context, ValType, /*consume*/ false); ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); if (ValArg.isInvalid()) return ExprError(); TheCall->setArg(0, ValArg.get()); TheCall->setType(Context.VoidTy); return TheCallResult; } /// CheckObjCString - Checks that the format string argument to the os_log() /// and os_trace() functions is correct, and converts it to const char *. ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { Arg = Arg->IgnoreParenCasts(); auto *Literal = dyn_cast(Arg); if (!Literal) { if (auto *ObjcLiteral = dyn_cast(Arg)) { Literal = ObjcLiteral->getString(); } } if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) { return ExprError( Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) << Arg->getSourceRange()); } ExprResult Result(Literal); QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, ResultTy, false); Result = PerformCopyInitialization(Entity, SourceLocation(), Result); return Result; } /// Check that the user is calling the appropriate va_start builtin for the /// target and calling convention. static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); bool IsX64 = TT.getArch() == llvm::Triple::x86_64; bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || TT.getArch() == llvm::Triple::aarch64_32); bool IsWindows = TT.isOSWindows(); bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; if (IsX64 || IsAArch64) { CallingConv CC = CC_C; if (const FunctionDecl *FD = S.getCurFunctionDecl()) CC = FD->getType()->castAs()->getCallConv(); if (IsMSVAStart) { // Don't allow this in System V ABI functions. if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) return S.Diag(Fn->getBeginLoc(), diag::err_ms_va_start_used_in_sysv_function); } else { // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. // On x64 Windows, don't allow this in System V ABI functions. // (Yes, that means there's no corresponding way to support variadic // System V ABI functions on Windows.) if ((IsWindows && CC == CC_X86_64SysV) || (!IsWindows && CC == CC_Win64)) return S.Diag(Fn->getBeginLoc(), diag::err_va_start_used_in_wrong_abi_function) << !IsWindows; } return false; } if (IsMSVAStart) return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); return false; } static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, ParmVarDecl **LastParam = nullptr) { // Determine whether the current function, block, or obj-c method is variadic // and get its parameter list. bool IsVariadic = false; ArrayRef Params; DeclContext *Caller = S.CurContext; if (auto *Block = dyn_cast(Caller)) { IsVariadic = Block->isVariadic(); Params = Block->parameters(); } else if (auto *FD = dyn_cast(Caller)) { IsVariadic = FD->isVariadic(); Params = FD->parameters(); } else if (auto *MD = dyn_cast(Caller)) { IsVariadic = MD->isVariadic(); // FIXME: This isn't correct for methods (results in bogus warning). Params = MD->parameters(); } else if (isa(Caller)) { // We don't support va_start in a CapturedDecl. S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); return true; } else { // This must be some other declcontext that parses exprs. S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); return true; } if (!IsVariadic) { S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); return true; } if (LastParam) *LastParam = Params.empty() ? nullptr : Params.back(); return false; } bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { Expr *Fn = TheCall->getCallee(); if (checkVAStartABI(*this, BuiltinID, Fn)) return true; // In C23 mode, va_start only needs one argument. However, the builtin still // requires two arguments (which matches the behavior of the GCC builtin), // passes `0` as the second argument in C23 mode. if (checkArgCount(TheCall, 2)) return true; // Type-check the first argument normally. if (checkBuiltinArgument(*this, TheCall, 0)) return true; // Check that the current function is variadic, and get its last parameter. ParmVarDecl *LastParam; if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) return true; // Verify that the second argument to the builtin is the last argument of the // current function or method. In C23 mode, if the second argument is an // integer constant expression with value 0, then we don't bother with this // check. bool SecondArgIsLastNamedArgument = false; const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); if (std::optional Val = TheCall->getArg(1)->getIntegerConstantExpr(Context); Val && LangOpts.C23 && *Val == 0) return false; // These are valid if SecondArgIsLastNamedArgument is false after the next // block. QualType Type; SourceLocation ParamLoc; bool IsCRegister = false; if (const DeclRefExpr *DR = dyn_cast(Arg)) { if (const ParmVarDecl *PV = dyn_cast(DR->getDecl())) { SecondArgIsLastNamedArgument = PV == LastParam; Type = PV->getType(); ParamLoc = PV->getLocation(); IsCRegister = PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; } } if (!SecondArgIsLastNamedArgument) Diag(TheCall->getArg(1)->getBeginLoc(), diag::warn_second_arg_of_va_start_not_last_named_param); else if (IsCRegister || Type->isReferenceType() || Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { // Promotable integers are UB, but enumerations need a bit of // extra checking to see what their promotable type actually is. if (!Context.isPromotableIntegerType(Type)) return false; if (!Type->isEnumeralType()) return true; const EnumDecl *ED = Type->castAs()->getDecl(); return !(ED && Context.typesAreCompatible(ED->getPromotionType(), Type)); }()) { unsigned Reason = 0; if (Type->isReferenceType()) Reason = 1; else if (IsCRegister) Reason = 2; Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; Diag(ParamLoc, diag::note_parameter_type) << Type; } return false; } bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) { auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool { const LangOptions &LO = getLangOpts(); if (LO.CPlusPlus) return Arg->getType() .getCanonicalType() .getTypePtr() ->getPointeeType() .withoutLocalFastQualifiers() == Context.CharTy; // In C, allow aliasing through `char *`, this is required for AArch64 at // least. return true; }; // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, // const char *named_addr); Expr *Func = Call->getCallee(); if (Call->getNumArgs() < 3) return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) << 0 /*function call*/ << 3 << Call->getNumArgs() << /*is non object*/ 0; // Type-check the first argument normally. if (checkBuiltinArgument(*this, Call, 0)) return true; // Check that the current function is variadic. if (checkVAStartIsInVariadicFunction(*this, Func)) return true; // __va_start on Windows does not validate the parameter qualifiers const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); const QualType &ConstCharPtrTy = Context.getPointerType(Context.CharTy.withConst()); if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1)) Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ << 0 /* qualifier difference */ << 3 /* parameter mismatch */ << 2 << Arg1->getType() << ConstCharPtrTy; const QualType SizeTy = Context.getSizeType(); if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) << Arg2->getType() << SizeTy << 1 /* different class */ << 0 /* qualifier difference */ << 3 /* parameter mismatch */ << 3 << Arg2->getType() << SizeTy; return false; } bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) { if (checkArgCount(TheCall, 2)) return true; if (BuiltinID == Builtin::BI__builtin_isunordered && TheCall->getFPFeaturesInEffect(getLangOpts()).getNoHonorNaNs()) Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) << 1 << 0 << TheCall->getSourceRange(); ExprResult OrigArg0 = TheCall->getArg(0); ExprResult OrigArg1 = TheCall->getArg(1); // Do standard promotions between the two arguments, returning their common // type. QualType Res = UsualArithmeticConversions( OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) return true; // Make sure any conversions are pushed back into the call; this is // type safe since unordered compare builtins are declared as "_Bool // foo(...)". TheCall->setArg(0, OrigArg0.get()); TheCall->setArg(1, OrigArg1.get()); if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) return false; // If the common type isn't a real floating type, then the arguments were // invalid for this operation. if (Res.isNull() || !Res->isRealFloatingType()) return Diag(OrigArg0.get()->getBeginLoc(), diag::err_typecheck_call_invalid_ordered_compare) << OrigArg0.get()->getType() << OrigArg1.get()->getType() << SourceRange(OrigArg0.get()->getBeginLoc(), OrigArg1.get()->getEndLoc()); return false; } bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs, unsigned BuiltinID) { if (checkArgCount(TheCall, NumArgs)) return true; FPOptions FPO = TheCall->getFPFeaturesInEffect(getLangOpts()); if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite || BuiltinID == Builtin::BI__builtin_isinf || BuiltinID == Builtin::BI__builtin_isinf_sign)) Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) << 0 << 0 << TheCall->getSourceRange(); if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan || BuiltinID == Builtin::BI__builtin_isunordered)) Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) << 1 << 0 << TheCall->getSourceRange(); bool IsFPClass = NumArgs == 2; // Find out position of floating-point argument. unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1; // We can count on all parameters preceding the floating-point just being int. // Try all of those. for (unsigned i = 0; i < FPArgNo; ++i) { Expr *Arg = TheCall->getArg(i); if (Arg->isTypeDependent()) return false; ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); if (Res.isInvalid()) return true; TheCall->setArg(i, Res.get()); } Expr *OrigArg = TheCall->getArg(FPArgNo); if (OrigArg->isTypeDependent()) return false; // Usual Unary Conversions will convert half to float, which we want for // machines that use fp16 conversion intrinsics. Else, we wnat to leave the // type how it is, but do normal L->Rvalue conversions. if (Context.getTargetInfo().useFP16ConversionIntrinsics()) OrigArg = UsualUnaryConversions(OrigArg).get(); else OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); TheCall->setArg(FPArgNo, OrigArg); QualType VectorResultTy; QualType ElementTy = OrigArg->getType(); // TODO: When all classification function are implemented with is_fpclass, // vector argument can be supported in all of them. if (ElementTy->isVectorType() && IsFPClass) { VectorResultTy = GetSignedVectorType(ElementTy); ElementTy = ElementTy->castAs()->getElementType(); } // This operation requires a non-_Complex floating-point number. if (!ElementTy->isRealFloatingType()) return Diag(OrigArg->getBeginLoc(), diag::err_typecheck_call_invalid_unary_fp) << OrigArg->getType() << OrigArg->getSourceRange(); // __builtin_isfpclass has integer parameter that specify test mask. It is // passed in (...), so it should be analyzed completely here. if (IsFPClass) if (BuiltinConstantArgRange(TheCall, 1, 0, llvm::fcAllFlags)) return true; // TODO: enable this code to all classification functions. if (IsFPClass) { QualType ResultTy; if (!VectorResultTy.isNull()) ResultTy = VectorResultTy; else ResultTy = Context.IntTy; TheCall->setType(ResultTy); } return false; } bool Sema::BuiltinComplex(CallExpr *TheCall) { if (checkArgCount(TheCall, 2)) return true; bool Dependent = false; for (unsigned I = 0; I != 2; ++I) { Expr *Arg = TheCall->getArg(I); QualType T = Arg->getType(); if (T->isDependentType()) { Dependent = true; continue; } // Despite supporting _Complex int, GCC requires a real floating point type // for the operands of __builtin_complex. if (!T->isRealFloatingType()) { return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) << Arg->getType() << Arg->getSourceRange(); } ExprResult Converted = DefaultLvalueConversion(Arg); if (Converted.isInvalid()) return true; TheCall->setArg(I, Converted.get()); } if (Dependent) { TheCall->setType(Context.DependentTy); return false; } Expr *Real = TheCall->getArg(0); Expr *Imag = TheCall->getArg(1); if (!Context.hasSameType(Real->getType(), Imag->getType())) { return Diag(Real->getBeginLoc(), diag::err_typecheck_call_different_arg_types) << Real->getType() << Imag->getType() << Real->getSourceRange() << Imag->getSourceRange(); } // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; // don't allow this builtin to form those types either. // FIXME: Should we allow these types? if (Real->getType()->isFloat16Type()) return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) << "_Float16"; if (Real->getType()->isHalfType()) return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) << "half"; TheCall->setType(Context.getComplexType(Real->getType())); return false; } /// BuiltinShuffleVector - Handle __builtin_shufflevector. // This is declared to take (...), so we have to check everything. ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) { if (TheCall->getNumArgs() < 2) return ExprError(Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) << 0 /*function call*/ << 2 << TheCall->getNumArgs() << /*is non object*/ 0 << TheCall->getSourceRange()); // Determine which of the following types of shufflevector we're checking: // 1) unary, vector mask: (lhs, mask) // 2) binary, scalar mask: (lhs, rhs, index, ..., index) QualType resType = TheCall->getArg(0)->getType(); unsigned numElements = 0; if (!TheCall->getArg(0)->isTypeDependent() && !TheCall->getArg(1)->isTypeDependent()) { QualType LHSType = TheCall->getArg(0)->getType(); QualType RHSType = TheCall->getArg(1)->getType(); if (!LHSType->isVectorType() || !RHSType->isVectorType()) return ExprError( Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false << SourceRange(TheCall->getArg(0)->getBeginLoc(), TheCall->getArg(1)->getEndLoc())); numElements = LHSType->castAs()->getNumElements(); unsigned numResElements = TheCall->getNumArgs() - 2; // Check to see if we have a call with 2 vector arguments, the unary shuffle // with mask. If so, verify that RHS is an integer vector type with the // same number of elts as lhs. if (TheCall->getNumArgs() == 2) { if (!RHSType->hasIntegerRepresentation() || RHSType->castAs()->getNumElements() != numElements) return ExprError(Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_incompatible_vector) << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false << SourceRange(TheCall->getArg(1)->getBeginLoc(), TheCall->getArg(1)->getEndLoc())); } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { return ExprError(Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_incompatible_vector) << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false << SourceRange(TheCall->getArg(0)->getBeginLoc(), TheCall->getArg(1)->getEndLoc())); } else if (numElements != numResElements) { QualType eltType = LHSType->castAs()->getElementType(); resType = Context.getVectorType(eltType, numResElements, VectorKind::Generic); } } for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { if (TheCall->getArg(i)->isTypeDependent() || TheCall->getArg(i)->isValueDependent()) continue; std::optional Result; if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) return ExprError(Diag(TheCall->getBeginLoc(), diag::err_shufflevector_nonconstant_argument) << TheCall->getArg(i)->getSourceRange()); // Allow -1 which will be translated to undef in the IR. if (Result->isSigned() && Result->isAllOnes()) continue; if (Result->getActiveBits() > 64 || Result->getZExtValue() >= numElements * 2) return ExprError(Diag(TheCall->getBeginLoc(), diag::err_shufflevector_argument_too_large) << TheCall->getArg(i)->getSourceRange()); } SmallVector exprs; for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { exprs.push_back(TheCall->getArg(i)); TheCall->setArg(i, nullptr); } return new (Context) ShuffleVectorExpr(Context, exprs, resType, TheCall->getCallee()->getBeginLoc(), TheCall->getRParenLoc()); } ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, SourceLocation BuiltinLoc, SourceLocation RParenLoc) { ExprValueKind VK = VK_PRValue; ExprObjectKind OK = OK_Ordinary; QualType DstTy = TInfo->getType(); QualType SrcTy = E->getType(); if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) return ExprError(Diag(BuiltinLoc, diag::err_convertvector_non_vector) << E->getSourceRange()); if (!DstTy->isVectorType() && !DstTy->isDependentType()) return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type) << "second" << "__builtin_convertvector"); if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { unsigned SrcElts = SrcTy->castAs()->getNumElements(); unsigned DstElts = DstTy->castAs()->getNumElements(); if (SrcElts != DstElts) return ExprError(Diag(BuiltinLoc, diag::err_convertvector_incompatible_vector) << E->getSourceRange()); } return new (Context) class ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); } bool Sema::BuiltinPrefetch(CallExpr *TheCall) { unsigned NumArgs = TheCall->getNumArgs(); if (NumArgs > 3) return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most) << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0 << TheCall->getSourceRange(); // Argument 0 is checked for us and the remaining arguments must be // constant integers. for (unsigned i = 1; i != NumArgs; ++i) if (BuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) return true; return false; } bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) { if (!Context.getTargetInfo().checkArithmeticFenceSupported()) return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); if (checkArgCount(TheCall, 1)) return true; Expr *Arg = TheCall->getArg(0); if (Arg->isInstantiationDependent()) return false; QualType ArgTy = Arg->getType(); if (!ArgTy->hasFloatingRepresentation()) return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector) << ArgTy; if (Arg->isLValue()) { ExprResult FirstArg = DefaultLvalueConversion(Arg); TheCall->setArg(0, FirstArg.get()); } TheCall->setType(TheCall->getArg(0)->getType()); return false; } bool Sema::BuiltinAssume(CallExpr *TheCall) { Expr *Arg = TheCall->getArg(0); if (Arg->isInstantiationDependent()) return false; if (Arg->HasSideEffects(Context)) Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) << Arg->getSourceRange() << cast(TheCall->getCalleeDecl())->getIdentifier(); return false; } bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) { // The alignment must be a constant integer. Expr *Arg = TheCall->getArg(1); // We can't check the value of a dependent argument. if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { if (const auto *UE = dyn_cast(Arg->IgnoreParenImpCasts())) if (UE->getKind() == UETT_AlignOf || UE->getKind() == UETT_PreferredAlignOf) Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) << Arg->getSourceRange(); llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); if (!Result.isPowerOf2()) return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) << Arg->getSourceRange(); if (Result < Context.getCharWidth()) return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); if (Result > std::numeric_limits::max()) return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) << std::numeric_limits::max() << Arg->getSourceRange(); } return false; } bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) { if (checkArgCountRange(TheCall, 2, 3)) return true; unsigned NumArgs = TheCall->getNumArgs(); Expr *FirstArg = TheCall->getArg(0); { ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); if (checkBuiltinArgument(*this, TheCall, 0)) return true; /// In-place updation of FirstArg by checkBuiltinArgument is ignored. TheCall->setArg(0, FirstArgResult.get()); } // The alignment must be a constant integer. Expr *SecondArg = TheCall->getArg(1); // We can't check the value of a dependent argument. if (!SecondArg->isValueDependent()) { llvm::APSInt Result; if (BuiltinConstantArg(TheCall, 1, Result)) return true; if (!Result.isPowerOf2()) return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) << SecondArg->getSourceRange(); if (Result > Sema::MaximumAlignment) Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) << SecondArg->getSourceRange() << Sema::MaximumAlignment; } if (NumArgs > 2) { Expr *ThirdArg = TheCall->getArg(2); if (convertArgumentToType(*this, ThirdArg, Context.getSizeType())) return true; TheCall->setArg(2, ThirdArg); } return false; } bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) { unsigned BuiltinID = cast(TheCall->getCalleeDecl())->getBuiltinID(); bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; unsigned NumArgs = TheCall->getNumArgs(); unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; if (NumArgs < NumRequiredArgs) { return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) << 0 /* function call */ << NumRequiredArgs << NumArgs << /*is non object*/ 0 << TheCall->getSourceRange(); } if (NumArgs >= NumRequiredArgs + 0x100) { return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most) << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs << /*is non object*/ 0 << TheCall->getSourceRange(); } unsigned i = 0; // For formatting call, check buffer arg. if (!IsSizeCall) { ExprResult Arg(TheCall->getArg(i)); InitializedEntity Entity = InitializedEntity::InitializeParameter( Context, Context.VoidPtrTy, false); Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); if (Arg.isInvalid()) return true; TheCall->setArg(i, Arg.get()); i++; } // Check string literal arg. unsigned FormatIdx = i; { ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); if (Arg.isInvalid()) return true; TheCall->setArg(i, Arg.get()); i++; } // Make sure variadic args are scalar. unsigned FirstDataArg = i; while (i < NumArgs) { ExprResult Arg = DefaultVariadicArgumentPromotion( TheCall->getArg(i), VariadicFunction, nullptr); if (Arg.isInvalid()) return true; CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); if (ArgSize.getQuantity() >= 0x100) { return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) << i << (int)ArgSize.getQuantity() << 0xff << TheCall->getSourceRange(); } TheCall->setArg(i, Arg.get()); i++; } // Check formatting specifiers. NOTE: We're only doing this for the non-size // call to avoid duplicate diagnostics. if (!IsSizeCall) { llvm::SmallBitVector CheckedVarArgs(NumArgs, false); ArrayRef Args(TheCall->getArgs(), TheCall->getNumArgs()); bool Success = CheckFormatArguments( Args, FAPK_Variadic, FormatIdx, FirstDataArg, FST_OSLog, VariadicFunction, TheCall->getBeginLoc(), SourceRange(), CheckedVarArgs); if (!Success) return true; } if (IsSizeCall) { TheCall->setType(Context.getSizeType()); } else { TheCall->setType(Context.VoidPtrTy); } return false; } bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result) { Expr *Arg = TheCall->getArg(ArgNum); DeclRefExpr *DRE =cast(TheCall->getCallee()->IgnoreParenCasts()); FunctionDecl *FDecl = cast(DRE->getDecl()); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; std::optional R; if (!(R = Arg->getIntegerConstantExpr(Context))) return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) << FDecl->getDeclName() << Arg->getSourceRange(); Result = *R; return false; } bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High, bool RangeIsError) { if (isConstantEvaluatedContext()) return false; llvm::APSInt Result; // We can't check the value of a dependent argument. Expr *Arg = TheCall->getArg(ArgNum); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; // Check constant-ness first. if (BuiltinConstantArg(TheCall, ArgNum, Result)) return true; if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { if (RangeIsError) return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) << toString(Result, 10) << Low << High << Arg->getSourceRange(); else // Defer the warning until we know if the code will be emitted so that // dead code can ignore this. DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, PDiag(diag::warn_argument_invalid_range) << toString(Result, 10) << Low << High << Arg->getSourceRange()); } return false; } bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, unsigned Num) { llvm::APSInt Result; // We can't check the value of a dependent argument. Expr *Arg = TheCall->getArg(ArgNum); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; // Check constant-ness first. if (BuiltinConstantArg(TheCall, ArgNum, Result)) return true; if (Result.getSExtValue() % Num != 0) return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) << Num << Arg->getSourceRange(); return false; } bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { llvm::APSInt Result; // We can't check the value of a dependent argument. Expr *Arg = TheCall->getArg(ArgNum); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; // Check constant-ness first. if (BuiltinConstantArg(TheCall, ArgNum, Result)) return true; // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if // and only if x is a power of 2. if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) return false; return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) << Arg->getSourceRange(); } static bool IsShiftedByte(llvm::APSInt Value) { if (Value.isNegative()) return false; // Check if it's a shifted byte, by shifting it down while (true) { // If the value fits in the bottom byte, the check passes. if (Value < 0x100) return true; // Otherwise, if the value has _any_ bits in the bottom byte, the check // fails. if ((Value & 0xFF) != 0) return false; // If the bottom 8 bits are all 0, but something above that is nonzero, // then shifting the value right by 8 bits won't affect whether it's a // shifted byte or not. So do that, and go round again. Value >>= 8; } } bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, unsigned ArgBits) { llvm::APSInt Result; // We can't check the value of a dependent argument. Expr *Arg = TheCall->getArg(ArgNum); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; // Check constant-ness first. if (BuiltinConstantArg(TheCall, ArgNum, Result)) return true; // Truncate to the given size. Result = Result.getLoBits(ArgBits); Result.setIsUnsigned(true); if (IsShiftedByte(Result)) return false; return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) << Arg->getSourceRange(); } bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum, unsigned ArgBits) { llvm::APSInt Result; // We can't check the value of a dependent argument. Expr *Arg = TheCall->getArg(ArgNum); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; // Check constant-ness first. if (BuiltinConstantArg(TheCall, ArgNum, Result)) return true; // Truncate to the given size. Result = Result.getLoBits(ArgBits); Result.setIsUnsigned(true); // Check to see if it's in either of the required forms. if (IsShiftedByte(Result) || (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) return false; return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte_or_xxff) << Arg->getSourceRange(); } bool Sema::BuiltinLongjmp(CallExpr *TheCall) { if (!Context.getTargetInfo().hasSjLjLowering()) return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); Expr *Arg = TheCall->getArg(1); llvm::APSInt Result; // TODO: This is less than ideal. Overload this to take a value. if (BuiltinConstantArg(TheCall, 1, Result)) return true; if (Result != 1) return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); return false; } bool Sema::BuiltinSetjmp(CallExpr *TheCall) { if (!Context.getTargetInfo().hasSjLjLowering()) return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); return false; } namespace { class UncoveredArgHandler { enum { Unknown = -1, AllCovered = -2 }; signed FirstUncoveredArg = Unknown; SmallVector DiagnosticExprs; public: UncoveredArgHandler() = default; bool hasUncoveredArg() const { return (FirstUncoveredArg >= 0); } unsigned getUncoveredArg() const { assert(hasUncoveredArg() && "no uncovered argument"); return FirstUncoveredArg; } void setAllCovered() { // A string has been found with all arguments covered, so clear out // the diagnostics. DiagnosticExprs.clear(); FirstUncoveredArg = AllCovered; } void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { assert(NewFirstUncoveredArg >= 0 && "Outside range"); // Don't update if a previous string covers all arguments. if (FirstUncoveredArg == AllCovered) return; // UncoveredArgHandler tracks the highest uncovered argument index // and with it all the strings that match this index. if (NewFirstUncoveredArg == FirstUncoveredArg) DiagnosticExprs.push_back(StrExpr); else if (NewFirstUncoveredArg > FirstUncoveredArg) { DiagnosticExprs.clear(); DiagnosticExprs.push_back(StrExpr); FirstUncoveredArg = NewFirstUncoveredArg; } } void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); }; enum StringLiteralCheckType { SLCT_NotALiteral, SLCT_UncheckedLiteral, SLCT_CheckedLiteral }; } // namespace static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, BinaryOperatorKind BinOpKind, bool AddendIsRight) { unsigned BitWidth = Offset.getBitWidth(); unsigned AddendBitWidth = Addend.getBitWidth(); // There might be negative interim results. if (Addend.isUnsigned()) { Addend = Addend.zext(++AddendBitWidth); Addend.setIsSigned(true); } // Adjust the bit width of the APSInts. if (AddendBitWidth > BitWidth) { Offset = Offset.sext(AddendBitWidth); BitWidth = AddendBitWidth; } else if (BitWidth > AddendBitWidth) { Addend = Addend.sext(BitWidth); } bool Ov = false; llvm::APSInt ResOffset = Offset; if (BinOpKind == BO_Add) ResOffset = Offset.sadd_ov(Addend, Ov); else { assert(AddendIsRight && BinOpKind == BO_Sub && "operator must be add or sub with addend on the right"); ResOffset = Offset.ssub_ov(Addend, Ov); } // We add an offset to a pointer here so we should support an offset as big as // possible. if (Ov) { assert(BitWidth <= std::numeric_limits::max() / 2 && "index (intermediate) result too big"); Offset = Offset.sext(2 * BitWidth); sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); return; } Offset = ResOffset; } namespace { // This is a wrapper class around StringLiteral to support offsetted string // literals as format strings. It takes the offset into account when returning // the string and its length or the source locations to display notes correctly. class FormatStringLiteral { const StringLiteral *FExpr; int64_t Offset; public: FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) : FExpr(fexpr), Offset(Offset) {} StringRef getString() const { return FExpr->getString().drop_front(Offset); } unsigned getByteLength() const { return FExpr->getByteLength() - getCharByteWidth() * Offset; } unsigned getLength() const { return FExpr->getLength() - Offset; } unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } StringLiteralKind getKind() const { return FExpr->getKind(); } QualType getType() const { return FExpr->getType(); } bool isAscii() const { return FExpr->isOrdinary(); } bool isWide() const { return FExpr->isWide(); } bool isUTF8() const { return FExpr->isUTF8(); } bool isUTF16() const { return FExpr->isUTF16(); } bool isUTF32() const { return FExpr->isUTF32(); } bool isPascal() const { return FExpr->isPascal(); } SourceLocation getLocationOfByte( unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken = nullptr, unsigned *StartTokenByteOffset = nullptr) const { return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, StartToken, StartTokenByteOffset); } SourceLocation getBeginLoc() const LLVM_READONLY { return FExpr->getBeginLoc().getLocWithOffset(Offset); } SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } }; } // namespace static void CheckFormatString( Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr, ArrayRef Args, Sema::FormatArgumentPassingKind APK, unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type, bool inFunctionCall, Sema::VariadicCallType CallType, llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, bool IgnoreStringsWithoutSpecifiers); static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, const Expr *E); // Determine if an expression is a string literal or constant string. // If this function returns false on the arguments to a function expecting a // format string, we will usually need to emit a warning. // True string literals are then checked by CheckFormatString. static StringLiteralCheckType checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef Args, Sema::FormatArgumentPassingKind APK, unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type, Sema::VariadicCallType CallType, bool InFunctionCall, llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset, bool IgnoreStringsWithoutSpecifiers = false) { if (S.isConstantEvaluatedContext()) return SLCT_NotALiteral; tryAgain: assert(Offset.isSigned() && "invalid offset"); if (E->isTypeDependent() || E->isValueDependent()) return SLCT_NotALiteral; E = E->IgnoreParenCasts(); if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) // Technically -Wformat-nonliteral does not warn about this case. // The behavior of printf and friends in this case is implementation // dependent. Ideally if the format string cannot be null then // it should have a 'nonnull' attribute in the function prototype. return SLCT_UncheckedLiteral; switch (E->getStmtClass()) { case Stmt::InitListExprClass: // Handle expressions like {"foobar"}. if (const clang::Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) { return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg, Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); } return SLCT_NotALiteral; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { // The expression is a literal if both sub-expressions were, and it was // completely checked only if both sub-expressions were checked. const AbstractConditionalOperator *C = cast(E); // Determine whether it is necessary to check both sub-expressions, for // example, because the condition expression is a constant that can be // evaluated at compile time. bool CheckLeft = true, CheckRight = true; bool Cond; if (C->getCond()->EvaluateAsBooleanCondition( Cond, S.getASTContext(), S.isConstantEvaluatedContext())) { if (Cond) CheckRight = false; else CheckLeft = false; } // We need to maintain the offsets for the right and the left hand side // separately to check if every possible indexed expression is a valid // string literal. They might have different offsets for different string // literals in the end. StringLiteralCheckType Left; if (!CheckLeft) Left = SLCT_UncheckedLiteral; else { Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, APK, format_idx, firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); if (Left == SLCT_NotALiteral || !CheckRight) { return Left; } } StringLiteralCheckType Right = checkFormatStringExpr( S, C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); return (CheckLeft && Left < Right) ? Left : Right; } case Stmt::ImplicitCastExprClass: E = cast(E)->getSubExpr(); goto tryAgain; case Stmt::OpaqueValueExprClass: if (const Expr *src = cast(E)->getSourceExpr()) { E = src; goto tryAgain; } return SLCT_NotALiteral; case Stmt::PredefinedExprClass: // While __func__, etc., are technically not string literals, they // cannot contain format specifiers and thus are not a security // liability. return SLCT_UncheckedLiteral; case Stmt::DeclRefExprClass: { const DeclRefExpr *DR = cast(E); // As an exception, do not flag errors for variables binding to // const string literals. if (const VarDecl *VD = dyn_cast(DR->getDecl())) { bool isConstant = false; QualType T = DR->getType(); if (const ArrayType *AT = S.Context.getAsArrayType(T)) { isConstant = AT->getElementType().isConstant(S.Context); } else if (const PointerType *PT = T->getAs()) { isConstant = T.isConstant(S.Context) && PT->getPointeeType().isConstant(S.Context); } else if (T->isObjCObjectPointerType()) { // In ObjC, there is usually no "const ObjectPointer" type, // so don't check if the pointee type is constant. isConstant = T.isConstant(S.Context); } if (isConstant) { if (const Expr *Init = VD->getAnyInitializer()) { // Look through initializers like const char c[] = { "foo" } if (const InitListExpr *InitList = dyn_cast(Init)) { if (InitList->isStringLiteralInit()) Init = InitList->getInit(0)->IgnoreParenImpCasts(); } return checkFormatStringExpr( S, Init, Args, APK, format_idx, firstDataArg, Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset); } } // When the format argument is an argument of this function, and this // function also has the format attribute, there are several interactions // for which there shouldn't be a warning. For instance, when calling // v*printf from a function that has the printf format attribute, we // should not emit a warning about using `fmt`, even though it's not // constant, because the arguments have already been checked for the // caller of `logmessage`: // // __attribute__((format(printf, 1, 2))) // void logmessage(char const *fmt, ...) { // va_list ap; // va_start(ap, fmt); // vprintf(fmt, ap); /* do not emit a warning about "fmt" */ // ... // } // // Another interaction that we need to support is calling a variadic // format function from a format function that has fixed arguments. For // instance: // // __attribute__((format(printf, 1, 2))) // void logstring(char const *fmt, char const *str) { // printf(fmt, str); /* do not emit a warning about "fmt" */ // } // // Same (and perhaps more relatably) for the variadic template case: // // template // __attribute__((format(printf, 1, 2))) // void log(const char *fmt, Args&&... args) { // printf(fmt, forward(args)...); // /* do not emit a warning about "fmt" */ // } // // Due to implementation difficulty, we only check the format, not the // format arguments, in all cases. // if (const auto *PV = dyn_cast(VD)) { if (const auto *D = dyn_cast(PV->getDeclContext())) { for (const auto *PVFormat : D->specific_attrs()) { bool IsCXXMember = false; if (const auto *MD = dyn_cast(D)) IsCXXMember = MD->isInstance(); bool IsVariadic = false; if (const FunctionType *FnTy = D->getFunctionType()) IsVariadic = cast(FnTy)->isVariadic(); else if (const auto *BD = dyn_cast(D)) IsVariadic = BD->isVariadic(); else if (const auto *OMD = dyn_cast(D)) IsVariadic = OMD->isVariadic(); Sema::FormatStringInfo CallerFSI; if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic, &CallerFSI)) { // We also check if the formats are compatible. // We can't pass a 'scanf' string to a 'printf' function. if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx && Type == S.GetFormatStringType(PVFormat)) { // Lastly, check that argument passing kinds transition in a // way that makes sense: // from a caller with FAPK_VAList, allow FAPK_VAList // from a caller with FAPK_Fixed, allow FAPK_Fixed // from a caller with FAPK_Fixed, allow FAPK_Variadic // from a caller with FAPK_Variadic, allow FAPK_VAList switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) { case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList): case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed): case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic): case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList): return SLCT_UncheckedLiteral; } } } } } } } return SLCT_NotALiteral; } case Stmt::CallExprClass: case Stmt::CXXMemberCallExprClass: { const CallExpr *CE = cast(E); if (const NamedDecl *ND = dyn_cast_or_null(CE->getCalleeDecl())) { bool IsFirst = true; StringLiteralCheckType CommonResult; for (const auto *FA : ND->specific_attrs()) { const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); StringLiteralCheckType Result = checkFormatStringExpr( S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); if (IsFirst) { CommonResult = Result; IsFirst = false; } } if (!IsFirst) return CommonResult; if (const auto *FD = dyn_cast(ND)) { unsigned BuiltinID = FD->getBuiltinID(); if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { const Expr *Arg = CE->getArg(0); return checkFormatStringExpr( S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); } } } if (const Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg, Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); return SLCT_NotALiteral; } case Stmt::ObjCMessageExprClass: { const auto *ME = cast(E); if (const auto *MD = ME->getMethodDecl()) { if (const auto *FA = MD->getAttr()) { // As a special case heuristic, if we're using the method -[NSBundle // localizedStringForKey:value:table:], ignore any key strings that lack // format specifiers. The idea is that if the key doesn't have any // format specifiers then its probably just a key to map to the // localized strings. If it does have format specifiers though, then its // likely that the text of the key is the format string in the // programmer's language, and should be checked. const ObjCInterfaceDecl *IFace; if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && IFace->getIdentifier()->isStr("NSBundle") && MD->getSelector().isKeywordSelector( {"localizedStringForKey", "value", "table"})) { IgnoreStringsWithoutSpecifiers = true; } const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); return checkFormatStringExpr( S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); } } return SLCT_NotALiteral; } case Stmt::ObjCStringLiteralClass: case Stmt::StringLiteralClass: { const StringLiteral *StrE = nullptr; if (const ObjCStringLiteral *ObjCFExpr = dyn_cast(E)) StrE = ObjCFExpr->getString(); else StrE = cast(E); if (StrE) { if (Offset.isNegative() || Offset > StrE->getLength()) { // TODO: It would be better to have an explicit warning for out of // bounds literals. return SLCT_NotALiteral; } FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); CheckFormatString(S, &FStr, E, Args, APK, format_idx, firstDataArg, Type, InFunctionCall, CallType, CheckedVarArgs, UncoveredArg, IgnoreStringsWithoutSpecifiers); return SLCT_CheckedLiteral; } return SLCT_NotALiteral; } case Stmt::BinaryOperatorClass: { const BinaryOperator *BinOp = cast(E); // A string literal + an int offset is still a string literal. if (BinOp->isAdditiveOp()) { Expr::EvalResult LResult, RResult; bool LIsInt = BinOp->getLHS()->EvaluateAsInt( LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluatedContext()); bool RIsInt = BinOp->getRHS()->EvaluateAsInt( RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluatedContext()); if (LIsInt != RIsInt) { BinaryOperatorKind BinOpKind = BinOp->getOpcode(); if (LIsInt) { if (BinOpKind == BO_Add) { sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); E = BinOp->getRHS(); goto tryAgain; } } else { sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); E = BinOp->getLHS(); goto tryAgain; } } } return SLCT_NotALiteral; } case Stmt::UnaryOperatorClass: { const UnaryOperator *UnaOp = cast(E); auto ASE = dyn_cast(UnaOp->getSubExpr()); if (UnaOp->getOpcode() == UO_AddrOf && ASE) { Expr::EvalResult IndexResult; if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluatedContext())) { sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, /*RHS is int*/ true); E = ASE->getBase(); goto tryAgain; } } return SLCT_NotALiteral; } default: return SLCT_NotALiteral; } } // If this expression can be evaluated at compile-time, // check if the result is a StringLiteral and return it // otherwise return nullptr static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, const Expr *E) { Expr::EvalResult Result; if (E->EvaluateAsRValue(Result, Context) && Result.Val.isLValue()) { const auto *LVE = Result.Val.getLValueBase().dyn_cast(); if (isa_and_nonnull(LVE)) return LVE; } return nullptr; } Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { return llvm::StringSwitch(Format->getType()->getName()) .Case("scanf", FST_Scanf) .Cases("printf", "printf0", FST_Printf) .Cases("NSString", "CFString", FST_NSString) .Case("strftime", FST_Strftime) .Case("strfmon", FST_Strfmon) .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) .Case("freebsd_kprintf", FST_FreeBSDKPrintf) .Case("os_trace", FST_OSLog) .Case("os_log", FST_OSLog) .Default(FST_Unknown); } bool Sema::CheckFormatArguments(const FormatAttr *Format, ArrayRef Args, bool IsCXXMember, VariadicCallType CallType, SourceLocation Loc, SourceRange Range, llvm::SmallBitVector &CheckedVarArgs) { FormatStringInfo FSI; if (getFormatStringInfo(Format, IsCXXMember, CallType != VariadicDoesNotApply, &FSI)) return CheckFormatArguments(Args, FSI.ArgPassingKind, FSI.FormatIdx, FSI.FirstDataArg, GetFormatStringType(Format), CallType, Loc, Range, CheckedVarArgs); return false; } bool Sema::CheckFormatArguments(ArrayRef Args, Sema::FormatArgumentPassingKind APK, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, VariadicCallType CallType, SourceLocation Loc, SourceRange Range, llvm::SmallBitVector &CheckedVarArgs) { // CHECK: printf/scanf-like function is called with no format string. if (format_idx >= Args.size()) { Diag(Loc, diag::warn_missing_format_string) << Range; return false; } const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); // CHECK: format string is not a string literal. // // Dynamically generated format strings are difficult to // automatically vet at compile time. Requiring that format strings // are string literals: (1) permits the checking of format strings by // the compiler and thereby (2) can practically remove the source of // many format string exploits. // Format string can be either ObjC string (e.g. @"%d") or // C string (e.g. "%d") // ObjC string uses the same format specifiers as C string, so we can use // the same format string checking logic for both ObjC and C strings. UncoveredArgHandler UncoveredArg; StringLiteralCheckType CT = checkFormatStringExpr( *this, OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type, CallType, /*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg, /*no string offset*/ llvm::APSInt(64, false) = 0); // Generate a diagnostic where an uncovered argument is detected. if (UncoveredArg.hasUncoveredArg()) { unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); } if (CT != SLCT_NotALiteral) // Literal format string found, check done! return CT == SLCT_CheckedLiteral; // Strftime is particular as it always uses a single 'time' argument, // so it is safe to pass a non-literal string. if (Type == FST_Strftime) return false; // Do not emit diag when the string param is a macro expansion and the // format is either NSString or CFString. This is a hack to prevent // diag when using the NSLocalizedString and CFCopyLocalizedString macros // which are usually used in place of NS and CF string literals. SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) return false; // If there are no arguments specified, warn with -Wformat-security, otherwise // warn only with -Wformat-nonliteral. if (Args.size() == firstDataArg) { Diag(FormatLoc, diag::warn_format_nonliteral_noargs) << OrigFormatExpr->getSourceRange(); switch (Type) { default: break; case FST_Kprintf: case FST_FreeBSDKPrintf: case FST_Printf: Diag(FormatLoc, diag::note_format_security_fixit) << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); break; case FST_NSString: Diag(FormatLoc, diag::note_format_security_fixit) << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); break; } } else { Diag(FormatLoc, diag::warn_format_nonliteral) << OrigFormatExpr->getSourceRange(); } return false; } namespace { class CheckFormatHandler : public analyze_format_string::FormatStringHandler { protected: Sema &S; const FormatStringLiteral *FExpr; const Expr *OrigFormatExpr; const Sema::FormatStringType FSType; const unsigned FirstDataArg; const unsigned NumDataArgs; const char *Beg; // Start of format string. const Sema::FormatArgumentPassingKind ArgPassingKind; ArrayRef Args; unsigned FormatIdx; llvm::SmallBitVector CoveredArgs; bool usesPositionalArgs = false; bool atFirstArg = true; bool inFunctionCall; Sema::VariadicCallType CallType; llvm::SmallBitVector &CheckedVarArgs; UncoveredArgHandler &UncoveredArg; public: CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, const Expr *origFormatExpr, const Sema::FormatStringType type, unsigned firstDataArg, unsigned numDataArgs, const char *beg, Sema::FormatArgumentPassingKind APK, ArrayRef Args, unsigned formatIdx, bool inFunctionCall, Sema::VariadicCallType callType, llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg) : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx), inFunctionCall(inFunctionCall), CallType(callType), CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { CoveredArgs.resize(numDataArgs); CoveredArgs.reset(); } void DoneProcessing(); void HandleIncompleteSpecifier(const char *startSpecifier, unsigned specifierLen) override; void HandleInvalidLengthModifier( const analyze_format_string::FormatSpecifier &FS, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen, unsigned DiagID); void HandleNonStandardLengthModifier( const analyze_format_string::FormatSpecifier &FS, const char *startSpecifier, unsigned specifierLen); void HandleNonStandardConversionSpecifier( const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen); void HandlePosition(const char *startPos, unsigned posLen) override; void HandleInvalidPosition(const char *startSpecifier, unsigned specifierLen, analyze_format_string::PositionContext p) override; void HandleZeroPosition(const char *startPos, unsigned posLen) override; void HandleNullChar(const char *nullCharacter) override; template static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, const PartialDiagnostic &PDiag, SourceLocation StringLoc, bool IsStringLocation, Range StringRange, ArrayRef Fixit = std::nullopt); protected: bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, const char *startSpec, unsigned specifierLen, const char *csStart, unsigned csLen); void HandlePositionalNonpositionalArgs(SourceLocation Loc, const char *startSpec, unsigned specifierLen); SourceRange getFormatStringRange(); CharSourceRange getSpecifierRange(const char *startSpecifier, unsigned specifierLen); SourceLocation getLocationOfByte(const char *x); const Expr *getDataArg(unsigned i) const; bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen, unsigned argIndex); template void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, bool IsStringLocation, Range StringRange, ArrayRef Fixit = std::nullopt); }; } // namespace SourceRange CheckFormatHandler::getFormatStringRange() { return OrigFormatExpr->getSourceRange(); } CharSourceRange CheckFormatHandler:: getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { SourceLocation Start = getLocationOfByte(startSpecifier); SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); // Advance the end SourceLocation by one due to half-open ranges. End = End.getLocWithOffset(1); return CharSourceRange::getCharRange(Start, End); } SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), S.getLangOpts(), S.Context.getTargetInfo()); } void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, unsigned specifierLen){ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), getLocationOfByte(startSpecifier), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } void CheckFormatHandler::HandleInvalidLengthModifier( const analyze_format_string::FormatSpecifier &FS, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { using namespace analyze_format_string; const LengthModifier &LM = FS.getLengthModifier(); CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); // See if we know how to fix this length modifier. std::optional FixedLM = FS.getCorrectedLengthModifier(); if (FixedLM) { EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) << FixedLM->toString() << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); } else { FixItHint Hint; if (DiagID == diag::warn_format_nonsensical_length) Hint = FixItHint::CreateRemoval(LMRange); EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), Hint); } } void CheckFormatHandler::HandleNonStandardLengthModifier( const analyze_format_string::FormatSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { using namespace analyze_format_string; const LengthModifier &LM = FS.getLengthModifier(); CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); // See if we know how to fix this length modifier. std::optional FixedLM = FS.getCorrectedLengthModifier(); if (FixedLM) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString() << 0, getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) << FixedLM->toString() << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); } else { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString() << 0, getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } } void CheckFormatHandler::HandleNonStandardConversionSpecifier( const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen) { using namespace analyze_format_string; // See if we know how to fix this conversion specifier. std::optional FixedCS = CS.getStandardSpecifier(); if (FixedCS) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString() << /*conversion specifier*/1, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) << FixedCS->toString() << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); } else { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString() << /*conversion specifier*/1, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } } void CheckFormatHandler::HandlePosition(const char *startPos, unsigned posLen) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), getLocationOfByte(startPos), /*IsStringLocation*/true, getSpecifierRange(startPos, posLen)); } void CheckFormatHandler::HandleInvalidPosition( const char *startSpecifier, unsigned specifierLen, analyze_format_string::PositionContext p) { EmitFormatDiagnostic( S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p, getLocationOfByte(startSpecifier), /*IsStringLocation*/ true, getSpecifierRange(startSpecifier, specifierLen)); } void CheckFormatHandler::HandleZeroPosition(const char *startPos, unsigned posLen) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), getLocationOfByte(startPos), /*IsStringLocation*/true, getSpecifierRange(startPos, posLen)); } void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { if (!isa(OrigFormatExpr)) { // The presence of a null character is likely an error. EmitFormatDiagnostic( S.PDiag(diag::warn_printf_format_string_contains_null_char), getLocationOfByte(nullCharacter), /*IsStringLocation*/true, getFormatStringRange()); } } // Note that this may return NULL if there was an error parsing or building // one of the argument expressions. const Expr *CheckFormatHandler::getDataArg(unsigned i) const { return Args[FirstDataArg + i]; } void CheckFormatHandler::DoneProcessing() { // Does the number of data arguments exceed the number of // format conversions in the format string? if (ArgPassingKind != Sema::FAPK_VAList) { // Find any arguments that weren't covered. CoveredArgs.flip(); signed notCoveredArg = CoveredArgs.find_first(); if (notCoveredArg >= 0) { assert((unsigned)notCoveredArg < NumDataArgs); UncoveredArg.Update(notCoveredArg, OrigFormatExpr); } else { UncoveredArg.setAllCovered(); } } } void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr) { assert(hasUncoveredArg() && !DiagnosticExprs.empty() && "Invalid state"); if (!ArgExpr) return; SourceLocation Loc = ArgExpr->getBeginLoc(); if (S.getSourceManager().isInSystemMacro(Loc)) return; PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); for (auto E : DiagnosticExprs) PDiag << E->getSourceRange(); CheckFormatHandler::EmitFormatDiagnostic( S, IsFunctionCall, DiagnosticExprs[0], PDiag, Loc, /*IsStringLocation*/false, DiagnosticExprs[0]->getSourceRange()); } bool CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, const char *startSpec, unsigned specifierLen, const char *csStart, unsigned csLen) { bool keepGoing = true; if (argIndex < NumDataArgs) { // Consider the argument coverered, even though the specifier doesn't // make sense. CoveredArgs.set(argIndex); } else { // If argIndex exceeds the number of data arguments we // don't issue a warning because that is just a cascade of warnings (and // they may have intended '%%' anyway). We don't want to continue processing // the format string after this point, however, as we will like just get // gibberish when trying to match arguments. keepGoing = false; } StringRef Specifier(csStart, csLen); // If the specifier in non-printable, it could be the first byte of a UTF-8 // sequence. In that case, print the UTF-8 code point. If not, print the byte // hex value. std::string CodePointStr; if (!llvm::sys::locale::isPrint(*csStart)) { llvm::UTF32 CodePoint; const llvm::UTF8 **B = reinterpret_cast(&csStart); const llvm::UTF8 *E = reinterpret_cast(csStart + csLen); llvm::ConversionResult Result = llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); if (Result != llvm::conversionOK) { unsigned char FirstChar = *csStart; CodePoint = (llvm::UTF32)FirstChar; } llvm::raw_string_ostream OS(CodePointStr); if (CodePoint < 256) OS << "\\x" << llvm::format("%02x", CodePoint); else if (CodePoint <= 0xFFFF) OS << "\\u" << llvm::format("%04x", CodePoint); else OS << "\\U" << llvm::format("%08x", CodePoint); OS.flush(); Specifier = CodePointStr; } EmitFormatDiagnostic( S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); return keepGoing; } void CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, const char *startSpec, unsigned specifierLen) { EmitFormatDiagnostic( S.PDiag(diag::warn_format_mix_positional_nonpositional_args), Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); } bool CheckFormatHandler::CheckNumArgs( const analyze_format_string::FormatSpecifier &FS, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { if (argIndex >= NumDataArgs) { PartialDiagnostic PDiag = FS.usesPositionalArg() ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) << (argIndex+1) << NumDataArgs) : S.PDiag(diag::warn_printf_insufficient_data_args); EmitFormatDiagnostic( PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); // Since more arguments than conversion tokens are given, by extension // all arguments are covered, so mark this as so. UncoveredArg.setAllCovered(); return false; } return true; } template void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation Loc, bool IsStringLocation, Range StringRange, ArrayRef FixIt) { EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, Loc, IsStringLocation, StringRange, FixIt); } /// If the format string is not within the function call, emit a note /// so that the function call and string are in diagnostic messages. /// /// \param InFunctionCall if true, the format string is within the function /// call and only one diagnostic message will be produced. Otherwise, an /// extra note will be emitted pointing to location of the format string. /// /// \param ArgumentExpr the expression that is passed as the format string /// argument in the function call. Used for getting locations when two /// diagnostics are emitted. /// /// \param PDiag the callee should already have provided any strings for the /// diagnostic message. This function only adds locations and fixits /// to diagnostics. /// /// \param Loc primary location for diagnostic. If two diagnostics are /// required, one will be at Loc and a new SourceLocation will be created for /// the other one. /// /// \param IsStringLocation if true, Loc points to the format string should be /// used for the note. Otherwise, Loc points to the argument list and will /// be used with PDiag. /// /// \param StringRange some or all of the string to highlight. This is /// templated so it can accept either a CharSourceRange or a SourceRange. /// /// \param FixIt optional fix it hint for the format string. template void CheckFormatHandler::EmitFormatDiagnostic( Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, Range StringRange, ArrayRef FixIt) { if (InFunctionCall) { const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); D << StringRange; D << FixIt; } else { S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) << ArgumentExpr->getSourceRange(); const Sema::SemaDiagnosticBuilder &Note = S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), diag::note_format_string_defined); Note << StringRange; Note << FixIt; } } //===--- CHECK: Printf format string checking -----------------------------===// namespace { class CheckPrintfHandler : public CheckFormatHandler { public: CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, const Expr *origFormatExpr, const Sema::FormatStringType type, unsigned firstDataArg, unsigned numDataArgs, bool isObjC, const char *beg, Sema::FormatArgumentPassingKind APK, ArrayRef Args, unsigned formatIdx, bool inFunctionCall, Sema::VariadicCallType CallType, llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg) : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, numDataArgs, beg, APK, Args, formatIdx, inFunctionCall, CallType, CheckedVarArgs, UncoveredArg) {} bool isObjCContext() const { return FSType == Sema::FST_NSString; } /// Returns true if '%@' specifiers are allowed in the format string. bool allowsObjCArg() const { return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || FSType == Sema::FST_OSTrace; } bool HandleInvalidPrintfConversionSpecifier( const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) override; void handleInvalidMaskType(StringRef MaskType) override; bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen, const TargetInfo &Target) override; bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, const char *StartSpecifier, unsigned SpecifierLen, const Expr *E); bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, const char *startSpecifier, unsigned specifierLen); void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalAmount &Amt, unsigned type, const char *startSpecifier, unsigned specifierLen); void HandleFlag(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen); void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &ignoredFlag, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen); bool checkForCStrMembers(const analyze_printf::ArgType &AT, const Expr *E); void HandleEmptyObjCModifierFlag(const char *startFlag, unsigned flagLen) override; void HandleInvalidObjCModifierFlag(const char *startFlag, unsigned flagLen) override; void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, const char *flagsEnd, const char *conversionPosition) override; }; } // namespace bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { const analyze_printf::PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); return HandleInvalidConversionSpecifier(FS.getArgIndex(), getLocationOfByte(CS.getStart()), startSpecifier, specifierLen, CS.getStart(), CS.getLength()); } void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); } bool CheckPrintfHandler::HandleAmount( const analyze_format_string::OptionalAmount &Amt, unsigned k, const char *startSpecifier, unsigned specifierLen) { if (Amt.hasDataArgument()) { if (ArgPassingKind != Sema::FAPK_VAList) { unsigned argIndex = Amt.getArgIndex(); if (argIndex >= NumDataArgs) { EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) << k, getLocationOfByte(Amt.getStart()), /*IsStringLocation*/ true, getSpecifierRange(startSpecifier, specifierLen)); // Don't do any more checking. We will just emit // spurious errors. return false; } // Type check the data argument. It should be an 'int'. // Although not in conformance with C99, we also allow the argument to be // an 'unsigned int' as that is a reasonably safe case. GCC also // doesn't emit a warning for that case. CoveredArgs.set(argIndex); const Expr *Arg = getDataArg(argIndex); if (!Arg) return false; QualType T = Arg->getType(); const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); assert(AT.isValid()); if (!AT.matchesType(S.Context, T)) { EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) << k << AT.getRepresentativeTypeName(S.Context) << T << Arg->getSourceRange(), getLocationOfByte(Amt.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); // Don't do any more checking. We will just emit // spurious errors. return false; } } } return true; } void CheckPrintfHandler::HandleInvalidAmount( const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalAmount &Amt, unsigned type, const char *startSpecifier, unsigned specifierLen) { const analyze_printf::PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); FixItHint fixit = Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), Amt.getConstantLength())) : FixItHint(); EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) << type << CS.toString(), getLocationOfByte(Amt.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), fixit); } void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen) { // Warn about pointless flag with a fixit removal. const analyze_printf::PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) << flag.toString() << CS.toString(), getLocationOfByte(flag.getPosition()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateRemoval( getSpecifierRange(flag.getPosition(), 1))); } void CheckPrintfHandler::HandleIgnoredFlag( const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &ignoredFlag, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen) { // Warn about ignored flag with a fixit removal. EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) << ignoredFlag.toString() << flag.toString(), getLocationOfByte(ignoredFlag.getPosition()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateRemoval( getSpecifierRange(ignoredFlag.getPosition(), 1))); } void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, unsigned flagLen) { // Warn about an empty flag. EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), getLocationOfByte(startFlag), /*IsStringLocation*/true, getSpecifierRange(startFlag, flagLen)); } void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, unsigned flagLen) { // Warn about an invalid flag. auto Range = getSpecifierRange(startFlag, flagLen); StringRef flag(startFlag, flagLen); EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, getLocationOfByte(startFlag), /*IsStringLocation*/true, Range, FixItHint::CreateRemoval(Range)); } void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { // Warn about using '[...]' without a '@' conversion. auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), getLocationOfByte(conversionPosition), /*IsStringLocation*/true, Range, FixItHint::CreateRemoval(Range)); } // Determines if the specified is a C++ class or struct containing // a member with the specified name and kind (e.g. a CXXMethodDecl named // "c_str()"). template static llvm::SmallPtrSet CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { const RecordType *RT = Ty->getAs(); llvm::SmallPtrSet Results; if (!RT) return Results; const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD || !RD->getDefinition()) return Results; LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), Sema::LookupMemberName); R.suppressDiagnostics(); // We just need to include all members of the right kind turned up by the // filter, at this point. if (S.LookupQualifiedName(R, RT->getDecl())) for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { NamedDecl *decl = (*I)->getUnderlyingDecl(); if (MemberKind *FK = dyn_cast(decl)) Results.insert(FK); } return Results; } /// Check if we could call '.c_str()' on an object. /// /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't /// allow the call, or if it would be ambiguous). bool Sema::hasCStrMethod(const Expr *E) { using MethodSet = llvm::SmallPtrSet; MethodSet Results = CXXRecordMembersNamed("c_str", *this, E->getType()); for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); MI != ME; ++MI) if ((*MI)->getMinRequiredArguments() == 0) return true; return false; } // Check if a (w)string was passed when a (w)char* was needed, and offer a // better diagnostic if so. AT is assumed to be valid. // Returns true when a c_str() conversion method is found. bool CheckPrintfHandler::checkForCStrMembers( const analyze_printf::ArgType &AT, const Expr *E) { using MethodSet = llvm::SmallPtrSet; MethodSet Results = CXXRecordMembersNamed("c_str", S, E->getType()); for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); MI != ME; ++MI) { const CXXMethodDecl *Method = *MI; if (Method->getMinRequiredArguments() == 0 && AT.matchesType(S.Context, Method->getReturnType())) { // FIXME: Suggest parens if the expression needs them. SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); S.Diag(E->getBeginLoc(), diag::note_printf_c_str) << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); return true; } } return false; } bool CheckPrintfHandler::HandlePrintfSpecifier( const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen, const TargetInfo &Target) { using namespace analyze_format_string; using namespace analyze_printf; const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); if (FS.consumesDataArgument()) { if (atFirstArg) { atFirstArg = false; usesPositionalArgs = FS.usesPositionalArg(); } else if (usesPositionalArgs != FS.usesPositionalArg()) { HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), startSpecifier, specifierLen); return false; } } // First check if the field width, precision, and conversion specifier // have matching data arguments. if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, startSpecifier, specifierLen)) { return false; } if (!HandleAmount(FS.getPrecision(), /* precision */ 1, startSpecifier, specifierLen)) { return false; } if (!CS.consumesDataArgument()) { // FIXME: Technically specifying a precision or field width here // makes no sense. Worth issuing a warning at some point. return true; } // Consume the argument. unsigned argIndex = FS.getArgIndex(); if (argIndex < NumDataArgs) { // The check to see if the argIndex is valid will come later. // We set the bit here because we may exit early from this // function if we encounter some other error. CoveredArgs.set(argIndex); } // FreeBSD kernel extensions. if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || CS.getKind() == ConversionSpecifier::FreeBSDDArg) { // We need at least two arguments. if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) return false; // Claim the second argument. CoveredArgs.set(argIndex + 1); // Type check the first argument (int for %b, pointer for %D) const Expr *Ex = getDataArg(argIndex); const analyze_printf::ArgType &AT = (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? ArgType(S.Context.IntTy) : ArgType::CPointerTy; if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) EmitFormatDiagnostic( S.PDiag(diag::warn_format_conversion_argument_type_mismatch) << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false << Ex->getSourceRange(), Ex->getBeginLoc(), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); // Type check the second argument (char * for both %b and %D) Ex = getDataArg(argIndex + 1); const analyze_printf::ArgType &AT2 = ArgType::CStrTy; if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) EmitFormatDiagnostic( S.PDiag(diag::warn_format_conversion_argument_type_mismatch) << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() << false << Ex->getSourceRange(), Ex->getBeginLoc(), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); return true; } // Check for using an Objective-C specific conversion specifier // in a non-ObjC literal. if (!allowsObjCArg() && CS.isObjCArg()) { return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, specifierLen); } // %P can only be used with os_log. if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, specifierLen); } // %n is not allowed with os_log. if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), getLocationOfByte(CS.getStart()), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); return true; } // Only scalars are allowed for os_trace. if (FSType == Sema::FST_OSTrace && (CS.getKind() == ConversionSpecifier::PArg || CS.getKind() == ConversionSpecifier::sArg || CS.getKind() == ConversionSpecifier::ObjCObjArg)) { return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, specifierLen); } // Check for use of public/private annotation outside of os_log(). if (FSType != Sema::FST_OSLog) { if (FS.isPublic().isSet()) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) << "public", getLocationOfByte(FS.isPublic().getPosition()), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); } if (FS.isPrivate().isSet()) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) << "private", getLocationOfByte(FS.isPrivate().getPosition()), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); } } const llvm::Triple &Triple = Target.getTriple(); if (CS.getKind() == ConversionSpecifier::nArg && (Triple.isAndroid() || Triple.isOSFuchsia())) { EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported), getLocationOfByte(CS.getStart()), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); } // Check for invalid use of field width if (!FS.hasValidFieldWidth()) { HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, startSpecifier, specifierLen); } // Check for invalid use of precision if (!FS.hasValidPrecision()) { HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, startSpecifier, specifierLen); } // Precision is mandatory for %P specifier. if (CS.getKind() == ConversionSpecifier::PArg && FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), getLocationOfByte(startSpecifier), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); } // Check each flag does not conflict with any other component. if (!FS.hasValidThousandsGroupingPrefix()) HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); if (!FS.hasValidLeadingZeros()) HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); if (!FS.hasValidPlusPrefix()) HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); if (!FS.hasValidSpacePrefix()) HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); if (!FS.hasValidAlternativeForm()) HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); if (!FS.hasValidLeftJustified()) HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); // Check that flags are not ignored by another flag if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), startSpecifier, specifierLen); if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), startSpecifier, specifierLen); // Check the length modifier is valid with the given conversion specifier. if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), S.getLangOpts())) HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, diag::warn_format_nonsensical_length); else if (!FS.hasStandardLengthModifier()) HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); else if (!FS.hasStandardLengthConversionCombination()) HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, diag::warn_format_non_standard_conversion_spec); if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); // The remaining checks depend on the data arguments. if (ArgPassingKind == Sema::FAPK_VAList) return true; if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) return false; const Expr *Arg = getDataArg(argIndex); if (!Arg) return true; return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); } static bool requiresParensToAddCast(const Expr *E) { // FIXME: We should have a general way to reason about operator // precedence and whether parens are actually needed here. // Take care of a few common cases where they aren't. const Expr *Inside = E->IgnoreImpCasts(); if (const PseudoObjectExpr *POE = dyn_cast(Inside)) Inside = POE->getSyntacticForm()->IgnoreImpCasts(); switch (Inside->getStmtClass()) { case Stmt::ArraySubscriptExprClass: case Stmt::CallExprClass: case Stmt::CharacterLiteralClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::DeclRefExprClass: case Stmt::FloatingLiteralClass: case Stmt::IntegerLiteralClass: case Stmt::MemberExprClass: case Stmt::ObjCArrayLiteralClass: case Stmt::ObjCBoolLiteralExprClass: case Stmt::ObjCBoxedExprClass: case Stmt::ObjCDictionaryLiteralClass: case Stmt::ObjCEncodeExprClass: case Stmt::ObjCIvarRefExprClass: case Stmt::ObjCMessageExprClass: case Stmt::ObjCPropertyRefExprClass: case Stmt::ObjCStringLiteralClass: case Stmt::ObjCSubscriptRefExprClass: case Stmt::ParenExprClass: case Stmt::StringLiteralClass: case Stmt::UnaryOperatorClass: return false; default: return true; } } static std::pair shouldNotPrintDirectly(const ASTContext &Context, QualType IntendedTy, const Expr *E) { // Use a 'while' to peel off layers of typedefs. QualType TyTy = IntendedTy; while (const TypedefType *UserTy = TyTy->getAs()) { StringRef Name = UserTy->getDecl()->getName(); QualType CastTy = llvm::StringSwitch(Name) .Case("CFIndex", Context.getNSIntegerType()) .Case("NSInteger", Context.getNSIntegerType()) .Case("NSUInteger", Context.getNSUIntegerType()) .Case("SInt32", Context.IntTy) .Case("UInt32", Context.UnsignedIntTy) .Default(QualType()); if (!CastTy.isNull()) return std::make_pair(CastTy, Name); TyTy = UserTy->desugar(); } // Strip parens if necessary. if (const ParenExpr *PE = dyn_cast(E)) return shouldNotPrintDirectly(Context, PE->getSubExpr()->getType(), PE->getSubExpr()); // If this is a conditional expression, then its result type is constructed // via usual arithmetic conversions and thus there might be no necessary // typedef sugar there. Recurse to operands to check for NSInteger & // Co. usage condition. if (const ConditionalOperator *CO = dyn_cast(E)) { QualType TrueTy, FalseTy; StringRef TrueName, FalseName; std::tie(TrueTy, TrueName) = shouldNotPrintDirectly(Context, CO->getTrueExpr()->getType(), CO->getTrueExpr()); std::tie(FalseTy, FalseName) = shouldNotPrintDirectly(Context, CO->getFalseExpr()->getType(), CO->getFalseExpr()); if (TrueTy == FalseTy) return std::make_pair(TrueTy, TrueName); else if (TrueTy.isNull()) return std::make_pair(FalseTy, FalseName); else if (FalseTy.isNull()) return std::make_pair(TrueTy, TrueName); } return std::make_pair(QualType(), StringRef()); } /// Return true if \p ICE is an implicit argument promotion of an arithmetic /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked /// type do not count. static bool isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { QualType From = ICE->getSubExpr()->getType(); QualType To = ICE->getType(); // It's an integer promotion if the destination type is the promoted // source type. if (ICE->getCastKind() == CK_IntegralCast && S.Context.isPromotableIntegerType(From) && S.Context.getPromotedIntegerType(From) == To) return true; // Look through vector types, since we do default argument promotion for // those in OpenCL. if (const auto *VecTy = From->getAs()) From = VecTy->getElementType(); if (const auto *VecTy = To->getAs()) To = VecTy->getElementType(); // It's a floating promotion if the source type is a lower rank. return ICE->getCastKind() == CK_FloatingCast && S.Context.getFloatingTypeOrder(From, To) < 0; } static analyze_format_string::ArgType::MatchKind handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match, DiagnosticsEngine &Diags, SourceLocation Loc) { if (Match == analyze_format_string::ArgType::NoMatchSignedness) { Match = Diags.isIgnored( diag::warn_format_conversion_argument_type_mismatch_signedness, Loc) ? analyze_format_string::ArgType::Match : analyze_format_string::ArgType::NoMatch; } return Match; } bool CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, const char *StartSpecifier, unsigned SpecifierLen, const Expr *E) { using namespace analyze_format_string; using namespace analyze_printf; // Now type check the data expression that matches the // format specifier. const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); if (!AT.isValid()) return true; QualType ExprTy = E->getType(); while (const TypeOfExprType *TET = dyn_cast(ExprTy)) { ExprTy = TET->getUnderlyingExpr()->getType(); } // When using the format attribute in C++, you can receive a function or an // array that will necessarily decay to a pointer when passed to the final // format consumer. Apply decay before type comparison. if (ExprTy->canDecayToPointerType()) ExprTy = S.Context.getDecayedType(ExprTy); // Diagnose attempts to print a boolean value as a character. Unlike other // -Wformat diagnostics, this is fine from a type perspective, but it still // doesn't make sense. if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && E->isKnownToHaveBooleanValue()) { const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, SpecifierLen); SmallString<4> FSString; llvm::raw_svector_ostream os(FSString); FS.toString(os); EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) << FSString, E->getExprLoc(), false, CSR); return true; } // Diagnose attempts to use '%P' with ObjC object types, which will result in // dumping raw class data (like is-a pointer), not actual data. if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg && ExprTy->isObjCObjectPointerType()) { const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, SpecifierLen); EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_with_objc_pointer), E->getExprLoc(), false, CSR); return true; } ArgType::MatchKind ImplicitMatch = ArgType::NoMatch; ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); ArgType::MatchKind OrigMatch = Match; Match = handleFormatSignedness(Match, S.getDiagnostics(), E->getExprLoc()); if (Match == ArgType::Match) return true; // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr assert(Match != ArgType::NoMatchPromotionTypeConfusion); // Look through argument promotions for our error message's reported type. // This includes the integral and floating promotions, but excludes array // and function pointer decay (seeing that an argument intended to be a // string has type 'char [6]' is probably more confusing than 'char *') and // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). if (const ImplicitCastExpr *ICE = dyn_cast(E)) { if (isArithmeticArgumentPromotion(S, ICE)) { E = ICE->getSubExpr(); ExprTy = E->getType(); // Check if we didn't match because of an implicit cast from a 'char' // or 'short' to an 'int'. This is done because printf is a varargs // function. if (ICE->getType() == S.Context.IntTy || ICE->getType() == S.Context.UnsignedIntTy) { // All further checking is done on the subexpression ImplicitMatch = AT.matchesType(S.Context, ExprTy); if (OrigMatch == ArgType::NoMatchSignedness && ImplicitMatch != ArgType::NoMatchSignedness) // If the original match was a signedness match this match on the // implicit cast type also need to be signedness match otherwise we // might introduce new unexpected warnings from -Wformat-signedness. return true; ImplicitMatch = handleFormatSignedness( ImplicitMatch, S.getDiagnostics(), E->getExprLoc()); if (ImplicitMatch == ArgType::Match) return true; } } } else if (const CharacterLiteral *CL = dyn_cast(E)) { // Special case for 'a', which has type 'int' in C. // Note, however, that we do /not/ want to treat multibyte constants like // 'MooV' as characters! This form is deprecated but still exists. In // addition, don't treat expressions as of type 'char' if one byte length // modifier is provided. if (ExprTy == S.Context.IntTy && FS.getLengthModifier().getKind() != LengthModifier::AsChar) if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) { ExprTy = S.Context.CharTy; // To improve check results, we consider a character literal in C // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is // more likely a type confusion situation, so we will suggest to // use '%hhd' instead by discarding the MatchPromotion. if (Match == ArgType::MatchPromotion) Match = ArgType::NoMatch; } } if (Match == ArgType::MatchPromotion) { // WG14 N2562 only clarified promotions in *printf // For NSLog in ObjC, just preserve -Wformat behavior if (!S.getLangOpts().ObjC && ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion && ImplicitMatch != ArgType::NoMatchTypeConfusion) return true; Match = ArgType::NoMatch; } if (ImplicitMatch == ArgType::NoMatchPedantic || ImplicitMatch == ArgType::NoMatchTypeConfusion) Match = ImplicitMatch; assert(Match != ArgType::MatchPromotion); // Look through unscoped enums to their underlying type. bool IsEnum = false; bool IsScopedEnum = false; QualType IntendedTy = ExprTy; if (auto EnumTy = ExprTy->getAs()) { IntendedTy = EnumTy->getDecl()->getIntegerType(); if (EnumTy->isUnscopedEnumerationType()) { ExprTy = IntendedTy; // This controls whether we're talking about the underlying type or not, // which we only want to do when it's an unscoped enum. IsEnum = true; } else { IsScopedEnum = true; } } // %C in an Objective-C context prints a unichar, not a wchar_t. // If the argument is an integer of some kind, believe the %C and suggest // a cast instead of changing the conversion specifier. if (isObjCContext() && FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { if (ExprTy->isIntegralOrUnscopedEnumerationType() && !ExprTy->isCharType()) { // 'unichar' is defined as a typedef of unsigned short, but we should // prefer using the typedef if it is visible. IntendedTy = S.Context.UnsignedShortTy; // While we are here, check if the value is an IntegerLiteral that happens // to be within the valid range. if (const IntegerLiteral *IL = dyn_cast(E)) { const llvm::APInt &V = IL->getValue(); if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) return true; } LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), Sema::LookupOrdinaryName); if (S.LookupName(Result, S.getCurScope())) { NamedDecl *ND = Result.getFoundDecl(); if (TypedefNameDecl *TD = dyn_cast(ND)) if (TD->getUnderlyingType() == IntendedTy) IntendedTy = S.Context.getTypedefType(TD); } } } // Special-case some of Darwin's platform-independence types by suggesting // casts to primitive types that are known to be large enough. bool ShouldNotPrintDirectly = false; StringRef CastTyName; if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { QualType CastTy; std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); if (!CastTy.isNull()) { // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int // (long in ASTContext). Only complain to pedants or when they're the // underlying type of a scoped enum (which always needs a cast). if (!IsScopedEnum && (CastTyName == "NSInteger" || CastTyName == "NSUInteger") && (AT.isSizeT() || AT.isPtrdiffT()) && AT.matchesType(S.Context, CastTy)) Match = ArgType::NoMatchPedantic; IntendedTy = CastTy; ShouldNotPrintDirectly = true; } } // We may be able to offer a FixItHint if it is a supported type. PrintfSpecifier fixedFS = FS; bool Success = fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); if (Success) { // Get the fix string from the fixed format specifier SmallString<16> buf; llvm::raw_svector_ostream os(buf); fixedFS.toString(os); CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) { unsigned Diag; switch (Match) { case ArgType::Match: case ArgType::MatchPromotion: case ArgType::NoMatchPromotionTypeConfusion: case ArgType::NoMatchSignedness: llvm_unreachable("expected non-matching"); case ArgType::NoMatchPedantic: Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; break; case ArgType::NoMatchTypeConfusion: Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; break; case ArgType::NoMatch: Diag = diag::warn_format_conversion_argument_type_mismatch; break; } // In this case, the specifier is wrong and should be changed to match // the argument. EmitFormatDiagnostic(S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << IntendedTy << IsEnum << E->getSourceRange(), E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, FixItHint::CreateReplacement(SpecRange, os.str())); } else { // The canonical type for formatting this value is different from the // actual type of the expression. (This occurs, for example, with Darwin's // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but // should be printed as 'long' for 64-bit compatibility.) // Rather than emitting a normal format/argument mismatch, we want to // add a cast to the recommended type (and correct the format string // if necessary). We should also do so for scoped enumerations. SmallString<16> CastBuf; llvm::raw_svector_ostream CastFix(CastBuf); CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "("); IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); CastFix << (S.LangOpts.CPlusPlus ? ">" : ")"); SmallVector Hints; ArgType::MatchKind IntendedMatch = AT.matchesType(S.Context, IntendedTy); IntendedMatch = handleFormatSignedness(IntendedMatch, S.getDiagnostics(), E->getExprLoc()); if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly) Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); if (const CStyleCastExpr *CCast = dyn_cast(E)) { // If there's already a cast present, just replace it. SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) { // If the expression has high enough precedence, // just write the C-style cast. Hints.push_back( FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); } else { // Otherwise, add parens around the expression as well as the cast. CastFix << "("; Hints.push_back( FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); // We don't use getLocForEndOfToken because it returns invalid source // locations for macro expansions (by design). SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(E->getEndLoc()); SourceLocation After = EndLoc.getLocWithOffset( Lexer::MeasureTokenLength(EndLoc, S.SourceMgr, S.LangOpts)); Hints.push_back(FixItHint::CreateInsertion(After, ")")); } if (ShouldNotPrintDirectly && !IsScopedEnum) { // The expression has a type that should not be printed directly. // We extract the name from the typedef because we don't want to show // the underlying type in the diagnostic. StringRef Name; if (const auto *TypedefTy = ExprTy->getAs()) Name = TypedefTy->getDecl()->getName(); else Name = CastTyName; unsigned Diag = Match == ArgType::NoMatchPedantic ? diag::warn_format_argument_needs_cast_pedantic : diag::warn_format_argument_needs_cast; EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum << E->getSourceRange(), E->getBeginLoc(), /*IsStringLocation=*/false, SpecRange, Hints); } else { // In this case, the expression could be printed using a different // specifier, but we've decided that the specifier is probably correct // and we should cast instead. Just use the normal warning message. unsigned Diag = IsScopedEnum ? diag::warn_format_conversion_argument_type_mismatch_pedantic : diag::warn_format_conversion_argument_type_mismatch; EmitFormatDiagnostic( S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum << E->getSourceRange(), E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); } } } else { const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, SpecifierLen); // Since the warning for passing non-POD types to variadic functions // was deferred until now, we emit a warning for non-POD // arguments here. bool EmitTypeMismatch = false; switch (S.isValidVarArgType(ExprTy)) { case Sema::VAK_Valid: case Sema::VAK_ValidInCXX11: { unsigned Diag; switch (Match) { case ArgType::Match: case ArgType::MatchPromotion: case ArgType::NoMatchPromotionTypeConfusion: case ArgType::NoMatchSignedness: llvm_unreachable("expected non-matching"); case ArgType::NoMatchPedantic: Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; break; case ArgType::NoMatchTypeConfusion: Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; break; case ArgType::NoMatch: Diag = diag::warn_format_conversion_argument_type_mismatch; break; } EmitFormatDiagnostic( S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum << CSR << E->getSourceRange(), E->getBeginLoc(), /*IsStringLocation*/ false, CSR); break; } case Sema::VAK_Undefined: case Sema::VAK_MSVCUndefined: if (CallType == Sema::VariadicDoesNotApply) { EmitTypeMismatch = true; } else { EmitFormatDiagnostic( S.PDiag(diag::warn_non_pod_vararg_with_format_string) << S.getLangOpts().CPlusPlus11 << ExprTy << CallType << AT.getRepresentativeTypeName(S.Context) << CSR << E->getSourceRange(), E->getBeginLoc(), /*IsStringLocation*/ false, CSR); checkForCStrMembers(AT, E); } break; case Sema::VAK_Invalid: if (CallType == Sema::VariadicDoesNotApply) EmitTypeMismatch = true; else if (ExprTy->isObjCObjectType()) EmitFormatDiagnostic( S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) << S.getLangOpts().CPlusPlus11 << ExprTy << CallType << AT.getRepresentativeTypeName(S.Context) << CSR << E->getSourceRange(), E->getBeginLoc(), /*IsStringLocation*/ false, CSR); else // FIXME: If this is an initializer list, suggest removing the braces // or inserting a cast to the target type. S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) << isa(E) << ExprTy << CallType << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); break; } if (EmitTypeMismatch) { // The function is not variadic, so we do not generate warnings about // being allowed to pass that object as a variadic argument. Instead, // since there are inherently no printf specifiers for types which cannot // be passed as variadic arguments, emit a plain old specifier mismatch // argument. EmitFormatDiagnostic( S.PDiag(diag::warn_format_conversion_argument_type_mismatch) << AT.getRepresentativeTypeName(S.Context) << ExprTy << false << E->getSourceRange(), E->getBeginLoc(), false, CSR); } assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && "format string specifier index out of range"); CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; } return true; } //===--- CHECK: Scanf format string checking ------------------------------===// namespace { class CheckScanfHandler : public CheckFormatHandler { public: CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, const Expr *origFormatExpr, Sema::FormatStringType type, unsigned firstDataArg, unsigned numDataArgs, const char *beg, Sema::FormatArgumentPassingKind APK, ArrayRef Args, unsigned formatIdx, bool inFunctionCall, Sema::VariadicCallType CallType, llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg) : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, numDataArgs, beg, APK, Args, formatIdx, inFunctionCall, CallType, CheckedVarArgs, UncoveredArg) {} bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) override; bool HandleInvalidScanfConversionSpecifier( const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) override; void HandleIncompleteScanList(const char *start, const char *end) override; }; } // namespace void CheckScanfHandler::HandleIncompleteScanList(const char *start, const char *end) { EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), getLocationOfByte(end), /*IsStringLocation*/true, getSpecifierRange(start, end - start)); } bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { const analyze_scanf::ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); return HandleInvalidConversionSpecifier(FS.getArgIndex(), getLocationOfByte(CS.getStart()), startSpecifier, specifierLen, CS.getStart(), CS.getLength()); } bool CheckScanfHandler::HandleScanfSpecifier( const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { using namespace analyze_scanf; using namespace analyze_format_string; const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); // Handle case where '%' and '*' don't consume an argument. These shouldn't // be used to decide if we are using positional arguments consistently. if (FS.consumesDataArgument()) { if (atFirstArg) { atFirstArg = false; usesPositionalArgs = FS.usesPositionalArg(); } else if (usesPositionalArgs != FS.usesPositionalArg()) { HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), startSpecifier, specifierLen); return false; } } // Check if the field with is non-zero. const OptionalAmount &Amt = FS.getFieldWidth(); if (Amt.getHowSpecified() == OptionalAmount::Constant) { if (Amt.getConstantAmount() == 0) { const CharSourceRange &R = getSpecifierRange(Amt.getStart(), Amt.getConstantLength()); EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), getLocationOfByte(Amt.getStart()), /*IsStringLocation*/true, R, FixItHint::CreateRemoval(R)); } } if (!FS.consumesDataArgument()) { // FIXME: Technically specifying a precision or field width here // makes no sense. Worth issuing a warning at some point. return true; } // Consume the argument. unsigned argIndex = FS.getArgIndex(); if (argIndex < NumDataArgs) { // The check to see if the argIndex is valid will come later. // We set the bit here because we may exit early from this // function if we encounter some other error. CoveredArgs.set(argIndex); } // Check the length modifier is valid with the given conversion specifier. if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), S.getLangOpts())) HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, diag::warn_format_nonsensical_length); else if (!FS.hasStandardLengthModifier()) HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); else if (!FS.hasStandardLengthConversionCombination()) HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, diag::warn_format_non_standard_conversion_spec); if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); // The remaining checks depend on the data arguments. if (ArgPassingKind == Sema::FAPK_VAList) return true; if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) return false; // Check that the argument type matches the format specifier. const Expr *Ex = getDataArg(argIndex); if (!Ex) return true; const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); if (!AT.isValid()) { return true; } analyze_format_string::ArgType::MatchKind Match = AT.matchesType(S.Context, Ex->getType()); Match = handleFormatSignedness(Match, S.getDiagnostics(), Ex->getExprLoc()); bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; if (Match == analyze_format_string::ArgType::Match) return true; ScanfSpecifier fixedFS = FS; bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), S.getLangOpts(), S.Context); unsigned Diag = Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic : diag::warn_format_conversion_argument_type_mismatch; if (Success) { // Get the fix string from the fixed format specifier. SmallString<128> buf; llvm::raw_svector_ostream os(buf); fixedFS.toString(os); EmitFormatDiagnostic( S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false << Ex->getSourceRange(), Ex->getBeginLoc(), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateReplacement( getSpecifierRange(startSpecifier, specifierLen), os.str())); } else { EmitFormatDiagnostic(S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false << Ex->getSourceRange(), Ex->getBeginLoc(), /*IsStringLocation*/ false, getSpecifierRange(startSpecifier, specifierLen)); } return true; } static void CheckFormatString( Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr, ArrayRef Args, Sema::FormatArgumentPassingKind APK, unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type, bool inFunctionCall, Sema::VariadicCallType CallType, llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, bool IgnoreStringsWithoutSpecifiers) { // CHECK: is the format string a wide literal? if (!FExpr->isAscii() && !FExpr->isUTF8()) { CheckFormatHandler::EmitFormatDiagnostic( S, inFunctionCall, Args[format_idx], S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); return; } // Str - The format string. NOTE: this is NOT null-terminated! StringRef StrRef = FExpr->getString(); const char *Str = StrRef.data(); // Account for cases where the string literal is truncated in a declaration. const ConstantArrayType *T = S.Context.getAsConstantArrayType(FExpr->getType()); assert(T && "String literal not of constant array type!"); size_t TypeSize = T->getZExtSize(); size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); const unsigned numDataArgs = Args.size() - firstDataArg; if (IgnoreStringsWithoutSpecifiers && !analyze_format_string::parseFormatStringHasFormattingSpecifiers( Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) return; // Emit a warning if the string literal is truncated and does not contain an // embedded null character. if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) { CheckFormatHandler::EmitFormatDiagnostic( S, inFunctionCall, Args[format_idx], S.PDiag(diag::warn_printf_format_string_not_null_terminated), FExpr->getBeginLoc(), /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); return; } // CHECK: empty format string? if (StrLen == 0 && numDataArgs > 0) { CheckFormatHandler::EmitFormatDiagnostic( S, inFunctionCall, Args[format_idx], S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); return; } if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || Type == Sema::FST_OSTrace) { CheckPrintfHandler H( S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK, Args, format_idx, inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); if (!analyze_format_string::ParsePrintfString( H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(), Type == Sema::FST_FreeBSDKPrintf)) H.DoneProcessing(); } else if (Type == Sema::FST_Scanf) { CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, Str, APK, Args, format_idx, inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); if (!analyze_format_string::ParseScanfString( H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) H.DoneProcessing(); } // TODO: handle other formats } bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { // Str - The format string. NOTE: this is NOT null-terminated! StringRef StrRef = FExpr->getString(); const char *Str = StrRef.data(); // Account for cases where the string literal is truncated in a declaration. const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); assert(T && "String literal not of constant array type!"); size_t TypeSize = T->getZExtSize(); size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, getLangOpts(), Context.getTargetInfo()); } //===--- CHECK: Warn on use of wrong absolute value function. -------------===// // Returns the related absolute value function that is larger, of 0 if one // does not exist. static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { switch (AbsFunction) { default: return 0; case Builtin::BI__builtin_abs: return Builtin::BI__builtin_labs; case Builtin::BI__builtin_labs: return Builtin::BI__builtin_llabs; case Builtin::BI__builtin_llabs: return 0; case Builtin::BI__builtin_fabsf: return Builtin::BI__builtin_fabs; case Builtin::BI__builtin_fabs: return Builtin::BI__builtin_fabsl; case Builtin::BI__builtin_fabsl: return 0; case Builtin::BI__builtin_cabsf: return Builtin::BI__builtin_cabs; case Builtin::BI__builtin_cabs: return Builtin::BI__builtin_cabsl; case Builtin::BI__builtin_cabsl: return 0; case Builtin::BIabs: return Builtin::BIlabs; case Builtin::BIlabs: return Builtin::BIllabs; case Builtin::BIllabs: return 0; case Builtin::BIfabsf: return Builtin::BIfabs; case Builtin::BIfabs: return Builtin::BIfabsl; case Builtin::BIfabsl: return 0; case Builtin::BIcabsf: return Builtin::BIcabs; case Builtin::BIcabs: return Builtin::BIcabsl; case Builtin::BIcabsl: return 0; } } // Returns the argument type of the absolute value function. static QualType getAbsoluteValueArgumentType(ASTContext &Context, unsigned AbsType) { if (AbsType == 0) return QualType(); ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); if (Error != ASTContext::GE_None) return QualType(); const FunctionProtoType *FT = BuiltinType->getAs(); if (!FT) return QualType(); if (FT->getNumParams() != 1) return QualType(); return FT->getParamType(0); } // Returns the best absolute value function, or zero, based on type and // current absolute value function. static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, unsigned AbsFunctionKind) { unsigned BestKind = 0; uint64_t ArgSize = Context.getTypeSize(ArgType); for (unsigned Kind = AbsFunctionKind; Kind != 0; Kind = getLargerAbsoluteValueFunction(Kind)) { QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); if (Context.getTypeSize(ParamType) >= ArgSize) { if (BestKind == 0) BestKind = Kind; else if (Context.hasSameType(ParamType, ArgType)) { BestKind = Kind; break; } } } return BestKind; } enum AbsoluteValueKind { AVK_Integer, AVK_Floating, AVK_Complex }; static AbsoluteValueKind getAbsoluteValueKind(QualType T) { if (T->isIntegralOrEnumerationType()) return AVK_Integer; if (T->isRealFloatingType()) return AVK_Floating; if (T->isAnyComplexType()) return AVK_Complex; llvm_unreachable("Type not integer, floating, or complex"); } // Changes the absolute value function to a different type. Preserves whether // the function is a builtin. static unsigned changeAbsFunction(unsigned AbsKind, AbsoluteValueKind ValueKind) { switch (ValueKind) { case AVK_Integer: switch (AbsKind) { default: return 0; case Builtin::BI__builtin_fabsf: case Builtin::BI__builtin_fabs: case Builtin::BI__builtin_fabsl: case Builtin::BI__builtin_cabsf: case Builtin::BI__builtin_cabs: case Builtin::BI__builtin_cabsl: return Builtin::BI__builtin_abs; case Builtin::BIfabsf: case Builtin::BIfabs: case Builtin::BIfabsl: case Builtin::BIcabsf: case Builtin::BIcabs: case Builtin::BIcabsl: return Builtin::BIabs; } case AVK_Floating: switch (AbsKind) { default: return 0; case Builtin::BI__builtin_abs: case Builtin::BI__builtin_labs: case Builtin::BI__builtin_llabs: case Builtin::BI__builtin_cabsf: case Builtin::BI__builtin_cabs: case Builtin::BI__builtin_cabsl: return Builtin::BI__builtin_fabsf; case Builtin::BIabs: case Builtin::BIlabs: case Builtin::BIllabs: case Builtin::BIcabsf: case Builtin::BIcabs: case Builtin::BIcabsl: return Builtin::BIfabsf; } case AVK_Complex: switch (AbsKind) { default: return 0; case Builtin::BI__builtin_abs: case Builtin::BI__builtin_labs: case Builtin::BI__builtin_llabs: case Builtin::BI__builtin_fabsf: case Builtin::BI__builtin_fabs: case Builtin::BI__builtin_fabsl: return Builtin::BI__builtin_cabsf; case Builtin::BIabs: case Builtin::BIlabs: case Builtin::BIllabs: case Builtin::BIfabsf: case Builtin::BIfabs: case Builtin::BIfabsl: return Builtin::BIcabsf; } } llvm_unreachable("Unable to convert function"); } static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { const IdentifierInfo *FnInfo = FDecl->getIdentifier(); if (!FnInfo) return 0; switch (FDecl->getBuiltinID()) { default: return 0; case Builtin::BI__builtin_abs: case Builtin::BI__builtin_fabs: case Builtin::BI__builtin_fabsf: case Builtin::BI__builtin_fabsl: case Builtin::BI__builtin_labs: case Builtin::BI__builtin_llabs: case Builtin::BI__builtin_cabs: case Builtin::BI__builtin_cabsf: case Builtin::BI__builtin_cabsl: case Builtin::BIabs: case Builtin::BIlabs: case Builtin::BIllabs: case Builtin::BIfabs: case Builtin::BIfabsf: case Builtin::BIfabsl: case Builtin::BIcabs: case Builtin::BIcabsf: case Builtin::BIcabsl: return FDecl->getBuiltinID(); } llvm_unreachable("Unknown Builtin type"); } // If the replacement is valid, emit a note with replacement function. // Additionally, suggest including the proper header if not already included. static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, unsigned AbsKind, QualType ArgType) { bool EmitHeaderHint = true; const char *HeaderName = nullptr; StringRef FunctionName; if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { FunctionName = "std::abs"; if (ArgType->isIntegralOrEnumerationType()) { HeaderName = "cstdlib"; } else if (ArgType->isRealFloatingType()) { HeaderName = "cmath"; } else { llvm_unreachable("Invalid Type"); } // Lookup all std::abs if (NamespaceDecl *Std = S.getStdNamespace()) { LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); R.suppressDiagnostics(); S.LookupQualifiedName(R, Std); for (const auto *I : R) { const FunctionDecl *FDecl = nullptr; if (const UsingShadowDecl *UsingD = dyn_cast(I)) { FDecl = dyn_cast(UsingD->getTargetDecl()); } else { FDecl = dyn_cast(I); } if (!FDecl) continue; // Found std::abs(), check that they are the right ones. if (FDecl->getNumParams() != 1) continue; // Check that the parameter type can handle the argument. QualType ParamType = FDecl->getParamDecl(0)->getType(); if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && S.Context.getTypeSize(ArgType) <= S.Context.getTypeSize(ParamType)) { // Found a function, don't need the header hint. EmitHeaderHint = false; break; } } } } else { FunctionName = S.Context.BuiltinInfo.getName(AbsKind); HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); if (HeaderName) { DeclarationName DN(&S.Context.Idents.get(FunctionName)); LookupResult R(S, DN, Loc, Sema::LookupAnyName); R.suppressDiagnostics(); S.LookupName(R, S.getCurScope()); if (R.isSingleResult()) { FunctionDecl *FD = dyn_cast(R.getFoundDecl()); if (FD && FD->getBuiltinID() == AbsKind) { EmitHeaderHint = false; } else { return; } } else if (!R.empty()) { return; } } } S.Diag(Loc, diag::note_replace_abs_function) << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); if (!HeaderName) return; if (!EmitHeaderHint) return; S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName << FunctionName; } template static bool IsStdFunction(const FunctionDecl *FDecl, const char (&Str)[StrLen]) { if (!FDecl) return false; if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) return false; if (!FDecl->isInStdNamespace()) return false; return true; } void Sema::CheckInfNaNFunction(const CallExpr *Call, const FunctionDecl *FDecl) { FPOptions FPO = Call->getFPFeaturesInEffect(getLangOpts()); if ((IsStdFunction(FDecl, "isnan") || IsStdFunction(FDecl, "isunordered") || (Call->getBuiltinCallee() == Builtin::BI__builtin_nanf)) && FPO.getNoHonorNaNs()) Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) << 1 << 0 << Call->getSourceRange(); else if ((IsStdFunction(FDecl, "isinf") || (IsStdFunction(FDecl, "isfinite") || (FDecl->getIdentifier() && FDecl->getName() == "infinity"))) && FPO.getNoHonorInfs()) Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) << 0 << 0 << Call->getSourceRange(); } void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, const FunctionDecl *FDecl) { if (Call->getNumArgs() != 1) return; unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); bool IsStdAbs = IsStdFunction(FDecl, "abs"); if (AbsKind == 0 && !IsStdAbs) return; QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); QualType ParamType = Call->getArg(0)->getType(); // Unsigned types cannot be negative. Suggest removing the absolute value // function call. if (ArgType->isUnsignedIntegerType()) { StringRef FunctionName = IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; Diag(Call->getExprLoc(), diag::note_remove_abs) << FunctionName << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); return; } // Taking the absolute value of a pointer is very suspicious, they probably // wanted to index into an array, dereference a pointer, call a function, etc. if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { unsigned DiagType = 0; if (ArgType->isFunctionType()) DiagType = 1; else if (ArgType->isArrayType()) DiagType = 2; Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; return; } // std::abs has overloads which prevent most of the absolute value problems // from occurring. if (IsStdAbs) return; AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); // The argument and parameter are the same kind. Check if they are the right // size. if (ArgValueKind == ParamValueKind) { if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) return; unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); Diag(Call->getExprLoc(), diag::warn_abs_too_small) << FDecl << ArgType << ParamType; if (NewAbsKind == 0) return; emitReplacement(*this, Call->getExprLoc(), Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); return; } // ArgValueKind != ParamValueKind // The wrong type of absolute value function was used. Attempt to find the // proper one. unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); if (NewAbsKind == 0) return; Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) << FDecl << ParamValueKind << ArgValueKind; emitReplacement(*this, Call->getExprLoc(), Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); } //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// void Sema::CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl) { if (!Call || !FDecl) return; // Ignore template specializations and macros. if (inTemplateInstantiation()) return; if (Call->getExprLoc().isMacroID()) return; // Only care about the one template argument, two function parameter std::max if (Call->getNumArgs() != 2) return; if (!IsStdFunction(FDecl, "max")) return; const auto * ArgList = FDecl->getTemplateSpecializationArgs(); if (!ArgList) return; if (ArgList->size() != 1) return; // Check that template type argument is unsigned integer. const auto& TA = ArgList->get(0); if (TA.getKind() != TemplateArgument::Type) return; QualType ArgType = TA.getAsType(); if (!ArgType->isUnsignedIntegerType()) return; // See if either argument is a literal zero. auto IsLiteralZeroArg = [](const Expr* E) -> bool { const auto *MTE = dyn_cast(E); if (!MTE) return false; const auto *Num = dyn_cast(MTE->getSubExpr()); if (!Num) return false; if (Num->getValue() != 0) return false; return true; }; const Expr *FirstArg = Call->getArg(0); const Expr *SecondArg = Call->getArg(1); const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); // Only warn when exactly one argument is zero. if (IsFirstArgZero == IsSecondArgZero) return; SourceRange FirstRange = FirstArg->getSourceRange(); SourceRange SecondRange = SecondArg->getSourceRange(); SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". SourceRange RemovalRange; if (IsFirstArgZero) { RemovalRange = SourceRange(FirstRange.getBegin(), SecondRange.getBegin().getLocWithOffset(-1)); } else { RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), SecondRange.getEnd()); } Diag(Call->getExprLoc(), diag::note_remove_max_call) << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) << FixItHint::CreateRemoval(RemovalRange); } //===--- CHECK: Standard memory functions ---------------------------------===// /// Takes the expression passed to the size_t parameter of functions /// such as memcmp, strncat, etc and warns if it's a comparison. /// /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, IdentifierInfo *FnName, SourceLocation FnLoc, SourceLocation RParenLoc) { const BinaryOperator *Size = dyn_cast(E); if (!Size) return false; // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: if (!Size->isComparisonOp() && !Size->isLogicalOp()) return false; SourceRange SizeRange = Size->getSourceRange(); S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) << SizeRange << FnName; S.Diag(FnLoc, diag::note_memsize_comparison_paren) << FnName << FixItHint::CreateInsertion( S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") << FixItHint::CreateRemoval(RParenLoc); S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), ")"); return true; } /// Determine whether the given type is or contains a dynamic class type /// (e.g., whether it has a vtable). static const CXXRecordDecl *getContainedDynamicClass(QualType T, bool &IsContained) { // Look through array types while ignoring qualifiers. const Type *Ty = T->getBaseElementTypeUnsafe(); IsContained = false; const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); RD = RD ? RD->getDefinition() : nullptr; if (!RD || RD->isInvalidDecl()) return nullptr; if (RD->isDynamicClass()) return RD; // Check all the fields. If any bases were dynamic, the class is dynamic. // It's impossible for a class to transitively contain itself by value, so // infinite recursion is impossible. for (auto *FD : RD->fields()) { bool SubContained; if (const CXXRecordDecl *ContainedRD = getContainedDynamicClass(FD->getType(), SubContained)) { IsContained = true; return ContainedRD; } } return nullptr; } static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { if (const auto *Unary = dyn_cast(E)) if (Unary->getKind() == UETT_SizeOf) return Unary; return nullptr; } /// If E is a sizeof expression, returns its argument expression, /// otherwise returns NULL. static const Expr *getSizeOfExprArg(const Expr *E) { if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) if (!SizeOf->isArgumentType()) return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); return nullptr; } /// If E is a sizeof expression, returns its argument type. static QualType getSizeOfArgType(const Expr *E) { if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) return SizeOf->getTypeOfArgument(); return QualType(); } namespace { struct SearchNonTrivialToInitializeField : DefaultInitializedTypeVisitor { using Super = DefaultInitializedTypeVisitor; SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, SourceLocation SL) { if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { asDerived().visitArray(PDIK, AT, SL); return; } Super::visitWithKind(PDIK, FT, SL); } void visitARCStrong(QualType FT, SourceLocation SL) { S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); } void visitARCWeak(QualType FT, SourceLocation SL) { S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); } void visitStruct(QualType FT, SourceLocation SL) { for (const FieldDecl *FD : FT->castAs()->getDecl()->fields()) visit(FD->getType(), FD->getLocation()); } void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, const ArrayType *AT, SourceLocation SL) { visit(getContext().getBaseElementType(AT), SL); } void visitTrivial(QualType FT, SourceLocation SL) {} static void diag(QualType RT, const Expr *E, Sema &S) { SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); } ASTContext &getContext() { return S.getASTContext(); } const Expr *E; Sema &S; }; struct SearchNonTrivialToCopyField : CopiedTypeVisitor { using Super = CopiedTypeVisitor; SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, SourceLocation SL) { if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { asDerived().visitArray(PCK, AT, SL); return; } Super::visitWithKind(PCK, FT, SL); } void visitARCStrong(QualType FT, SourceLocation SL) { S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); } void visitARCWeak(QualType FT, SourceLocation SL) { S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); } void visitStruct(QualType FT, SourceLocation SL) { for (const FieldDecl *FD : FT->castAs()->getDecl()->fields()) visit(FD->getType(), FD->getLocation()); } void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, SourceLocation SL) { visit(getContext().getBaseElementType(AT), SL); } void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, SourceLocation SL) {} void visitTrivial(QualType FT, SourceLocation SL) {} void visitVolatileTrivial(QualType FT, SourceLocation SL) {} static void diag(QualType RT, const Expr *E, Sema &S) { SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); } ASTContext &getContext() { return S.getASTContext(); } const Expr *E; Sema &S; }; } /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); if (const auto *BO = dyn_cast(SizeofExpr)) { if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) return false; return doesExprLikelyComputeSize(BO->getLHS()) || doesExprLikelyComputeSize(BO->getRHS()); } return getAsSizeOfExpr(SizeofExpr) != nullptr; } /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. /// /// \code /// #define MACRO 0 /// foo(MACRO); /// foo(0); /// \endcode /// /// This should return true for the first call to foo, but not for the second /// (regardless of whether foo is a macro or function). static bool isArgumentExpandedFromMacro(SourceManager &SM, SourceLocation CallLoc, SourceLocation ArgLoc) { if (!CallLoc.isMacroID()) return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); } /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the /// last two arguments transposed. static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { if (BId != Builtin::BImemset && BId != Builtin::BIbzero) return; const Expr *SizeArg = Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); auto isLiteralZero = [](const Expr *E) { return (isa(E) && cast(E)->getValue() == 0) || (isa(E) && cast(E)->getValue() == 0); }; // If we're memsetting or bzeroing 0 bytes, then this is likely an error. SourceLocation CallLoc = Call->getRParenLoc(); SourceManager &SM = S.getSourceManager(); if (isLiteralZero(SizeArg) && !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { SourceLocation DiagLoc = SizeArg->getExprLoc(); // Some platforms #define bzero to __builtin_memset. See if this is the // case, and if so, emit a better diagnostic. if (BId == Builtin::BIbzero || (CallLoc.isMacroID() && Lexer::getImmediateMacroName( CallLoc, SM, S.getLangOpts()) == "bzero")) { S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; } return; } // If the second argument to a memset is a sizeof expression and the third // isn't, this is also likely an error. This should catch // 'memset(buf, sizeof(buf), 0xff)'. if (BId == Builtin::BImemset && doesExprLikelyComputeSize(Call->getArg(1)) && !doesExprLikelyComputeSize(Call->getArg(2))) { SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; return; } } void Sema::CheckMemaccessArguments(const CallExpr *Call, unsigned BId, IdentifierInfo *FnName) { assert(BId != 0); // It is possible to have a non-standard definition of memset. Validate // we have enough arguments, and if not, abort further checking. unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); if (Call->getNumArgs() < ExpectedNumArgs) return; unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); unsigned LenArg = (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, Call->getBeginLoc(), Call->getRParenLoc())) return; // Catch cases like 'memset(buf, sizeof(buf), 0)'. CheckMemaccessSize(*this, BId, Call); // We have special checking when the length is a sizeof expression. QualType SizeOfArgTy = getSizeOfArgType(LenExpr); const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); llvm::FoldingSetNodeID SizeOfArgID; // Although widely used, 'bzero' is not a standard function. Be more strict // with the argument types before allowing diagnostics and only allow the // form bzero(ptr, sizeof(...)). QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); if (BId == Builtin::BIbzero && !FirstArgTy->getAs()) return; for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); QualType DestTy = Dest->getType(); QualType PointeeTy; if (const PointerType *DestPtrTy = DestTy->getAs()) { PointeeTy = DestPtrTy->getPointeeType(); // Never warn about void type pointers. This can be used to suppress // false positives. if (PointeeTy->isVoidType()) continue; // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by // actually comparing the expressions for equality. Because computing the // expression IDs can be expensive, we only do this if the diagnostic is // enabled. if (SizeOfArg && !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, SizeOfArg->getExprLoc())) { // We only compute IDs for expressions if the warning is enabled, and // cache the sizeof arg's ID. if (SizeOfArgID == llvm::FoldingSetNodeID()) SizeOfArg->Profile(SizeOfArgID, Context, true); llvm::FoldingSetNodeID DestID; Dest->Profile(DestID, Context, true); if (DestID == SizeOfArgID) { // TODO: For strncpy() and friends, this could suggest sizeof(dst) // over sizeof(src) as well. unsigned ActionIdx = 0; // Default is to suggest dereferencing. StringRef ReadableName = FnName->getName(); if (const UnaryOperator *UnaryOp = dyn_cast(Dest)) if (UnaryOp->getOpcode() == UO_AddrOf) ActionIdx = 1; // If its an address-of operator, just remove it. if (!PointeeTy->isIncompleteType() && (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) ActionIdx = 2; // If the pointee's size is sizeof(char), // suggest an explicit length. // If the function is defined as a builtin macro, do not show macro // expansion. SourceLocation SL = SizeOfArg->getExprLoc(); SourceRange DSR = Dest->getSourceRange(); SourceRange SSR = SizeOfArg->getSourceRange(); SourceManager &SM = getSourceManager(); if (SM.isMacroArgExpansion(SL)) { ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); SL = SM.getSpellingLoc(SL); DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), SM.getSpellingLoc(DSR.getEnd())); SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), SM.getSpellingLoc(SSR.getEnd())); } DiagRuntimeBehavior(SL, SizeOfArg, PDiag(diag::warn_sizeof_pointer_expr_memaccess) << ReadableName << PointeeTy << DestTy << DSR << SSR); DiagRuntimeBehavior(SL, SizeOfArg, PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) << ActionIdx << SSR); break; } } // Also check for cases where the sizeof argument is the exact same // type as the memory argument, and where it points to a user-defined // record type. if (SizeOfArgTy != QualType()) { if (PointeeTy->isRecordType() && Context.typesAreCompatible(SizeOfArgTy, DestTy)) { DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, PDiag(diag::warn_sizeof_pointer_type_memaccess) << FnName << SizeOfArgTy << ArgIdx << PointeeTy << Dest->getSourceRange() << LenExpr->getSourceRange()); break; } } } else if (DestTy->isArrayType()) { PointeeTy = DestTy; } if (PointeeTy == QualType()) continue; // Always complain about dynamic classes. bool IsContained; if (const CXXRecordDecl *ContainedRD = getContainedDynamicClass(PointeeTy, IsContained)) { unsigned OperationType = 0; const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; // "overwritten" if we're warning about the destination for any call // but memcmp; otherwise a verb appropriate to the call. if (ArgIdx != 0 || IsCmp) { if (BId == Builtin::BImemcpy) OperationType = 1; else if(BId == Builtin::BImemmove) OperationType = 2; else if (IsCmp) OperationType = 3; } DiagRuntimeBehavior(Dest->getExprLoc(), Dest, PDiag(diag::warn_dyn_class_memaccess) << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName << IsContained << ContainedRD << OperationType << Call->getCallee()->getSourceRange()); } else if (PointeeTy.hasNonTrivialObjCLifetime() && BId != Builtin::BImemset) DiagRuntimeBehavior( Dest->getExprLoc(), Dest, PDiag(diag::warn_arc_object_memaccess) << ArgIdx << FnName << PointeeTy << Call->getCallee()->getSourceRange()); else if (const auto *RT = PointeeTy->getAs()) { if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { DiagRuntimeBehavior(Dest->getExprLoc(), Dest, PDiag(diag::warn_cstruct_memaccess) << ArgIdx << FnName << PointeeTy << 0); SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && RT->getDecl()->isNonTrivialToPrimitiveCopy()) { DiagRuntimeBehavior(Dest->getExprLoc(), Dest, PDiag(diag::warn_cstruct_memaccess) << ArgIdx << FnName << PointeeTy << 1); SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); } else { continue; } } else continue; DiagRuntimeBehavior( Dest->getExprLoc(), Dest, PDiag(diag::note_bad_memaccess_silence) << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); break; } } // A little helper routine: ignore addition and subtraction of integer literals. // This intentionally does not ignore all integer constant expressions because // we don't want to remove sizeof(). static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { Ex = Ex->IgnoreParenCasts(); while (true) { const BinaryOperator * BO = dyn_cast(Ex); if (!BO || !BO->isAdditiveOp()) break; const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); if (isa(RHS)) Ex = LHS; else if (isa(LHS)) Ex = RHS; else break; } return Ex; } static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, ASTContext &Context) { // Only handle constant-sized or VLAs, but not flexible members. if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { // Only issue the FIXIT for arrays of size > 1. if (CAT->getZExtSize() <= 1) return false; } else if (!Ty->isVariableArrayType()) { return false; } return true; } void Sema::CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName) { // Don't crash if the user has the wrong number of arguments unsigned NumArgs = Call->getNumArgs(); if ((NumArgs != 3) && (NumArgs != 4)) return; const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); const Expr *CompareWithSrc = nullptr; if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, Call->getBeginLoc(), Call->getRParenLoc())) return; // Look for 'strlcpy(dst, x, sizeof(x))' if (const Expr *Ex = getSizeOfExprArg(SizeArg)) CompareWithSrc = Ex; else { // Look for 'strlcpy(dst, x, strlen(x))' if (const CallExpr *SizeCall = dyn_cast(SizeArg)) { if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && SizeCall->getNumArgs() == 1) CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); } } if (!CompareWithSrc) return; // Determine if the argument to sizeof/strlen is equal to the source // argument. In principle there's all kinds of things you could do // here, for instance creating an == expression and evaluating it with // EvaluateAsBooleanCondition, but this uses a more direct technique: const DeclRefExpr *SrcArgDRE = dyn_cast(SrcArg); if (!SrcArgDRE) return; const DeclRefExpr *CompareWithSrcDRE = dyn_cast(CompareWithSrc); if (!CompareWithSrcDRE || SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) return; const Expr *OriginalSizeArg = Call->getArg(2); Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) << OriginalSizeArg->getSourceRange() << FnName; // Output a FIXIT hint if the destination is an array (rather than a // pointer to an array). This could be enhanced to handle some // pointers if we know the actual size, like if DstArg is 'array+2' // we could say 'sizeof(array)-2'. const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) return; SmallString<128> sizeString; llvm::raw_svector_ostream OS(sizeString); OS << "sizeof("; DstArg->printPretty(OS, nullptr, getPrintingPolicy()); OS << ")"; Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), OS.str()); } /// Check if two expressions refer to the same declaration. static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { if (const DeclRefExpr *D1 = dyn_cast_or_null(E1)) if (const DeclRefExpr *D2 = dyn_cast_or_null(E2)) return D1->getDecl() == D2->getDecl(); return false; } static const Expr *getStrlenExprArg(const Expr *E) { if (const CallExpr *CE = dyn_cast(E)) { const FunctionDecl *FD = CE->getDirectCallee(); if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) return nullptr; return CE->getArg(0)->IgnoreParenCasts(); } return nullptr; } void Sema::CheckStrncatArguments(const CallExpr *CE, IdentifierInfo *FnName) { // Don't crash if the user has the wrong number of arguments. if (CE->getNumArgs() < 3) return; const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), CE->getRParenLoc())) return; // Identify common expressions, which are wrongly used as the size argument // to strncat and may lead to buffer overflows. unsigned PatternType = 0; if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { // - sizeof(dst) if (referToTheSameDecl(SizeOfArg, DstArg)) PatternType = 1; // - sizeof(src) else if (referToTheSameDecl(SizeOfArg, SrcArg)) PatternType = 2; } else if (const BinaryOperator *BE = dyn_cast(LenArg)) { if (BE->getOpcode() == BO_Sub) { const Expr *L = BE->getLHS()->IgnoreParenCasts(); const Expr *R = BE->getRHS()->IgnoreParenCasts(); // - sizeof(dst) - strlen(dst) if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && referToTheSameDecl(DstArg, getStrlenExprArg(R))) PatternType = 1; // - sizeof(src) - (anything) else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) PatternType = 2; } } if (PatternType == 0) return; // Generate the diagnostic. SourceLocation SL = LenArg->getBeginLoc(); SourceRange SR = LenArg->getSourceRange(); SourceManager &SM = getSourceManager(); // If the function is defined as a builtin macro, do not show macro expansion. if (SM.isMacroArgExpansion(SL)) { SL = SM.getSpellingLoc(SL); SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), SM.getSpellingLoc(SR.getEnd())); } // Check if the destination is an array (rather than a pointer to an array). QualType DstTy = DstArg->getType(); bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, Context); if (!isKnownSizeArray) { if (PatternType == 1) Diag(SL, diag::warn_strncat_wrong_size) << SR; else Diag(SL, diag::warn_strncat_src_size) << SR; return; } if (PatternType == 1) Diag(SL, diag::warn_strncat_large_size) << SR; else Diag(SL, diag::warn_strncat_src_size) << SR; SmallString<128> sizeString; llvm::raw_svector_ostream OS(sizeString); OS << "sizeof("; DstArg->printPretty(OS, nullptr, getPrintingPolicy()); OS << ") - "; OS << "strlen("; DstArg->printPretty(OS, nullptr, getPrintingPolicy()); OS << ") - 1"; Diag(SL, diag::note_strncat_wrong_size) << FixItHint::CreateReplacement(SR, OS.str()); } namespace { void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, const UnaryOperator *UnaryExpr, const Decl *D) { if (isa(D)) { S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) << CalleeName << 0 /*object: */ << cast(D); return; } } void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, const UnaryOperator *UnaryExpr) { if (const auto *Lvalue = dyn_cast(UnaryExpr->getSubExpr())) { const Decl *D = Lvalue->getDecl(); if (isa(D)) if (!dyn_cast(D)->getType()->isReferenceType()) return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); } if (const auto *Lvalue = dyn_cast(UnaryExpr->getSubExpr())) return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Lvalue->getMemberDecl()); } void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, const UnaryOperator *UnaryExpr) { const auto *Lambda = dyn_cast( UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); if (!Lambda) return; S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object) << CalleeName << 2 /*object: lambda expression*/; } void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, const DeclRefExpr *Lvalue) { const auto *Var = dyn_cast(Lvalue->getDecl()); if (Var == nullptr) return; S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) << CalleeName << 0 /*object: */ << Var; } void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, const CastExpr *Cast) { SmallString<128> SizeString; llvm::raw_svector_ostream OS(SizeString); clang::CastKind Kind = Cast->getCastKind(); if (Kind == clang::CK_BitCast && !Cast->getSubExpr()->getType()->isFunctionPointerType()) return; if (Kind == clang::CK_IntegralToPointer && !isa( Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) return; switch (Cast->getCastKind()) { case clang::CK_BitCast: case clang::CK_IntegralToPointer: case clang::CK_FunctionToPointerDecay: OS << '\''; Cast->printPretty(OS, nullptr, S.getPrintingPolicy()); OS << '\''; break; default: return; } S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object) << CalleeName << 0 /*object: */ << OS.str(); } } // namespace void Sema::CheckFreeArguments(const CallExpr *E) { const std::string CalleeName = cast(E->getCalleeDecl())->getQualifiedNameAsString(); { // Prefer something that doesn't involve a cast to make things simpler. const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); if (const auto *UnaryExpr = dyn_cast(Arg)) switch (UnaryExpr->getOpcode()) { case UnaryOperator::Opcode::UO_AddrOf: return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); case UnaryOperator::Opcode::UO_Plus: return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr); default: break; } if (const auto *Lvalue = dyn_cast(Arg)) if (Lvalue->getType()->isArrayType()) return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); if (const auto *Label = dyn_cast(Arg)) { Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object) << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); return; } if (isa(Arg)) { Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object) << CalleeName << 1 /*object: block*/; return; } } // Maybe the cast was important, check after the other cases. if (const auto *Cast = dyn_cast(E->getArg(0))) return CheckFreeArgumentsCast(*this, CalleeName, Cast); } void Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc, bool isObjCMethod, const AttrVec *Attrs, const FunctionDecl *FD) { // Check if the return value is null but should not be. if (((Attrs && hasSpecificAttr(*Attrs)) || (!isObjCMethod && isNonNullType(lhsType))) && CheckNonNullExpr(*this, RetValExp)) Diag(ReturnLoc, diag::warn_null_ret) << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); // C++11 [basic.stc.dynamic.allocation]p4: // If an allocation function declared with a non-throwing // exception-specification fails to allocate storage, it shall return // a null pointer. Any other allocation function that fails to allocate // storage shall indicate failure only by throwing an exception [...] if (FD) { OverloadedOperatorKind Op = FD->getOverloadedOperator(); if (Op == OO_New || Op == OO_Array_New) { const FunctionProtoType *Proto = FD->getType()->castAs(); if (!Proto->isNothrow(/*ResultIfDependent*/true) && CheckNonNullExpr(*this, RetValExp)) Diag(ReturnLoc, diag::warn_operator_new_returns_null) << FD << getLangOpts().CPlusPlus11; } } if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) { Diag(ReturnLoc, diag::err_wasm_table_art) << 1; } // PPC MMA non-pointer types are not allowed as return type. Checking the type // here prevent the user from using a PPC MMA type as trailing return type. if (Context.getTargetInfo().getTriple().isPPC64()) PPC().CheckPPCMMAType(RetValExp->getType(), ReturnLoc); } void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS, BinaryOperatorKind Opcode) { if (!BinaryOperator::isEqualityOp(Opcode)) return; // Match and capture subexpressions such as "(float) X == 0.1". FloatingLiteral *FPLiteral; CastExpr *FPCast; auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) { FPLiteral = dyn_cast(L->IgnoreParens()); FPCast = dyn_cast(R->IgnoreParens()); return FPLiteral && FPCast; }; if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) { auto *SourceTy = FPCast->getSubExpr()->getType()->getAs(); auto *TargetTy = FPLiteral->getType()->getAs(); if (SourceTy && TargetTy && SourceTy->isFloatingPoint() && TargetTy->isFloatingPoint()) { bool Lossy; llvm::APFloat TargetC = FPLiteral->getValue(); TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)), llvm::APFloat::rmNearestTiesToEven, &Lossy); if (Lossy) { // If the literal cannot be represented in the source type, then a // check for == is always false and check for != is always true. Diag(Loc, diag::warn_float_compare_literal) << (Opcode == BO_EQ) << QualType(SourceTy, 0) << LHS->getSourceRange() << RHS->getSourceRange(); return; } } } // Match a more general floating-point equality comparison (-Wfloat-equal). Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); // Special case: check for x == x (which is OK). // Do not emit warnings for such cases. if (auto *DRL = dyn_cast(LeftExprSansParen)) if (auto *DRR = dyn_cast(RightExprSansParen)) if (DRL->getDecl() == DRR->getDecl()) return; // Special case: check for comparisons against literals that can be exactly // represented by APFloat. In such cases, do not emit a warning. This // is a heuristic: often comparison against such literals are used to // detect if a value in a variable has not changed. This clearly can // lead to false negatives. if (FloatingLiteral* FLL = dyn_cast(LeftExprSansParen)) { if (FLL->isExact()) return; } else if (FloatingLiteral* FLR = dyn_cast(RightExprSansParen)) if (FLR->isExact()) return; // Check for comparisons with builtin types. if (CallExpr* CL = dyn_cast(LeftExprSansParen)) if (CL->getBuiltinCallee()) return; if (CallExpr* CR = dyn_cast(RightExprSansParen)) if (CR->getBuiltinCallee()) return; // Emit the diagnostic. Diag(Loc, diag::warn_floatingpoint_eq) << LHS->getSourceRange() << RHS->getSourceRange(); } //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// namespace { /// Structure recording the 'active' range of an integer-valued /// expression. struct IntRange { /// The number of bits active in the int. Note that this includes exactly one /// sign bit if !NonNegative. unsigned Width; /// True if the int is known not to have negative values. If so, all leading /// bits before Width are known zero, otherwise they are known to be the /// same as the MSB within Width. bool NonNegative; IntRange(unsigned Width, bool NonNegative) : Width(Width), NonNegative(NonNegative) {} /// Number of bits excluding the sign bit. unsigned valueBits() const { return NonNegative ? Width : Width - 1; } /// Returns the range of the bool type. static IntRange forBoolType() { return IntRange(1, true); } /// Returns the range of an opaque value of the given integral type. static IntRange forValueOfType(ASTContext &C, QualType T) { return forValueOfCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr()); } /// Returns the range of an opaque value of a canonical integral type. static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { assert(T->isCanonicalUnqualified()); if (const VectorType *VT = dyn_cast(T)) T = VT->getElementType().getTypePtr(); if (const ComplexType *CT = dyn_cast(T)) T = CT->getElementType().getTypePtr(); if (const AtomicType *AT = dyn_cast(T)) T = AT->getValueType().getTypePtr(); if (!C.getLangOpts().CPlusPlus) { // For enum types in C code, use the underlying datatype. if (const EnumType *ET = dyn_cast(T)) T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); } else if (const EnumType *ET = dyn_cast(T)) { // For enum types in C++, use the known bit width of the enumerators. EnumDecl *Enum = ET->getDecl(); // In C++11, enums can have a fixed underlying type. Use this type to // compute the range. if (Enum->isFixed()) { return IntRange(C.getIntWidth(QualType(T, 0)), !ET->isSignedIntegerOrEnumerationType()); } unsigned NumPositive = Enum->getNumPositiveBits(); unsigned NumNegative = Enum->getNumNegativeBits(); if (NumNegative == 0) return IntRange(NumPositive, true/*NonNegative*/); else return IntRange(std::max(NumPositive + 1, NumNegative), false/*NonNegative*/); } if (const auto *EIT = dyn_cast(T)) return IntRange(EIT->getNumBits(), EIT->isUnsigned()); const BuiltinType *BT = cast(T); assert(BT->isInteger()); return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); } /// Returns the "target" range of a canonical integral type, i.e. /// the range of values expressible in the type. /// /// This matches forValueOfCanonicalType except that enums have the /// full range of their type, not the range of their enumerators. static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { assert(T->isCanonicalUnqualified()); if (const VectorType *VT = dyn_cast(T)) T = VT->getElementType().getTypePtr(); if (const ComplexType *CT = dyn_cast(T)) T = CT->getElementType().getTypePtr(); if (const AtomicType *AT = dyn_cast(T)) T = AT->getValueType().getTypePtr(); if (const EnumType *ET = dyn_cast(T)) T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); if (const auto *EIT = dyn_cast(T)) return IntRange(EIT->getNumBits(), EIT->isUnsigned()); const BuiltinType *BT = cast(T); assert(BT->isInteger()); return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); } /// Returns the supremum of two ranges: i.e. their conservative merge. static IntRange join(IntRange L, IntRange R) { bool Unsigned = L.NonNegative && R.NonNegative; return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, L.NonNegative && R.NonNegative); } /// Return the range of a bitwise-AND of the two ranges. static IntRange bit_and(IntRange L, IntRange R) { unsigned Bits = std::max(L.Width, R.Width); bool NonNegative = false; if (L.NonNegative) { Bits = std::min(Bits, L.Width); NonNegative = true; } if (R.NonNegative) { Bits = std::min(Bits, R.Width); NonNegative = true; } return IntRange(Bits, NonNegative); } /// Return the range of a sum of the two ranges. static IntRange sum(IntRange L, IntRange R) { bool Unsigned = L.NonNegative && R.NonNegative; return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, Unsigned); } /// Return the range of a difference of the two ranges. static IntRange difference(IntRange L, IntRange R) { // We need a 1-bit-wider range if: // 1) LHS can be negative: least value can be reduced. // 2) RHS can be negative: greatest value can be increased. bool CanWiden = !L.NonNegative || !R.NonNegative; bool Unsigned = L.NonNegative && R.Width == 0; return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + !Unsigned, Unsigned); } /// Return the range of a product of the two ranges. static IntRange product(IntRange L, IntRange R) { // If both LHS and RHS can be negative, we can form // -2^L * -2^R = 2^(L + R) // which requires L + R + 1 value bits to represent. bool CanWiden = !L.NonNegative && !R.NonNegative; bool Unsigned = L.NonNegative && R.NonNegative; return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, Unsigned); } /// Return the range of a remainder operation between the two ranges. static IntRange rem(IntRange L, IntRange R) { // The result of a remainder can't be larger than the result of // either side. The sign of the result is the sign of the LHS. bool Unsigned = L.NonNegative; return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, Unsigned); } }; } // namespace static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) { if (value.isSigned() && value.isNegative()) return IntRange(value.getSignificantBits(), false); if (value.getBitWidth() > MaxWidth) value = value.trunc(MaxWidth); // isNonNegative() just checks the sign bit without considering // signedness. return IntRange(value.getActiveBits(), true); } static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, unsigned MaxWidth) { if (result.isInt()) return GetValueRange(C, result.getInt(), MaxWidth); if (result.isVector()) { IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); R = IntRange::join(R, El); } return R; } if (result.isComplexInt()) { IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); return IntRange::join(R, I); } // This can happen with lossless casts to intptr_t of "based" lvalues. // Assume it might use arbitrary bits. // FIXME: The only reason we need to pass the type in here is to get // the sign right on this one case. It would be nice if APValue // preserved this. assert(result.isLValue() || result.isAddrLabelDiff()); return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); } static QualType GetExprType(const Expr *E) { QualType Ty = E->getType(); if (const AtomicType *AtomicRHS = Ty->getAs()) Ty = AtomicRHS->getValueType(); return Ty; } /// Pseudo-evaluate the given integer expression, estimating the /// range of values it might take. /// /// \param MaxWidth The width to which the value will be truncated. /// \param Approximate If \c true, return a likely range for the result: in /// particular, assume that arithmetic on narrower types doesn't leave /// those types. If \c false, return a range including all possible /// result values. static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, bool InConstantContext, bool Approximate) { E = E->IgnoreParens(); // Try a full evaluation first. Expr::EvalResult result; if (E->EvaluateAsRValue(result, C, InConstantContext)) return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); // I think we only want to look through implicit casts here; if the // user has an explicit widening cast, we should treat the value as // being of the new, wider type. if (const auto *CE = dyn_cast(E)) { if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, Approximate); IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || CE->getCastKind() == CK_BooleanToSignedIntegral; // Assume that non-integer casts can span the full range of the type. if (!isIntegerCast) return OutputTypeRange; IntRange SubRange = GetExprRange(C, CE->getSubExpr(), std::min(MaxWidth, OutputTypeRange.Width), InConstantContext, Approximate); // Bail out if the subexpr's range is as wide as the cast type. if (SubRange.Width >= OutputTypeRange.Width) return OutputTypeRange; // Otherwise, we take the smaller width, and we're non-negative if // either the output type or the subexpr is. return IntRange(SubRange.Width, SubRange.NonNegative || OutputTypeRange.NonNegative); } if (const auto *CO = dyn_cast(E)) { // If we can fold the condition, just take that operand. bool CondResult; if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) return GetExprRange(C, CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth, InConstantContext, Approximate); // Otherwise, conservatively merge. // GetExprRange requires an integer expression, but a throw expression // results in a void type. Expr *E = CO->getTrueExpr(); IntRange L = E->getType()->isVoidType() ? IntRange{0, true} : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); E = CO->getFalseExpr(); IntRange R = E->getType()->isVoidType() ? IntRange{0, true} : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); return IntRange::join(L, R); } if (const auto *BO = dyn_cast(E)) { IntRange (*Combine)(IntRange, IntRange) = IntRange::join; switch (BO->getOpcode()) { case BO_Cmp: llvm_unreachable("builtin <=> should have class type"); // Boolean-valued operations are single-bit and positive. case BO_LAnd: case BO_LOr: case BO_LT: case BO_GT: case BO_LE: case BO_GE: case BO_EQ: case BO_NE: return IntRange::forBoolType(); // The type of the assignments is the type of the LHS, so the RHS // is not necessarily the same type. case BO_MulAssign: case BO_DivAssign: case BO_RemAssign: case BO_AddAssign: case BO_SubAssign: case BO_XorAssign: case BO_OrAssign: // TODO: bitfields? return IntRange::forValueOfType(C, GetExprType(E)); // Simple assignments just pass through the RHS, which will have // been coerced to the LHS type. case BO_Assign: // TODO: bitfields? return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, Approximate); // Operations with opaque sources are black-listed. case BO_PtrMemD: case BO_PtrMemI: return IntRange::forValueOfType(C, GetExprType(E)); // Bitwise-and uses the *infinum* of the two source ranges. case BO_And: case BO_AndAssign: Combine = IntRange::bit_and; break; // Left shift gets black-listed based on a judgement call. case BO_Shl: // ...except that we want to treat '1 << (blah)' as logically // positive. It's an important idiom. if (IntegerLiteral *I = dyn_cast(BO->getLHS()->IgnoreParenCasts())) { if (I->getValue() == 1) { IntRange R = IntRange::forValueOfType(C, GetExprType(E)); return IntRange(R.Width, /*NonNegative*/ true); } } [[fallthrough]]; case BO_ShlAssign: return IntRange::forValueOfType(C, GetExprType(E)); // Right shift by a constant can narrow its left argument. case BO_Shr: case BO_ShrAssign: { IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, Approximate); // If the shift amount is a positive constant, drop the width by // that much. if (std::optional shift = BO->getRHS()->getIntegerConstantExpr(C)) { if (shift->isNonNegative()) { if (shift->uge(L.Width)) L.Width = (L.NonNegative ? 0 : 1); else L.Width -= shift->getZExtValue(); } } return L; } // Comma acts as its right operand. case BO_Comma: return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, Approximate); case BO_Add: if (!Approximate) Combine = IntRange::sum; break; case BO_Sub: if (BO->getLHS()->getType()->isPointerType()) return IntRange::forValueOfType(C, GetExprType(E)); if (!Approximate) Combine = IntRange::difference; break; case BO_Mul: if (!Approximate) Combine = IntRange::product; break; // The width of a division result is mostly determined by the size // of the LHS. case BO_Div: { // Don't 'pre-truncate' the operands. unsigned opWidth = C.getIntWidth(GetExprType(E)); IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); // If the divisor is constant, use that. if (std::optional divisor = BO->getRHS()->getIntegerConstantExpr(C)) { unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) if (log2 >= L.Width) L.Width = (L.NonNegative ? 0 : 1); else L.Width = std::min(L.Width - log2, MaxWidth); return L; } // Otherwise, just use the LHS's width. // FIXME: This is wrong if the LHS could be its minimal value and the RHS // could be -1. IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); return IntRange(L.Width, L.NonNegative && R.NonNegative); } case BO_Rem: Combine = IntRange::rem; break; // The default behavior is okay for these. case BO_Xor: case BO_Or: break; } // Combine the two ranges, but limit the result to the type in which we // performed the computation. QualType T = GetExprType(E); unsigned opWidth = C.getIntWidth(T); IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); IntRange C = Combine(L, R); C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); C.Width = std::min(C.Width, MaxWidth); return C; } if (const auto *UO = dyn_cast(E)) { switch (UO->getOpcode()) { // Boolean-valued operations are white-listed. case UO_LNot: return IntRange::forBoolType(); // Operations with opaque sources are black-listed. case UO_Deref: case UO_AddrOf: // should be impossible return IntRange::forValueOfType(C, GetExprType(E)); default: return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, Approximate); } } if (const auto *OVE = dyn_cast(E)) return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, Approximate); if (const auto *BitField = E->getSourceBitField()) return IntRange(BitField->getBitWidthValue(C), BitField->getType()->isUnsignedIntegerOrEnumerationType()); return IntRange::forValueOfType(C, GetExprType(E)); } static IntRange GetExprRange(ASTContext &C, const Expr *E, bool InConstantContext, bool Approximate) { return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, Approximate); } /// Checks whether the given value, which currently has the given /// source semantics, has the same value when coerced through the /// target semantics. static bool IsSameFloatAfterCast(const llvm::APFloat &value, const llvm::fltSemantics &Src, const llvm::fltSemantics &Tgt) { llvm::APFloat truncated = value; bool ignored; truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); return truncated.bitwiseIsEqual(value); } /// Checks whether the given value, which currently has the given /// source semantics, has the same value when coerced through the /// target semantics. /// /// The value might be a vector of floats (or a complex number). static bool IsSameFloatAfterCast(const APValue &value, const llvm::fltSemantics &Src, const llvm::fltSemantics &Tgt) { if (value.isFloat()) return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); if (value.isVector()) { for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) return false; return true; } assert(value.isComplexFloat()); return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); } static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, bool IsListInit = false); static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { // Suppress cases where we are comparing against an enum constant. if (const DeclRefExpr *DR = dyn_cast(E->IgnoreParenImpCasts())) if (isa(DR->getDecl())) return true; // Suppress cases where the value is expanded from a macro, unless that macro // is how a language represents a boolean literal. This is the case in both C // and Objective-C. SourceLocation BeginLoc = E->getBeginLoc(); if (BeginLoc.isMacroID()) { StringRef MacroName = Lexer::getImmediateMacroName( BeginLoc, S.getSourceManager(), S.getLangOpts()); return MacroName != "YES" && MacroName != "NO" && MacroName != "true" && MacroName != "false"; } return false; } static bool isKnownToHaveUnsignedValue(Expr *E) { return E->getType()->isIntegerType() && (!E->getType()->isSignedIntegerType() || !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); } namespace { /// The promoted range of values of a type. In general this has the /// following structure: /// /// |-----------| . . . |-----------| /// ^ ^ ^ ^ /// Min HoleMin HoleMax Max /// /// ... where there is only a hole if a signed type is promoted to unsigned /// (in which case Min and Max are the smallest and largest representable /// values). struct PromotedRange { // Min, or HoleMax if there is a hole. llvm::APSInt PromotedMin; // Max, or HoleMin if there is a hole. llvm::APSInt PromotedMax; PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { if (R.Width == 0) PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); else if (R.Width >= BitWidth && !Unsigned) { // Promotion made the type *narrower*. This happens when promoting // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. // Treat all values of 'signed int' as being in range for now. PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); } else { PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) .extOrTrunc(BitWidth); PromotedMin.setIsUnsigned(Unsigned); PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) .extOrTrunc(BitWidth); PromotedMax.setIsUnsigned(Unsigned); } } // Determine whether this range is contiguous (has no hole). bool isContiguous() const { return PromotedMin <= PromotedMax; } // Where a constant value is within the range. enum ComparisonResult { LT = 0x1, LE = 0x2, GT = 0x4, GE = 0x8, EQ = 0x10, NE = 0x20, InRangeFlag = 0x40, Less = LE | LT | NE, Min = LE | InRangeFlag, InRange = InRangeFlag, Max = GE | InRangeFlag, Greater = GE | GT | NE, OnlyValue = LE | GE | EQ | InRangeFlag, InHole = NE }; ComparisonResult compare(const llvm::APSInt &Value) const { assert(Value.getBitWidth() == PromotedMin.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned()); if (!isContiguous()) { assert(Value.isUnsigned() && "discontiguous range for signed compare"); if (Value.isMinValue()) return Min; if (Value.isMaxValue()) return Max; if (Value >= PromotedMin) return InRange; if (Value <= PromotedMax) return InRange; return InHole; } switch (llvm::APSInt::compareValues(Value, PromotedMin)) { case -1: return Less; case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; case 1: switch (llvm::APSInt::compareValues(Value, PromotedMax)) { case -1: return InRange; case 0: return Max; case 1: return Greater; } } llvm_unreachable("impossible compare result"); } static std::optional constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { if (Op == BO_Cmp) { ComparisonResult LTFlag = LT, GTFlag = GT; if (ConstantOnRHS) std::swap(LTFlag, GTFlag); if (R & EQ) return StringRef("'std::strong_ordering::equal'"); if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); return std::nullopt; } ComparisonResult TrueFlag, FalseFlag; if (Op == BO_EQ) { TrueFlag = EQ; FalseFlag = NE; } else if (Op == BO_NE) { TrueFlag = NE; FalseFlag = EQ; } else { if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { TrueFlag = LT; FalseFlag = GE; } else { TrueFlag = GT; FalseFlag = LE; } if (Op == BO_GE || Op == BO_LE) std::swap(TrueFlag, FalseFlag); } if (R & TrueFlag) return StringRef("true"); if (R & FalseFlag) return StringRef("false"); return std::nullopt; } }; } static bool HasEnumType(Expr *E) { // Strip off implicit integral promotions. while (ImplicitCastExpr *ICE = dyn_cast(E)) { if (ICE->getCastKind() != CK_IntegralCast && ICE->getCastKind() != CK_NoOp) break; E = ICE->getSubExpr(); } return E->getType()->isEnumeralType(); } static int classifyConstantValue(Expr *Constant) { // The values of this enumeration are used in the diagnostics // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. enum ConstantValueKind { Miscellaneous = 0, LiteralTrue, LiteralFalse }; if (auto *BL = dyn_cast(Constant)) return BL->getValue() ? ConstantValueKind::LiteralTrue : ConstantValueKind::LiteralFalse; return ConstantValueKind::Miscellaneous; } static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, Expr *Constant, Expr *Other, const llvm::APSInt &Value, bool RhsConstant) { if (S.inTemplateInstantiation()) return false; Expr *OriginalOther = Other; Constant = Constant->IgnoreParenImpCasts(); Other = Other->IgnoreParenImpCasts(); // Suppress warnings on tautological comparisons between values of the same // enumeration type. There are only two ways we could warn on this: // - If the constant is outside the range of representable values of // the enumeration. In such a case, we should warn about the cast // to enumeration type, not about the comparison. // - If the constant is the maximum / minimum in-range value. For an // enumeratin type, such comparisons can be meaningful and useful. if (Constant->getType()->isEnumeralType() && S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) return false; IntRange OtherValueRange = GetExprRange( S.Context, Other, S.isConstantEvaluatedContext(), /*Approximate=*/false); QualType OtherT = Other->getType(); if (const auto *AT = OtherT->getAs()) OtherT = AT->getValueType(); IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); // Special case for ObjC BOOL on targets where its a typedef for a signed char // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. bool IsObjCSignedCharBool = S.getLangOpts().ObjC && S.ObjC().NSAPIObj->isObjCBOOLType(OtherT) && OtherT->isSpecificBuiltinType(BuiltinType::SChar); // Whether we're treating Other as being a bool because of the form of // expression despite it having another type (typically 'int' in C). bool OtherIsBooleanDespiteType = !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) OtherTypeRange = OtherValueRange = IntRange::forBoolType(); // Check if all values in the range of possible values of this expression // lead to the same comparison outcome. PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), Value.isUnsigned()); auto Cmp = OtherPromotedValueRange.compare(Value); auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); if (!Result) return false; // Also consider the range determined by the type alone. This allows us to // classify the warning under the proper diagnostic group. bool TautologicalTypeCompare = false; { PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), Value.isUnsigned()); auto TypeCmp = OtherPromotedTypeRange.compare(Value); if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, RhsConstant)) { TautologicalTypeCompare = true; Cmp = TypeCmp; Result = TypeResult; } } // Don't warn if the non-constant operand actually always evaluates to the // same value. if (!TautologicalTypeCompare && OtherValueRange.Width == 0) return false; // Suppress the diagnostic for an in-range comparison if the constant comes // from a macro or enumerator. We don't want to diagnose // // some_long_value <= INT_MAX // // when sizeof(int) == sizeof(long). bool InRange = Cmp & PromotedRange::InRangeFlag; if (InRange && IsEnumConstOrFromMacro(S, Constant)) return false; // A comparison of an unsigned bit-field against 0 is really a type problem, // even though at the type level the bit-field might promote to 'signed int'. if (Other->refersToBitField() && InRange && Value == 0 && Other->getType()->isUnsignedIntegerOrEnumerationType()) TautologicalTypeCompare = true; // If this is a comparison to an enum constant, include that // constant in the diagnostic. const EnumConstantDecl *ED = nullptr; if (const DeclRefExpr *DR = dyn_cast(Constant)) ED = dyn_cast(DR->getDecl()); // Should be enough for uint128 (39 decimal digits) SmallString<64> PrettySourceValue; llvm::raw_svector_ostream OS(PrettySourceValue); if (ED) { OS << '\'' << *ED << "' (" << Value << ")"; } else if (auto *BL = dyn_cast( Constant->IgnoreParenImpCasts())) { OS << (BL->getValue() ? "YES" : "NO"); } else { OS << Value; } if (!TautologicalTypeCompare) { S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative << E->getOpcodeStr() << OS.str() << *Result << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); return true; } if (IsObjCSignedCharBool) { S.DiagRuntimeBehavior(E->getOperatorLoc(), E, S.PDiag(diag::warn_tautological_compare_objc_bool) << OS.str() << *Result); return true; } // FIXME: We use a somewhat different formatting for the in-range cases and // cases involving boolean values for historical reasons. We should pick a // consistent way of presenting these diagnostics. if (!InRange || Other->isKnownToHaveBooleanValue()) { S.DiagRuntimeBehavior( E->getOperatorLoc(), E, S.PDiag(!InRange ? diag::warn_out_of_range_compare : diag::warn_tautological_bool_compare) << OS.str() << classifyConstantValue(Constant) << OtherT << OtherIsBooleanDespiteType << *Result << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); } else { bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) ? (HasEnumType(OriginalOther) ? diag::warn_unsigned_enum_always_true_comparison : IsCharTy ? diag::warn_unsigned_char_always_true_comparison : diag::warn_unsigned_always_true_comparison) : diag::warn_tautological_constant_compare; S.Diag(E->getOperatorLoc(), Diag) << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); } return true; } /// Analyze the operands of the given comparison. Implements the /// fallback case from AnalyzeComparison. static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); } /// Implements -Wsign-compare. /// /// \param E the binary operator to check for warnings static void AnalyzeComparison(Sema &S, BinaryOperator *E) { // The type the comparison is being performed in. QualType T = E->getLHS()->getType(); // Only analyze comparison operators where both sides have been converted to // the same type. if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) return AnalyzeImpConvsInComparison(S, E); // Don't analyze value-dependent comparisons directly. if (E->isValueDependent()) return AnalyzeImpConvsInComparison(S, E); Expr *LHS = E->getLHS(); Expr *RHS = E->getRHS(); if (T->isIntegralType(S.Context)) { std::optional RHSValue = RHS->getIntegerConstantExpr(S.Context); std::optional LHSValue = LHS->getIntegerConstantExpr(S.Context); // We don't care about expressions whose result is a constant. if (RHSValue && LHSValue) return AnalyzeImpConvsInComparison(S, E); // We only care about expressions where just one side is literal if ((bool)RHSValue ^ (bool)LHSValue) { // Is the constant on the RHS or LHS? const bool RhsConstant = (bool)RHSValue; Expr *Const = RhsConstant ? RHS : LHS; Expr *Other = RhsConstant ? LHS : RHS; const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; // Check whether an integer constant comparison results in a value // of 'true' or 'false'. if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) return AnalyzeImpConvsInComparison(S, E); } } if (!T->hasUnsignedIntegerRepresentation()) { // We don't do anything special if this isn't an unsigned integral // comparison: we're only interested in integral comparisons, and // signed comparisons only happen in cases we don't care to warn about. return AnalyzeImpConvsInComparison(S, E); } LHS = LHS->IgnoreParenImpCasts(); RHS = RHS->IgnoreParenImpCasts(); if (!S.getLangOpts().CPlusPlus) { // Avoid warning about comparison of integers with different signs when // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of // the type of `E`. if (const auto *TET = dyn_cast(LHS->getType())) LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); if (const auto *TET = dyn_cast(RHS->getType())) RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); } // Check to see if one of the (unmodified) operands is of different // signedness. Expr *signedOperand, *unsignedOperand; if (LHS->getType()->hasSignedIntegerRepresentation()) { assert(!RHS->getType()->hasSignedIntegerRepresentation() && "unsigned comparison between two signed integer expressions?"); signedOperand = LHS; unsignedOperand = RHS; } else if (RHS->getType()->hasSignedIntegerRepresentation()) { signedOperand = RHS; unsignedOperand = LHS; } else { return AnalyzeImpConvsInComparison(S, E); } // Otherwise, calculate the effective range of the signed operand. IntRange signedRange = GetExprRange(S.Context, signedOperand, S.isConstantEvaluatedContext(), /*Approximate=*/true); // Go ahead and analyze implicit conversions in the operands. Note // that we skip the implicit conversions on both sides. AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); // If the signed range is non-negative, -Wsign-compare won't fire. if (signedRange.NonNegative) return; // For (in)equality comparisons, if the unsigned operand is a // constant which cannot collide with a overflowed signed operand, // then reinterpreting the signed operand as unsigned will not // change the result of the comparison. if (E->isEqualityOp()) { unsigned comparisonWidth = S.Context.getIntWidth(T); IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluatedContext(), /*Approximate=*/true); // We should never be unable to prove that the unsigned operand is // non-negative. assert(unsignedRange.NonNegative && "unsigned range includes negative?"); if (unsignedRange.Width < comparisonWidth) return; } S.DiagRuntimeBehavior(E->getOperatorLoc(), E, S.PDiag(diag::warn_mixed_sign_comparison) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange()); } /// Analyzes an attempt to assign the given value to a bitfield. /// /// Returns true if there was something fishy about the attempt. static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, SourceLocation InitLoc) { assert(Bitfield->isBitField()); if (Bitfield->isInvalidDecl()) return false; // White-list bool bitfields. QualType BitfieldType = Bitfield->getType(); if (BitfieldType->isBooleanType()) return false; if (BitfieldType->isEnumeralType()) { EnumDecl *BitfieldEnumDecl = BitfieldType->castAs()->getDecl(); // If the underlying enum type was not explicitly specified as an unsigned // type and the enum contain only positive values, MSVC++ will cause an // inconsistency by storing this as a signed type. if (S.getLangOpts().CPlusPlus11 && !BitfieldEnumDecl->getIntegerTypeSourceInfo() && BitfieldEnumDecl->getNumPositiveBits() > 0 && BitfieldEnumDecl->getNumNegativeBits() == 0) { S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) << BitfieldEnumDecl; } } // Ignore value- or type-dependent expressions. if (Bitfield->getBitWidth()->isValueDependent() || Bitfield->getBitWidth()->isTypeDependent() || Init->isValueDependent() || Init->isTypeDependent()) return false; Expr *OriginalInit = Init->IgnoreParenImpCasts(); unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); Expr::EvalResult Result; if (!OriginalInit->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { // The RHS is not constant. If the RHS has an enum type, make sure the // bitfield is wide enough to hold all the values of the enum without // truncation. if (const auto *EnumTy = OriginalInit->getType()->getAs()) { EnumDecl *ED = EnumTy->getDecl(); bool SignedBitfield = BitfieldType->isSignedIntegerType(); // Enum types are implicitly signed on Windows, so check if there are any // negative enumerators to see if the enum was intended to be signed or // not. bool SignedEnum = ED->getNumNegativeBits() > 0; // Check for surprising sign changes when assigning enum values to a // bitfield of different signedness. If the bitfield is signed and we // have exactly the right number of bits to store this unsigned enum, // suggest changing the enum to an unsigned type. This typically happens // on Windows where unfixed enums always use an underlying type of 'int'. unsigned DiagID = 0; if (SignedEnum && !SignedBitfield) { DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; } else if (SignedBitfield && !SignedEnum && ED->getNumPositiveBits() == FieldWidth) { DiagID = diag::warn_signed_bitfield_enum_conversion; } if (DiagID) { S.Diag(InitLoc, DiagID) << Bitfield << ED; TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); SourceRange TypeRange = TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) << SignedEnum << TypeRange; } // Compute the required bitwidth. If the enum has negative values, we need // one more bit than the normal number of positive bits to represent the // sign bit. unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, ED->getNumNegativeBits()) : ED->getNumPositiveBits(); // Check the bitwidth. if (BitsNeeded > FieldWidth) { Expr *WidthExpr = Bitfield->getBitWidth(); S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) << Bitfield << ED; S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) << BitsNeeded << ED << WidthExpr->getSourceRange(); } } return false; } llvm::APSInt Value = Result.Val.getInt(); unsigned OriginalWidth = Value.getBitWidth(); // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce // false positives where the user is demonstrating they intend to use the // bit-field as a Boolean, check to see if the value is 1 and we're assigning // to a one-bit bit-field to see if the value came from a macro named 'true'. bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1; if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) { SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc(); if (S.SourceMgr.isInSystemMacro(MaybeMacroLoc) && S.findMacroSpelling(MaybeMacroLoc, "true")) return false; } if (!Value.isSigned() || Value.isNegative()) if (UnaryOperator *UO = dyn_cast(OriginalInit)) if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) OriginalWidth = Value.getSignificantBits(); if (OriginalWidth <= FieldWidth) return false; // Compute the value which the bitfield will contain. llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); // Check whether the stored value is equal to the original value. TruncatedValue = TruncatedValue.extend(OriginalWidth); if (llvm::APSInt::isSameValue(Value, TruncatedValue)) return false; std::string PrettyValue = toString(Value, 10); std::string PrettyTrunc = toString(TruncatedValue, 10); S.Diag(InitLoc, OneAssignedToOneBitBitfield ? diag::warn_impcast_single_bit_bitield_precision_constant : diag::warn_impcast_bitfield_precision_constant) << PrettyValue << PrettyTrunc << OriginalInit->getType() << Init->getSourceRange(); return true; } /// Analyze the given simple or compound assignment for warning-worthy /// operations. static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { // Just recurse on the LHS. AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); // We want to recurse on the RHS as normal unless we're assigning to // a bitfield. if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), E->getOperatorLoc())) { // Recurse, ignoring any implicit conversions on the RHS. return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), E->getOperatorLoc()); } } AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); // Diagnose implicitly sequentially-consistent atomic assignment. if (E->getLHS()->getType()->isAtomicType()) S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); } /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, SourceLocation CContext, unsigned diag, bool pruneControlFlow = false) { if (pruneControlFlow) { S.DiagRuntimeBehavior(E->getExprLoc(), E, S.PDiag(diag) << SourceType << T << E->getSourceRange() << SourceRange(CContext)); return; } S.Diag(E->getExprLoc(), diag) << SourceType << T << E->getSourceRange() << SourceRange(CContext); } /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext, unsigned diag, bool pruneControlFlow = false) { DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); } /// Diagnose an implicit cast from a floating point value to an integer value. static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext) { const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); const bool PruneWarnings = S.inTemplateInstantiation(); Expr *InnerE = E->IgnoreParenImpCasts(); // We also want to warn on, e.g., "int i = -1.234" if (UnaryOperator *UOp = dyn_cast(InnerE)) if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); const bool IsLiteral = isa(E) || isa(InnerE); llvm::APFloat Value(0.0); bool IsConstant = E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); if (!IsConstant) { if (S.ObjC().isSignedCharBool(T)) { return S.ObjC().adornBoolConversionDiagWithTernaryFixit( E, S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) << E->getType()); } return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, PruneWarnings); } bool isExact = false; llvm::APSInt IntegerValue(S.Context.getIntWidth(T), T->hasUnsignedIntegerRepresentation()); llvm::APFloat::opStatus Result = Value.convertToInteger( IntegerValue, llvm::APFloat::rmTowardZero, &isExact); // FIXME: Force the precision of the source value down so we don't print // digits which are usually useless (we don't really care here if we // truncate a digit by accident in edge cases). Ideally, APFloat::toString // would automatically print the shortest representation, but it's a bit // tricky to implement. SmallString<16> PrettySourceValue; unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); precision = (precision * 59 + 195) / 196; Value.toString(PrettySourceValue, precision); if (S.ObjC().isSignedCharBool(T) && IntegerValue != 0 && IntegerValue != 1) { return S.ObjC().adornBoolConversionDiagWithTernaryFixit( E, S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) << PrettySourceValue); } if (Result == llvm::APFloat::opOK && isExact) { if (IsLiteral) return; return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, PruneWarnings); } // Conversion of a floating-point value to a non-bool integer where the // integral part cannot be represented by the integer type is undefined. if (!IsBool && Result == llvm::APFloat::opInvalidOp) return DiagnoseImpCast( S, E, T, CContext, IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range : diag::warn_impcast_float_to_integer_out_of_range, PruneWarnings); unsigned DiagID = 0; if (IsLiteral) { // Warn on floating point literal to integer. DiagID = diag::warn_impcast_literal_float_to_integer; } else if (IntegerValue == 0) { if (Value.isZero()) { // Skip -0.0 to 0 conversion. return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, PruneWarnings); } // Warn on non-zero to zero conversion. DiagID = diag::warn_impcast_float_to_integer_zero; } else { if (IntegerValue.isUnsigned()) { if (!IntegerValue.isMaxValue()) { return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, PruneWarnings); } } else { // IntegerValue.isSigned() if (!IntegerValue.isMaxSignedValue() && !IntegerValue.isMinSignedValue()) { return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, PruneWarnings); } } // Warn on evaluatable floating point expression to integer conversion. DiagID = diag::warn_impcast_float_to_integer; } SmallString<16> PrettyTargetValue; if (IsBool) PrettyTargetValue = Value.isZero() ? "false" : "true"; else IntegerValue.toString(PrettyTargetValue); if (PruneWarnings) { S.DiagRuntimeBehavior(E->getExprLoc(), E, S.PDiag(DiagID) << E->getType() << T.getUnqualifiedType() << PrettySourceValue << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext)); } else { S.Diag(E->getExprLoc(), DiagID) << E->getType() << T.getUnqualifiedType() << PrettySourceValue << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); } } /// Analyze the given compound assignment for the possible losing of /// floating-point precision. static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { assert(isa(E) && "Must be compound assignment operation"); // Recurse on the LHS and RHS in here AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); if (E->getLHS()->getType()->isAtomicType()) S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); // Now check the outermost expression const auto *ResultBT = E->getLHS()->getType()->getAs(); const auto *RBT = cast(E) ->getComputationResultType() ->getAs(); // The below checks assume source is floating point. if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; // If source is floating point but target is an integer. if (ResultBT->isInteger()) return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), E->getExprLoc(), diag::warn_impcast_float_integer); if (!ResultBT->isFloatingPoint()) return; // If both source and target are floating points, warn about losing precision. int Order = S.getASTContext().getFloatingTypeSemanticOrder( QualType(ResultBT, 0), QualType(RBT, 0)); if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) // warn about dropping FP rank. DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), diag::warn_impcast_float_result_precision); } static std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) { if (!Range.Width) return "0"; llvm::APSInt ValueInRange = Value; ValueInRange.setIsSigned(!Range.NonNegative); ValueInRange = ValueInRange.trunc(Range.Width); return toString(ValueInRange, 10); } static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { if (!isa(Ex)) return false; Expr *InnerE = Ex->IgnoreParenImpCasts(); const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); const Type *Source = S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); if (Target->isDependentType()) return false; const BuiltinType *FloatCandidateBT = dyn_cast(ToBool ? Source : Target); const Type *BoolCandidateType = ToBool ? Target : Source; return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); } static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, SourceLocation CC) { unsigned NumArgs = TheCall->getNumArgs(); for (unsigned i = 0; i < NumArgs; ++i) { Expr *CurrA = TheCall->getArg(i); if (!IsImplicitBoolFloatConversion(S, CurrA, true)) continue; bool IsSwapped = ((i > 0) && IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); IsSwapped |= ((i < (NumArgs - 1)) && IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); if (IsSwapped) { // Warn on this floating-point to bool conversion. DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), CurrA->getType(), CC, diag::warn_impcast_floating_point_to_bool); } } } static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, SourceLocation CC) { if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, E->getExprLoc())) return; // Don't warn on functions which have return type nullptr_t. if (isa(E)) return; // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). const Expr *NewE = E->IgnoreParenImpCasts(); bool IsGNUNullExpr = isa(NewE); bool HasNullPtrType = NewE->getType()->isNullPtrType(); if (!IsGNUNullExpr && !HasNullPtrType) return; // Return if target type is a safe conversion. if (T->isAnyPointerType() || T->isBlockPointerType() || T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) return; SourceLocation Loc = E->getSourceRange().getBegin(); // Venture through the macro stacks to get to the source of macro arguments. // The new location is a better location than the complete location that was // passed in. Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); CC = S.SourceMgr.getTopMacroCallerLoc(CC); // __null is usually wrapped in a macro. Go up a macro if that is the case. if (IsGNUNullExpr && Loc.isMacroID()) { StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( Loc, S.SourceMgr, S.getLangOpts()); if (MacroName == "NULL") Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); } // Only warn if the null and context location are in the same macro expansion. if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) return; S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) << HasNullPtrType << T << SourceRange(CC) << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T, Loc)); } // Helper function to filter out cases for constant width constant conversion. // Don't warn on char array initialization or for non-decimal values. static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, SourceLocation CC) { // If initializing from a constant, and the constant starts with '0', // then it is a binary, octal, or hexadecimal. Allow these constants // to fill all the bits, even if there is a sign change. if (auto *IntLit = dyn_cast(E->IgnoreParenImpCasts())) { const char FirstLiteralCharacter = S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; if (FirstLiteralCharacter == '0') return false; } // If the CC location points to a '{', and the type is char, then assume // assume it is an array initialization. if (CC.isValid() && T->isCharType()) { const char FirstContextCharacter = S.getSourceManager().getCharacterData(CC)[0]; if (FirstContextCharacter == '{') return false; } return true; } static const IntegerLiteral *getIntegerLiteral(Expr *E) { const auto *IL = dyn_cast(E); if (!IL) { if (auto *UO = dyn_cast(E)) { if (UO->getOpcode() == UO_Minus) return dyn_cast(UO->getSubExpr()); } } return IL; } static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { E = E->IgnoreParenImpCasts(); SourceLocation ExprLoc = E->getExprLoc(); if (const auto *BO = dyn_cast(E)) { BinaryOperator::Opcode Opc = BO->getOpcode(); Expr::EvalResult Result; // Do not diagnose unsigned shifts. if (Opc == BO_Shl) { const auto *LHS = getIntegerLiteral(BO->getLHS()); const auto *RHS = getIntegerLiteral(BO->getRHS()); if (LHS && LHS->getValue() == 0) S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; else if (!E->isValueDependent() && LHS && RHS && RHS->getValue().isNonNegative() && E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) S.Diag(ExprLoc, diag::warn_left_shift_always) << (Result.Val.getInt() != 0); else if (E->getType()->isSignedIntegerType()) S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; } } if (const auto *CO = dyn_cast(E)) { const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); if (!LHS || !RHS) return; if ((LHS->getValue() == 0 || LHS->getValue() == 1) && (RHS->getValue() == 0 || RHS->getValue() == 1)) // Do not diagnose common idioms. return; if (LHS->getValue() != 0 && RHS->getValue() != 0) S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); } } void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC, bool *ICContext, bool IsListInit) { if (E->isTypeDependent() || E->isValueDependent()) return; const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr(); const Type *Target = Context.getCanonicalType(T).getTypePtr(); if (Source == Target) return; if (Target->isDependentType()) return; // If the conversion context location is invalid don't complain. We also // don't want to emit a warning if the issue occurs from the expansion of // a system macro. The problem is that 'getSpellingLoc()' is slow, so we // delay this check as long as possible. Once we detect we are in that // scenario, we just return. if (CC.isInvalid()) return; if (Source->isAtomicType()) Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); // Diagnose implicit casts to bool. if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { if (isa(E)) // Warn on string literal to bool. Checks for string literals in logical // and expressions, for instance, assert(0 && "error here"), are // prevented by a check in AnalyzeImplicitConversions(). return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_string_literal_to_bool); if (isa(E) || isa(E) || isa(E) || isa(E)) { // This covers the literal expressions that evaluate to Objective-C // objects. return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_objective_c_literal_to_bool); } if (Source->isPointerType() || Source->canDecayToPointerType()) { // Warn on pointer to bool conversion that is always true. DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, SourceRange(CC)); } } // If the we're converting a constant to an ObjC BOOL on a platform where BOOL // is a typedef for signed char (macOS), then that constant value has to be 1 // or 0. if (ObjC().isSignedCharBool(T) && Source->isIntegralType(Context)) { Expr::EvalResult Result; if (E->EvaluateAsInt(Result, getASTContext(), Expr::SE_AllowSideEffects)) { if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { ObjC().adornBoolConversionDiagWithTernaryFixit( E, Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) << toString(Result.Val.getInt(), 10)); } return; } } // Check implicit casts from Objective-C collection literals to specialized // collection types, e.g., NSArray *. if (auto *ArrayLiteral = dyn_cast(E)) ObjC().checkArrayLiteral(QualType(Target, 0), ArrayLiteral); else if (auto *DictionaryLiteral = dyn_cast(E)) ObjC().checkDictionaryLiteral(QualType(Target, 0), DictionaryLiteral); // Strip vector types. if (isa(Source)) { if (Target->isSveVLSBuiltinType() && (Context.areCompatibleSveTypes(QualType(Target, 0), QualType(Source, 0)) || Context.areLaxCompatibleSveTypes(QualType(Target, 0), QualType(Source, 0)))) return; if (Target->isRVVVLSBuiltinType() && (Context.areCompatibleRVVTypes(QualType(Target, 0), QualType(Source, 0)) || Context.areLaxCompatibleRVVTypes(QualType(Target, 0), QualType(Source, 0)))) return; if (!isa(Target)) { if (SourceMgr.isInSystemMacro(CC)) return; return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_vector_scalar); } else if (getLangOpts().HLSL && Target->castAs()->getNumElements() < Source->castAs()->getNumElements()) { // Diagnose vector truncation but don't return. We may also want to // diagnose an element conversion. DiagnoseImpCast(*this, E, T, CC, diag::warn_hlsl_impcast_vector_truncation); } // If the vector cast is cast between two vectors of the same size, it is // a bitcast, not a conversion, except under HLSL where it is a conversion. if (!getLangOpts().HLSL && Context.getTypeSize(Source) == Context.getTypeSize(Target)) return; Source = cast(Source)->getElementType().getTypePtr(); Target = cast(Target)->getElementType().getTypePtr(); } if (auto VecTy = dyn_cast(Target)) Target = VecTy->getElementType().getTypePtr(); // Strip complex types. if (isa(Source)) { if (!isa(Target)) { if (SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) return; return DiagnoseImpCast(*this, E, T, CC, getLangOpts().CPlusPlus ? diag::err_impcast_complex_scalar : diag::warn_impcast_complex_scalar); } Source = cast(Source)->getElementType().getTypePtr(); Target = cast(Target)->getElementType().getTypePtr(); } const BuiltinType *SourceBT = dyn_cast(Source); const BuiltinType *TargetBT = dyn_cast(Target); // Strip SVE vector types if (SourceBT && SourceBT->isSveVLSBuiltinType()) { // Need the original target type for vector type checks const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr(); // Handle conversion from scalable to fixed when msve-vector-bits is // specified if (Context.areCompatibleSveTypes(QualType(OriginalTarget, 0), QualType(Source, 0)) || Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0), QualType(Source, 0))) return; // If the vector cast is cast between two vectors of the same size, it is // a bitcast, not a conversion. if (Context.getTypeSize(Source) == Context.getTypeSize(Target)) return; Source = SourceBT->getSveEltType(Context).getTypePtr(); } if (TargetBT && TargetBT->isSveVLSBuiltinType()) Target = TargetBT->getSveEltType(Context).getTypePtr(); // If the source is floating point... if (SourceBT && SourceBT->isFloatingPoint()) { // ...and the target is floating point... if (TargetBT && TargetBT->isFloatingPoint()) { // ...then warn if we're dropping FP rank. int Order = getASTContext().getFloatingTypeSemanticOrder( QualType(SourceBT, 0), QualType(TargetBT, 0)); if (Order > 0) { // Don't warn about float constants that are precisely // representable in the target type. Expr::EvalResult result; if (E->EvaluateAsRValue(result, Context)) { // Value might be a float, a float vector, or a float complex. if (IsSameFloatAfterCast( result.Val, Context.getFloatTypeSemantics(QualType(TargetBT, 0)), Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) return; } if (SourceMgr.isInSystemMacro(CC)) return; DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_float_precision); } // ... or possibly if we're increasing rank, too else if (Order < 0) { if (SourceMgr.isInSystemMacro(CC)) return; DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_double_promotion); } return; } // If the target is integral, always warn. if (TargetBT && TargetBT->isInteger()) { if (SourceMgr.isInSystemMacro(CC)) return; DiagnoseFloatingImpCast(*this, E, T, CC); } // Detect the case where a call result is converted from floating-point to // to bool, and the final argument to the call is converted from bool, to // discover this typo: // // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" // // FIXME: This is an incredibly special case; is there some more general // way to detect this class of misplaced-parentheses bug? if (Target->isBooleanType() && isa(E)) { // Check last argument of function call to see if it is an // implicit cast from a type matching the type the result // is being cast to. CallExpr *CEx = cast(E); if (unsigned NumArgs = CEx->getNumArgs()) { Expr *LastA = CEx->getArg(NumArgs - 1); Expr *InnerE = LastA->IgnoreParenImpCasts(); if (isa(LastA) && InnerE->getType()->isBooleanType()) { // Warn on this floating-point to bool conversion DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_floating_point_to_bool); } } } return; } // Valid casts involving fixed point types should be accounted for here. if (Source->isFixedPointType()) { if (Target->isUnsaturatedFixedPointType()) { Expr::EvalResult Result; if (E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects, isConstantEvaluatedContext())) { llvm::APFixedPoint Value = Result.Val.getFixedPoint(); llvm::APFixedPoint MaxVal = Context.getFixedPointMax(T); llvm::APFixedPoint MinVal = Context.getFixedPointMin(T); if (Value > MaxVal || Value < MinVal) { DiagRuntimeBehavior(E->getExprLoc(), E, PDiag(diag::warn_impcast_fixed_point_range) << Value.toString() << T << E->getSourceRange() << clang::SourceRange(CC)); return; } } } else if (Target->isIntegerType()) { Expr::EvalResult Result; if (!isConstantEvaluatedContext() && E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects)) { llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); bool Overflowed; llvm::APSInt IntResult = FXResult.convertToInt( Context.getIntWidth(T), Target->isSignedIntegerOrEnumerationType(), &Overflowed); if (Overflowed) { DiagRuntimeBehavior(E->getExprLoc(), E, PDiag(diag::warn_impcast_fixed_point_range) << FXResult.toString() << T << E->getSourceRange() << clang::SourceRange(CC)); return; } } } } else if (Target->isUnsaturatedFixedPointType()) { if (Source->isIntegerType()) { Expr::EvalResult Result; if (!isConstantEvaluatedContext() && E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) { llvm::APSInt Value = Result.Val.getInt(); bool Overflowed; llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( Value, Context.getFixedPointSemantics(T), &Overflowed); if (Overflowed) { DiagRuntimeBehavior(E->getExprLoc(), E, PDiag(diag::warn_impcast_fixed_point_range) << toString(Value, /*Radix=*/10) << T << E->getSourceRange() << clang::SourceRange(CC)); return; } } } } // If we are casting an integer type to a floating point type without // initialization-list syntax, we might lose accuracy if the floating // point type has a narrower significand than the integer type. if (SourceBT && TargetBT && SourceBT->isIntegerType() && TargetBT->isFloatingType() && !IsListInit) { // Determine the number of precision bits in the source integer type. IntRange SourceRange = GetExprRange(Context, E, isConstantEvaluatedContext(), /*Approximate=*/true); unsigned int SourcePrecision = SourceRange.Width; // Determine the number of precision bits in the // target floating point type. unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( Context.getFloatTypeSemantics(QualType(TargetBT, 0))); if (SourcePrecision > 0 && TargetPrecision > 0 && SourcePrecision > TargetPrecision) { if (std::optional SourceInt = E->getIntegerConstantExpr(Context)) { // If the source integer is a constant, convert it to the target // floating point type. Issue a warning if the value changes // during the whole conversion. llvm::APFloat TargetFloatValue( Context.getFloatTypeSemantics(QualType(TargetBT, 0))); llvm::APFloat::opStatus ConversionStatus = TargetFloatValue.convertFromAPInt( *SourceInt, SourceBT->isSignedInteger(), llvm::APFloat::rmNearestTiesToEven); if (ConversionStatus != llvm::APFloat::opOK) { SmallString<32> PrettySourceValue; SourceInt->toString(PrettySourceValue, 10); SmallString<32> PrettyTargetValue; TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); DiagRuntimeBehavior( E->getExprLoc(), E, PDiag(diag::warn_impcast_integer_float_precision_constant) << PrettySourceValue << PrettyTargetValue << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC)); } } else { // Otherwise, the implicit conversion may lose precision. DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_float_precision); } } } DiagnoseNullConversion(*this, E, T, CC); DiscardMisalignedMemberAddress(Target, E); if (Target->isBooleanType()) DiagnoseIntInBoolContext(*this, E); if (!Source->isIntegerType() || !Target->isIntegerType()) return; // TODO: remove this early return once the false positives for constant->bool // in templates, macros, etc, are reduced or removed. if (Target->isSpecificBuiltinType(BuiltinType::Bool)) return; if (ObjC().isSignedCharBool(T) && !Source->isCharType() && !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { return ObjC().adornBoolConversionDiagWithTernaryFixit( E, Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) << E->getType()); } IntRange SourceTypeRange = IntRange::forTargetOfCanonicalType(Context, Source); IntRange LikelySourceRange = GetExprRange( Context, E, isConstantEvaluatedContext(), /*Approximate=*/true); IntRange TargetRange = IntRange::forTargetOfCanonicalType(Context, Target); if (LikelySourceRange.Width > TargetRange.Width) { // If the source is a constant, use a default-on diagnostic. // TODO: this should happen for bitfield stores, too. Expr::EvalResult Result; if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects, isConstantEvaluatedContext())) { llvm::APSInt Value(32); Value = Result.Val.getInt(); if (SourceMgr.isInSystemMacro(CC)) return; std::string PrettySourceValue = toString(Value, 10); std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); DiagRuntimeBehavior(E->getExprLoc(), E, PDiag(diag::warn_impcast_integer_precision_constant) << PrettySourceValue << PrettyTargetValue << E->getType() << T << E->getSourceRange() << SourceRange(CC)); return; } // People want to build with -Wshorten-64-to-32 and not -Wconversion. if (SourceMgr.isInSystemMacro(CC)) return; if (TargetRange.Width == 32 && Context.getIntWidth(E->getType()) == 64) return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_64_32, /* pruneControlFlow */ true); return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_precision); } if (TargetRange.Width > SourceTypeRange.Width) { if (auto *UO = dyn_cast(E)) if (UO->getOpcode() == UO_Minus) if (Source->isUnsignedIntegerType()) { if (Target->isUnsignedIntegerType()) return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_high_order_zero_bits); if (Target->isSignedIntegerType()) return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_nonnegative_result); } } if (TargetRange.Width == LikelySourceRange.Width && !TargetRange.NonNegative && LikelySourceRange.NonNegative && Source->isSignedIntegerType()) { // Warn when doing a signed to signed conversion, warn if the positive // source value is exactly the width of the target type, which will // cause a negative value to be stored. Expr::EvalResult Result; if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects) && !SourceMgr.isInSystemMacro(CC)) { llvm::APSInt Value = Result.Val.getInt(); if (isSameWidthConstantConversion(*this, E, T, CC)) { std::string PrettySourceValue = toString(Value, 10); std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); Diag(E->getExprLoc(), PDiag(diag::warn_impcast_integer_precision_constant) << PrettySourceValue << PrettyTargetValue << E->getType() << T << E->getSourceRange() << SourceRange(CC)); return; } } // Fall through for non-constants to give a sign conversion warning. } if ((!isa(Target) || !isa(Source)) && ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || (!TargetRange.NonNegative && LikelySourceRange.NonNegative && LikelySourceRange.Width == TargetRange.Width))) { if (SourceMgr.isInSystemMacro(CC)) return; if (SourceBT && SourceBT->isInteger() && TargetBT && TargetBT->isInteger() && Source->isSignedIntegerType() == Target->isSignedIntegerType()) { return; } unsigned DiagID = diag::warn_impcast_integer_sign; // Traditionally, gcc has warned about this under -Wsign-compare. // We also want to warn about it in -Wconversion. // So if -Wconversion is off, use a completely identical diagnostic // in the sign-compare group. // The conditional-checking code will if (ICContext) { DiagID = diag::warn_impcast_integer_sign_conditional; *ICContext = true; } return DiagnoseImpCast(*this, E, T, CC, DiagID); } // Diagnose conversions between different enumeration types. // In C, we pretend that the type of an EnumConstantDecl is its enumeration // type, to give us better diagnostics. QualType SourceType = E->getEnumCoercedType(Context); Source = Context.getCanonicalType(SourceType).getTypePtr(); if (const EnumType *SourceEnum = Source->getAs()) if (const EnumType *TargetEnum = Target->getAs()) if (SourceEnum->getDecl()->hasNameForLinkage() && TargetEnum->getDecl()->hasNameForLinkage() && SourceEnum != TargetEnum) { if (SourceMgr.isInSystemMacro(CC)) return; return DiagnoseImpCast(*this, E, SourceType, T, CC, diag::warn_impcast_different_enum_types); } } static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, SourceLocation CC, QualType T); static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, SourceLocation CC, bool &ICContext) { E = E->IgnoreParenImpCasts(); // Diagnose incomplete type for second or third operand in C. if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType()) S.RequireCompleteExprType(E, diag::err_incomplete_type); if (auto *CO = dyn_cast(E)) return CheckConditionalOperator(S, CO, CC, T); AnalyzeImplicitConversions(S, E, CC); if (E->getType() != T) return S.CheckImplicitConversion(E, T, CC, &ICContext); } static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, SourceLocation CC, QualType T) { AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); Expr *TrueExpr = E->getTrueExpr(); if (auto *BCO = dyn_cast(E)) TrueExpr = BCO->getCommon(); bool Suspicious = false; CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); if (T->isBooleanType()) DiagnoseIntInBoolContext(S, E); // If -Wconversion would have warned about either of the candidates // for a signedness conversion to the context type... if (!Suspicious) return; // ...but it's currently ignored... if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) return; // ...then check whether it would have warned about either of the // candidates for a signedness conversion to the condition type. if (E->getType() == T) return; Suspicious = false; S.CheckImplicitConversion(TrueExpr->IgnoreParenImpCasts(), E->getType(), CC, &Suspicious); if (!Suspicious) S.CheckImplicitConversion(E->getFalseExpr()->IgnoreParenImpCasts(), E->getType(), CC, &Suspicious); } /// Check conversion of given expression to boolean. /// Input argument E is a logical expression. static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { // Run the bool-like conversion checks only for C since there bools are // still not used as the return type from "boolean" operators or as the input // type for conditional operators. if (S.getLangOpts().CPlusPlus) return; if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) return; S.CheckImplicitConversion(E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); } namespace { struct AnalyzeImplicitConversionsWorkItem { Expr *E; SourceLocation CC; bool IsListInit; }; } /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions /// that should be visited are added to WorkList. static void AnalyzeImplicitConversions( Sema &S, AnalyzeImplicitConversionsWorkItem Item, llvm::SmallVectorImpl &WorkList) { Expr *OrigE = Item.E; SourceLocation CC = Item.CC; QualType T = OrigE->getType(); Expr *E = OrigE->IgnoreParenImpCasts(); // Propagate whether we are in a C++ list initialization expression. // If so, we do not issue warnings for implicit int-float conversion // precision loss, because C++11 narrowing already handles it. bool IsListInit = Item.IsListInit || (isa(OrigE) && S.getLangOpts().CPlusPlus); if (E->isTypeDependent() || E->isValueDependent()) return; Expr *SourceExpr = E; // Examine, but don't traverse into the source expression of an // OpaqueValueExpr, since it may have multiple parents and we don't want to // emit duplicate diagnostics. Its fine to examine the form or attempt to // evaluate it in the context of checking the specific conversion to T though. if (auto *OVE = dyn_cast(E)) if (auto *Src = OVE->getSourceExpr()) SourceExpr = Src; if (const auto *UO = dyn_cast(SourceExpr)) if (UO->getOpcode() == UO_Not && UO->getSubExpr()->isKnownToHaveBooleanValue()) S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) << OrigE->getSourceRange() << T->isBooleanType() << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); if (const auto *BO = dyn_cast(SourceExpr)) if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) && BO->getLHS()->isKnownToHaveBooleanValue() && BO->getRHS()->isKnownToHaveBooleanValue() && BO->getLHS()->HasSideEffects(S.Context) && BO->getRHS()->HasSideEffects(S.Context)) { SourceManager &SM = S.getSourceManager(); const LangOptions &LO = S.getLangOpts(); SourceLocation BLoc = BO->getOperatorLoc(); SourceLocation ELoc = Lexer::getLocForEndOfToken(BLoc, 0, SM, LO); StringRef SR = clang::Lexer::getSourceText( clang::CharSourceRange::getTokenRange(BLoc, ELoc), SM, LO); // To reduce false positives, only issue the diagnostic if the operator // is explicitly spelled as a punctuator. This suppresses the diagnostic // when using 'bitand' or 'bitor' either as keywords in C++ or as macros // in C, along with other macro spellings the user might invent. if (SR.str() == "&" || SR.str() == "|") { S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical) << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange() << FixItHint::CreateReplacement( BO->getOperatorLoc(), (BO->getOpcode() == BO_And ? "&&" : "||")); S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int); } } // For conditional operators, we analyze the arguments as if they // were being fed directly into the output. if (auto *CO = dyn_cast(SourceExpr)) { CheckConditionalOperator(S, CO, CC, T); return; } // Check implicit argument conversions for function calls. if (CallExpr *Call = dyn_cast(SourceExpr)) CheckImplicitArgumentConversions(S, Call, CC); // Go ahead and check any implicit conversions we might have skipped. // The non-canonical typecheck is just an optimization; // CheckImplicitConversion will filter out dead implicit conversions. if (SourceExpr->getType() != T) S.CheckImplicitConversion(SourceExpr, T, CC, nullptr, IsListInit); // Now continue drilling into this expression. if (PseudoObjectExpr *POE = dyn_cast(E)) { // The bound subexpressions in a PseudoObjectExpr are not reachable // as transitive children. // FIXME: Use a more uniform representation for this. for (auto *SE : POE->semantics()) if (auto *OVE = dyn_cast(SE)) WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); } // Skip past explicit casts. if (auto *CE = dyn_cast(E)) { E = CE->getSubExpr()->IgnoreParenImpCasts(); if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); WorkList.push_back({E, CC, IsListInit}); return; } if (BinaryOperator *BO = dyn_cast(E)) { // Do a somewhat different check with comparison operators. if (BO->isComparisonOp()) return AnalyzeComparison(S, BO); // And with simple assignments. if (BO->getOpcode() == BO_Assign) return AnalyzeAssignment(S, BO); // And with compound assignments. if (BO->isAssignmentOp()) return AnalyzeCompoundAssignment(S, BO); } // These break the otherwise-useful invariant below. Fortunately, // we don't really need to recurse into them, because any internal // expressions should have been analyzed already when they were // built into statements. if (isa(E)) return; // Don't descend into unevaluated contexts. if (isa(E)) return; // Now just recurse over the expression's children. CC = E->getExprLoc(); BinaryOperator *BO = dyn_cast(E); bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; for (Stmt *SubStmt : E->children()) { Expr *ChildExpr = dyn_cast_or_null(SubStmt); if (!ChildExpr) continue; if (auto *CSE = dyn_cast(E)) if (ChildExpr == CSE->getOperand()) // Do not recurse over a CoroutineSuspendExpr's operand. // The operand is also a subexpression of getCommonExpr(), and // recursing into it directly would produce duplicate diagnostics. continue; if (IsLogicalAndOperator && isa(ChildExpr->IgnoreParenImpCasts())) // Ignore checking string literals that are in logical and operators. // This is a common pattern for asserts. continue; WorkList.push_back({ChildExpr, CC, IsListInit}); } if (BO && BO->isLogicalOp()) { Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); if (!IsLogicalAndOperator || !isa(SubExpr)) ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); SubExpr = BO->getRHS()->IgnoreParenImpCasts(); if (!IsLogicalAndOperator || !isa(SubExpr)) ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); } if (const UnaryOperator *U = dyn_cast(E)) { if (U->getOpcode() == UO_LNot) { ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); } else if (U->getOpcode() != UO_AddrOf) { if (U->getSubExpr()->getType()->isAtomicType()) S.Diag(U->getSubExpr()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); } } } /// AnalyzeImplicitConversions - Find and report any interesting /// implicit conversions in the given expression. There are a couple /// of competing diagnostics here, -Wconversion and -Wsign-compare. static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, bool IsListInit/*= false*/) { llvm::SmallVector WorkList; WorkList.push_back({OrigE, CC, IsListInit}); while (!WorkList.empty()) AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); } // Helper function for Sema::DiagnoseAlwaysNonNullPointer. // Returns true when emitting a warning about taking the address of a reference. static bool CheckForReference(Sema &SemaRef, const Expr *E, const PartialDiagnostic &PD) { E = E->IgnoreParenImpCasts(); const FunctionDecl *FD = nullptr; if (const DeclRefExpr *DRE = dyn_cast(E)) { if (!DRE->getDecl()->getType()->isReferenceType()) return false; } else if (const MemberExpr *M = dyn_cast(E)) { if (!M->getMemberDecl()->getType()->isReferenceType()) return false; } else if (const CallExpr *Call = dyn_cast(E)) { if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) return false; FD = Call->getDirectCallee(); } else { return false; } SemaRef.Diag(E->getExprLoc(), PD); // If possible, point to location of function. if (FD) { SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; } return true; } // Returns true if the SourceLocation is expanded from any macro body. // Returns false if the SourceLocation is invalid, is from not in a macro // expansion, or is from expanded from a top-level macro argument. static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { if (Loc.isInvalid()) return false; while (Loc.isMacroID()) { if (SM.isMacroBodyExpansion(Loc)) return true; Loc = SM.getImmediateMacroCallerLoc(Loc); } return false; } void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, Expr::NullPointerConstantKind NullKind, bool IsEqual, SourceRange Range) { if (!E) return; // Don't warn inside macros. if (E->getExprLoc().isMacroID()) { const SourceManager &SM = getSourceManager(); if (IsInAnyMacroBody(SM, E->getExprLoc()) || IsInAnyMacroBody(SM, Range.getBegin())) return; } E = E->IgnoreImpCasts(); const bool IsCompare = NullKind != Expr::NPCK_NotNull; if (isa(E)) { unsigned DiagID = IsCompare ? diag::warn_this_null_compare : diag::warn_this_bool_conversion; Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; return; } bool IsAddressOf = false; if (auto *UO = dyn_cast(E->IgnoreParens())) { if (UO->getOpcode() != UO_AddrOf) return; IsAddressOf = true; E = UO->getSubExpr(); } if (IsAddressOf) { unsigned DiagID = IsCompare ? diag::warn_address_of_reference_null_compare : diag::warn_address_of_reference_bool_conversion; PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range << IsEqual; if (CheckForReference(*this, E, PD)) { return; } } auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { bool IsParam = isa(NonnullAttr); std::string Str; llvm::raw_string_ostream S(Str); E->printPretty(S, nullptr, getPrintingPolicy()); unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare : diag::warn_cast_nonnull_to_bool; Diag(E->getExprLoc(), DiagID) << IsParam << S.str() << E->getSourceRange() << Range << IsEqual; Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; }; // If we have a CallExpr that is tagged with returns_nonnull, we can complain. if (auto *Call = dyn_cast(E->IgnoreParenImpCasts())) { if (auto *Callee = Call->getDirectCallee()) { if (const Attr *A = Callee->getAttr()) { ComplainAboutNonnullParamOrCall(A); return; } } } // Complain if we are converting a lambda expression to a boolean value // outside of instantiation. if (!inTemplateInstantiation()) { if (const auto *MCallExpr = dyn_cast(E)) { if (const auto *MRecordDecl = MCallExpr->getRecordDecl(); MRecordDecl && MRecordDecl->isLambda()) { Diag(E->getExprLoc(), diag::warn_impcast_pointer_to_bool) << /*LambdaPointerConversionOperatorType=*/3 << MRecordDecl->getSourceRange() << Range << IsEqual; return; } } } // Expect to find a single Decl. Skip anything more complicated. ValueDecl *D = nullptr; if (DeclRefExpr *R = dyn_cast(E)) { D = R->getDecl(); } else if (MemberExpr *M = dyn_cast(E)) { D = M->getMemberDecl(); } // Weak Decls can be null. if (!D || D->isWeak()) return; // Check for parameter decl with nonnull attribute if (const auto* PV = dyn_cast(D)) { if (getCurFunction() && !getCurFunction()->ModifiedNonNullParams.count(PV)) { if (const Attr *A = PV->getAttr()) { ComplainAboutNonnullParamOrCall(A); return; } if (const auto *FD = dyn_cast(PV->getDeclContext())) { // Skip function template not specialized yet. if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) return; auto ParamIter = llvm::find(FD->parameters(), PV); assert(ParamIter != FD->param_end()); unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); for (const auto *NonNull : FD->specific_attrs()) { if (!NonNull->args_size()) { ComplainAboutNonnullParamOrCall(NonNull); return; } for (const ParamIdx &ArgNo : NonNull->args()) { if (ArgNo.getASTIndex() == ParamNo) { ComplainAboutNonnullParamOrCall(NonNull); return; } } } } } } QualType T = D->getType(); const bool IsArray = T->isArrayType(); const bool IsFunction = T->isFunctionType(); // Address of function is used to silence the function warning. if (IsAddressOf && IsFunction) { return; } // Found nothing. if (!IsAddressOf && !IsFunction && !IsArray) return; // Pretty print the expression for the diagnostic. std::string Str; llvm::raw_string_ostream S(Str); E->printPretty(S, nullptr, getPrintingPolicy()); unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare : diag::warn_impcast_pointer_to_bool; enum { AddressOf, FunctionPointer, ArrayPointer } DiagType; if (IsAddressOf) DiagType = AddressOf; else if (IsFunction) DiagType = FunctionPointer; else if (IsArray) DiagType = ArrayPointer; else llvm_unreachable("Could not determine diagnostic."); Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() << Range << IsEqual; if (!IsFunction) return; // Suggest '&' to silence the function warning. Diag(E->getExprLoc(), diag::note_function_warning_silence) << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); // Check to see if '()' fixit should be emitted. QualType ReturnType; UnresolvedSet<4> NonTemplateOverloads; tryExprAsCall(*E, ReturnType, NonTemplateOverloads); if (ReturnType.isNull()) return; if (IsCompare) { // There are two cases here. If there is null constant, the only suggest // for a pointer return type. If the null is 0, then suggest if the return // type is a pointer or an integer type. if (!ReturnType->isPointerType()) { if (NullKind == Expr::NPCK_ZeroExpression || NullKind == Expr::NPCK_ZeroLiteral) { if (!ReturnType->isIntegerType()) return; } else { return; } } } else { // !IsCompare // For function to bool, only suggest if the function pointer has bool // return type. if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) return; } Diag(E->getExprLoc(), diag::note_function_to_function_call) << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); } void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { // Don't diagnose in unevaluated contexts. if (isUnevaluatedContext()) return; // Don't diagnose for value- or type-dependent expressions. if (E->isTypeDependent() || E->isValueDependent()) return; // Check for array bounds violations in cases where the check isn't triggered // elsewhere for other Expr types (like BinaryOperators), e.g. when an // ArraySubscriptExpr is on the RHS of a variable initialization. CheckArrayAccess(E); // This is not the right CC for (e.g.) a variable initialization. AnalyzeImplicitConversions(*this, E, CC); } void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { ::CheckBoolLikeConversion(*this, E, CC); } void Sema::CheckForIntOverflow (const Expr *E) { // Use a work list to deal with nested struct initializers. SmallVector Exprs(1, E); do { const Expr *OriginalE = Exprs.pop_back_val(); const Expr *E = OriginalE->IgnoreParenCasts(); if (isa(E)) { E->EvaluateForOverflow(Context); continue; } if (const auto *InitList = dyn_cast(OriginalE)) Exprs.append(InitList->inits().begin(), InitList->inits().end()); else if (isa(OriginalE)) E->EvaluateForOverflow(Context); else if (const auto *Call = dyn_cast(E)) Exprs.append(Call->arg_begin(), Call->arg_end()); else if (const auto *Message = dyn_cast(E)) Exprs.append(Message->arg_begin(), Message->arg_end()); else if (const auto *Construct = dyn_cast(E)) Exprs.append(Construct->arg_begin(), Construct->arg_end()); else if (const auto *Temporary = dyn_cast(E)) Exprs.push_back(Temporary->getSubExpr()); else if (const auto *Array = dyn_cast(E)) Exprs.push_back(Array->getIdx()); else if (const auto *Compound = dyn_cast(E)) Exprs.push_back(Compound->getInitializer()); else if (const auto *New = dyn_cast(E); New && New->isArray()) { if (auto ArraySize = New->getArraySize()) Exprs.push_back(*ArraySize); } } while (!Exprs.empty()); } namespace { /// Visitor for expressions which looks for unsequenced operations on the /// same object. class SequenceChecker : public ConstEvaluatedExprVisitor { using Base = ConstEvaluatedExprVisitor; /// A tree of sequenced regions within an expression. Two regions are /// unsequenced if one is an ancestor or a descendent of the other. When we /// finish processing an expression with sequencing, such as a comma /// expression, we fold its tree nodes into its parent, since they are /// unsequenced with respect to nodes we will visit later. class SequenceTree { struct Value { explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} unsigned Parent : 31; LLVM_PREFERRED_TYPE(bool) unsigned Merged : 1; }; SmallVector Values; public: /// A region within an expression which may be sequenced with respect /// to some other region. class Seq { friend class SequenceTree; unsigned Index; explicit Seq(unsigned N) : Index(N) {} public: Seq() : Index(0) {} }; SequenceTree() { Values.push_back(Value(0)); } Seq root() const { return Seq(0); } /// Create a new sequence of operations, which is an unsequenced /// subset of \p Parent. This sequence of operations is sequenced with /// respect to other children of \p Parent. Seq allocate(Seq Parent) { Values.push_back(Value(Parent.Index)); return Seq(Values.size() - 1); } /// Merge a sequence of operations into its parent. void merge(Seq S) { Values[S.Index].Merged = true; } /// Determine whether two operations are unsequenced. This operation /// is asymmetric: \p Cur should be the more recent sequence, and \p Old /// should have been merged into its parent as appropriate. bool isUnsequenced(Seq Cur, Seq Old) { unsigned C = representative(Cur.Index); unsigned Target = representative(Old.Index); while (C >= Target) { if (C == Target) return true; C = Values[C].Parent; } return false; } private: /// Pick a representative for a sequence. unsigned representative(unsigned K) { if (Values[K].Merged) // Perform path compression as we go. return Values[K].Parent = representative(Values[K].Parent); return K; } }; /// An object for which we can track unsequenced uses. using Object = const NamedDecl *; /// Different flavors of object usage which we track. We only track the /// least-sequenced usage of each kind. enum UsageKind { /// A read of an object. Multiple unsequenced reads are OK. UK_Use, /// A modification of an object which is sequenced before the value /// computation of the expression, such as ++n in C++. UK_ModAsValue, /// A modification of an object which is not sequenced before the value /// computation of the expression, such as n++. UK_ModAsSideEffect, UK_Count = UK_ModAsSideEffect + 1 }; /// Bundle together a sequencing region and the expression corresponding /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. struct Usage { const Expr *UsageExpr = nullptr; SequenceTree::Seq Seq; Usage() = default; }; struct UsageInfo { Usage Uses[UK_Count]; /// Have we issued a diagnostic for this object already? bool Diagnosed = false; UsageInfo(); }; using UsageInfoMap = llvm::SmallDenseMap; Sema &SemaRef; /// Sequenced regions within the expression. SequenceTree Tree; /// Declaration modifications and references which we have seen. UsageInfoMap UsageMap; /// The region we are currently within. SequenceTree::Seq Region; /// Filled in with declarations which were modified as a side-effect /// (that is, post-increment operations). SmallVectorImpl> *ModAsSideEffect = nullptr; /// Expressions to check later. We defer checking these to reduce /// stack usage. SmallVectorImpl &WorkList; /// RAII object wrapping the visitation of a sequenced subexpression of an /// expression. At the end of this process, the side-effects of the evaluation /// become sequenced with respect to the value computation of the result, so /// we downgrade any UK_ModAsSideEffect within the evaluation to /// UK_ModAsValue. struct SequencedSubexpression { SequencedSubexpression(SequenceChecker &Self) : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { Self.ModAsSideEffect = &ModAsSideEffect; } ~SequencedSubexpression() { for (const std::pair &M : llvm::reverse(ModAsSideEffect)) { // Add a new usage with usage kind UK_ModAsValue, and then restore // the previous usage with UK_ModAsSideEffect (thus clearing it if // the previous one was empty). UsageInfo &UI = Self.UsageMap[M.first]; auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); SideEffectUsage = M.second; } Self.ModAsSideEffect = OldModAsSideEffect; } SequenceChecker &Self; SmallVector, 4> ModAsSideEffect; SmallVectorImpl> *OldModAsSideEffect; }; /// RAII object wrapping the visitation of a subexpression which we might /// choose to evaluate as a constant. If any subexpression is evaluated and /// found to be non-constant, this allows us to suppress the evaluation of /// the outer expression. class EvaluationTracker { public: EvaluationTracker(SequenceChecker &Self) : Self(Self), Prev(Self.EvalTracker) { Self.EvalTracker = this; } ~EvaluationTracker() { Self.EvalTracker = Prev; if (Prev) Prev->EvalOK &= EvalOK; } bool evaluate(const Expr *E, bool &Result) { if (!EvalOK || E->isValueDependent()) return false; EvalOK = E->EvaluateAsBooleanCondition( Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluatedContext()); return EvalOK; } private: SequenceChecker &Self; EvaluationTracker *Prev; bool EvalOK = true; } *EvalTracker = nullptr; /// Find the object which is produced by the specified expression, /// if any. Object getObject(const Expr *E, bool Mod) const { E = E->IgnoreParenCasts(); if (const UnaryOperator *UO = dyn_cast(E)) { if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) return getObject(UO->getSubExpr(), Mod); } else if (const BinaryOperator *BO = dyn_cast(E)) { if (BO->getOpcode() == BO_Comma) return getObject(BO->getRHS(), Mod); if (Mod && BO->isAssignmentOp()) return getObject(BO->getLHS(), Mod); } else if (const MemberExpr *ME = dyn_cast(E)) { // FIXME: Check for more interesting cases, like "x.n = ++x.n". if (isa(ME->getBase()->IgnoreParenCasts())) return ME->getMemberDecl(); } else if (const DeclRefExpr *DRE = dyn_cast(E)) // FIXME: If this is a reference, map through to its value. return DRE->getDecl(); return nullptr; } /// Note that an object \p O was modified or used by an expression /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for /// the object \p O as obtained via the \p UsageMap. void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { // Get the old usage for the given object and usage kind. Usage &U = UI.Uses[UK]; if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { // If we have a modification as side effect and are in a sequenced // subexpression, save the old Usage so that we can restore it later // in SequencedSubexpression::~SequencedSubexpression. if (UK == UK_ModAsSideEffect && ModAsSideEffect) ModAsSideEffect->push_back(std::make_pair(O, U)); // Then record the new usage with the current sequencing region. U.UsageExpr = UsageExpr; U.Seq = Region; } } /// Check whether a modification or use of an object \p O in an expression /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. /// \p IsModMod is true when we are checking for a mod-mod unsequenced /// usage and false we are checking for a mod-use unsequenced usage. void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind OtherKind, bool IsModMod) { if (UI.Diagnosed) return; const Usage &U = UI.Uses[OtherKind]; if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) return; const Expr *Mod = U.UsageExpr; const Expr *ModOrUse = UsageExpr; if (OtherKind == UK_Use) std::swap(Mod, ModOrUse); SemaRef.DiagRuntimeBehavior( Mod->getExprLoc(), {Mod, ModOrUse}, SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod : diag::warn_unsequenced_mod_use) << O << SourceRange(ModOrUse->getExprLoc())); UI.Diagnosed = true; } // A note on note{Pre, Post}{Use, Mod}: // // (It helps to follow the algorithm with an expression such as // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced // operations before C++17 and both are well-defined in C++17). // // When visiting a node which uses/modify an object we first call notePreUse // or notePreMod before visiting its sub-expression(s). At this point the // children of the current node have not yet been visited and so the eventual // uses/modifications resulting from the children of the current node have not // been recorded yet. // // We then visit the children of the current node. After that notePostUse or // notePostMod is called. These will 1) detect an unsequenced modification // as side effect (as in "k++ + k") and 2) add a new usage with the // appropriate usage kind. // // We also have to be careful that some operation sequences modification as // side effect as well (for example: || or ,). To account for this we wrap // the visitation of such a sub-expression (for example: the LHS of || or ,) // with SequencedSubexpression. SequencedSubexpression is an RAII object // which record usages which are modifications as side effect, and then // downgrade them (or more accurately restore the previous usage which was a // modification as side effect) when exiting the scope of the sequenced // subexpression. void notePreUse(Object O, const Expr *UseExpr) { UsageInfo &UI = UsageMap[O]; // Uses conflict with other modifications. checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); } void notePostUse(Object O, const Expr *UseExpr) { UsageInfo &UI = UsageMap[O]; checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, /*IsModMod=*/false); addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); } void notePreMod(Object O, const Expr *ModExpr) { UsageInfo &UI = UsageMap[O]; // Modifications conflict with other modifications and with uses. checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); } void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { UsageInfo &UI = UsageMap[O]; checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, /*IsModMod=*/true); addUsage(O, UI, ModExpr, /*UsageKind=*/UK); } public: SequenceChecker(Sema &S, const Expr *E, SmallVectorImpl &WorkList) : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { Visit(E); // Silence a -Wunused-private-field since WorkList is now unused. // TODO: Evaluate if it can be used, and if not remove it. (void)this->WorkList; } void VisitStmt(const Stmt *S) { // Skip all statements which aren't expressions for now. } void VisitExpr(const Expr *E) { // By default, just recurse to evaluated subexpressions. Base::VisitStmt(E); } void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) { for (auto *Sub : CSE->children()) { const Expr *ChildExpr = dyn_cast_or_null(Sub); if (!ChildExpr) continue; if (ChildExpr == CSE->getOperand()) // Do not recurse over a CoroutineSuspendExpr's operand. // The operand is also a subexpression of getCommonExpr(), and // recursing into it directly could confuse object management // for the sake of sequence tracking. continue; Visit(Sub); } } void VisitCastExpr(const CastExpr *E) { Object O = Object(); if (E->getCastKind() == CK_LValueToRValue) O = getObject(E->getSubExpr(), false); if (O) notePreUse(O, E); VisitExpr(E); if (O) notePostUse(O, E); } void VisitSequencedExpressions(const Expr *SequencedBefore, const Expr *SequencedAfter) { SequenceTree::Seq BeforeRegion = Tree.allocate(Region); SequenceTree::Seq AfterRegion = Tree.allocate(Region); SequenceTree::Seq OldRegion = Region; { SequencedSubexpression SeqBefore(*this); Region = BeforeRegion; Visit(SequencedBefore); } Region = AfterRegion; Visit(SequencedAfter); Region = OldRegion; Tree.merge(BeforeRegion); Tree.merge(AfterRegion); } void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { // C++17 [expr.sub]p1: // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The // expression E1 is sequenced before the expression E2. if (SemaRef.getLangOpts().CPlusPlus17) VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); else { Visit(ASE->getLHS()); Visit(ASE->getRHS()); } } void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } void VisitBinPtrMem(const BinaryOperator *BO) { // C++17 [expr.mptr.oper]p4: // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] // the expression E1 is sequenced before the expression E2. if (SemaRef.getLangOpts().CPlusPlus17) VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); else { Visit(BO->getLHS()); Visit(BO->getRHS()); } } void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } void VisitBinShlShr(const BinaryOperator *BO) { // C++17 [expr.shift]p4: // The expression E1 is sequenced before the expression E2. if (SemaRef.getLangOpts().CPlusPlus17) VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); else { Visit(BO->getLHS()); Visit(BO->getRHS()); } } void VisitBinComma(const BinaryOperator *BO) { // C++11 [expr.comma]p1: // Every value computation and side effect associated with the left // expression is sequenced before every value computation and side // effect associated with the right expression. VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); } void VisitBinAssign(const BinaryOperator *BO) { SequenceTree::Seq RHSRegion; SequenceTree::Seq LHSRegion; if (SemaRef.getLangOpts().CPlusPlus17) { RHSRegion = Tree.allocate(Region); LHSRegion = Tree.allocate(Region); } else { RHSRegion = Region; LHSRegion = Region; } SequenceTree::Seq OldRegion = Region; // C++11 [expr.ass]p1: // [...] the assignment is sequenced after the value computation // of the right and left operands, [...] // // so check it before inspecting the operands and update the // map afterwards. Object O = getObject(BO->getLHS(), /*Mod=*/true); if (O) notePreMod(O, BO); if (SemaRef.getLangOpts().CPlusPlus17) { // C++17 [expr.ass]p1: // [...] The right operand is sequenced before the left operand. [...] { SequencedSubexpression SeqBefore(*this); Region = RHSRegion; Visit(BO->getRHS()); } Region = LHSRegion; Visit(BO->getLHS()); if (O && isa(BO)) notePostUse(O, BO); } else { // C++11 does not specify any sequencing between the LHS and RHS. Region = LHSRegion; Visit(BO->getLHS()); if (O && isa(BO)) notePostUse(O, BO); Region = RHSRegion; Visit(BO->getRHS()); } // C++11 [expr.ass]p1: // the assignment is sequenced [...] before the value computation of the // assignment expression. // C11 6.5.16/3 has no such rule. Region = OldRegion; if (O) notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue : UK_ModAsSideEffect); if (SemaRef.getLangOpts().CPlusPlus17) { Tree.merge(RHSRegion); Tree.merge(LHSRegion); } } void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { VisitBinAssign(CAO); } void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } void VisitUnaryPreIncDec(const UnaryOperator *UO) { Object O = getObject(UO->getSubExpr(), true); if (!O) return VisitExpr(UO); notePreMod(O, UO); Visit(UO->getSubExpr()); // C++11 [expr.pre.incr]p1: // the expression ++x is equivalent to x+=1 notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue : UK_ModAsSideEffect); } void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } void VisitUnaryPostIncDec(const UnaryOperator *UO) { Object O = getObject(UO->getSubExpr(), true); if (!O) return VisitExpr(UO); notePreMod(O, UO); Visit(UO->getSubExpr()); notePostMod(O, UO, UK_ModAsSideEffect); } void VisitBinLOr(const BinaryOperator *BO) { // C++11 [expr.log.or]p2: // If the second expression is evaluated, every value computation and // side effect associated with the first expression is sequenced before // every value computation and side effect associated with the // second expression. SequenceTree::Seq LHSRegion = Tree.allocate(Region); SequenceTree::Seq RHSRegion = Tree.allocate(Region); SequenceTree::Seq OldRegion = Region; EvaluationTracker Eval(*this); { SequencedSubexpression Sequenced(*this); Region = LHSRegion; Visit(BO->getLHS()); } // C++11 [expr.log.or]p1: // [...] the second operand is not evaluated if the first operand // evaluates to true. bool EvalResult = false; bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); bool ShouldVisitRHS = !EvalOK || !EvalResult; if (ShouldVisitRHS) { Region = RHSRegion; Visit(BO->getRHS()); } Region = OldRegion; Tree.merge(LHSRegion); Tree.merge(RHSRegion); } void VisitBinLAnd(const BinaryOperator *BO) { // C++11 [expr.log.and]p2: // If the second expression is evaluated, every value computation and // side effect associated with the first expression is sequenced before // every value computation and side effect associated with the // second expression. SequenceTree::Seq LHSRegion = Tree.allocate(Region); SequenceTree::Seq RHSRegion = Tree.allocate(Region); SequenceTree::Seq OldRegion = Region; EvaluationTracker Eval(*this); { SequencedSubexpression Sequenced(*this); Region = LHSRegion; Visit(BO->getLHS()); } // C++11 [expr.log.and]p1: // [...] the second operand is not evaluated if the first operand is false. bool EvalResult = false; bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); bool ShouldVisitRHS = !EvalOK || EvalResult; if (ShouldVisitRHS) { Region = RHSRegion; Visit(BO->getRHS()); } Region = OldRegion; Tree.merge(LHSRegion); Tree.merge(RHSRegion); } void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { // C++11 [expr.cond]p1: // [...] Every value computation and side effect associated with the first // expression is sequenced before every value computation and side effect // associated with the second or third expression. SequenceTree::Seq ConditionRegion = Tree.allocate(Region); // No sequencing is specified between the true and false expression. // However since exactly one of both is going to be evaluated we can // consider them to be sequenced. This is needed to avoid warning on // something like "x ? y+= 1 : y += 2;" in the case where we will visit // both the true and false expressions because we can't evaluate x. // This will still allow us to detect an expression like (pre C++17) // "(x ? y += 1 : y += 2) = y". // // We don't wrap the visitation of the true and false expression with // SequencedSubexpression because we don't want to downgrade modifications // as side effect in the true and false expressions after the visition // is done. (for example in the expression "(x ? y++ : y++) + y" we should // not warn between the two "y++", but we should warn between the "y++" // and the "y". SequenceTree::Seq TrueRegion = Tree.allocate(Region); SequenceTree::Seq FalseRegion = Tree.allocate(Region); SequenceTree::Seq OldRegion = Region; EvaluationTracker Eval(*this); { SequencedSubexpression Sequenced(*this); Region = ConditionRegion; Visit(CO->getCond()); } // C++11 [expr.cond]p1: // [...] The first expression is contextually converted to bool (Clause 4). // It is evaluated and if it is true, the result of the conditional // expression is the value of the second expression, otherwise that of the // third expression. Only one of the second and third expressions is // evaluated. [...] bool EvalResult = false; bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); bool ShouldVisitTrueExpr = !EvalOK || EvalResult; bool ShouldVisitFalseExpr = !EvalOK || !EvalResult; if (ShouldVisitTrueExpr) { Region = TrueRegion; Visit(CO->getTrueExpr()); } if (ShouldVisitFalseExpr) { Region = FalseRegion; Visit(CO->getFalseExpr()); } Region = OldRegion; Tree.merge(ConditionRegion); Tree.merge(TrueRegion); Tree.merge(FalseRegion); } void VisitCallExpr(const CallExpr *CE) { // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. if (CE->isUnevaluatedBuiltinCall(Context)) return; // C++11 [intro.execution]p15: // When calling a function [...], every value computation and side effect // associated with any argument expression, or with the postfix expression // designating the called function, is sequenced before execution of every // expression or statement in the body of the function [and thus before // the value computation of its result]. SequencedSubexpression Sequenced(*this); SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { // C++17 [expr.call]p5 // The postfix-expression is sequenced before each expression in the // expression-list and any default argument. [...] SequenceTree::Seq CalleeRegion; SequenceTree::Seq OtherRegion; if (SemaRef.getLangOpts().CPlusPlus17) { CalleeRegion = Tree.allocate(Region); OtherRegion = Tree.allocate(Region); } else { CalleeRegion = Region; OtherRegion = Region; } SequenceTree::Seq OldRegion = Region; // Visit the callee expression first. Region = CalleeRegion; if (SemaRef.getLangOpts().CPlusPlus17) { SequencedSubexpression Sequenced(*this); Visit(CE->getCallee()); } else { Visit(CE->getCallee()); } // Then visit the argument expressions. Region = OtherRegion; for (const Expr *Argument : CE->arguments()) Visit(Argument); Region = OldRegion; if (SemaRef.getLangOpts().CPlusPlus17) { Tree.merge(CalleeRegion); Tree.merge(OtherRegion); } }); } void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { // C++17 [over.match.oper]p2: // [...] the operator notation is first transformed to the equivalent // function-call notation as summarized in Table 12 (where @ denotes one // of the operators covered in the specified subclause). However, the // operands are sequenced in the order prescribed for the built-in // operator (Clause 8). // // From the above only overloaded binary operators and overloaded call // operators have sequencing rules in C++17 that we need to handle // separately. if (!SemaRef.getLangOpts().CPlusPlus17 || (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) return VisitCallExpr(CXXOCE); enum { NoSequencing, LHSBeforeRHS, RHSBeforeLHS, LHSBeforeRest } SequencingKind; switch (CXXOCE->getOperator()) { case OO_Equal: case OO_PlusEqual: case OO_MinusEqual: case OO_StarEqual: case OO_SlashEqual: case OO_PercentEqual: case OO_CaretEqual: case OO_AmpEqual: case OO_PipeEqual: case OO_LessLessEqual: case OO_GreaterGreaterEqual: SequencingKind = RHSBeforeLHS; break; case OO_LessLess: case OO_GreaterGreater: case OO_AmpAmp: case OO_PipePipe: case OO_Comma: case OO_ArrowStar: case OO_Subscript: SequencingKind = LHSBeforeRHS; break; case OO_Call: SequencingKind = LHSBeforeRest; break; default: SequencingKind = NoSequencing; break; } if (SequencingKind == NoSequencing) return VisitCallExpr(CXXOCE); // This is a call, so all subexpressions are sequenced before the result. SequencedSubexpression Sequenced(*this); SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { assert(SemaRef.getLangOpts().CPlusPlus17 && "Should only get there with C++17 and above!"); assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && "Should only get there with an overloaded binary operator" " or an overloaded call operator!"); if (SequencingKind == LHSBeforeRest) { assert(CXXOCE->getOperator() == OO_Call && "We should only have an overloaded call operator here!"); // This is very similar to VisitCallExpr, except that we only have the // C++17 case. The postfix-expression is the first argument of the // CXXOperatorCallExpr. The expressions in the expression-list, if any, // are in the following arguments. // // Note that we intentionally do not visit the callee expression since // it is just a decayed reference to a function. SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); SequenceTree::Seq ArgsRegion = Tree.allocate(Region); SequenceTree::Seq OldRegion = Region; assert(CXXOCE->getNumArgs() >= 1 && "An overloaded call operator must have at least one argument" " for the postfix-expression!"); const Expr *PostfixExpr = CXXOCE->getArgs()[0]; llvm::ArrayRef Args(CXXOCE->getArgs() + 1, CXXOCE->getNumArgs() - 1); // Visit the postfix-expression first. { Region = PostfixExprRegion; SequencedSubexpression Sequenced(*this); Visit(PostfixExpr); } // Then visit the argument expressions. Region = ArgsRegion; for (const Expr *Arg : Args) Visit(Arg); Region = OldRegion; Tree.merge(PostfixExprRegion); Tree.merge(ArgsRegion); } else { assert(CXXOCE->getNumArgs() == 2 && "Should only have two arguments here!"); assert((SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && "Unexpected sequencing kind!"); // We do not visit the callee expression since it is just a decayed // reference to a function. const Expr *E1 = CXXOCE->getArg(0); const Expr *E2 = CXXOCE->getArg(1); if (SequencingKind == RHSBeforeLHS) std::swap(E1, E2); return VisitSequencedExpressions(E1, E2); } }); } void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { // This is a call, so all subexpressions are sequenced before the result. SequencedSubexpression Sequenced(*this); if (!CCE->isListInitialization()) return VisitExpr(CCE); // In C++11, list initializations are sequenced. SequenceExpressionsInOrder( llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs())); } void VisitInitListExpr(const InitListExpr *ILE) { if (!SemaRef.getLangOpts().CPlusPlus11) return VisitExpr(ILE); // In C++11, list initializations are sequenced. SequenceExpressionsInOrder(ILE->inits()); } void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) { // C++20 parenthesized list initializations are sequenced. See C++20 // [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2. SequenceExpressionsInOrder(PLIE->getInitExprs()); } private: void SequenceExpressionsInOrder(ArrayRef ExpressionList) { SmallVector Elts; SequenceTree::Seq Parent = Region; for (const Expr *E : ExpressionList) { if (!E) continue; Region = Tree.allocate(Parent); Elts.push_back(Region); Visit(E); } // Forget that the initializers are sequenced. Region = Parent; for (unsigned I = 0; I < Elts.size(); ++I) Tree.merge(Elts[I]); } }; SequenceChecker::UsageInfo::UsageInfo() = default; } // namespace void Sema::CheckUnsequencedOperations(const Expr *E) { SmallVector WorkList; WorkList.push_back(E); while (!WorkList.empty()) { const Expr *Item = WorkList.pop_back_val(); SequenceChecker(*this, Item, WorkList); } } void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, bool IsConstexpr) { llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride, IsConstexpr || isa(E)); CheckImplicitConversions(E, CheckLoc); if (!E->isInstantiationDependent()) CheckUnsequencedOperations(E); if (!IsConstexpr && !E->isValueDependent()) CheckForIntOverflow(E); DiagnoseMisalignedMembers(); } void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *BitField, Expr *Init) { (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); } static void diagnoseArrayStarInParamType(Sema &S, QualType PType, SourceLocation Loc) { if (!PType->isVariablyModifiedType()) return; if (const auto *PointerTy = dyn_cast(PType)) { diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); return; } if (const auto *ReferenceTy = dyn_cast(PType)) { diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); return; } if (const auto *ParenTy = dyn_cast(PType)) { diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); return; } const ArrayType *AT = S.Context.getAsArrayType(PType); if (!AT) return; if (AT->getSizeModifier() != ArraySizeModifier::Star) { diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); return; } S.Diag(Loc, diag::err_array_star_in_function_definition); } bool Sema::CheckParmsForFunctionDef(ArrayRef Parameters, bool CheckParameterNames) { bool HasInvalidParm = false; for (ParmVarDecl *Param : Parameters) { assert(Param && "null in a parameter list"); // C99 6.7.5.3p4: the parameters in a parameter type list in a // function declarator that is part of a function definition of // that function shall not have incomplete type. // // C++23 [dcl.fct.def.general]/p2 // The type of a parameter [...] for a function definition // shall not be a (possibly cv-qualified) class type that is incomplete // or abstract within the function body unless the function is deleted. if (!Param->isInvalidDecl() && (RequireCompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type) || RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(), diag::err_abstract_type_in_decl, AbstractParamType))) { Param->setInvalidDecl(); HasInvalidParm = true; } // C99 6.9.1p5: If the declarator includes a parameter type list, the // declaration of each parameter shall include an identifier. if (CheckParameterNames && Param->getIdentifier() == nullptr && !Param->isImplicit() && !getLangOpts().CPlusPlus) { // Diagnose this as an extension in C17 and earlier. if (!getLangOpts().C23) Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23); } // C99 6.7.5.3p12: // If the function declarator is not part of a definition of that // function, parameters may have incomplete type and may use the [*] // notation in their sequences of declarator specifiers to specify // variable length array types. QualType PType = Param->getOriginalType(); // FIXME: This diagnostic should point the '[*]' if source-location // information is added for it. diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); // If the parameter is a c++ class type and it has to be destructed in the // callee function, declare the destructor so that it can be called by the // callee function. Do not perform any direct access check on the dtor here. if (!Param->isInvalidDecl()) { if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { if (!ClassDecl->isInvalidDecl() && !ClassDecl->hasIrrelevantDestructor() && !ClassDecl->isDependentContext() && ClassDecl->isParamDestroyedInCallee()) { CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); MarkFunctionReferenced(Param->getLocation(), Destructor); DiagnoseUseOfDecl(Destructor, Param->getLocation()); } } } // Parameters with the pass_object_size attribute only need to be marked // constant at function definitions. Because we lack information about // whether we're on a declaration or definition when we're instantiating the // attribute, we need to check for constness here. if (const auto *Attr = Param->getAttr()) if (!Param->getType().isConstQualified()) Diag(Param->getLocation(), diag::err_attribute_pointers_only) << Attr->getSpelling() << 1; // Check for parameter names shadowing fields from the class. if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { // The owning context for the parameter should be the function, but we // want to see if this function's declaration context is a record. DeclContext *DC = Param->getDeclContext(); if (DC && DC->isFunctionOrMethod()) { if (auto *RD = dyn_cast(DC->getParent())) CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), RD, /*DeclIsField*/ false); } } if (!Param->isInvalidDecl() && Param->getOriginalType()->isWebAssemblyTableType()) { Param->setInvalidDecl(); HasInvalidParm = true; Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter); } } return HasInvalidParm; } std::optional> static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); /// Compute the alignment and offset of the base class object given the /// derived-to-base cast expression and the alignment and offset of the derived /// class object. static std::pair getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, CharUnits BaseAlignment, CharUnits Offset, ASTContext &Ctx) { for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; ++PathI) { const CXXBaseSpecifier *Base = *PathI; const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); if (Base->isVirtual()) { // The complete object may have a lower alignment than the non-virtual // alignment of the base, in which case the base may be misaligned. Choose // the smaller of the non-virtual alignment and BaseAlignment, which is a // conservative lower bound of the complete object alignment. CharUnits NonVirtualAlignment = Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); Offset = CharUnits::Zero(); } else { const ASTRecordLayout &RL = Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); Offset += RL.getBaseClassOffset(BaseDecl); } DerivedType = Base->getType(); } return std::make_pair(BaseAlignment, Offset); } /// Compute the alignment and offset of a binary additive operator. static std::optional> getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, bool IsSub, ASTContext &Ctx) { QualType PointeeType = PtrE->getType()->getPointeeType(); if (!PointeeType->isConstantSizeType()) return std::nullopt; auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); if (!P) return std::nullopt; CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); if (std::optional IdxRes = IntE->getIntegerConstantExpr(Ctx)) { CharUnits Offset = EltSize * IdxRes->getExtValue(); if (IsSub) Offset = -Offset; return std::make_pair(P->first, P->second + Offset); } // If the integer expression isn't a constant expression, compute the lower // bound of the alignment using the alignment and offset of the pointer // expression and the element size. return std::make_pair( P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), CharUnits::Zero()); } /// This helper function takes an lvalue expression and returns the alignment of /// a VarDecl and a constant offset from the VarDecl. std::optional> static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { E = E->IgnoreParens(); switch (E->getStmtClass()) { default: break; case Stmt::CStyleCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::ImplicitCastExprClass: { auto *CE = cast(E); const Expr *From = CE->getSubExpr(); switch (CE->getCastKind()) { default: break; case CK_NoOp: return getBaseAlignmentAndOffsetFromLValue(From, Ctx); case CK_UncheckedDerivedToBase: case CK_DerivedToBase: { auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); if (!P) break; return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, P->second, Ctx); } } break; } case Stmt::ArraySubscriptExprClass: { auto *ASE = cast(E); return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), false, Ctx); } case Stmt::DeclRefExprClass: { if (auto *VD = dyn_cast(cast(E)->getDecl())) { // FIXME: If VD is captured by copy or is an escaping __block variable, // use the alignment of VD's type. if (!VD->getType()->isReferenceType()) { // Dependent alignment cannot be resolved -> bail out. if (VD->hasDependentAlignment()) break; return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); } if (VD->hasInit()) return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); } break; } case Stmt::MemberExprClass: { auto *ME = cast(E); auto *FD = dyn_cast(ME->getMemberDecl()); if (!FD || FD->getType()->isReferenceType() || FD->getParent()->isInvalidDecl()) break; std::optional> P; if (ME->isArrow()) P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); else P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); if (!P) break; const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); return std::make_pair(P->first, P->second + CharUnits::fromQuantity(Offset)); } case Stmt::UnaryOperatorClass: { auto *UO = cast(E); switch (UO->getOpcode()) { default: break; case UO_Deref: return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); } break; } case Stmt::BinaryOperatorClass: { auto *BO = cast(E); auto Opcode = BO->getOpcode(); switch (Opcode) { default: break; case BO_Comma: return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); } break; } } return std::nullopt; } /// This helper function takes a pointer expression and returns the alignment of /// a VarDecl and a constant offset from the VarDecl. std::optional> static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { E = E->IgnoreParens(); switch (E->getStmtClass()) { default: break; case Stmt::CStyleCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::ImplicitCastExprClass: { auto *CE = cast(E); const Expr *From = CE->getSubExpr(); switch (CE->getCastKind()) { default: break; case CK_NoOp: return getBaseAlignmentAndOffsetFromPtr(From, Ctx); case CK_ArrayToPointerDecay: return getBaseAlignmentAndOffsetFromLValue(From, Ctx); case CK_UncheckedDerivedToBase: case CK_DerivedToBase: { auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); if (!P) break; return getDerivedToBaseAlignmentAndOffset( CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); } } break; } case Stmt::CXXThisExprClass: { auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); return std::make_pair(Alignment, CharUnits::Zero()); } case Stmt::UnaryOperatorClass: { auto *UO = cast(E); if (UO->getOpcode() == UO_AddrOf) return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); break; } case Stmt::BinaryOperatorClass: { auto *BO = cast(E); auto Opcode = BO->getOpcode(); switch (Opcode) { default: break; case BO_Add: case BO_Sub: { const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) std::swap(LHS, RHS); return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, Ctx); } case BO_Comma: return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); } break; } } return std::nullopt; } static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { // See if we can compute the alignment of a VarDecl and an offset from it. std::optional> P = getBaseAlignmentAndOffsetFromPtr(E, S.Context); if (P) return P->first.alignmentAtOffset(P->second); // If that failed, return the type's alignment. return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); } void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { // This is actually a lot of work to potentially be doing on every // cast; don't do it if we're ignoring -Wcast_align (as is the default). if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) return; // Ignore dependent types. if (T->isDependentType() || Op->getType()->isDependentType()) return; // Require that the destination be a pointer type. const PointerType *DestPtr = T->getAs(); if (!DestPtr) return; // If the destination has alignment 1, we're done. QualType DestPointee = DestPtr->getPointeeType(); if (DestPointee->isIncompleteType()) return; CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); if (DestAlign.isOne()) return; // Require that the source be a pointer type. const PointerType *SrcPtr = Op->getType()->getAs(); if (!SrcPtr) return; QualType SrcPointee = SrcPtr->getPointeeType(); // Explicitly allow casts from cv void*. We already implicitly // allowed casts to cv void*, since they have alignment 1. // Also allow casts involving incomplete types, which implicitly // includes 'void'. if (SrcPointee->isIncompleteType()) return; CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); if (SrcAlign >= DestAlign) return; Diag(TRange.getBegin(), diag::warn_cast_align) << Op->getType() << T << static_cast(SrcAlign.getQuantity()) << static_cast(DestAlign.getQuantity()) << TRange << Op->getSourceRange(); } void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, const ArraySubscriptExpr *ASE, bool AllowOnePastEnd, bool IndexNegated) { // Already diagnosed by the constant evaluator. if (isConstantEvaluatedContext()) return; IndexExpr = IndexExpr->IgnoreParenImpCasts(); if (IndexExpr->isValueDependent()) return; const Type *EffectiveType = BaseExpr->getType()->getPointeeOrArrayElementType(); BaseExpr = BaseExpr->IgnoreParenCasts(); const ConstantArrayType *ArrayTy = Context.getAsConstantArrayType(BaseExpr->getType()); LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel(); const Type *BaseType = ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr(); bool IsUnboundedArray = BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike( Context, StrictFlexArraysLevel, /*IgnoreTemplateOrMacroSubstitution=*/true); if (EffectiveType->isDependentType() || (!IsUnboundedArray && BaseType->isDependentType())) return; Expr::EvalResult Result; if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) return; llvm::APSInt index = Result.Val.getInt(); if (IndexNegated) { index.setIsUnsigned(false); index = -index; } if (IsUnboundedArray) { if (EffectiveType->isFunctionType()) return; if (index.isUnsigned() || !index.isNegative()) { const auto &ASTC = getASTContext(); unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth( EffectiveType->getCanonicalTypeInternal().getAddressSpace()); if (index.getBitWidth() < AddrBits) index = index.zext(AddrBits); std::optional ElemCharUnits = ASTC.getTypeSizeInCharsIfKnown(EffectiveType); // PR50741 - If EffectiveType has unknown size (e.g., if it's a void // pointer) bounds-checking isn't meaningful. if (!ElemCharUnits || ElemCharUnits->isZero()) return; llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity()); // If index has more active bits than address space, we already know // we have a bounds violation to warn about. Otherwise, compute // address of (index + 1)th element, and warn about bounds violation // only if that address exceeds address space. if (index.getActiveBits() <= AddrBits) { bool Overflow; llvm::APInt Product(index); Product += 1; Product = Product.umul_ov(ElemBytes, Overflow); if (!Overflow && Product.getActiveBits() <= AddrBits) return; } // Need to compute max possible elements in address space, since that // is included in diag message. llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits); MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth())); MaxElems += 1; ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth()); MaxElems = MaxElems.udiv(ElemBytes); unsigned DiagID = ASE ? diag::warn_array_index_exceeds_max_addressable_bounds : diag::warn_ptr_arith_exceeds_max_addressable_bounds; // Diag message shows element size in bits and in "bytes" (platform- // dependent CharUnits) DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, PDiag(DiagID) << toString(index, 10, true) << AddrBits << (unsigned)ASTC.toBits(*ElemCharUnits) << toString(ElemBytes, 10, false) << toString(MaxElems, 10, false) << (unsigned)MaxElems.getLimitedValue(~0U) << IndexExpr->getSourceRange()); const NamedDecl *ND = nullptr; // Try harder to find a NamedDecl to point at in the note. while (const auto *ASE = dyn_cast(BaseExpr)) BaseExpr = ASE->getBase()->IgnoreParenCasts(); if (const auto *DRE = dyn_cast(BaseExpr)) ND = DRE->getDecl(); if (const auto *ME = dyn_cast(BaseExpr)) ND = ME->getMemberDecl(); if (ND) DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, PDiag(diag::note_array_declared_here) << ND); } return; } if (index.isUnsigned() || !index.isNegative()) { // It is possible that the type of the base expression after // IgnoreParenCasts is incomplete, even though the type of the base // expression before IgnoreParenCasts is complete (see PR39746 for an // example). In this case we have no information about whether the array // access exceeds the array bounds. However we can still diagnose an array // access which precedes the array bounds. if (BaseType->isIncompleteType()) return; llvm::APInt size = ArrayTy->getSize(); if (BaseType != EffectiveType) { // Make sure we're comparing apples to apples when comparing index to // size. uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); uint64_t array_typesize = Context.getTypeSize(BaseType); // Handle ptrarith_typesize being zero, such as when casting to void*. // Use the size in bits (what "getTypeSize()" returns) rather than bytes. if (!ptrarith_typesize) ptrarith_typesize = Context.getCharWidth(); if (ptrarith_typesize != array_typesize) { // There's a cast to a different size type involved. uint64_t ratio = array_typesize / ptrarith_typesize; // TODO: Be smarter about handling cases where array_typesize is not a // multiple of ptrarith_typesize. if (ptrarith_typesize * ratio == array_typesize) size *= llvm::APInt(size.getBitWidth(), ratio); } } if (size.getBitWidth() > index.getBitWidth()) index = index.zext(size.getBitWidth()); else if (size.getBitWidth() < index.getBitWidth()) size = size.zext(index.getBitWidth()); // For array subscripting the index must be less than size, but for pointer // arithmetic also allow the index (offset) to be equal to size since // computing the next address after the end of the array is legal and // commonly done e.g. in C++ iterators and range-based for loops. if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) return; // Suppress the warning if the subscript expression (as identified by the // ']' location) and the index expression are both from macro expansions // within a system header. if (ASE) { SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( ASE->getRBracketLoc()); if (SourceMgr.isInSystemHeader(RBracketLoc)) { SourceLocation IndexLoc = SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) return; } } unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds : diag::warn_ptr_arith_exceeds_bounds; unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1; QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType(); DiagRuntimeBehavior( BaseExpr->getBeginLoc(), BaseExpr, PDiag(DiagID) << toString(index, 10, true) << ArrayTy->desugar() << CastMsg << CastMsgTy << IndexExpr->getSourceRange()); } else { unsigned DiagID = diag::warn_array_index_precedes_bounds; if (!ASE) { DiagID = diag::warn_ptr_arith_precedes_bounds; if (index.isNegative()) index = -index; } DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, PDiag(DiagID) << toString(index, 10, true) << IndexExpr->getSourceRange()); } const NamedDecl *ND = nullptr; // Try harder to find a NamedDecl to point at in the note. while (const auto *ASE = dyn_cast(BaseExpr)) BaseExpr = ASE->getBase()->IgnoreParenCasts(); if (const auto *DRE = dyn_cast(BaseExpr)) ND = DRE->getDecl(); if (const auto *ME = dyn_cast(BaseExpr)) ND = ME->getMemberDecl(); if (ND) DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, PDiag(diag::note_array_declared_here) << ND); } void Sema::CheckArrayAccess(const Expr *expr) { int AllowOnePastEnd = 0; while (expr) { expr = expr->IgnoreParenImpCasts(); switch (expr->getStmtClass()) { case Stmt::ArraySubscriptExprClass: { const ArraySubscriptExpr *ASE = cast(expr); CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, AllowOnePastEnd > 0); expr = ASE->getBase(); break; } case Stmt::MemberExprClass: { expr = cast(expr)->getBase(); break; } case Stmt::ArraySectionExprClass: { const ArraySectionExpr *ASE = cast(expr); // FIXME: We should probably be checking all of the elements to the // 'length' here as well. if (ASE->getLowerBound()) CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), /*ASE=*/nullptr, AllowOnePastEnd > 0); return; } case Stmt::UnaryOperatorClass: { // Only unwrap the * and & unary operators const UnaryOperator *UO = cast(expr); expr = UO->getSubExpr(); switch (UO->getOpcode()) { case UO_AddrOf: AllowOnePastEnd++; break; case UO_Deref: AllowOnePastEnd--; break; default: return; } break; } case Stmt::ConditionalOperatorClass: { const ConditionalOperator *cond = cast(expr); if (const Expr *lhs = cond->getLHS()) CheckArrayAccess(lhs); if (const Expr *rhs = cond->getRHS()) CheckArrayAccess(rhs); return; } case Stmt::CXXOperatorCallExprClass: { const auto *OCE = cast(expr); for (const auto *Arg : OCE->arguments()) CheckArrayAccess(Arg); return; } default: return; } } } static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, Expr *RHS, bool isProperty) { // Check if RHS is an Objective-C object literal, which also can get // immediately zapped in a weak reference. Note that we explicitly // allow ObjCStringLiterals, since those are designed to never really die. RHS = RHS->IgnoreParenImpCasts(); // This enum needs to match with the 'select' in // warn_objc_arc_literal_assign (off-by-1). SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(RHS); if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None) return false; S.Diag(Loc, diag::warn_arc_literal_assign) << (unsigned) Kind << (isProperty ? 0 : 1) << RHS->getSourceRange(); return true; } static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, Qualifiers::ObjCLifetime LT, Expr *RHS, bool isProperty) { // Strip off any implicit cast added to get to the one ARC-specific. while (ImplicitCastExpr *cast = dyn_cast(RHS)) { if (cast->getCastKind() == CK_ARCConsumeObject) { S.Diag(Loc, diag::warn_arc_retained_assign) << (LT == Qualifiers::OCL_ExplicitNone) << (isProperty ? 0 : 1) << RHS->getSourceRange(); return true; } RHS = cast->getSubExpr(); } if (LT == Qualifiers::OCL_Weak && checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) return true; return false; } bool Sema::checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS) { Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) return false; if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) return true; return false; } void Sema::checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS) { QualType LHSType; // PropertyRef on LHS type need be directly obtained from // its declaration as it has a PseudoType. ObjCPropertyRefExpr *PRE = dyn_cast(LHS->IgnoreParens()); if (PRE && !PRE->isImplicitProperty()) { const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); if (PD) LHSType = PD->getType(); } if (LHSType.isNull()) LHSType = LHS->getType(); Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); if (LT == Qualifiers::OCL_Weak) { if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) getCurFunction()->markSafeWeakUse(LHS); } if (checkUnsafeAssigns(Loc, LHSType, RHS)) return; // FIXME. Check for other life times. if (LT != Qualifiers::OCL_None) return; if (PRE) { if (PRE->isImplicitProperty()) return; const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); if (!PD) return; unsigned Attributes = PD->getPropertyAttributes(); if (Attributes & ObjCPropertyAttribute::kind_assign) { // when 'assign' attribute was not explicitly specified // by user, ignore it and rely on property type itself // for lifetime info. unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && LHSType->isObjCRetainableType()) return; while (ImplicitCastExpr *cast = dyn_cast(RHS)) { if (cast->getCastKind() == CK_ARCConsumeObject) { Diag(Loc, diag::warn_arc_retained_property_assign) << RHS->getSourceRange(); return; } RHS = cast->getSubExpr(); } } else if (Attributes & ObjCPropertyAttribute::kind_weak) { if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) return; } } } //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, SourceLocation StmtLoc, const NullStmt *Body) { // Do not warn if the body is a macro that expands to nothing, e.g: // // #define CALL(x) // if (condition) // CALL(0); if (Body->hasLeadingEmptyMacro()) return false; // Get line numbers of statement and body. bool StmtLineInvalid; unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, &StmtLineInvalid); if (StmtLineInvalid) return false; bool BodyLineInvalid; unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), &BodyLineInvalid); if (BodyLineInvalid) return false; // Warn if null statement and body are on the same line. if (StmtLine != BodyLine) return false; return true; } void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body, unsigned DiagID) { // Since this is a syntactic check, don't emit diagnostic for template // instantiations, this just adds noise. if (CurrentInstantiationScope) return; // The body should be a null statement. const NullStmt *NBody = dyn_cast(Body); if (!NBody) return; // Do the usual checks. if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) return; Diag(NBody->getSemiLoc(), DiagID); Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); } void Sema::DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody) { assert(!CurrentInstantiationScope); // Ensured by caller SourceLocation StmtLoc; const Stmt *Body; unsigned DiagID; if (const ForStmt *FS = dyn_cast(S)) { StmtLoc = FS->getRParenLoc(); Body = FS->getBody(); DiagID = diag::warn_empty_for_body; } else if (const WhileStmt *WS = dyn_cast(S)) { StmtLoc = WS->getRParenLoc(); Body = WS->getBody(); DiagID = diag::warn_empty_while_body; } else return; // Neither `for' nor `while'. // The body should be a null statement. const NullStmt *NBody = dyn_cast(Body); if (!NBody) return; // Skip expensive checks if diagnostic is disabled. if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) return; // Do the usual checks. if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) return; // `for(...);' and `while(...);' are popular idioms, so in order to keep // noise level low, emit diagnostics only if for/while is followed by a // CompoundStmt, e.g.: // for (int i = 0; i < n; i++); // { // a(i); // } // or if for/while is followed by a statement with more indentation // than for/while itself: // for (int i = 0; i < n; i++); // a(i); bool ProbableTypo = isa(PossibleBody); if (!ProbableTypo) { bool BodyColInvalid; unsigned BodyCol = SourceMgr.getPresumedColumnNumber( PossibleBody->getBeginLoc(), &BodyColInvalid); if (BodyColInvalid) return; bool StmtColInvalid; unsigned StmtCol = SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); if (StmtColInvalid) return; if (BodyCol > StmtCol) ProbableTypo = true; } if (ProbableTypo) { Diag(NBody->getSemiLoc(), DiagID); Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); } } //===--- CHECK: Warn on self move with std::move. -------------------------===// void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, SourceLocation OpLoc) { if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) return; if (inTemplateInstantiation()) return; // Strip parens and casts away. LHSExpr = LHSExpr->IgnoreParenImpCasts(); RHSExpr = RHSExpr->IgnoreParenImpCasts(); // Check for a call to std::move or for a static_cast(..) to an xvalue // which we can treat as an inlined std::move if (const auto *CE = dyn_cast(RHSExpr); CE && CE->getNumArgs() == 1 && CE->isCallToStdMove()) RHSExpr = CE->getArg(0); else if (const auto *CXXSCE = dyn_cast(RHSExpr); CXXSCE && CXXSCE->isXValue()) RHSExpr = CXXSCE->getSubExpr(); else return; const DeclRefExpr *LHSDeclRef = dyn_cast(LHSExpr); const DeclRefExpr *RHSDeclRef = dyn_cast(RHSExpr); // Two DeclRefExpr's, check that the decls are the same. if (LHSDeclRef && RHSDeclRef) { if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) return; if (LHSDeclRef->getDecl()->getCanonicalDecl() != RHSDeclRef->getDecl()->getCanonicalDecl()) return; auto D = Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); if (const FieldDecl *F = getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl())) D << 1 << F << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->"); else D << 0; return; } // Member variables require a different approach to check for self moves. // MemberExpr's are the same if every nested MemberExpr refers to the same // Decl and that the base Expr's are DeclRefExpr's with the same Decl or // the base Expr's are CXXThisExpr's. const Expr *LHSBase = LHSExpr; const Expr *RHSBase = RHSExpr; const MemberExpr *LHSME = dyn_cast(LHSExpr); const MemberExpr *RHSME = dyn_cast(RHSExpr); if (!LHSME || !RHSME) return; while (LHSME && RHSME) { if (LHSME->getMemberDecl()->getCanonicalDecl() != RHSME->getMemberDecl()->getCanonicalDecl()) return; LHSBase = LHSME->getBase(); RHSBase = RHSME->getBase(); LHSME = dyn_cast(LHSBase); RHSME = dyn_cast(RHSBase); } LHSDeclRef = dyn_cast(LHSBase); RHSDeclRef = dyn_cast(RHSBase); if (LHSDeclRef && RHSDeclRef) { if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) return; if (LHSDeclRef->getDecl()->getCanonicalDecl() != RHSDeclRef->getDecl()->getCanonicalDecl()) return; Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); return; } if (isa(LHSBase) && isa(RHSBase)) Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); } //===--- Layout compatibility ----------------------------------------------// static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2); /// Check if two enumeration types are layout-compatible. static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1, const EnumDecl *ED2) { // C++11 [dcl.enum] p8: // Two enumeration types are layout-compatible if they have the same // underlying type. return ED1->isComplete() && ED2->isComplete() && C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); } /// Check if two fields are layout-compatible. /// Can be used on union members, which are exempt from alignment requirement /// of common initial sequence. static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1, const FieldDecl *Field2, bool AreUnionMembers = false) { [[maybe_unused]] const Type *Field1Parent = Field1->getParent()->getTypeForDecl(); [[maybe_unused]] const Type *Field2Parent = Field2->getParent()->getTypeForDecl(); assert(((Field1Parent->isStructureOrClassType() && Field2Parent->isStructureOrClassType()) || (Field1Parent->isUnionType() && Field2Parent->isUnionType())) && "Can't evaluate layout compatibility between a struct field and a " "union field."); assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) || (AreUnionMembers && Field1Parent->isUnionType())) && "AreUnionMembers should be 'true' for union fields (only)."); if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) return false; if (Field1->isBitField() != Field2->isBitField()) return false; if (Field1->isBitField()) { // Make sure that the bit-fields are the same length. unsigned Bits1 = Field1->getBitWidthValue(C); unsigned Bits2 = Field2->getBitWidthValue(C); if (Bits1 != Bits2) return false; } if (Field1->hasAttr() || Field2->hasAttr()) return false; if (!AreUnionMembers && Field1->getMaxAlignment() != Field2->getMaxAlignment()) return false; return true; } /// Check if two standard-layout structs are layout-compatible. /// (C++11 [class.mem] p17) static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1, const RecordDecl *RD2) { // Get to the class where the fields are declared if (const CXXRecordDecl *D1CXX = dyn_cast(RD1)) RD1 = D1CXX->getStandardLayoutBaseWithFields(); if (const CXXRecordDecl *D2CXX = dyn_cast(RD2)) RD2 = D2CXX->getStandardLayoutBaseWithFields(); // Check the fields. return llvm::equal(RD1->fields(), RD2->fields(), [&C](const FieldDecl *F1, const FieldDecl *F2) -> bool { return isLayoutCompatible(C, F1, F2); }); } /// Check if two standard-layout unions are layout-compatible. /// (C++11 [class.mem] p18) static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1, const RecordDecl *RD2) { llvm::SmallPtrSet UnmatchedFields; for (auto *Field2 : RD2->fields()) UnmatchedFields.insert(Field2); for (auto *Field1 : RD1->fields()) { auto I = UnmatchedFields.begin(); auto E = UnmatchedFields.end(); for ( ; I != E; ++I) { if (isLayoutCompatible(C, Field1, *I, /*IsUnionMember=*/true)) { bool Result = UnmatchedFields.erase(*I); (void) Result; assert(Result); break; } } if (I == E) return false; } return UnmatchedFields.empty(); } static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1, const RecordDecl *RD2) { if (RD1->isUnion() != RD2->isUnion()) return false; if (RD1->isUnion()) return isLayoutCompatibleUnion(C, RD1, RD2); else return isLayoutCompatibleStruct(C, RD1, RD2); } /// Check if two types are layout-compatible in C++11 sense. static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) { if (T1.isNull() || T2.isNull()) return false; // C++20 [basic.types] p11: // Two types cv1 T1 and cv2 T2 are layout-compatible types // if T1 and T2 are the same type, layout-compatible enumerations (9.7.1), // or layout-compatible standard-layout class types (11.4). T1 = T1.getCanonicalType().getUnqualifiedType(); T2 = T2.getCanonicalType().getUnqualifiedType(); if (C.hasSameType(T1, T2)) return true; const Type::TypeClass TC1 = T1->getTypeClass(); const Type::TypeClass TC2 = T2->getTypeClass(); if (TC1 != TC2) return false; if (TC1 == Type::Enum) { return isLayoutCompatible(C, cast(T1)->getDecl(), cast(T2)->getDecl()); } else if (TC1 == Type::Record) { if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) return false; return isLayoutCompatible(C, cast(T1)->getDecl(), cast(T2)->getDecl()); } return false; } bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const { return isLayoutCompatible(getASTContext(), T1, T2); } //===-------------- Pointer interconvertibility ----------------------------// bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base, const TypeSourceInfo *Derived) { QualType BaseT = Base->getType()->getCanonicalTypeUnqualified(); QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified(); if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() && getASTContext().hasSameType(BaseT, DerivedT)) return true; if (!IsDerivedFrom(Derived->getTypeLoc().getBeginLoc(), DerivedT, BaseT)) return false; // Per [basic.compound]/4.3, containing object has to be standard-layout. if (DerivedT->getAsCXXRecordDecl()->isStandardLayout()) return true; return false; } //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// /// Given a type tag expression find the type tag itself. /// /// \param TypeExpr Type tag expression, as it appears in user's code. /// /// \param VD Declaration of an identifier that appears in a type tag. /// /// \param MagicValue Type tag magic value. /// /// \param isConstantEvaluated whether the evalaution should be performed in /// constant context. static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, const ValueDecl **VD, uint64_t *MagicValue, bool isConstantEvaluated) { while(true) { if (!TypeExpr) return false; TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); switch (TypeExpr->getStmtClass()) { case Stmt::UnaryOperatorClass: { const UnaryOperator *UO = cast(TypeExpr); if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { TypeExpr = UO->getSubExpr(); continue; } return false; } case Stmt::DeclRefExprClass: { const DeclRefExpr *DRE = cast(TypeExpr); *VD = DRE->getDecl(); return true; } case Stmt::IntegerLiteralClass: { const IntegerLiteral *IL = cast(TypeExpr); llvm::APInt MagicValueAPInt = IL->getValue(); if (MagicValueAPInt.getActiveBits() <= 64) { *MagicValue = MagicValueAPInt.getZExtValue(); return true; } else return false; } case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { const AbstractConditionalOperator *ACO = cast(TypeExpr); bool Result; if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, isConstantEvaluated)) { if (Result) TypeExpr = ACO->getTrueExpr(); else TypeExpr = ACO->getFalseExpr(); continue; } return false; } case Stmt::BinaryOperatorClass: { const BinaryOperator *BO = cast(TypeExpr); if (BO->getOpcode() == BO_Comma) { TypeExpr = BO->getRHS(); continue; } return false; } default: return false; } } } /// Retrieve the C type corresponding to type tag TypeExpr. /// /// \param TypeExpr Expression that specifies a type tag. /// /// \param MagicValues Registered magic values. /// /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong /// kind. /// /// \param TypeInfo Information about the corresponding C type. /// /// \param isConstantEvaluated whether the evalaution should be performed in /// constant context. /// /// \returns true if the corresponding C type was found. static bool GetMatchingCType( const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, const ASTContext &Ctx, const llvm::DenseMap *MagicValues, bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, bool isConstantEvaluated) { FoundWrongKind = false; // Variable declaration that has type_tag_for_datatype attribute. const ValueDecl *VD = nullptr; uint64_t MagicValue; if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) return false; if (VD) { if (TypeTagForDatatypeAttr *I = VD->getAttr()) { if (I->getArgumentKind() != ArgumentKind) { FoundWrongKind = true; return false; } TypeInfo.Type = I->getMatchingCType(); TypeInfo.LayoutCompatible = I->getLayoutCompatible(); TypeInfo.MustBeNull = I->getMustBeNull(); return true; } return false; } if (!MagicValues) return false; llvm::DenseMap::const_iterator I = MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); if (I == MagicValues->end()) return false; TypeInfo = I->second; return true; } void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, uint64_t MagicValue, QualType Type, bool LayoutCompatible, bool MustBeNull) { if (!TypeTagForDatatypeMagicValues) TypeTagForDatatypeMagicValues.reset( new llvm::DenseMap); TypeTagMagicValue Magic(ArgumentKind, MagicValue); (*TypeTagForDatatypeMagicValues)[Magic] = TypeTagData(Type, LayoutCompatible, MustBeNull); } static bool IsSameCharType(QualType T1, QualType T2) { const BuiltinType *BT1 = T1->getAs(); if (!BT1) return false; const BuiltinType *BT2 = T2->getAs(); if (!BT2) return false; BuiltinType::Kind T1Kind = BT1->getKind(); BuiltinType::Kind T2Kind = BT2->getKind(); return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); } void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, const ArrayRef ExprArgs, SourceLocation CallSiteLoc) { const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); bool IsPointerAttr = Attr->getIsPointer(); // Retrieve the argument representing the 'type_tag'. unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); if (TypeTagIdxAST >= ExprArgs.size()) { Diag(CallSiteLoc, diag::err_tag_index_out_of_range) << 0 << Attr->getTypeTagIdx().getSourceIndex(); return; } const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; bool FoundWrongKind; TypeTagData TypeInfo; if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, TypeTagForDatatypeMagicValues.get(), FoundWrongKind, TypeInfo, isConstantEvaluatedContext())) { if (FoundWrongKind) Diag(TypeTagExpr->getExprLoc(), diag::warn_type_tag_for_datatype_wrong_kind) << TypeTagExpr->getSourceRange(); return; } // Retrieve the argument representing the 'arg_idx'. unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); if (ArgumentIdxAST >= ExprArgs.size()) { Diag(CallSiteLoc, diag::err_tag_index_out_of_range) << 1 << Attr->getArgumentIdx().getSourceIndex(); return; } const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; if (IsPointerAttr) { // Skip implicit cast of pointer to `void *' (as a function argument). if (const ImplicitCastExpr *ICE = dyn_cast(ArgumentExpr)) if (ICE->getType()->isVoidPointerType() && ICE->getCastKind() == CK_BitCast) ArgumentExpr = ICE->getSubExpr(); } QualType ArgumentType = ArgumentExpr->getType(); // Passing a `void*' pointer shouldn't trigger a warning. if (IsPointerAttr && ArgumentType->isVoidPointerType()) return; if (TypeInfo.MustBeNull) { // Type tag with matching void type requires a null pointer. if (!ArgumentExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) { Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_null_pointer_required) << ArgumentKind->getName() << ArgumentExpr->getSourceRange() << TypeTagExpr->getSourceRange(); } return; } QualType RequiredType = TypeInfo.Type; if (IsPointerAttr) RequiredType = Context.getPointerType(RequiredType); bool mismatch = false; if (!TypeInfo.LayoutCompatible) { mismatch = !Context.hasSameType(ArgumentType, RequiredType); // C++11 [basic.fundamental] p1: // Plain char, signed char, and unsigned char are three distinct types. // // But we treat plain `char' as equivalent to `signed char' or `unsigned // char' depending on the current char signedness mode. if (mismatch) if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), RequiredType->getPointeeType())) || (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) mismatch = false; } else if (IsPointerAttr) mismatch = !isLayoutCompatible(Context, ArgumentType->getPointeeType(), RequiredType->getPointeeType()); else mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); if (mismatch) Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) << ArgumentType << ArgumentKind << TypeInfo.LayoutCompatible << RequiredType << ArgumentExpr->getSourceRange() << TypeTagExpr->getSourceRange(); } void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, CharUnits Alignment) { MisalignedMembers.emplace_back(E, RD, MD, Alignment); } void Sema::DiagnoseMisalignedMembers() { for (MisalignedMember &m : MisalignedMembers) { const NamedDecl *ND = m.RD; if (ND->getName().empty()) { if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) ND = TD; } Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) << m.MD << ND << m.E->getSourceRange(); } MisalignedMembers.clear(); } void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { E = E->IgnoreParens(); if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType()) return; if (isa(E) && cast(E)->getOpcode() == UO_AddrOf) { auto *Op = cast(E)->getSubExpr()->IgnoreParens(); if (isa(Op)) { auto *MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); if (MA != MisalignedMembers.end() && (T->isDependentType() || T->isIntegerType() || (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || Context.getTypeAlignInChars( T->getPointeeType()) <= MA->Alignment)))) MisalignedMembers.erase(MA); } } } void Sema::RefersToMemberWithReducedAlignment( Expr *E, llvm::function_ref Action) { const auto *ME = dyn_cast(E); if (!ME) return; // No need to check expressions with an __unaligned-qualified type. if (E->getType().getQualifiers().hasUnaligned()) return; // For a chain of MemberExpr like "a.b.c.d" this list // will keep FieldDecl's like [d, c, b]. SmallVector ReverseMemberChain; const MemberExpr *TopME = nullptr; bool AnyIsPacked = false; do { QualType BaseType = ME->getBase()->getType(); if (BaseType->isDependentType()) return; if (ME->isArrow()) BaseType = BaseType->getPointeeType(); RecordDecl *RD = BaseType->castAs()->getDecl(); if (RD->isInvalidDecl()) return; ValueDecl *MD = ME->getMemberDecl(); auto *FD = dyn_cast(MD); // We do not care about non-data members. if (!FD || FD->isInvalidDecl()) return; AnyIsPacked = AnyIsPacked || (RD->hasAttr() || MD->hasAttr()); ReverseMemberChain.push_back(FD); TopME = ME; ME = dyn_cast(ME->getBase()->IgnoreParens()); } while (ME); assert(TopME && "We did not compute a topmost MemberExpr!"); // Not the scope of this diagnostic. if (!AnyIsPacked) return; const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); const auto *DRE = dyn_cast(TopBase); // TODO: The innermost base of the member expression may be too complicated. // For now, just disregard these cases. This is left for future // improvement. if (!DRE && !isa(TopBase)) return; // Alignment expected by the whole expression. CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); // No need to do anything else with this case. if (ExpectedAlignment.isOne()) return; // Synthesize offset of the whole access. CharUnits Offset; for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain)) Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD)); // Compute the CompleteObjectAlignment as the alignment of the whole chain. CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( ReverseMemberChain.back()->getParent()->getTypeForDecl()); // The base expression of the innermost MemberExpr may give // stronger guarantees than the class containing the member. if (DRE && !TopME->isArrow()) { const ValueDecl *VD = DRE->getDecl(); if (!VD->getType()->isReferenceType()) CompleteObjectAlignment = std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); } // Check if the synthesized offset fulfills the alignment. if (Offset % ExpectedAlignment != 0 || // It may fulfill the offset it but the effective alignment may still be // lower than the expected expression alignment. CompleteObjectAlignment < ExpectedAlignment) { // If this happens, we want to determine a sensible culprit of this. // Intuitively, watching the chain of member expressions from right to // left, we start with the required alignment (as required by the field // type) but some packed attribute in that chain has reduced the alignment. // It may happen that another packed structure increases it again. But if // we are here such increase has not been enough. So pointing the first // FieldDecl that either is packed or else its RecordDecl is, // seems reasonable. FieldDecl *FD = nullptr; CharUnits Alignment; for (FieldDecl *FDI : ReverseMemberChain) { if (FDI->hasAttr() || FDI->getParent()->hasAttr()) { FD = FDI; Alignment = std::min( Context.getTypeAlignInChars(FD->getType()), Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); break; } } assert(FD && "We did not find a packed FieldDecl!"); Action(E, FD->getParent(), FD, Alignment); } } void Sema::CheckAddressOfPackedMember(Expr *rhs) { using namespace std::placeholders; RefersToMemberWithReducedAlignment( rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, _2, _3, _4)); } bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) { if (checkArgCount(TheCall, 1)) return true; ExprResult A = UsualUnaryConversions(TheCall->getArg(0)); if (A.isInvalid()) return true; TheCall->setArg(0, A.get()); QualType TyA = A.get()->getType(); if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1)) return true; TheCall->setType(TyA); return false; } bool Sema::BuiltinElementwiseMath(CallExpr *TheCall) { QualType Res; if (BuiltinVectorMath(TheCall, Res)) return true; TheCall->setType(Res); return false; } bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) { QualType Res; if (BuiltinVectorMath(TheCall, Res)) return true; if (auto *VecTy0 = Res->getAs()) TheCall->setType(VecTy0->getElementType()); else TheCall->setType(Res); return false; } bool Sema::BuiltinVectorMath(CallExpr *TheCall, QualType &Res) { if (checkArgCount(TheCall, 2)) return true; ExprResult A = TheCall->getArg(0); ExprResult B = TheCall->getArg(1); // Do standard promotions between the two arguments, returning their common // type. Res = UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison); if (A.isInvalid() || B.isInvalid()) return true; QualType TyA = A.get()->getType(); QualType TyB = B.get()->getType(); if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType()) return Diag(A.get()->getBeginLoc(), diag::err_typecheck_call_different_arg_types) << TyA << TyB; if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1)) return true; TheCall->setArg(0, A.get()); TheCall->setArg(1, B.get()); return false; } bool Sema::BuiltinElementwiseTernaryMath(CallExpr *TheCall, bool CheckForFloatArgs) { if (checkArgCount(TheCall, 3)) return true; Expr *Args[3]; for (int I = 0; I < 3; ++I) { ExprResult Converted = UsualUnaryConversions(TheCall->getArg(I)); if (Converted.isInvalid()) return true; Args[I] = Converted.get(); } if (CheckForFloatArgs) { int ArgOrdinal = 1; for (Expr *Arg : Args) { if (checkFPMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(), ArgOrdinal++)) return true; } } else { int ArgOrdinal = 1; for (Expr *Arg : Args) { if (checkMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(), ArgOrdinal++)) return true; } } for (int I = 1; I < 3; ++I) { if (Args[0]->getType().getCanonicalType() != Args[I]->getType().getCanonicalType()) { return Diag(Args[0]->getBeginLoc(), diag::err_typecheck_call_different_arg_types) << Args[0]->getType() << Args[I]->getType(); } TheCall->setArg(I, Args[I]); } TheCall->setType(Args[0]->getType()); return false; } bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) { if (checkArgCount(TheCall, 1)) return true; ExprResult A = UsualUnaryConversions(TheCall->getArg(0)); if (A.isInvalid()) return true; TheCall->setArg(0, A.get()); return false; } bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) { if (checkArgCount(TheCall, 1)) return true; ExprResult Arg = TheCall->getArg(0); QualType TyArg = Arg.get()->getType(); if (!TyArg->isBuiltinType() && !TyArg->isVectorType()) return Diag(TheCall->getArg(0)->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /*vector, integer or floating point ty*/ 0 << TyArg; TheCall->setType(TyArg); return false; } ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall, ExprResult CallResult) { if (checkArgCount(TheCall, 1)) return ExprError(); ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); if (MatrixArg.isInvalid()) return MatrixArg; Expr *Matrix = MatrixArg.get(); auto *MType = Matrix->getType()->getAs(); if (!MType) { Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /* matrix ty*/ 1 << Matrix->getType(); return ExprError(); } // Create returned matrix type by swapping rows and columns of the argument // matrix type. QualType ResultType = Context.getConstantMatrixType( MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); // Change the return type to the type of the returned matrix. TheCall->setType(ResultType); // Update call argument to use the possibly converted matrix argument. TheCall->setArg(0, Matrix); return CallResult; } // Get and verify the matrix dimensions. static std::optional getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { SourceLocation ErrorPos; std::optional Value = Expr->getIntegerConstantExpr(S.Context, &ErrorPos); if (!Value) { S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) << Name; return {}; } uint64_t Dim = Value->getZExtValue(); if (!ConstantMatrixType::isDimensionValid(Dim)) { S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) << Name << ConstantMatrixType::getMaxElementsPerDimension(); return {}; } return Dim; } ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall, ExprResult CallResult) { if (!getLangOpts().MatrixTypes) { Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); return ExprError(); } if (checkArgCount(TheCall, 4)) return ExprError(); unsigned PtrArgIdx = 0; Expr *PtrExpr = TheCall->getArg(PtrArgIdx); Expr *RowsExpr = TheCall->getArg(1); Expr *ColumnsExpr = TheCall->getArg(2); Expr *StrideExpr = TheCall->getArg(3); bool ArgError = false; // Check pointer argument. { ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); if (PtrConv.isInvalid()) return PtrConv; PtrExpr = PtrConv.get(); TheCall->setArg(0, PtrExpr); if (PtrExpr->isTypeDependent()) { TheCall->setType(Context.DependentTy); return TheCall; } } auto *PtrTy = PtrExpr->getType()->getAs(); QualType ElementTy; if (!PtrTy) { Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); ArgError = true; } else { ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); if (!ConstantMatrixType::isValidElementType(ElementTy)) { Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) << PtrArgIdx + 1 << /* pointer to element ty*/ 2 << PtrExpr->getType(); ArgError = true; } } // Apply default Lvalue conversions and convert the expression to size_t. auto ApplyArgumentConversions = [this](Expr *E) { ExprResult Conv = DefaultLvalueConversion(E); if (Conv.isInvalid()) return Conv; return tryConvertExprToType(Conv.get(), Context.getSizeType()); }; // Apply conversion to row and column expressions. ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); if (!RowsConv.isInvalid()) { RowsExpr = RowsConv.get(); TheCall->setArg(1, RowsExpr); } else RowsExpr = nullptr; ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); if (!ColumnsConv.isInvalid()) { ColumnsExpr = ColumnsConv.get(); TheCall->setArg(2, ColumnsExpr); } else ColumnsExpr = nullptr; // If any part of the result matrix type is still pending, just use // Context.DependentTy, until all parts are resolved. if ((RowsExpr && RowsExpr->isTypeDependent()) || (ColumnsExpr && ColumnsExpr->isTypeDependent())) { TheCall->setType(Context.DependentTy); return CallResult; } // Check row and column dimensions. std::optional MaybeRows; if (RowsExpr) MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); std::optional MaybeColumns; if (ColumnsExpr) MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); // Check stride argument. ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); if (StrideConv.isInvalid()) return ExprError(); StrideExpr = StrideConv.get(); TheCall->setArg(3, StrideExpr); if (MaybeRows) { if (std::optional Value = StrideExpr->getIntegerConstantExpr(Context)) { uint64_t Stride = Value->getZExtValue(); if (Stride < *MaybeRows) { Diag(StrideExpr->getBeginLoc(), diag::err_builtin_matrix_stride_too_small); ArgError = true; } } } if (ArgError || !MaybeRows || !MaybeColumns) return ExprError(); TheCall->setType( Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); return CallResult; } ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall, ExprResult CallResult) { if (checkArgCount(TheCall, 3)) return ExprError(); unsigned PtrArgIdx = 1; Expr *MatrixExpr = TheCall->getArg(0); Expr *PtrExpr = TheCall->getArg(PtrArgIdx); Expr *StrideExpr = TheCall->getArg(2); bool ArgError = false; { ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); if (MatrixConv.isInvalid()) return MatrixConv; MatrixExpr = MatrixConv.get(); TheCall->setArg(0, MatrixExpr); } if (MatrixExpr->isTypeDependent()) { TheCall->setType(Context.DependentTy); return TheCall; } auto *MatrixTy = MatrixExpr->getType()->getAs(); if (!MatrixTy) { Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) << 1 << /*matrix ty */ 1 << MatrixExpr->getType(); ArgError = true; } { ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); if (PtrConv.isInvalid()) return PtrConv; PtrExpr = PtrConv.get(); TheCall->setArg(1, PtrExpr); if (PtrExpr->isTypeDependent()) { TheCall->setType(Context.DependentTy); return TheCall; } } // Check pointer argument. auto *PtrTy = PtrExpr->getType()->getAs(); if (!PtrTy) { Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); ArgError = true; } else { QualType ElementTy = PtrTy->getPointeeType(); if (ElementTy.isConstQualified()) { Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); ArgError = true; } ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); if (MatrixTy && !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg_mismatch) << ElementTy << MatrixTy->getElementType(); ArgError = true; } } // Apply default Lvalue conversions and convert the stride expression to // size_t. { ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); if (StrideConv.isInvalid()) return StrideConv; StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); if (StrideConv.isInvalid()) return StrideConv; StrideExpr = StrideConv.get(); TheCall->setArg(2, StrideExpr); } // Check stride argument. if (MatrixTy) { if (std::optional Value = StrideExpr->getIntegerConstantExpr(Context)) { uint64_t Stride = Value->getZExtValue(); if (Stride < MatrixTy->getNumRows()) { Diag(StrideExpr->getBeginLoc(), diag::err_builtin_matrix_stride_too_small); ArgError = true; } } } if (ArgError) return ExprError(); return CallResult; } void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc, const NamedDecl *Callee) { // This warning does not make sense in code that has no runtime behavior. if (isUnevaluatedContext()) return; const NamedDecl *Caller = getCurFunctionOrMethodDecl(); if (!Caller || !Caller->hasAttr()) return; // Search through the enforce_tcb and enforce_tcb_leaf attributes to find // all TCBs the callee is a part of. llvm::StringSet<> CalleeTCBs; for (const auto *A : Callee->specific_attrs()) CalleeTCBs.insert(A->getTCBName()); for (const auto *A : Callee->specific_attrs()) CalleeTCBs.insert(A->getTCBName()); // Go through the TCBs the caller is a part of and emit warnings if Caller // is in a TCB that the Callee is not. for (const auto *A : Caller->specific_attrs()) { StringRef CallerTCB = A->getTCBName(); if (CalleeTCBs.count(CallerTCB) == 0) { this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation) << Callee << CallerTCB; } } }